nir: define behavior of nir_op_bfm and nir_op_u/ibfe according to SM5 spec.
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "compiler/nir_types.h"
41 #include "compiler/shader_enums.h"
42 #include "compiler/shader_info.h"
43 #include <stdio.h>
44
45 #ifndef NDEBUG
46 #include "util/debug.h"
47 #endif /* NDEBUG */
48
49 #include "nir_opcodes.h"
50
51 #if defined(_WIN32) && !defined(snprintf)
52 #define snprintf _snprintf
53 #endif
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 #define NIR_FALSE 0u
60 #define NIR_TRUE (~0u)
61 #define NIR_MAX_VEC_COMPONENTS 4
62 #define NIR_MAX_MATRIX_COLUMNS 4
63 typedef uint8_t nir_component_mask_t;
64
65 /** Defines a cast function
66 *
67 * This macro defines a cast function from in_type to out_type where
68 * out_type is some structure type that contains a field of type out_type.
69 *
70 * Note that you have to be a bit careful as the generated cast function
71 * destroys constness.
72 */
73 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
74 type_field, type_value) \
75 static inline out_type * \
76 name(const in_type *parent) \
77 { \
78 assert(parent && parent->type_field == type_value); \
79 return exec_node_data(out_type, parent, field); \
80 }
81
82 struct nir_function;
83 struct nir_shader;
84 struct nir_instr;
85 struct nir_builder;
86
87
88 /**
89 * Description of built-in state associated with a uniform
90 *
91 * \sa nir_variable::state_slots
92 */
93 typedef struct {
94 gl_state_index16 tokens[STATE_LENGTH];
95 int swizzle;
96 } nir_state_slot;
97
98 typedef enum {
99 nir_var_shader_in = (1 << 0),
100 nir_var_shader_out = (1 << 1),
101 nir_var_shader_temp = (1 << 2),
102 nir_var_function_temp = (1 << 3),
103 nir_var_uniform = (1 << 4),
104 nir_var_mem_ubo = (1 << 5),
105 nir_var_system_value = (1 << 6),
106 nir_var_mem_ssbo = (1 << 7),
107 nir_var_mem_shared = (1 << 8),
108 nir_var_mem_global = (1 << 9),
109 nir_var_all = ~0,
110 } nir_variable_mode;
111
112 /**
113 * Rounding modes.
114 */
115 typedef enum {
116 nir_rounding_mode_undef = 0,
117 nir_rounding_mode_rtne = 1, /* round to nearest even */
118 nir_rounding_mode_ru = 2, /* round up */
119 nir_rounding_mode_rd = 3, /* round down */
120 nir_rounding_mode_rtz = 4, /* round towards zero */
121 } nir_rounding_mode;
122
123 typedef union {
124 bool b;
125 float f32;
126 double f64;
127 int8_t i8;
128 uint8_t u8;
129 int16_t i16;
130 uint16_t u16;
131 int32_t i32;
132 uint32_t u32;
133 int64_t i64;
134 uint64_t u64;
135 } nir_const_value;
136
137 #define nir_const_value_to_array(arr, c, components, m) \
138 { \
139 for (unsigned i = 0; i < components; ++i) \
140 arr[i] = c[i].m; \
141 } while (false)
142
143 typedef struct nir_constant {
144 /**
145 * Value of the constant.
146 *
147 * The field used to back the values supplied by the constant is determined
148 * by the type associated with the \c nir_variable. Constants may be
149 * scalars, vectors, or matrices.
150 */
151 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
152
153 /* we could get this from the var->type but makes clone *much* easier to
154 * not have to care about the type.
155 */
156 unsigned num_elements;
157
158 /* Array elements / Structure Fields */
159 struct nir_constant **elements;
160 } nir_constant;
161
162 /**
163 * \brief Layout qualifiers for gl_FragDepth.
164 *
165 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
166 * with a layout qualifier.
167 */
168 typedef enum {
169 nir_depth_layout_none, /**< No depth layout is specified. */
170 nir_depth_layout_any,
171 nir_depth_layout_greater,
172 nir_depth_layout_less,
173 nir_depth_layout_unchanged
174 } nir_depth_layout;
175
176 /**
177 * Enum keeping track of how a variable was declared.
178 */
179 typedef enum {
180 /**
181 * Normal declaration.
182 */
183 nir_var_declared_normally = 0,
184
185 /**
186 * Variable is implicitly generated by the compiler and should not be
187 * visible via the API.
188 */
189 nir_var_hidden,
190 } nir_var_declaration_type;
191
192 /**
193 * Either a uniform, global variable, shader input, or shader output. Based on
194 * ir_variable - it should be easy to translate between the two.
195 */
196
197 typedef struct nir_variable {
198 struct exec_node node;
199
200 /**
201 * Declared type of the variable
202 */
203 const struct glsl_type *type;
204
205 /**
206 * Declared name of the variable
207 */
208 char *name;
209
210 struct nir_variable_data {
211 /**
212 * Storage class of the variable.
213 *
214 * \sa nir_variable_mode
215 */
216 nir_variable_mode mode;
217
218 /**
219 * Is the variable read-only?
220 *
221 * This is set for variables declared as \c const, shader inputs,
222 * and uniforms.
223 */
224 unsigned read_only:1;
225 unsigned centroid:1;
226 unsigned sample:1;
227 unsigned patch:1;
228 unsigned invariant:1;
229
230 /**
231 * When separate shader programs are enabled, only input/outputs between
232 * the stages of a multi-stage separate program can be safely removed
233 * from the shader interface. Other input/outputs must remains active.
234 *
235 * This is also used to make sure xfb varyings that are unused by the
236 * fragment shader are not removed.
237 */
238 unsigned always_active_io:1;
239
240 /**
241 * Interpolation mode for shader inputs / outputs
242 *
243 * \sa glsl_interp_mode
244 */
245 unsigned interpolation:2;
246
247 /**
248 * If non-zero, then this variable may be packed along with other variables
249 * into a single varying slot, so this offset should be applied when
250 * accessing components. For example, an offset of 1 means that the x
251 * component of this variable is actually stored in component y of the
252 * location specified by \c location.
253 */
254 unsigned location_frac:2;
255
256 /**
257 * If true, this variable represents an array of scalars that should
258 * be tightly packed. In other words, consecutive array elements
259 * should be stored one component apart, rather than one slot apart.
260 */
261 unsigned compact:1;
262
263 /**
264 * Whether this is a fragment shader output implicitly initialized with
265 * the previous contents of the specified render target at the
266 * framebuffer location corresponding to this shader invocation.
267 */
268 unsigned fb_fetch_output:1;
269
270 /**
271 * Non-zero if this variable is considered bindless as defined by
272 * ARB_bindless_texture.
273 */
274 unsigned bindless:1;
275
276 /**
277 * Was an explicit binding set in the shader?
278 */
279 unsigned explicit_binding:1;
280
281 /**
282 * Was a transfer feedback buffer set in the shader?
283 */
284 unsigned explicit_xfb_buffer:1;
285
286 /**
287 * Was a transfer feedback stride set in the shader?
288 */
289 unsigned explicit_xfb_stride:1;
290
291 /**
292 * Was an explicit offset set in the shader?
293 */
294 unsigned explicit_offset:1;
295
296 /**
297 * \brief Layout qualifier for gl_FragDepth.
298 *
299 * This is not equal to \c ir_depth_layout_none if and only if this
300 * variable is \c gl_FragDepth and a layout qualifier is specified.
301 */
302 nir_depth_layout depth_layout;
303
304 /**
305 * Storage location of the base of this variable
306 *
307 * The precise meaning of this field depends on the nature of the variable.
308 *
309 * - Vertex shader input: one of the values from \c gl_vert_attrib.
310 * - Vertex shader output: one of the values from \c gl_varying_slot.
311 * - Geometry shader input: one of the values from \c gl_varying_slot.
312 * - Geometry shader output: one of the values from \c gl_varying_slot.
313 * - Fragment shader input: one of the values from \c gl_varying_slot.
314 * - Fragment shader output: one of the values from \c gl_frag_result.
315 * - Uniforms: Per-stage uniform slot number for default uniform block.
316 * - Uniforms: Index within the uniform block definition for UBO members.
317 * - Non-UBO Uniforms: uniform slot number.
318 * - Other: This field is not currently used.
319 *
320 * If the variable is a uniform, shader input, or shader output, and the
321 * slot has not been assigned, the value will be -1.
322 */
323 int location;
324
325 /**
326 * The actual location of the variable in the IR. Only valid for inputs
327 * and outputs.
328 */
329 unsigned int driver_location;
330
331 /**
332 * Vertex stream output identifier.
333 *
334 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
335 * stream of the i-th component.
336 */
337 unsigned stream;
338
339 /**
340 * output index for dual source blending.
341 */
342 int index;
343
344 /**
345 * Descriptor set binding for sampler or UBO.
346 */
347 int descriptor_set;
348
349 /**
350 * Initial binding point for a sampler or UBO.
351 *
352 * For array types, this represents the binding point for the first element.
353 */
354 int binding;
355
356 /**
357 * Location an atomic counter or transform feedback is stored at.
358 */
359 unsigned offset;
360
361 /**
362 * Transform feedback buffer.
363 */
364 unsigned xfb_buffer;
365
366 /**
367 * Transform feedback stride.
368 */
369 unsigned xfb_stride;
370
371 /**
372 * How the variable was declared. See nir_var_declaration_type.
373 *
374 * This is used to detect variables generated by the compiler, so should
375 * not be visible via the API.
376 */
377 unsigned how_declared:2;
378
379 /**
380 * ARB_shader_image_load_store qualifiers.
381 */
382 struct {
383 enum gl_access_qualifier access;
384
385 /** Image internal format if specified explicitly, otherwise GL_NONE. */
386 GLenum format;
387 } image;
388 } data;
389
390 /**
391 * Built-in state that backs this uniform
392 *
393 * Once set at variable creation, \c state_slots must remain invariant.
394 * This is because, ideally, this array would be shared by all clones of
395 * this variable in the IR tree. In other words, we'd really like for it
396 * to be a fly-weight.
397 *
398 * If the variable is not a uniform, \c num_state_slots will be zero and
399 * \c state_slots will be \c NULL.
400 */
401 /*@{*/
402 unsigned num_state_slots; /**< Number of state slots used */
403 nir_state_slot *state_slots; /**< State descriptors. */
404 /*@}*/
405
406 /**
407 * Constant expression assigned in the initializer of the variable
408 *
409 * This field should only be used temporarily by creators of NIR shaders
410 * and then lower_constant_initializers can be used to get rid of them.
411 * Most of the rest of NIR ignores this field or asserts that it's NULL.
412 */
413 nir_constant *constant_initializer;
414
415 /**
416 * For variables that are in an interface block or are an instance of an
417 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
418 *
419 * \sa ir_variable::location
420 */
421 const struct glsl_type *interface_type;
422
423 /**
424 * Description of per-member data for per-member struct variables
425 *
426 * This is used for variables which are actually an amalgamation of
427 * multiple entities such as a struct of built-in values or a struct of
428 * inputs each with their own layout specifier. This is only allowed on
429 * variables with a struct or array of array of struct type.
430 */
431 unsigned num_members;
432 struct nir_variable_data *members;
433 } nir_variable;
434
435 #define nir_foreach_variable(var, var_list) \
436 foreach_list_typed(nir_variable, var, node, var_list)
437
438 #define nir_foreach_variable_safe(var, var_list) \
439 foreach_list_typed_safe(nir_variable, var, node, var_list)
440
441 static inline bool
442 nir_variable_is_global(const nir_variable *var)
443 {
444 return var->data.mode != nir_var_function_temp;
445 }
446
447 typedef struct nir_register {
448 struct exec_node node;
449
450 unsigned num_components; /** < number of vector components */
451 unsigned num_array_elems; /** < size of array (0 for no array) */
452
453 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
454 uint8_t bit_size;
455
456 /** generic register index. */
457 unsigned index;
458
459 /** only for debug purposes, can be NULL */
460 const char *name;
461
462 /** set of nir_srcs where this register is used (read from) */
463 struct list_head uses;
464
465 /** set of nir_dests where this register is defined (written to) */
466 struct list_head defs;
467
468 /** set of nir_ifs where this register is used as a condition */
469 struct list_head if_uses;
470 } nir_register;
471
472 #define nir_foreach_register(reg, reg_list) \
473 foreach_list_typed(nir_register, reg, node, reg_list)
474 #define nir_foreach_register_safe(reg, reg_list) \
475 foreach_list_typed_safe(nir_register, reg, node, reg_list)
476
477 typedef enum PACKED {
478 nir_instr_type_alu,
479 nir_instr_type_deref,
480 nir_instr_type_call,
481 nir_instr_type_tex,
482 nir_instr_type_intrinsic,
483 nir_instr_type_load_const,
484 nir_instr_type_jump,
485 nir_instr_type_ssa_undef,
486 nir_instr_type_phi,
487 nir_instr_type_parallel_copy,
488 } nir_instr_type;
489
490 typedef struct nir_instr {
491 struct exec_node node;
492 struct nir_block *block;
493 nir_instr_type type;
494
495 /* A temporary for optimization and analysis passes to use for storing
496 * flags. For instance, DCE uses this to store the "dead/live" info.
497 */
498 uint8_t pass_flags;
499
500 /** generic instruction index. */
501 unsigned index;
502 } nir_instr;
503
504 static inline nir_instr *
505 nir_instr_next(nir_instr *instr)
506 {
507 struct exec_node *next = exec_node_get_next(&instr->node);
508 if (exec_node_is_tail_sentinel(next))
509 return NULL;
510 else
511 return exec_node_data(nir_instr, next, node);
512 }
513
514 static inline nir_instr *
515 nir_instr_prev(nir_instr *instr)
516 {
517 struct exec_node *prev = exec_node_get_prev(&instr->node);
518 if (exec_node_is_head_sentinel(prev))
519 return NULL;
520 else
521 return exec_node_data(nir_instr, prev, node);
522 }
523
524 static inline bool
525 nir_instr_is_first(const nir_instr *instr)
526 {
527 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
528 }
529
530 static inline bool
531 nir_instr_is_last(const nir_instr *instr)
532 {
533 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
534 }
535
536 typedef struct nir_ssa_def {
537 /** for debugging only, can be NULL */
538 const char* name;
539
540 /** generic SSA definition index. */
541 unsigned index;
542
543 /** Index into the live_in and live_out bitfields */
544 unsigned live_index;
545
546 /** Instruction which produces this SSA value. */
547 nir_instr *parent_instr;
548
549 /** set of nir_instrs where this register is used (read from) */
550 struct list_head uses;
551
552 /** set of nir_ifs where this register is used as a condition */
553 struct list_head if_uses;
554
555 uint8_t num_components;
556
557 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
558 uint8_t bit_size;
559 } nir_ssa_def;
560
561 struct nir_src;
562
563 typedef struct {
564 nir_register *reg;
565 struct nir_src *indirect; /** < NULL for no indirect offset */
566 unsigned base_offset;
567
568 /* TODO use-def chain goes here */
569 } nir_reg_src;
570
571 typedef struct {
572 nir_instr *parent_instr;
573 struct list_head def_link;
574
575 nir_register *reg;
576 struct nir_src *indirect; /** < NULL for no indirect offset */
577 unsigned base_offset;
578
579 /* TODO def-use chain goes here */
580 } nir_reg_dest;
581
582 struct nir_if;
583
584 typedef struct nir_src {
585 union {
586 /** Instruction that consumes this value as a source. */
587 nir_instr *parent_instr;
588 struct nir_if *parent_if;
589 };
590
591 struct list_head use_link;
592
593 union {
594 nir_reg_src reg;
595 nir_ssa_def *ssa;
596 };
597
598 bool is_ssa;
599 } nir_src;
600
601 static inline nir_src
602 nir_src_init(void)
603 {
604 nir_src src = { { NULL } };
605 return src;
606 }
607
608 #define NIR_SRC_INIT nir_src_init()
609
610 #define nir_foreach_use(src, reg_or_ssa_def) \
611 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
612
613 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
614 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
615
616 #define nir_foreach_if_use(src, reg_or_ssa_def) \
617 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
618
619 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
620 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
621
622 typedef struct {
623 union {
624 nir_reg_dest reg;
625 nir_ssa_def ssa;
626 };
627
628 bool is_ssa;
629 } nir_dest;
630
631 static inline nir_dest
632 nir_dest_init(void)
633 {
634 nir_dest dest = { { { NULL } } };
635 return dest;
636 }
637
638 #define NIR_DEST_INIT nir_dest_init()
639
640 #define nir_foreach_def(dest, reg) \
641 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
642
643 #define nir_foreach_def_safe(dest, reg) \
644 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
645
646 static inline nir_src
647 nir_src_for_ssa(nir_ssa_def *def)
648 {
649 nir_src src = NIR_SRC_INIT;
650
651 src.is_ssa = true;
652 src.ssa = def;
653
654 return src;
655 }
656
657 static inline nir_src
658 nir_src_for_reg(nir_register *reg)
659 {
660 nir_src src = NIR_SRC_INIT;
661
662 src.is_ssa = false;
663 src.reg.reg = reg;
664 src.reg.indirect = NULL;
665 src.reg.base_offset = 0;
666
667 return src;
668 }
669
670 static inline nir_dest
671 nir_dest_for_reg(nir_register *reg)
672 {
673 nir_dest dest = NIR_DEST_INIT;
674
675 dest.reg.reg = reg;
676
677 return dest;
678 }
679
680 static inline unsigned
681 nir_src_bit_size(nir_src src)
682 {
683 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
684 }
685
686 static inline unsigned
687 nir_src_num_components(nir_src src)
688 {
689 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
690 }
691
692 static inline bool
693 nir_src_is_const(nir_src src)
694 {
695 return src.is_ssa &&
696 src.ssa->parent_instr->type == nir_instr_type_load_const;
697 }
698
699 int64_t nir_src_as_int(nir_src src);
700 uint64_t nir_src_as_uint(nir_src src);
701 bool nir_src_as_bool(nir_src src);
702 double nir_src_as_float(nir_src src);
703 int64_t nir_src_comp_as_int(nir_src src, unsigned component);
704 uint64_t nir_src_comp_as_uint(nir_src src, unsigned component);
705 bool nir_src_comp_as_bool(nir_src src, unsigned component);
706 double nir_src_comp_as_float(nir_src src, unsigned component);
707
708 static inline unsigned
709 nir_dest_bit_size(nir_dest dest)
710 {
711 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
712 }
713
714 static inline unsigned
715 nir_dest_num_components(nir_dest dest)
716 {
717 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
718 }
719
720 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
721 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
722
723 typedef struct {
724 nir_src src;
725
726 /**
727 * \name input modifiers
728 */
729 /*@{*/
730 /**
731 * For inputs interpreted as floating point, flips the sign bit. For
732 * inputs interpreted as integers, performs the two's complement negation.
733 */
734 bool negate;
735
736 /**
737 * Clears the sign bit for floating point values, and computes the integer
738 * absolute value for integers. Note that the negate modifier acts after
739 * the absolute value modifier, therefore if both are set then all inputs
740 * will become negative.
741 */
742 bool abs;
743 /*@}*/
744
745 /**
746 * For each input component, says which component of the register it is
747 * chosen from. Note that which elements of the swizzle are used and which
748 * are ignored are based on the write mask for most opcodes - for example,
749 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
750 * a swizzle of {2, x, 1, 0} where x means "don't care."
751 */
752 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
753 } nir_alu_src;
754
755 typedef struct {
756 nir_dest dest;
757
758 /**
759 * \name saturate output modifier
760 *
761 * Only valid for opcodes that output floating-point numbers. Clamps the
762 * output to between 0.0 and 1.0 inclusive.
763 */
764
765 bool saturate;
766
767 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
768 } nir_alu_dest;
769
770 /** NIR sized and unsized types
771 *
772 * The values in this enum are carefully chosen so that the sized type is
773 * just the unsized type OR the number of bits.
774 */
775 typedef enum {
776 nir_type_invalid = 0, /* Not a valid type */
777 nir_type_int = 2,
778 nir_type_uint = 4,
779 nir_type_bool = 6,
780 nir_type_float = 128,
781 nir_type_bool1 = 1 | nir_type_bool,
782 nir_type_bool32 = 32 | nir_type_bool,
783 nir_type_int1 = 1 | nir_type_int,
784 nir_type_int8 = 8 | nir_type_int,
785 nir_type_int16 = 16 | nir_type_int,
786 nir_type_int32 = 32 | nir_type_int,
787 nir_type_int64 = 64 | nir_type_int,
788 nir_type_uint1 = 1 | nir_type_uint,
789 nir_type_uint8 = 8 | nir_type_uint,
790 nir_type_uint16 = 16 | nir_type_uint,
791 nir_type_uint32 = 32 | nir_type_uint,
792 nir_type_uint64 = 64 | nir_type_uint,
793 nir_type_float16 = 16 | nir_type_float,
794 nir_type_float32 = 32 | nir_type_float,
795 nir_type_float64 = 64 | nir_type_float,
796 } nir_alu_type;
797
798 #define NIR_ALU_TYPE_SIZE_MASK 0x79
799 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
800
801 static inline unsigned
802 nir_alu_type_get_type_size(nir_alu_type type)
803 {
804 return type & NIR_ALU_TYPE_SIZE_MASK;
805 }
806
807 static inline unsigned
808 nir_alu_type_get_base_type(nir_alu_type type)
809 {
810 return type & NIR_ALU_TYPE_BASE_TYPE_MASK;
811 }
812
813 static inline nir_alu_type
814 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
815 {
816 switch (base_type) {
817 case GLSL_TYPE_BOOL:
818 return nir_type_bool1;
819 break;
820 case GLSL_TYPE_UINT:
821 return nir_type_uint32;
822 break;
823 case GLSL_TYPE_INT:
824 return nir_type_int32;
825 break;
826 case GLSL_TYPE_UINT16:
827 return nir_type_uint16;
828 break;
829 case GLSL_TYPE_INT16:
830 return nir_type_int16;
831 break;
832 case GLSL_TYPE_UINT8:
833 return nir_type_uint8;
834 case GLSL_TYPE_INT8:
835 return nir_type_int8;
836 case GLSL_TYPE_UINT64:
837 return nir_type_uint64;
838 break;
839 case GLSL_TYPE_INT64:
840 return nir_type_int64;
841 break;
842 case GLSL_TYPE_FLOAT:
843 return nir_type_float32;
844 break;
845 case GLSL_TYPE_FLOAT16:
846 return nir_type_float16;
847 break;
848 case GLSL_TYPE_DOUBLE:
849 return nir_type_float64;
850 break;
851
852 case GLSL_TYPE_SAMPLER:
853 case GLSL_TYPE_IMAGE:
854 case GLSL_TYPE_ATOMIC_UINT:
855 case GLSL_TYPE_STRUCT:
856 case GLSL_TYPE_INTERFACE:
857 case GLSL_TYPE_ARRAY:
858 case GLSL_TYPE_VOID:
859 case GLSL_TYPE_SUBROUTINE:
860 case GLSL_TYPE_FUNCTION:
861 case GLSL_TYPE_ERROR:
862 return nir_type_invalid;
863 }
864
865 unreachable("unknown type");
866 }
867
868 static inline nir_alu_type
869 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
870 {
871 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
872 }
873
874 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
875 nir_rounding_mode rnd);
876
877 static inline nir_op
878 nir_op_vec(unsigned components)
879 {
880 switch (components) {
881 case 1: return nir_op_mov;
882 case 2: return nir_op_vec2;
883 case 3: return nir_op_vec3;
884 case 4: return nir_op_vec4;
885 default: unreachable("bad component count");
886 }
887 }
888
889 typedef enum {
890 /**
891 * Operation where the first two sources are commutative.
892 *
893 * For 2-source operations, this just mathematical commutativity. Some
894 * 3-source operations, like ffma, are only commutative in the first two
895 * sources.
896 */
897 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
898 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
899 } nir_op_algebraic_property;
900
901 typedef struct {
902 const char *name;
903
904 unsigned num_inputs;
905
906 /**
907 * The number of components in the output
908 *
909 * If non-zero, this is the size of the output and input sizes are
910 * explicitly given; swizzle and writemask are still in effect, but if
911 * the output component is masked out, then the input component may
912 * still be in use.
913 *
914 * If zero, the opcode acts in the standard, per-component manner; the
915 * operation is performed on each component (except the ones that are
916 * masked out) with the input being taken from the input swizzle for
917 * that component.
918 *
919 * The size of some of the inputs may be given (i.e. non-zero) even
920 * though output_size is zero; in that case, the inputs with a zero
921 * size act per-component, while the inputs with non-zero size don't.
922 */
923 unsigned output_size;
924
925 /**
926 * The type of vector that the instruction outputs. Note that the
927 * staurate modifier is only allowed on outputs with the float type.
928 */
929
930 nir_alu_type output_type;
931
932 /**
933 * The number of components in each input
934 */
935 unsigned input_sizes[NIR_MAX_VEC_COMPONENTS];
936
937 /**
938 * The type of vector that each input takes. Note that negate and
939 * absolute value are only allowed on inputs with int or float type and
940 * behave differently on the two.
941 */
942 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
943
944 nir_op_algebraic_property algebraic_properties;
945
946 /* Whether this represents a numeric conversion opcode */
947 bool is_conversion;
948 } nir_op_info;
949
950 extern const nir_op_info nir_op_infos[nir_num_opcodes];
951
952 typedef struct nir_alu_instr {
953 nir_instr instr;
954 nir_op op;
955
956 /** Indicates that this ALU instruction generates an exact value
957 *
958 * This is kind of a mixture of GLSL "precise" and "invariant" and not
959 * really equivalent to either. This indicates that the value generated by
960 * this operation is high-precision and any code transformations that touch
961 * it must ensure that the resulting value is bit-for-bit identical to the
962 * original.
963 */
964 bool exact;
965
966 nir_alu_dest dest;
967 nir_alu_src src[];
968 } nir_alu_instr;
969
970 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
971 nir_alu_instr *instr);
972 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
973 nir_alu_instr *instr);
974
975 /* is this source channel used? */
976 static inline bool
977 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
978 unsigned channel)
979 {
980 if (nir_op_infos[instr->op].input_sizes[src] > 0)
981 return channel < nir_op_infos[instr->op].input_sizes[src];
982
983 return (instr->dest.write_mask >> channel) & 1;
984 }
985
986 static inline nir_component_mask_t
987 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
988 {
989 nir_component_mask_t read_mask = 0;
990 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
991 if (!nir_alu_instr_channel_used(instr, src, c))
992 continue;
993
994 read_mask |= (1 << instr->src[src].swizzle[c]);
995 }
996 return read_mask;
997 }
998
999 /*
1000 * For instructions whose destinations are SSA, get the number of channels
1001 * used for a source
1002 */
1003 static inline unsigned
1004 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1005 {
1006 assert(instr->dest.dest.is_ssa);
1007
1008 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1009 return nir_op_infos[instr->op].input_sizes[src];
1010
1011 return instr->dest.dest.ssa.num_components;
1012 }
1013
1014 bool nir_const_value_negative_equal(const nir_const_value *c1,
1015 const nir_const_value *c2,
1016 unsigned components,
1017 nir_alu_type base_type,
1018 unsigned bits);
1019
1020 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1021 unsigned src1, unsigned src2);
1022
1023 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1024 const nir_alu_instr *alu2,
1025 unsigned src1, unsigned src2);
1026
1027 typedef enum {
1028 nir_deref_type_var,
1029 nir_deref_type_array,
1030 nir_deref_type_array_wildcard,
1031 nir_deref_type_ptr_as_array,
1032 nir_deref_type_struct,
1033 nir_deref_type_cast,
1034 } nir_deref_type;
1035
1036 typedef struct {
1037 nir_instr instr;
1038
1039 /** The type of this deref instruction */
1040 nir_deref_type deref_type;
1041
1042 /** The mode of the underlying variable */
1043 nir_variable_mode mode;
1044
1045 /** The dereferenced type of the resulting pointer value */
1046 const struct glsl_type *type;
1047
1048 union {
1049 /** Variable being dereferenced if deref_type is a deref_var */
1050 nir_variable *var;
1051
1052 /** Parent deref if deref_type is not deref_var */
1053 nir_src parent;
1054 };
1055
1056 /** Additional deref parameters */
1057 union {
1058 struct {
1059 nir_src index;
1060 } arr;
1061
1062 struct {
1063 unsigned index;
1064 } strct;
1065
1066 struct {
1067 unsigned ptr_stride;
1068 } cast;
1069 };
1070
1071 /** Destination to store the resulting "pointer" */
1072 nir_dest dest;
1073 } nir_deref_instr;
1074
1075 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1076
1077 static inline nir_deref_instr *
1078 nir_deref_instr_parent(const nir_deref_instr *instr)
1079 {
1080 if (instr->deref_type == nir_deref_type_var)
1081 return NULL;
1082 else
1083 return nir_src_as_deref(instr->parent);
1084 }
1085
1086 static inline nir_variable *
1087 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1088 {
1089 while (instr->deref_type != nir_deref_type_var) {
1090 if (instr->deref_type == nir_deref_type_cast)
1091 return NULL;
1092
1093 instr = nir_deref_instr_parent(instr);
1094 }
1095
1096 return instr->var;
1097 }
1098
1099 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1100 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1101
1102 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1103
1104 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1105
1106 typedef struct {
1107 nir_instr instr;
1108
1109 struct nir_function *callee;
1110
1111 unsigned num_params;
1112 nir_src params[];
1113 } nir_call_instr;
1114
1115 #include "nir_intrinsics.h"
1116
1117 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1118
1119 /** Represents an intrinsic
1120 *
1121 * An intrinsic is an instruction type for handling things that are
1122 * more-or-less regular operations but don't just consume and produce SSA
1123 * values like ALU operations do. Intrinsics are not for things that have
1124 * special semantic meaning such as phi nodes and parallel copies.
1125 * Examples of intrinsics include variable load/store operations, system
1126 * value loads, and the like. Even though texturing more-or-less falls
1127 * under this category, texturing is its own instruction type because
1128 * trying to represent texturing with intrinsics would lead to a
1129 * combinatorial explosion of intrinsic opcodes.
1130 *
1131 * By having a single instruction type for handling a lot of different
1132 * cases, optimization passes can look for intrinsics and, for the most
1133 * part, completely ignore them. Each intrinsic type also has a few
1134 * possible flags that govern whether or not they can be reordered or
1135 * eliminated. That way passes like dead code elimination can still work
1136 * on intrisics without understanding the meaning of each.
1137 *
1138 * Each intrinsic has some number of constant indices, some number of
1139 * variables, and some number of sources. What these sources, variables,
1140 * and indices mean depends on the intrinsic and is documented with the
1141 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1142 * instructions are the only types of instruction that can operate on
1143 * variables.
1144 */
1145 typedef struct {
1146 nir_instr instr;
1147
1148 nir_intrinsic_op intrinsic;
1149
1150 nir_dest dest;
1151
1152 /** number of components if this is a vectorized intrinsic
1153 *
1154 * Similarly to ALU operations, some intrinsics are vectorized.
1155 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1156 * For vectorized intrinsics, the num_components field specifies the
1157 * number of destination components and the number of source components
1158 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1159 */
1160 uint8_t num_components;
1161
1162 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1163
1164 nir_src src[];
1165 } nir_intrinsic_instr;
1166
1167 static inline nir_variable *
1168 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1169 {
1170 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1171 }
1172
1173 /**
1174 * \name NIR intrinsics semantic flags
1175 *
1176 * information about what the compiler can do with the intrinsics.
1177 *
1178 * \sa nir_intrinsic_info::flags
1179 */
1180 typedef enum {
1181 /**
1182 * whether the intrinsic can be safely eliminated if none of its output
1183 * value is not being used.
1184 */
1185 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1186
1187 /**
1188 * Whether the intrinsic can be reordered with respect to any other
1189 * intrinsic, i.e. whether the only reordering dependencies of the
1190 * intrinsic are due to the register reads/writes.
1191 */
1192 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1193 } nir_intrinsic_semantic_flag;
1194
1195 /**
1196 * \name NIR intrinsics const-index flag
1197 *
1198 * Indicates the usage of a const_index slot.
1199 *
1200 * \sa nir_intrinsic_info::index_map
1201 */
1202 typedef enum {
1203 /**
1204 * Generally instructions that take a offset src argument, can encode
1205 * a constant 'base' value which is added to the offset.
1206 */
1207 NIR_INTRINSIC_BASE = 1,
1208
1209 /**
1210 * For store instructions, a writemask for the store.
1211 */
1212 NIR_INTRINSIC_WRMASK,
1213
1214 /**
1215 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1216 */
1217 NIR_INTRINSIC_STREAM_ID,
1218
1219 /**
1220 * The clip-plane id for load_user_clip_plane intrinsic.
1221 */
1222 NIR_INTRINSIC_UCP_ID,
1223
1224 /**
1225 * The amount of data, starting from BASE, that this instruction may
1226 * access. This is used to provide bounds if the offset is not constant.
1227 */
1228 NIR_INTRINSIC_RANGE,
1229
1230 /**
1231 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1232 */
1233 NIR_INTRINSIC_DESC_SET,
1234
1235 /**
1236 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1237 */
1238 NIR_INTRINSIC_BINDING,
1239
1240 /**
1241 * Component offset.
1242 */
1243 NIR_INTRINSIC_COMPONENT,
1244
1245 /**
1246 * Interpolation mode (only meaningful for FS inputs).
1247 */
1248 NIR_INTRINSIC_INTERP_MODE,
1249
1250 /**
1251 * A binary nir_op to use when performing a reduction or scan operation
1252 */
1253 NIR_INTRINSIC_REDUCTION_OP,
1254
1255 /**
1256 * Cluster size for reduction operations
1257 */
1258 NIR_INTRINSIC_CLUSTER_SIZE,
1259
1260 /**
1261 * Parameter index for a load_param intrinsic
1262 */
1263 NIR_INTRINSIC_PARAM_IDX,
1264
1265 /**
1266 * Image dimensionality for image intrinsics
1267 *
1268 * One of GLSL_SAMPLER_DIM_*
1269 */
1270 NIR_INTRINSIC_IMAGE_DIM,
1271
1272 /**
1273 * Non-zero if we are accessing an array image
1274 */
1275 NIR_INTRINSIC_IMAGE_ARRAY,
1276
1277 /**
1278 * Image format for image intrinsics
1279 */
1280 NIR_INTRINSIC_FORMAT,
1281
1282 /**
1283 * Access qualifiers for image and memory access intrinsics
1284 */
1285 NIR_INTRINSIC_ACCESS,
1286
1287 /**
1288 * Alignment for offsets and addresses
1289 *
1290 * These two parameters, specify an alignment in terms of a multiplier and
1291 * an offset. The offset or address parameter X of the intrinsic is
1292 * guaranteed to satisfy the following:
1293 *
1294 * (X - align_offset) % align_mul == 0
1295 */
1296 NIR_INTRINSIC_ALIGN_MUL,
1297 NIR_INTRINSIC_ALIGN_OFFSET,
1298
1299 /**
1300 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1301 */
1302 NIR_INTRINSIC_DESC_TYPE,
1303
1304 /**
1305 * The nir_alu_type of a uniform/input/output
1306 */
1307 NIR_INTRINSIC_TYPE,
1308
1309 /**
1310 * The swizzle mask for the instructions
1311 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1312 */
1313 NIR_INTRINSIC_SWIZZLE_MASK,
1314
1315 /* Separate source/dest access flags for copies */
1316 NIR_INTRINSIC_SRC_ACCESS = 21,
1317 NIR_INTRINSIC_DST_ACCESS = 22,
1318
1319 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1320
1321 } nir_intrinsic_index_flag;
1322
1323 #define NIR_INTRINSIC_MAX_INPUTS 5
1324
1325 typedef struct {
1326 const char *name;
1327
1328 unsigned num_srcs; /** < number of register/SSA inputs */
1329
1330 /** number of components of each input register
1331 *
1332 * If this value is 0, the number of components is given by the
1333 * num_components field of nir_intrinsic_instr. If this value is -1, the
1334 * intrinsic consumes however many components are provided and it is not
1335 * validated at all.
1336 */
1337 int src_components[NIR_INTRINSIC_MAX_INPUTS];
1338
1339 bool has_dest;
1340
1341 /** number of components of the output register
1342 *
1343 * If this value is 0, the number of components is given by the
1344 * num_components field of nir_intrinsic_instr.
1345 */
1346 unsigned dest_components;
1347
1348 /** bitfield of legal bit sizes */
1349 unsigned dest_bit_sizes;
1350
1351 /** the number of constant indices used by the intrinsic */
1352 unsigned num_indices;
1353
1354 /** indicates the usage of intr->const_index[n] */
1355 unsigned index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1356
1357 /** semantic flags for calls to this intrinsic */
1358 nir_intrinsic_semantic_flag flags;
1359 } nir_intrinsic_info;
1360
1361 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1362
1363 static inline unsigned
1364 nir_intrinsic_src_components(nir_intrinsic_instr *intr, unsigned srcn)
1365 {
1366 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1367 assert(srcn < info->num_srcs);
1368 if (info->src_components[srcn] > 0)
1369 return info->src_components[srcn];
1370 else if (info->src_components[srcn] == 0)
1371 return intr->num_components;
1372 else
1373 return nir_src_num_components(intr->src[srcn]);
1374 }
1375
1376 static inline unsigned
1377 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1378 {
1379 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1380 if (!info->has_dest)
1381 return 0;
1382 else if (info->dest_components)
1383 return info->dest_components;
1384 else
1385 return intr->num_components;
1386 }
1387
1388 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1389 static inline type \
1390 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1391 { \
1392 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1393 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1394 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1395 } \
1396 static inline void \
1397 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1398 { \
1399 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1400 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1401 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1402 }
1403
1404 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1405 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1406 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1407 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1408 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1409 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1410 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1411 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1412 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1413 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1414 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1415 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1416 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1417 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1418 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1419 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1420 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1421 INTRINSIC_IDX_ACCESSORS(format, FORMAT, unsigned)
1422 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1423 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1424 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1425 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1426 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1427
1428 static inline void
1429 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1430 unsigned align_mul, unsigned align_offset)
1431 {
1432 assert(util_is_power_of_two_nonzero(align_mul));
1433 assert(align_offset < align_mul);
1434 nir_intrinsic_set_align_mul(intrin, align_mul);
1435 nir_intrinsic_set_align_offset(intrin, align_offset);
1436 }
1437
1438 /** Returns a simple alignment for a load/store intrinsic offset
1439 *
1440 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1441 * and ALIGN_OFFSET parameters, this helper takes both into account and
1442 * provides a single simple alignment parameter. The offset X is guaranteed
1443 * to satisfy X % align == 0.
1444 */
1445 static inline unsigned
1446 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1447 {
1448 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1449 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1450 assert(align_offset < align_mul);
1451 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1452 }
1453
1454 /* Converts a image_deref_* intrinsic into a image_* one */
1455 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1456 nir_ssa_def *handle, bool bindless);
1457
1458 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1459 static inline bool
1460 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1461 {
1462 if (instr->intrinsic == nir_intrinsic_load_deref ||
1463 instr->intrinsic == nir_intrinsic_load_ssbo ||
1464 instr->intrinsic == nir_intrinsic_bindless_image_load ||
1465 instr->intrinsic == nir_intrinsic_image_deref_load ||
1466 instr->intrinsic == nir_intrinsic_image_load) {
1467 return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1468 } else {
1469 const nir_intrinsic_info *info =
1470 &nir_intrinsic_infos[instr->intrinsic];
1471 return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1472 (info->flags & NIR_INTRINSIC_CAN_REORDER);
1473 }
1474 }
1475
1476 /**
1477 * \group texture information
1478 *
1479 * This gives semantic information about textures which is useful to the
1480 * frontend, the backend, and lowering passes, but not the optimizer.
1481 */
1482
1483 typedef enum {
1484 nir_tex_src_coord,
1485 nir_tex_src_projector,
1486 nir_tex_src_comparator, /* shadow comparator */
1487 nir_tex_src_offset,
1488 nir_tex_src_bias,
1489 nir_tex_src_lod,
1490 nir_tex_src_min_lod,
1491 nir_tex_src_ms_index, /* MSAA sample index */
1492 nir_tex_src_ms_mcs, /* MSAA compression value */
1493 nir_tex_src_ddx,
1494 nir_tex_src_ddy,
1495 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1496 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1497 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1498 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1499 nir_tex_src_texture_handle, /* < bindless texture handle */
1500 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1501 nir_tex_src_plane, /* < selects plane for planar textures */
1502 nir_num_tex_src_types
1503 } nir_tex_src_type;
1504
1505 typedef struct {
1506 nir_src src;
1507 nir_tex_src_type src_type;
1508 } nir_tex_src;
1509
1510 typedef enum {
1511 nir_texop_tex, /**< Regular texture look-up */
1512 nir_texop_txb, /**< Texture look-up with LOD bias */
1513 nir_texop_txl, /**< Texture look-up with explicit LOD */
1514 nir_texop_txd, /**< Texture look-up with partial derivatives */
1515 nir_texop_txf, /**< Texel fetch with explicit LOD */
1516 nir_texop_txf_ms, /**< Multisample texture fetch */
1517 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1518 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1519 nir_texop_txs, /**< Texture size */
1520 nir_texop_lod, /**< Texture lod query */
1521 nir_texop_tg4, /**< Texture gather */
1522 nir_texop_query_levels, /**< Texture levels query */
1523 nir_texop_texture_samples, /**< Texture samples query */
1524 nir_texop_samples_identical, /**< Query whether all samples are definitely
1525 * identical.
1526 */
1527 } nir_texop;
1528
1529 typedef struct {
1530 nir_instr instr;
1531
1532 enum glsl_sampler_dim sampler_dim;
1533 nir_alu_type dest_type;
1534
1535 nir_texop op;
1536 nir_dest dest;
1537 nir_tex_src *src;
1538 unsigned num_srcs, coord_components;
1539 bool is_array, is_shadow;
1540
1541 /**
1542 * If is_shadow is true, whether this is the old-style shadow that outputs 4
1543 * components or the new-style shadow that outputs 1 component.
1544 */
1545 bool is_new_style_shadow;
1546
1547 /* gather component selector */
1548 unsigned component : 2;
1549
1550 /* gather offsets */
1551 int8_t tg4_offsets[4][2];
1552
1553 /* True if the texture index or handle is not dynamically uniform */
1554 bool texture_non_uniform;
1555
1556 /* True if the sampler index or handle is not dynamically uniform */
1557 bool sampler_non_uniform;
1558
1559 /** The texture index
1560 *
1561 * If this texture instruction has a nir_tex_src_texture_offset source,
1562 * then the texture index is given by texture_index + texture_offset.
1563 */
1564 unsigned texture_index;
1565
1566 /** The size of the texture array or 0 if it's not an array */
1567 unsigned texture_array_size;
1568
1569 /** The sampler index
1570 *
1571 * The following operations do not require a sampler and, as such, this
1572 * field should be ignored:
1573 * - nir_texop_txf
1574 * - nir_texop_txf_ms
1575 * - nir_texop_txs
1576 * - nir_texop_lod
1577 * - nir_texop_query_levels
1578 * - nir_texop_texture_samples
1579 * - nir_texop_samples_identical
1580 *
1581 * If this texture instruction has a nir_tex_src_sampler_offset source,
1582 * then the sampler index is given by sampler_index + sampler_offset.
1583 */
1584 unsigned sampler_index;
1585 } nir_tex_instr;
1586
1587 static inline unsigned
1588 nir_tex_instr_dest_size(const nir_tex_instr *instr)
1589 {
1590 switch (instr->op) {
1591 case nir_texop_txs: {
1592 unsigned ret;
1593 switch (instr->sampler_dim) {
1594 case GLSL_SAMPLER_DIM_1D:
1595 case GLSL_SAMPLER_DIM_BUF:
1596 ret = 1;
1597 break;
1598 case GLSL_SAMPLER_DIM_2D:
1599 case GLSL_SAMPLER_DIM_CUBE:
1600 case GLSL_SAMPLER_DIM_MS:
1601 case GLSL_SAMPLER_DIM_RECT:
1602 case GLSL_SAMPLER_DIM_EXTERNAL:
1603 case GLSL_SAMPLER_DIM_SUBPASS:
1604 ret = 2;
1605 break;
1606 case GLSL_SAMPLER_DIM_3D:
1607 ret = 3;
1608 break;
1609 default:
1610 unreachable("not reached");
1611 }
1612 if (instr->is_array)
1613 ret++;
1614 return ret;
1615 }
1616
1617 case nir_texop_lod:
1618 return 2;
1619
1620 case nir_texop_texture_samples:
1621 case nir_texop_query_levels:
1622 case nir_texop_samples_identical:
1623 return 1;
1624
1625 default:
1626 if (instr->is_shadow && instr->is_new_style_shadow)
1627 return 1;
1628
1629 return 4;
1630 }
1631 }
1632
1633 /* Returns true if this texture operation queries something about the texture
1634 * rather than actually sampling it.
1635 */
1636 static inline bool
1637 nir_tex_instr_is_query(const nir_tex_instr *instr)
1638 {
1639 switch (instr->op) {
1640 case nir_texop_txs:
1641 case nir_texop_lod:
1642 case nir_texop_texture_samples:
1643 case nir_texop_query_levels:
1644 case nir_texop_txf_ms_mcs:
1645 return true;
1646 case nir_texop_tex:
1647 case nir_texop_txb:
1648 case nir_texop_txl:
1649 case nir_texop_txd:
1650 case nir_texop_txf:
1651 case nir_texop_txf_ms:
1652 case nir_texop_txf_ms_fb:
1653 case nir_texop_tg4:
1654 return false;
1655 default:
1656 unreachable("Invalid texture opcode");
1657 }
1658 }
1659
1660 static inline bool
1661 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1662 {
1663 switch (instr->op) {
1664 case nir_op_flt:
1665 case nir_op_fge:
1666 case nir_op_feq:
1667 case nir_op_fne:
1668 case nir_op_ilt:
1669 case nir_op_ult:
1670 case nir_op_ige:
1671 case nir_op_uge:
1672 case nir_op_ieq:
1673 case nir_op_ine:
1674 case nir_op_i2b1:
1675 case nir_op_f2b1:
1676 case nir_op_inot:
1677 case nir_op_fnot:
1678 return true;
1679 default:
1680 return false;
1681 }
1682 }
1683
1684 static inline nir_alu_type
1685 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
1686 {
1687 switch (instr->src[src].src_type) {
1688 case nir_tex_src_coord:
1689 switch (instr->op) {
1690 case nir_texop_txf:
1691 case nir_texop_txf_ms:
1692 case nir_texop_txf_ms_fb:
1693 case nir_texop_txf_ms_mcs:
1694 case nir_texop_samples_identical:
1695 return nir_type_int;
1696
1697 default:
1698 return nir_type_float;
1699 }
1700
1701 case nir_tex_src_lod:
1702 switch (instr->op) {
1703 case nir_texop_txs:
1704 case nir_texop_txf:
1705 return nir_type_int;
1706
1707 default:
1708 return nir_type_float;
1709 }
1710
1711 case nir_tex_src_projector:
1712 case nir_tex_src_comparator:
1713 case nir_tex_src_bias:
1714 case nir_tex_src_ddx:
1715 case nir_tex_src_ddy:
1716 return nir_type_float;
1717
1718 case nir_tex_src_offset:
1719 case nir_tex_src_ms_index:
1720 case nir_tex_src_texture_offset:
1721 case nir_tex_src_sampler_offset:
1722 return nir_type_int;
1723
1724 default:
1725 unreachable("Invalid texture source type");
1726 }
1727 }
1728
1729 static inline unsigned
1730 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
1731 {
1732 if (instr->src[src].src_type == nir_tex_src_coord)
1733 return instr->coord_components;
1734
1735 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
1736 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
1737 return 4;
1738
1739 if (instr->src[src].src_type == nir_tex_src_ddx ||
1740 instr->src[src].src_type == nir_tex_src_ddy) {
1741 if (instr->is_array)
1742 return instr->coord_components - 1;
1743 else
1744 return instr->coord_components;
1745 }
1746
1747 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
1748 * the offset, since a cube maps to a single face.
1749 */
1750 if (instr->src[src].src_type == nir_tex_src_offset) {
1751 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
1752 return 2;
1753 else if (instr->is_array)
1754 return instr->coord_components - 1;
1755 else
1756 return instr->coord_components;
1757 }
1758
1759 return 1;
1760 }
1761
1762 static inline int
1763 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
1764 {
1765 for (unsigned i = 0; i < instr->num_srcs; i++)
1766 if (instr->src[i].src_type == type)
1767 return (int) i;
1768
1769 return -1;
1770 }
1771
1772 void nir_tex_instr_add_src(nir_tex_instr *tex,
1773 nir_tex_src_type src_type,
1774 nir_src src);
1775
1776 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
1777
1778 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
1779
1780 typedef struct {
1781 nir_instr instr;
1782
1783 nir_ssa_def def;
1784
1785 nir_const_value value[];
1786 } nir_load_const_instr;
1787
1788 #define nir_const_load_to_arr(arr, l, m) \
1789 { \
1790 nir_const_value_to_array(arr, l->value, l->def.num_components, m); \
1791 } while (false);
1792
1793 typedef enum {
1794 nir_jump_return,
1795 nir_jump_break,
1796 nir_jump_continue,
1797 } nir_jump_type;
1798
1799 typedef struct {
1800 nir_instr instr;
1801 nir_jump_type type;
1802 } nir_jump_instr;
1803
1804 /* creates a new SSA variable in an undefined state */
1805
1806 typedef struct {
1807 nir_instr instr;
1808 nir_ssa_def def;
1809 } nir_ssa_undef_instr;
1810
1811 typedef struct {
1812 struct exec_node node;
1813
1814 /* The predecessor block corresponding to this source */
1815 struct nir_block *pred;
1816
1817 nir_src src;
1818 } nir_phi_src;
1819
1820 #define nir_foreach_phi_src(phi_src, phi) \
1821 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
1822 #define nir_foreach_phi_src_safe(phi_src, phi) \
1823 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
1824
1825 typedef struct {
1826 nir_instr instr;
1827
1828 struct exec_list srcs; /** < list of nir_phi_src */
1829
1830 nir_dest dest;
1831 } nir_phi_instr;
1832
1833 typedef struct {
1834 struct exec_node node;
1835 nir_src src;
1836 nir_dest dest;
1837 } nir_parallel_copy_entry;
1838
1839 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
1840 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1841
1842 typedef struct {
1843 nir_instr instr;
1844
1845 /* A list of nir_parallel_copy_entrys. The sources of all of the
1846 * entries are copied to the corresponding destinations "in parallel".
1847 * In other words, if we have two entries: a -> b and b -> a, the values
1848 * get swapped.
1849 */
1850 struct exec_list entries;
1851 } nir_parallel_copy_instr;
1852
1853 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
1854 type, nir_instr_type_alu)
1855 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
1856 type, nir_instr_type_deref)
1857 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
1858 type, nir_instr_type_call)
1859 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
1860 type, nir_instr_type_jump)
1861 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
1862 type, nir_instr_type_tex)
1863 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
1864 type, nir_instr_type_intrinsic)
1865 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
1866 type, nir_instr_type_load_const)
1867 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
1868 type, nir_instr_type_ssa_undef)
1869 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
1870 type, nir_instr_type_phi)
1871 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1872 nir_parallel_copy_instr, instr,
1873 type, nir_instr_type_parallel_copy)
1874
1875 /*
1876 * Control flow
1877 *
1878 * Control flow consists of a tree of control flow nodes, which include
1879 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1880 * instructions that always run start-to-finish. Each basic block also keeps
1881 * track of its successors (blocks which may run immediately after the current
1882 * block) and predecessors (blocks which could have run immediately before the
1883 * current block). Each function also has a start block and an end block which
1884 * all return statements point to (which is always empty). Together, all the
1885 * blocks with their predecessors and successors make up the control flow
1886 * graph (CFG) of the function. There are helpers that modify the tree of
1887 * control flow nodes while modifying the CFG appropriately; these should be
1888 * used instead of modifying the tree directly.
1889 */
1890
1891 typedef enum {
1892 nir_cf_node_block,
1893 nir_cf_node_if,
1894 nir_cf_node_loop,
1895 nir_cf_node_function
1896 } nir_cf_node_type;
1897
1898 typedef struct nir_cf_node {
1899 struct exec_node node;
1900 nir_cf_node_type type;
1901 struct nir_cf_node *parent;
1902 } nir_cf_node;
1903
1904 typedef struct nir_block {
1905 nir_cf_node cf_node;
1906
1907 struct exec_list instr_list; /** < list of nir_instr */
1908
1909 /** generic block index; generated by nir_index_blocks */
1910 unsigned index;
1911
1912 /*
1913 * Each block can only have up to 2 successors, so we put them in a simple
1914 * array - no need for anything more complicated.
1915 */
1916 struct nir_block *successors[2];
1917
1918 /* Set of nir_block predecessors in the CFG */
1919 struct set *predecessors;
1920
1921 /*
1922 * this node's immediate dominator in the dominance tree - set to NULL for
1923 * the start block.
1924 */
1925 struct nir_block *imm_dom;
1926
1927 /* This node's children in the dominance tree */
1928 unsigned num_dom_children;
1929 struct nir_block **dom_children;
1930
1931 /* Set of nir_blocks on the dominance frontier of this block */
1932 struct set *dom_frontier;
1933
1934 /*
1935 * These two indices have the property that dom_{pre,post}_index for each
1936 * child of this block in the dominance tree will always be between
1937 * dom_pre_index and dom_post_index for this block, which makes testing if
1938 * a given block is dominated by another block an O(1) operation.
1939 */
1940 unsigned dom_pre_index, dom_post_index;
1941
1942 /* live in and out for this block; used for liveness analysis */
1943 BITSET_WORD *live_in;
1944 BITSET_WORD *live_out;
1945 } nir_block;
1946
1947 static inline nir_instr *
1948 nir_block_first_instr(nir_block *block)
1949 {
1950 struct exec_node *head = exec_list_get_head(&block->instr_list);
1951 return exec_node_data(nir_instr, head, node);
1952 }
1953
1954 static inline nir_instr *
1955 nir_block_last_instr(nir_block *block)
1956 {
1957 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1958 return exec_node_data(nir_instr, tail, node);
1959 }
1960
1961 static inline bool
1962 nir_block_ends_in_jump(nir_block *block)
1963 {
1964 return !exec_list_is_empty(&block->instr_list) &&
1965 nir_block_last_instr(block)->type == nir_instr_type_jump;
1966 }
1967
1968 #define nir_foreach_instr(instr, block) \
1969 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1970 #define nir_foreach_instr_reverse(instr, block) \
1971 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1972 #define nir_foreach_instr_safe(instr, block) \
1973 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1974 #define nir_foreach_instr_reverse_safe(instr, block) \
1975 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1976
1977 typedef enum {
1978 nir_selection_control_none = 0x0,
1979 nir_selection_control_flatten = 0x1,
1980 nir_selection_control_dont_flatten = 0x2,
1981 } nir_selection_control;
1982
1983 typedef struct nir_if {
1984 nir_cf_node cf_node;
1985 nir_src condition;
1986 nir_selection_control control;
1987
1988 struct exec_list then_list; /** < list of nir_cf_node */
1989 struct exec_list else_list; /** < list of nir_cf_node */
1990 } nir_if;
1991
1992 typedef struct {
1993 nir_if *nif;
1994
1995 /** Instruction that generates nif::condition. */
1996 nir_instr *conditional_instr;
1997
1998 /** Block within ::nif that has the break instruction. */
1999 nir_block *break_block;
2000
2001 /** Last block for the then- or else-path that does not contain the break. */
2002 nir_block *continue_from_block;
2003
2004 /** True when ::break_block is in the else-path of ::nif. */
2005 bool continue_from_then;
2006 bool induction_rhs;
2007
2008 /* This is true if the terminators exact trip count is unknown. For
2009 * example:
2010 *
2011 * for (int i = 0; i < imin(x, 4); i++)
2012 * ...
2013 *
2014 * Here loop analysis would have set a max_trip_count of 4 however we dont
2015 * know for sure that this is the exact trip count.
2016 */
2017 bool exact_trip_count_unknown;
2018
2019 struct list_head loop_terminator_link;
2020 } nir_loop_terminator;
2021
2022 typedef struct {
2023 /* Estimated cost (in number of instructions) of the loop */
2024 unsigned instr_cost;
2025
2026 /* Guessed trip count based on array indexing */
2027 unsigned guessed_trip_count;
2028
2029 /* Maximum number of times the loop is run (if known) */
2030 unsigned max_trip_count;
2031
2032 /* Do we know the exact number of times the loop will be run */
2033 bool exact_trip_count_known;
2034
2035 /* Unroll the loop regardless of its size */
2036 bool force_unroll;
2037
2038 /* Does the loop contain complex loop terminators, continues or other
2039 * complex behaviours? If this is true we can't rely on
2040 * loop_terminator_list to be complete or accurate.
2041 */
2042 bool complex_loop;
2043
2044 nir_loop_terminator *limiting_terminator;
2045
2046 /* A list of loop_terminators terminating this loop. */
2047 struct list_head loop_terminator_list;
2048 } nir_loop_info;
2049
2050 typedef enum {
2051 nir_loop_control_none = 0x0,
2052 nir_loop_control_unroll = 0x1,
2053 nir_loop_control_dont_unroll = 0x2,
2054 } nir_loop_control;
2055
2056 typedef struct {
2057 nir_cf_node cf_node;
2058
2059 struct exec_list body; /** < list of nir_cf_node */
2060
2061 nir_loop_info *info;
2062 nir_loop_control control;
2063 bool partially_unrolled;
2064 } nir_loop;
2065
2066 /**
2067 * Various bits of metadata that can may be created or required by
2068 * optimization and analysis passes
2069 */
2070 typedef enum {
2071 nir_metadata_none = 0x0,
2072 nir_metadata_block_index = 0x1,
2073 nir_metadata_dominance = 0x2,
2074 nir_metadata_live_ssa_defs = 0x4,
2075 nir_metadata_not_properly_reset = 0x8,
2076 nir_metadata_loop_analysis = 0x10,
2077 } nir_metadata;
2078
2079 typedef struct {
2080 nir_cf_node cf_node;
2081
2082 /** pointer to the function of which this is an implementation */
2083 struct nir_function *function;
2084
2085 struct exec_list body; /** < list of nir_cf_node */
2086
2087 nir_block *end_block;
2088
2089 /** list for all local variables in the function */
2090 struct exec_list locals;
2091
2092 /** list of local registers in the function */
2093 struct exec_list registers;
2094
2095 /** next available local register index */
2096 unsigned reg_alloc;
2097
2098 /** next available SSA value index */
2099 unsigned ssa_alloc;
2100
2101 /* total number of basic blocks, only valid when block_index_dirty = false */
2102 unsigned num_blocks;
2103
2104 nir_metadata valid_metadata;
2105 } nir_function_impl;
2106
2107 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2108 nir_start_block(nir_function_impl *impl)
2109 {
2110 return (nir_block *) impl->body.head_sentinel.next;
2111 }
2112
2113 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2114 nir_impl_last_block(nir_function_impl *impl)
2115 {
2116 return (nir_block *) impl->body.tail_sentinel.prev;
2117 }
2118
2119 static inline nir_cf_node *
2120 nir_cf_node_next(nir_cf_node *node)
2121 {
2122 struct exec_node *next = exec_node_get_next(&node->node);
2123 if (exec_node_is_tail_sentinel(next))
2124 return NULL;
2125 else
2126 return exec_node_data(nir_cf_node, next, node);
2127 }
2128
2129 static inline nir_cf_node *
2130 nir_cf_node_prev(nir_cf_node *node)
2131 {
2132 struct exec_node *prev = exec_node_get_prev(&node->node);
2133 if (exec_node_is_head_sentinel(prev))
2134 return NULL;
2135 else
2136 return exec_node_data(nir_cf_node, prev, node);
2137 }
2138
2139 static inline bool
2140 nir_cf_node_is_first(const nir_cf_node *node)
2141 {
2142 return exec_node_is_head_sentinel(node->node.prev);
2143 }
2144
2145 static inline bool
2146 nir_cf_node_is_last(const nir_cf_node *node)
2147 {
2148 return exec_node_is_tail_sentinel(node->node.next);
2149 }
2150
2151 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2152 type, nir_cf_node_block)
2153 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2154 type, nir_cf_node_if)
2155 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2156 type, nir_cf_node_loop)
2157 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2158 nir_function_impl, cf_node, type, nir_cf_node_function)
2159
2160 static inline nir_block *
2161 nir_if_first_then_block(nir_if *if_stmt)
2162 {
2163 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2164 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2165 }
2166
2167 static inline nir_block *
2168 nir_if_last_then_block(nir_if *if_stmt)
2169 {
2170 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2171 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2172 }
2173
2174 static inline nir_block *
2175 nir_if_first_else_block(nir_if *if_stmt)
2176 {
2177 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2178 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2179 }
2180
2181 static inline nir_block *
2182 nir_if_last_else_block(nir_if *if_stmt)
2183 {
2184 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2185 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2186 }
2187
2188 static inline nir_block *
2189 nir_loop_first_block(nir_loop *loop)
2190 {
2191 struct exec_node *head = exec_list_get_head(&loop->body);
2192 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2193 }
2194
2195 static inline nir_block *
2196 nir_loop_last_block(nir_loop *loop)
2197 {
2198 struct exec_node *tail = exec_list_get_tail(&loop->body);
2199 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2200 }
2201
2202 /**
2203 * Return true if this list of cf_nodes contains a single empty block.
2204 */
2205 static inline bool
2206 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2207 {
2208 if (exec_list_is_singular(cf_list)) {
2209 struct exec_node *head = exec_list_get_head(cf_list);
2210 nir_block *block =
2211 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2212 return exec_list_is_empty(&block->instr_list);
2213 }
2214 return false;
2215 }
2216
2217 typedef struct {
2218 uint8_t num_components;
2219 uint8_t bit_size;
2220 } nir_parameter;
2221
2222 typedef struct nir_function {
2223 struct exec_node node;
2224
2225 const char *name;
2226 struct nir_shader *shader;
2227
2228 unsigned num_params;
2229 nir_parameter *params;
2230
2231 /** The implementation of this function.
2232 *
2233 * If the function is only declared and not implemented, this is NULL.
2234 */
2235 nir_function_impl *impl;
2236
2237 bool is_entrypoint;
2238 } nir_function;
2239
2240 typedef enum {
2241 nir_lower_imul64 = (1 << 0),
2242 nir_lower_isign64 = (1 << 1),
2243 /** Lower all int64 modulus and division opcodes */
2244 nir_lower_divmod64 = (1 << 2),
2245 /** Lower all 64-bit umul_high and imul_high opcodes */
2246 nir_lower_imul_high64 = (1 << 3),
2247 nir_lower_mov64 = (1 << 4),
2248 nir_lower_icmp64 = (1 << 5),
2249 nir_lower_iadd64 = (1 << 6),
2250 nir_lower_iabs64 = (1 << 7),
2251 nir_lower_ineg64 = (1 << 8),
2252 nir_lower_logic64 = (1 << 9),
2253 nir_lower_minmax64 = (1 << 10),
2254 nir_lower_shift64 = (1 << 11),
2255 nir_lower_imul_2x32_64 = (1 << 12),
2256 } nir_lower_int64_options;
2257
2258 typedef enum {
2259 nir_lower_drcp = (1 << 0),
2260 nir_lower_dsqrt = (1 << 1),
2261 nir_lower_drsq = (1 << 2),
2262 nir_lower_dtrunc = (1 << 3),
2263 nir_lower_dfloor = (1 << 4),
2264 nir_lower_dceil = (1 << 5),
2265 nir_lower_dfract = (1 << 6),
2266 nir_lower_dround_even = (1 << 7),
2267 nir_lower_dmod = (1 << 8),
2268 nir_lower_fp64_full_software = (1 << 9),
2269 } nir_lower_doubles_options;
2270
2271 typedef struct nir_shader_compiler_options {
2272 bool lower_fdiv;
2273 bool lower_ffma;
2274 bool fuse_ffma;
2275 bool lower_flrp16;
2276 bool lower_flrp32;
2277 /** Lowers flrp when it does not support doubles */
2278 bool lower_flrp64;
2279 bool lower_fpow;
2280 bool lower_fsat;
2281 bool lower_fsqrt;
2282 bool lower_fmod;
2283 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2284 bool lower_bitfield_extract;
2285 /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
2286 bool lower_bitfield_extract_to_shifts;
2287 /** Lowers bitfield_insert to bfi/bfm */
2288 bool lower_bitfield_insert;
2289 /** Lowers bitfield_insert to compares, and shifts. */
2290 bool lower_bitfield_insert_to_shifts;
2291 /** Lowers bitfield_reverse to shifts. */
2292 bool lower_bitfield_reverse;
2293 /** Lowers bit_count to shifts. */
2294 bool lower_bit_count;
2295 /** Lowers ifind_msb to compare and ufind_msb */
2296 bool lower_ifind_msb;
2297 /** Lowers find_lsb to ufind_msb and logic ops */
2298 bool lower_find_lsb;
2299 bool lower_uadd_carry;
2300 bool lower_usub_borrow;
2301 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
2302 bool lower_mul_high;
2303 /** lowers fneg and ineg to fsub and isub. */
2304 bool lower_negate;
2305 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
2306 bool lower_sub;
2307
2308 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
2309 bool lower_scmp;
2310
2311 /** enables rules to lower idiv by power-of-two: */
2312 bool lower_idiv;
2313
2314 /** enable rules to avoid bit shifts */
2315 bool lower_bitshift;
2316
2317 /** enables rules to lower isign to imin+imax */
2318 bool lower_isign;
2319
2320 /** enables rules to lower fsign to fsub and flt */
2321 bool lower_fsign;
2322
2323 /* Does the native fdot instruction replicate its result for four
2324 * components? If so, then opt_algebraic_late will turn all fdotN
2325 * instructions into fdot_replicatedN instructions.
2326 */
2327 bool fdot_replicates;
2328
2329 /** lowers ffloor to fsub+ffract: */
2330 bool lower_ffloor;
2331
2332 /** lowers ffract to fsub+ffloor: */
2333 bool lower_ffract;
2334
2335 /** lowers fceil to fneg+ffloor+fneg: */
2336 bool lower_fceil;
2337
2338 bool lower_ftrunc;
2339
2340 bool lower_ldexp;
2341
2342 bool lower_pack_half_2x16;
2343 bool lower_pack_unorm_2x16;
2344 bool lower_pack_snorm_2x16;
2345 bool lower_pack_unorm_4x8;
2346 bool lower_pack_snorm_4x8;
2347 bool lower_unpack_half_2x16;
2348 bool lower_unpack_unorm_2x16;
2349 bool lower_unpack_snorm_2x16;
2350 bool lower_unpack_unorm_4x8;
2351 bool lower_unpack_snorm_4x8;
2352
2353 bool lower_extract_byte;
2354 bool lower_extract_word;
2355
2356 bool lower_all_io_to_temps;
2357 bool lower_all_io_to_elements;
2358
2359 /* Indicates that the driver only has zero-based vertex id */
2360 bool vertex_id_zero_based;
2361
2362 /**
2363 * If enabled, gl_BaseVertex will be lowered as:
2364 * is_indexed_draw (~0/0) & firstvertex
2365 */
2366 bool lower_base_vertex;
2367
2368 /**
2369 * If enabled, gl_HelperInvocation will be lowered as:
2370 *
2371 * !((1 << sample_id) & sample_mask_in))
2372 *
2373 * This depends on some possibly hw implementation details, which may
2374 * not be true for all hw. In particular that the FS is only executed
2375 * for covered samples or for helper invocations. So, do not blindly
2376 * enable this option.
2377 *
2378 * Note: See also issue #22 in ARB_shader_image_load_store
2379 */
2380 bool lower_helper_invocation;
2381
2382 /**
2383 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
2384 *
2385 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
2386 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
2387 */
2388 bool optimize_sample_mask_in;
2389
2390 bool lower_cs_local_index_from_id;
2391 bool lower_cs_local_id_from_index;
2392
2393 bool lower_device_index_to_zero;
2394
2395 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
2396 bool lower_wpos_pntc;
2397
2398 bool lower_hadd;
2399 bool lower_add_sat;
2400
2401 /**
2402 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
2403 * for IO purposes and would prefer loads/stores be vectorized.
2404 */
2405 bool vectorize_io;
2406
2407 /**
2408 * Should nir_lower_io() create load_interpolated_input intrinsics?
2409 *
2410 * If not, it generates regular load_input intrinsics and interpolation
2411 * information must be inferred from the list of input nir_variables.
2412 */
2413 bool use_interpolated_input_intrinsics;
2414
2415 /* Lowers when 32x32->64 bit multiplication is not supported */
2416 bool lower_mul_2x32_64;
2417
2418 unsigned max_unroll_iterations;
2419
2420 nir_lower_int64_options lower_int64_options;
2421 nir_lower_doubles_options lower_doubles_options;
2422 } nir_shader_compiler_options;
2423
2424 typedef struct nir_shader {
2425 /** list of uniforms (nir_variable) */
2426 struct exec_list uniforms;
2427
2428 /** list of inputs (nir_variable) */
2429 struct exec_list inputs;
2430
2431 /** list of outputs (nir_variable) */
2432 struct exec_list outputs;
2433
2434 /** list of shared compute variables (nir_variable) */
2435 struct exec_list shared;
2436
2437 /** Set of driver-specific options for the shader.
2438 *
2439 * The memory for the options is expected to be kept in a single static
2440 * copy by the driver.
2441 */
2442 const struct nir_shader_compiler_options *options;
2443
2444 /** Various bits of compile-time information about a given shader */
2445 struct shader_info info;
2446
2447 /** list of global variables in the shader (nir_variable) */
2448 struct exec_list globals;
2449
2450 /** list of system value variables in the shader (nir_variable) */
2451 struct exec_list system_values;
2452
2453 struct exec_list functions; /** < list of nir_function */
2454
2455 /**
2456 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
2457 * access plus one
2458 */
2459 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
2460
2461 /** Size in bytes of required scratch space */
2462 unsigned scratch_size;
2463
2464 /** Constant data associated with this shader.
2465 *
2466 * Constant data is loaded through load_constant intrinsics. See also
2467 * nir_opt_large_constants.
2468 */
2469 void *constant_data;
2470 unsigned constant_data_size;
2471 } nir_shader;
2472
2473 #define nir_foreach_function(func, shader) \
2474 foreach_list_typed(nir_function, func, node, &(shader)->functions)
2475
2476 static inline nir_function_impl *
2477 nir_shader_get_entrypoint(nir_shader *shader)
2478 {
2479 nir_function *func = NULL;
2480
2481 nir_foreach_function(function, shader) {
2482 assert(func == NULL);
2483 if (function->is_entrypoint) {
2484 func = function;
2485 #ifndef NDEBUG
2486 break;
2487 #endif
2488 }
2489 }
2490
2491 if (!func)
2492 return NULL;
2493
2494 assert(func->num_params == 0);
2495 assert(func->impl);
2496 return func->impl;
2497 }
2498
2499 nir_shader *nir_shader_create(void *mem_ctx,
2500 gl_shader_stage stage,
2501 const nir_shader_compiler_options *options,
2502 shader_info *si);
2503
2504 nir_register *nir_local_reg_create(nir_function_impl *impl);
2505
2506 void nir_reg_remove(nir_register *reg);
2507
2508 /** Adds a variable to the appropriate list in nir_shader */
2509 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
2510
2511 static inline void
2512 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
2513 {
2514 assert(var->data.mode == nir_var_function_temp);
2515 exec_list_push_tail(&impl->locals, &var->node);
2516 }
2517
2518 /** creates a variable, sets a few defaults, and adds it to the list */
2519 nir_variable *nir_variable_create(nir_shader *shader,
2520 nir_variable_mode mode,
2521 const struct glsl_type *type,
2522 const char *name);
2523 /** creates a local variable and adds it to the list */
2524 nir_variable *nir_local_variable_create(nir_function_impl *impl,
2525 const struct glsl_type *type,
2526 const char *name);
2527
2528 /** creates a function and adds it to the shader's list of functions */
2529 nir_function *nir_function_create(nir_shader *shader, const char *name);
2530
2531 nir_function_impl *nir_function_impl_create(nir_function *func);
2532 /** creates a function_impl that isn't tied to any particular function */
2533 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
2534
2535 nir_block *nir_block_create(nir_shader *shader);
2536 nir_if *nir_if_create(nir_shader *shader);
2537 nir_loop *nir_loop_create(nir_shader *shader);
2538
2539 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
2540
2541 /** requests that the given pieces of metadata be generated */
2542 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
2543 /** dirties all but the preserved metadata */
2544 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
2545
2546 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
2547 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
2548
2549 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
2550 nir_deref_type deref_type);
2551
2552 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
2553
2554 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
2555 unsigned num_components,
2556 unsigned bit_size);
2557
2558 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
2559 nir_intrinsic_op op);
2560
2561 nir_call_instr *nir_call_instr_create(nir_shader *shader,
2562 nir_function *callee);
2563
2564 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
2565
2566 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
2567
2568 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
2569
2570 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
2571 unsigned num_components,
2572 unsigned bit_size);
2573
2574 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
2575
2576 /**
2577 * NIR Cursors and Instruction Insertion API
2578 * @{
2579 *
2580 * A tiny struct representing a point to insert/extract instructions or
2581 * control flow nodes. Helps reduce the combinatorial explosion of possible
2582 * points to insert/extract.
2583 *
2584 * \sa nir_control_flow.h
2585 */
2586 typedef enum {
2587 nir_cursor_before_block,
2588 nir_cursor_after_block,
2589 nir_cursor_before_instr,
2590 nir_cursor_after_instr,
2591 } nir_cursor_option;
2592
2593 typedef struct {
2594 nir_cursor_option option;
2595 union {
2596 nir_block *block;
2597 nir_instr *instr;
2598 };
2599 } nir_cursor;
2600
2601 static inline nir_block *
2602 nir_cursor_current_block(nir_cursor cursor)
2603 {
2604 if (cursor.option == nir_cursor_before_instr ||
2605 cursor.option == nir_cursor_after_instr) {
2606 return cursor.instr->block;
2607 } else {
2608 return cursor.block;
2609 }
2610 }
2611
2612 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
2613
2614 static inline nir_cursor
2615 nir_before_block(nir_block *block)
2616 {
2617 nir_cursor cursor;
2618 cursor.option = nir_cursor_before_block;
2619 cursor.block = block;
2620 return cursor;
2621 }
2622
2623 static inline nir_cursor
2624 nir_after_block(nir_block *block)
2625 {
2626 nir_cursor cursor;
2627 cursor.option = nir_cursor_after_block;
2628 cursor.block = block;
2629 return cursor;
2630 }
2631
2632 static inline nir_cursor
2633 nir_before_instr(nir_instr *instr)
2634 {
2635 nir_cursor cursor;
2636 cursor.option = nir_cursor_before_instr;
2637 cursor.instr = instr;
2638 return cursor;
2639 }
2640
2641 static inline nir_cursor
2642 nir_after_instr(nir_instr *instr)
2643 {
2644 nir_cursor cursor;
2645 cursor.option = nir_cursor_after_instr;
2646 cursor.instr = instr;
2647 return cursor;
2648 }
2649
2650 static inline nir_cursor
2651 nir_after_block_before_jump(nir_block *block)
2652 {
2653 nir_instr *last_instr = nir_block_last_instr(block);
2654 if (last_instr && last_instr->type == nir_instr_type_jump) {
2655 return nir_before_instr(last_instr);
2656 } else {
2657 return nir_after_block(block);
2658 }
2659 }
2660
2661 static inline nir_cursor
2662 nir_before_src(nir_src *src, bool is_if_condition)
2663 {
2664 if (is_if_condition) {
2665 nir_block *prev_block =
2666 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
2667 assert(!nir_block_ends_in_jump(prev_block));
2668 return nir_after_block(prev_block);
2669 } else if (src->parent_instr->type == nir_instr_type_phi) {
2670 #ifndef NDEBUG
2671 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
2672 bool found = false;
2673 nir_foreach_phi_src(phi_src, cond_phi) {
2674 if (phi_src->src.ssa == src->ssa) {
2675 found = true;
2676 break;
2677 }
2678 }
2679 assert(found);
2680 #endif
2681 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
2682 * to have a more specific name.
2683 */
2684 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
2685 return nir_after_block_before_jump(phi_src->pred);
2686 } else {
2687 return nir_before_instr(src->parent_instr);
2688 }
2689 }
2690
2691 static inline nir_cursor
2692 nir_before_cf_node(nir_cf_node *node)
2693 {
2694 if (node->type == nir_cf_node_block)
2695 return nir_before_block(nir_cf_node_as_block(node));
2696
2697 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
2698 }
2699
2700 static inline nir_cursor
2701 nir_after_cf_node(nir_cf_node *node)
2702 {
2703 if (node->type == nir_cf_node_block)
2704 return nir_after_block(nir_cf_node_as_block(node));
2705
2706 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
2707 }
2708
2709 static inline nir_cursor
2710 nir_after_phis(nir_block *block)
2711 {
2712 nir_foreach_instr(instr, block) {
2713 if (instr->type != nir_instr_type_phi)
2714 return nir_before_instr(instr);
2715 }
2716 return nir_after_block(block);
2717 }
2718
2719 static inline nir_cursor
2720 nir_after_cf_node_and_phis(nir_cf_node *node)
2721 {
2722 if (node->type == nir_cf_node_block)
2723 return nir_after_block(nir_cf_node_as_block(node));
2724
2725 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
2726
2727 return nir_after_phis(block);
2728 }
2729
2730 static inline nir_cursor
2731 nir_before_cf_list(struct exec_list *cf_list)
2732 {
2733 nir_cf_node *first_node = exec_node_data(nir_cf_node,
2734 exec_list_get_head(cf_list), node);
2735 return nir_before_cf_node(first_node);
2736 }
2737
2738 static inline nir_cursor
2739 nir_after_cf_list(struct exec_list *cf_list)
2740 {
2741 nir_cf_node *last_node = exec_node_data(nir_cf_node,
2742 exec_list_get_tail(cf_list), node);
2743 return nir_after_cf_node(last_node);
2744 }
2745
2746 /**
2747 * Insert a NIR instruction at the given cursor.
2748 *
2749 * Note: This does not update the cursor.
2750 */
2751 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
2752
2753 static inline void
2754 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
2755 {
2756 nir_instr_insert(nir_before_instr(instr), before);
2757 }
2758
2759 static inline void
2760 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
2761 {
2762 nir_instr_insert(nir_after_instr(instr), after);
2763 }
2764
2765 static inline void
2766 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
2767 {
2768 nir_instr_insert(nir_before_block(block), before);
2769 }
2770
2771 static inline void
2772 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
2773 {
2774 nir_instr_insert(nir_after_block(block), after);
2775 }
2776
2777 static inline void
2778 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
2779 {
2780 nir_instr_insert(nir_before_cf_node(node), before);
2781 }
2782
2783 static inline void
2784 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
2785 {
2786 nir_instr_insert(nir_after_cf_node(node), after);
2787 }
2788
2789 static inline void
2790 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
2791 {
2792 nir_instr_insert(nir_before_cf_list(list), before);
2793 }
2794
2795 static inline void
2796 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
2797 {
2798 nir_instr_insert(nir_after_cf_list(list), after);
2799 }
2800
2801 void nir_instr_remove_v(nir_instr *instr);
2802
2803 static inline nir_cursor
2804 nir_instr_remove(nir_instr *instr)
2805 {
2806 nir_cursor cursor;
2807 nir_instr *prev = nir_instr_prev(instr);
2808 if (prev) {
2809 cursor = nir_after_instr(prev);
2810 } else {
2811 cursor = nir_before_block(instr->block);
2812 }
2813 nir_instr_remove_v(instr);
2814 return cursor;
2815 }
2816
2817 /** @} */
2818
2819 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
2820 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
2821 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
2822 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
2823 void *state);
2824 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
2825 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
2826
2827 nir_const_value *nir_src_as_const_value(nir_src src);
2828
2829 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
2830 static inline c_type * \
2831 nir_src_as_ ## name (nir_src src) \
2832 { \
2833 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
2834 ? cast_macro(src.ssa->parent_instr) : NULL; \
2835 }
2836
2837 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
2838 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
2839 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
2840 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
2841
2842 bool nir_src_is_dynamically_uniform(nir_src src);
2843 bool nir_srcs_equal(nir_src src1, nir_src src2);
2844 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
2845 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
2846 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
2847 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
2848 nir_dest new_dest);
2849
2850 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
2851 unsigned num_components, unsigned bit_size,
2852 const char *name);
2853 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
2854 unsigned num_components, unsigned bit_size,
2855 const char *name);
2856 static inline void
2857 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
2858 const struct glsl_type *type,
2859 const char *name)
2860 {
2861 assert(glsl_type_is_vector_or_scalar(type));
2862 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
2863 glsl_get_bit_size(type), name);
2864 }
2865 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
2866 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
2867 nir_instr *after_me);
2868
2869 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
2870
2871 /*
2872 * finds the next basic block in source-code order, returns NULL if there is
2873 * none
2874 */
2875
2876 nir_block *nir_block_cf_tree_next(nir_block *block);
2877
2878 /* Performs the opposite of nir_block_cf_tree_next() */
2879
2880 nir_block *nir_block_cf_tree_prev(nir_block *block);
2881
2882 /* Gets the first block in a CF node in source-code order */
2883
2884 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
2885
2886 /* Gets the last block in a CF node in source-code order */
2887
2888 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
2889
2890 /* Gets the next block after a CF node in source-code order */
2891
2892 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
2893
2894 /* Macros for loops that visit blocks in source-code order */
2895
2896 #define nir_foreach_block(block, impl) \
2897 for (nir_block *block = nir_start_block(impl); block != NULL; \
2898 block = nir_block_cf_tree_next(block))
2899
2900 #define nir_foreach_block_safe(block, impl) \
2901 for (nir_block *block = nir_start_block(impl), \
2902 *next = nir_block_cf_tree_next(block); \
2903 block != NULL; \
2904 block = next, next = nir_block_cf_tree_next(block))
2905
2906 #define nir_foreach_block_reverse(block, impl) \
2907 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
2908 block = nir_block_cf_tree_prev(block))
2909
2910 #define nir_foreach_block_reverse_safe(block, impl) \
2911 for (nir_block *block = nir_impl_last_block(impl), \
2912 *prev = nir_block_cf_tree_prev(block); \
2913 block != NULL; \
2914 block = prev, prev = nir_block_cf_tree_prev(block))
2915
2916 #define nir_foreach_block_in_cf_node(block, node) \
2917 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
2918 block != nir_cf_node_cf_tree_next(node); \
2919 block = nir_block_cf_tree_next(block))
2920
2921 /* If the following CF node is an if, this function returns that if.
2922 * Otherwise, it returns NULL.
2923 */
2924 nir_if *nir_block_get_following_if(nir_block *block);
2925
2926 nir_loop *nir_block_get_following_loop(nir_block *block);
2927
2928 void nir_index_local_regs(nir_function_impl *impl);
2929 void nir_index_ssa_defs(nir_function_impl *impl);
2930 unsigned nir_index_instrs(nir_function_impl *impl);
2931
2932 void nir_index_blocks(nir_function_impl *impl);
2933
2934 void nir_print_shader(nir_shader *shader, FILE *fp);
2935 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
2936 void nir_print_instr(const nir_instr *instr, FILE *fp);
2937 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
2938
2939 /** Shallow clone of a single ALU instruction. */
2940 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
2941
2942 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
2943 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
2944 const nir_function_impl *fi);
2945 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
2946 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
2947
2948 void nir_shader_replace(nir_shader *dest, nir_shader *src);
2949
2950 void nir_shader_serialize_deserialize(nir_shader *s);
2951
2952 #ifndef NDEBUG
2953 void nir_validate_shader(nir_shader *shader, const char *when);
2954 void nir_metadata_set_validation_flag(nir_shader *shader);
2955 void nir_metadata_check_validation_flag(nir_shader *shader);
2956
2957 static inline bool
2958 should_skip_nir(const char *name)
2959 {
2960 static const char *list = NULL;
2961 if (!list) {
2962 /* Comma separated list of names to skip. */
2963 list = getenv("NIR_SKIP");
2964 if (!list)
2965 list = "";
2966 }
2967
2968 if (!list[0])
2969 return false;
2970
2971 return comma_separated_list_contains(list, name);
2972 }
2973
2974 static inline bool
2975 should_clone_nir(void)
2976 {
2977 static int should_clone = -1;
2978 if (should_clone < 0)
2979 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
2980
2981 return should_clone;
2982 }
2983
2984 static inline bool
2985 should_serialize_deserialize_nir(void)
2986 {
2987 static int test_serialize = -1;
2988 if (test_serialize < 0)
2989 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
2990
2991 return test_serialize;
2992 }
2993
2994 static inline bool
2995 should_print_nir(void)
2996 {
2997 static int should_print = -1;
2998 if (should_print < 0)
2999 should_print = env_var_as_boolean("NIR_PRINT", false);
3000
3001 return should_print;
3002 }
3003 #else
3004 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
3005 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3006 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3007 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3008 static inline bool should_clone_nir(void) { return false; }
3009 static inline bool should_serialize_deserialize_nir(void) { return false; }
3010 static inline bool should_print_nir(void) { return false; }
3011 #endif /* NDEBUG */
3012
3013 #define _PASS(pass, nir, do_pass) do { \
3014 if (should_skip_nir(#pass)) { \
3015 printf("skipping %s\n", #pass); \
3016 break; \
3017 } \
3018 do_pass \
3019 nir_validate_shader(nir, "after " #pass); \
3020 if (should_clone_nir()) { \
3021 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3022 nir_shader_replace(nir, clone); \
3023 } \
3024 if (should_serialize_deserialize_nir()) { \
3025 nir_shader_serialize_deserialize(nir); \
3026 } \
3027 } while (0)
3028
3029 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3030 nir_metadata_set_validation_flag(nir); \
3031 if (should_print_nir()) \
3032 printf("%s\n", #pass); \
3033 if (pass(nir, ##__VA_ARGS__)) { \
3034 progress = true; \
3035 if (should_print_nir()) \
3036 nir_print_shader(nir, stdout); \
3037 nir_metadata_check_validation_flag(nir); \
3038 } \
3039 )
3040
3041 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3042 if (should_print_nir()) \
3043 printf("%s\n", #pass); \
3044 pass(nir, ##__VA_ARGS__); \
3045 if (should_print_nir()) \
3046 nir_print_shader(nir, stdout); \
3047 )
3048
3049 #define NIR_SKIP(name) should_skip_nir(#name)
3050
3051 void nir_calc_dominance_impl(nir_function_impl *impl);
3052 void nir_calc_dominance(nir_shader *shader);
3053
3054 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3055 bool nir_block_dominates(nir_block *parent, nir_block *child);
3056
3057 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3058 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3059
3060 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3061 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3062
3063 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3064 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3065
3066 int nir_gs_count_vertices(const nir_shader *shader);
3067
3068 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3069 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3070 bool nir_split_var_copies(nir_shader *shader);
3071 bool nir_split_per_member_structs(nir_shader *shader);
3072 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3073
3074 bool nir_lower_returns_impl(nir_function_impl *impl);
3075 bool nir_lower_returns(nir_shader *shader);
3076
3077 void nir_inline_function_impl(struct nir_builder *b,
3078 const nir_function_impl *impl,
3079 nir_ssa_def **params);
3080 bool nir_inline_functions(nir_shader *shader);
3081
3082 bool nir_propagate_invariant(nir_shader *shader);
3083
3084 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3085 void nir_lower_deref_copy_instr(struct nir_builder *b,
3086 nir_intrinsic_instr *copy);
3087 bool nir_lower_var_copies(nir_shader *shader);
3088
3089 void nir_fixup_deref_modes(nir_shader *shader);
3090
3091 bool nir_lower_global_vars_to_local(nir_shader *shader);
3092
3093 typedef enum {
3094 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3095 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3096 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3097 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3098 } nir_lower_array_deref_of_vec_options;
3099
3100 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3101 nir_lower_array_deref_of_vec_options options);
3102
3103 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3104
3105 bool nir_lower_locals_to_regs(nir_shader *shader);
3106
3107 void nir_lower_io_to_temporaries(nir_shader *shader,
3108 nir_function_impl *entrypoint,
3109 bool outputs, bool inputs);
3110
3111 bool nir_lower_vars_to_scratch(nir_shader *shader,
3112 nir_variable_mode modes,
3113 int size_threshold,
3114 glsl_type_size_align_func size_align);
3115
3116 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
3117
3118 void nir_gather_ssa_types(nir_function_impl *impl,
3119 BITSET_WORD *float_types,
3120 BITSET_WORD *int_types);
3121
3122 void nir_assign_var_locations(struct exec_list *var_list, unsigned *size,
3123 int (*type_size)(const struct glsl_type *, bool));
3124
3125 /* Some helpers to do very simple linking */
3126 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
3127 bool nir_remove_unused_io_vars(nir_shader *shader, struct exec_list *var_list,
3128 uint64_t *used_by_other_stage,
3129 uint64_t *used_by_other_stage_patches);
3130 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
3131 bool default_to_smooth_interp);
3132 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
3133 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
3134
3135 typedef enum {
3136 /* If set, this forces all non-flat fragment shader inputs to be
3137 * interpolated as if with the "sample" qualifier. This requires
3138 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
3139 */
3140 nir_lower_io_force_sample_interpolation = (1 << 1),
3141 } nir_lower_io_options;
3142 bool nir_lower_io(nir_shader *shader,
3143 nir_variable_mode modes,
3144 int (*type_size)(const struct glsl_type *, bool),
3145 nir_lower_io_options);
3146
3147 typedef enum {
3148 /**
3149 * An address format which is a simple 32-bit global GPU address.
3150 */
3151 nir_address_format_32bit_global,
3152
3153 /**
3154 * An address format which is a simple 64-bit global GPU address.
3155 */
3156 nir_address_format_64bit_global,
3157
3158 /**
3159 * An address format which is a bounds-checked 64-bit global GPU address.
3160 *
3161 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
3162 * address stored with the low bits in .x and high bits in .y, .z is a
3163 * size, and .w is an offset. When the final I/O operation is lowered, .w
3164 * is checked against .z and the operation is predicated on the result.
3165 */
3166 nir_address_format_64bit_bounded_global,
3167
3168 /**
3169 * An address format which is comprised of a vec2 where the first
3170 * component is a buffer index and the second is an offset.
3171 */
3172 nir_address_format_32bit_index_offset,
3173
3174 /**
3175 * An address format which is a simple 32-bit offset.
3176 */
3177 nir_address_format_32bit_offset,
3178
3179 /**
3180 * An address format representing a purely logical addressing model. In
3181 * this model, all deref chains must be complete from the dereference
3182 * operation to the variable. Cast derefs are not allowed. These
3183 * addresses will be 32-bit scalars but the format is immaterial because
3184 * you can always chase the chain.
3185 */
3186 nir_address_format_logical,
3187 } nir_address_format;
3188
3189 static inline unsigned
3190 nir_address_format_bit_size(nir_address_format addr_format)
3191 {
3192 switch (addr_format) {
3193 case nir_address_format_32bit_global: return 32;
3194 case nir_address_format_64bit_global: return 64;
3195 case nir_address_format_64bit_bounded_global: return 32;
3196 case nir_address_format_32bit_index_offset: return 32;
3197 case nir_address_format_32bit_offset: return 32;
3198 case nir_address_format_logical: return 32;
3199 }
3200 unreachable("Invalid address format");
3201 }
3202
3203 static inline unsigned
3204 nir_address_format_num_components(nir_address_format addr_format)
3205 {
3206 switch (addr_format) {
3207 case nir_address_format_32bit_global: return 1;
3208 case nir_address_format_64bit_global: return 1;
3209 case nir_address_format_64bit_bounded_global: return 4;
3210 case nir_address_format_32bit_index_offset: return 2;
3211 case nir_address_format_32bit_offset: return 1;
3212 case nir_address_format_logical: return 1;
3213 }
3214 unreachable("Invalid address format");
3215 }
3216
3217 static inline const struct glsl_type *
3218 nir_address_format_to_glsl_type(nir_address_format addr_format)
3219 {
3220 unsigned bit_size = nir_address_format_bit_size(addr_format);
3221 assert(bit_size == 32 || bit_size == 64);
3222 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
3223 nir_address_format_num_components(addr_format));
3224 }
3225
3226 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
3227
3228 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3229 nir_address_format addr_format);
3230
3231 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
3232 nir_address_format addr_format);
3233
3234 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
3235 nir_deref_instr *deref,
3236 nir_ssa_def *base_addr,
3237 nir_address_format addr_format);
3238 void nir_lower_explicit_io_instr(struct nir_builder *b,
3239 nir_intrinsic_instr *io_instr,
3240 nir_ssa_def *addr,
3241 nir_address_format addr_format);
3242
3243 bool nir_lower_explicit_io(nir_shader *shader,
3244 nir_variable_mode modes,
3245 nir_address_format);
3246
3247 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
3248 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
3249
3250 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
3251
3252 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
3253 bool nir_lower_regs_to_ssa(nir_shader *shader);
3254 bool nir_lower_vars_to_ssa(nir_shader *shader);
3255
3256 bool nir_remove_dead_derefs(nir_shader *shader);
3257 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
3258 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes);
3259 bool nir_lower_constant_initializers(nir_shader *shader,
3260 nir_variable_mode modes);
3261
3262 bool nir_move_load_const(nir_shader *shader);
3263 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
3264 bool nir_lower_vec_to_movs(nir_shader *shader);
3265 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
3266 bool alpha_to_one);
3267 bool nir_lower_alu(nir_shader *shader);
3268
3269 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
3270 bool always_precise, bool have_ffma);
3271
3272 bool nir_lower_alu_to_scalar(nir_shader *shader, BITSET_WORD *lower_set);
3273 bool nir_lower_bool_to_float(nir_shader *shader);
3274 bool nir_lower_bool_to_int32(nir_shader *shader);
3275 bool nir_lower_int_to_float(nir_shader *shader);
3276 bool nir_lower_load_const_to_scalar(nir_shader *shader);
3277 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
3278 bool nir_lower_phis_to_scalar(nir_shader *shader);
3279 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
3280 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
3281 bool outputs_only);
3282 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
3283 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
3284 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
3285
3286 void nir_lower_fragcoord_wtrans(nir_shader *shader);
3287 void nir_lower_viewport_transform(nir_shader *shader);
3288 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
3289
3290 typedef struct nir_lower_subgroups_options {
3291 uint8_t subgroup_size;
3292 uint8_t ballot_bit_size;
3293 bool lower_to_scalar:1;
3294 bool lower_vote_trivial:1;
3295 bool lower_vote_eq_to_ballot:1;
3296 bool lower_subgroup_masks:1;
3297 bool lower_shuffle:1;
3298 bool lower_shuffle_to_32bit:1;
3299 bool lower_quad:1;
3300 } nir_lower_subgroups_options;
3301
3302 bool nir_lower_subgroups(nir_shader *shader,
3303 const nir_lower_subgroups_options *options);
3304
3305 bool nir_lower_system_values(nir_shader *shader);
3306
3307 enum PACKED nir_lower_tex_packing {
3308 nir_lower_tex_packing_none = 0,
3309 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
3310 * or unsigned ints based on the sampler type
3311 */
3312 nir_lower_tex_packing_16,
3313 /* The sampler returns 1 32-bit word of 4x8 unorm */
3314 nir_lower_tex_packing_8,
3315 };
3316
3317 typedef struct nir_lower_tex_options {
3318 /**
3319 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
3320 * sampler types a texture projector is lowered.
3321 */
3322 unsigned lower_txp;
3323
3324 /**
3325 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
3326 */
3327 bool lower_txf_offset;
3328
3329 /**
3330 * If true, lower away nir_tex_src_offset for all rect textures.
3331 */
3332 bool lower_rect_offset;
3333
3334 /**
3335 * If true, lower rect textures to 2D, using txs to fetch the
3336 * texture dimensions and dividing the texture coords by the
3337 * texture dims to normalize.
3338 */
3339 bool lower_rect;
3340
3341 /**
3342 * If true, convert yuv to rgb.
3343 */
3344 unsigned lower_y_uv_external;
3345 unsigned lower_y_u_v_external;
3346 unsigned lower_yx_xuxv_external;
3347 unsigned lower_xy_uxvx_external;
3348 unsigned lower_ayuv_external;
3349 unsigned lower_xyuv_external;
3350
3351 /**
3352 * To emulate certain texture wrap modes, this can be used
3353 * to saturate the specified tex coord to [0.0, 1.0]. The
3354 * bits are according to sampler #, ie. if, for example:
3355 *
3356 * (conf->saturate_s & (1 << n))
3357 *
3358 * is true, then the s coord for sampler n is saturated.
3359 *
3360 * Note that clamping must happen *after* projector lowering
3361 * so any projected texture sample instruction with a clamped
3362 * coordinate gets automatically lowered, regardless of the
3363 * 'lower_txp' setting.
3364 */
3365 unsigned saturate_s;
3366 unsigned saturate_t;
3367 unsigned saturate_r;
3368
3369 /* Bitmask of textures that need swizzling.
3370 *
3371 * If (swizzle_result & (1 << texture_index)), then the swizzle in
3372 * swizzles[texture_index] is applied to the result of the texturing
3373 * operation.
3374 */
3375 unsigned swizzle_result;
3376
3377 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
3378 * while 4 and 5 represent 0 and 1 respectively.
3379 */
3380 uint8_t swizzles[32][4];
3381
3382 /* Can be used to scale sampled values in range required by the format. */
3383 float scale_factors[32];
3384
3385 /**
3386 * Bitmap of textures that need srgb to linear conversion. If
3387 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
3388 * of the texture are lowered to linear.
3389 */
3390 unsigned lower_srgb;
3391
3392 /**
3393 * If true, lower nir_texop_tex on shaders that doesn't support implicit
3394 * LODs to nir_texop_txl.
3395 */
3396 bool lower_tex_without_implicit_lod;
3397
3398 /**
3399 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
3400 */
3401 bool lower_txd_cube_map;
3402
3403 /**
3404 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
3405 */
3406 bool lower_txd_3d;
3407
3408 /**
3409 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
3410 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
3411 * with lower_txd_cube_map.
3412 */
3413 bool lower_txd_shadow;
3414
3415 /**
3416 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
3417 * Implies lower_txd_cube_map and lower_txd_shadow.
3418 */
3419 bool lower_txd;
3420
3421 /**
3422 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
3423 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
3424 */
3425 bool lower_txb_shadow_clamp;
3426
3427 /**
3428 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
3429 * with nir_texop_txl. This includes cube maps.
3430 */
3431 bool lower_txd_shadow_clamp;
3432
3433 /**
3434 * If true, lower nir_texop_txd on when it uses both offset and min_lod
3435 * with nir_texop_txl. This includes cube maps.
3436 */
3437 bool lower_txd_offset_clamp;
3438
3439 /**
3440 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3441 * sampler is bindless.
3442 */
3443 bool lower_txd_clamp_bindless_sampler;
3444
3445 /**
3446 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
3447 * sampler index is not statically determinable to be less than 16.
3448 */
3449 bool lower_txd_clamp_if_sampler_index_not_lt_16;
3450
3451 /**
3452 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
3453 * 0-lod followed by a nir_ishr.
3454 */
3455 bool lower_txs_lod;
3456
3457 /**
3458 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
3459 * mixed-up tg4 locations.
3460 */
3461 bool lower_tg4_broadcom_swizzle;
3462
3463 /**
3464 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
3465 */
3466 bool lower_tg4_offsets;
3467
3468 enum nir_lower_tex_packing lower_tex_packing[32];
3469 } nir_lower_tex_options;
3470
3471 bool nir_lower_tex(nir_shader *shader,
3472 const nir_lower_tex_options *options);
3473
3474 enum nir_lower_non_uniform_access_type {
3475 nir_lower_non_uniform_ubo_access = (1 << 0),
3476 nir_lower_non_uniform_ssbo_access = (1 << 1),
3477 nir_lower_non_uniform_texture_access = (1 << 2),
3478 nir_lower_non_uniform_image_access = (1 << 3),
3479 };
3480
3481 bool nir_lower_non_uniform_access(nir_shader *shader,
3482 enum nir_lower_non_uniform_access_type);
3483
3484 bool nir_lower_idiv(nir_shader *shader);
3485
3486 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables, bool use_vars);
3487 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
3488 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
3489
3490 bool nir_lower_frexp(nir_shader *nir);
3491
3492 void nir_lower_two_sided_color(nir_shader *shader);
3493
3494 bool nir_lower_clamp_color_outputs(nir_shader *shader);
3495
3496 void nir_lower_passthrough_edgeflags(nir_shader *shader);
3497 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
3498 const gl_state_index16 *uniform_state_tokens);
3499
3500 typedef struct nir_lower_wpos_ytransform_options {
3501 gl_state_index16 state_tokens[STATE_LENGTH];
3502 bool fs_coord_origin_upper_left :1;
3503 bool fs_coord_origin_lower_left :1;
3504 bool fs_coord_pixel_center_integer :1;
3505 bool fs_coord_pixel_center_half_integer :1;
3506 } nir_lower_wpos_ytransform_options;
3507
3508 bool nir_lower_wpos_ytransform(nir_shader *shader,
3509 const nir_lower_wpos_ytransform_options *options);
3510 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
3511
3512 bool nir_lower_fb_read(nir_shader *shader);
3513
3514 typedef struct nir_lower_drawpixels_options {
3515 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
3516 gl_state_index16 scale_state_tokens[STATE_LENGTH];
3517 gl_state_index16 bias_state_tokens[STATE_LENGTH];
3518 unsigned drawpix_sampler;
3519 unsigned pixelmap_sampler;
3520 bool pixel_maps :1;
3521 bool scale_and_bias :1;
3522 } nir_lower_drawpixels_options;
3523
3524 void nir_lower_drawpixels(nir_shader *shader,
3525 const nir_lower_drawpixels_options *options);
3526
3527 typedef struct nir_lower_bitmap_options {
3528 unsigned sampler;
3529 bool swizzle_xxxx;
3530 } nir_lower_bitmap_options;
3531
3532 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
3533
3534 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned ssbo_offset);
3535
3536 typedef enum {
3537 nir_lower_int_source_mods = 1 << 0,
3538 nir_lower_float_source_mods = 1 << 1,
3539 nir_lower_triop_abs = 1 << 2,
3540 nir_lower_all_source_mods = (1 << 3) - 1
3541 } nir_lower_to_source_mods_flags;
3542
3543
3544 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
3545
3546 bool nir_lower_gs_intrinsics(nir_shader *shader);
3547
3548 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
3549
3550 bool nir_lower_bit_size(nir_shader *shader,
3551 nir_lower_bit_size_callback callback,
3552 void *callback_data);
3553
3554 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
3555 bool nir_lower_int64(nir_shader *shader, nir_lower_int64_options options);
3556
3557 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
3558 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
3559 nir_lower_doubles_options options);
3560 bool nir_lower_pack(nir_shader *shader);
3561
3562 bool nir_normalize_cubemap_coords(nir_shader *shader);
3563
3564 void nir_live_ssa_defs_impl(nir_function_impl *impl);
3565
3566 void nir_loop_analyze_impl(nir_function_impl *impl,
3567 nir_variable_mode indirect_mask);
3568
3569 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
3570
3571 bool nir_repair_ssa_impl(nir_function_impl *impl);
3572 bool nir_repair_ssa(nir_shader *shader);
3573
3574 void nir_convert_loop_to_lcssa(nir_loop *loop);
3575
3576 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
3577 * registers. If false, convert all values (even those not involved in a phi
3578 * node) to registers.
3579 */
3580 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
3581
3582 bool nir_lower_phis_to_regs_block(nir_block *block);
3583 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
3584 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
3585
3586 bool nir_opt_comparison_pre(nir_shader *shader);
3587
3588 bool nir_opt_algebraic(nir_shader *shader);
3589 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
3590 bool nir_opt_algebraic_late(nir_shader *shader);
3591 bool nir_opt_constant_folding(nir_shader *shader);
3592
3593 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
3594
3595 bool nir_copy_prop(nir_shader *shader);
3596
3597 bool nir_opt_copy_prop_vars(nir_shader *shader);
3598
3599 bool nir_opt_cse(nir_shader *shader);
3600
3601 bool nir_opt_dce(nir_shader *shader);
3602
3603 bool nir_opt_dead_cf(nir_shader *shader);
3604
3605 bool nir_opt_dead_write_vars(nir_shader *shader);
3606
3607 bool nir_opt_deref_impl(nir_function_impl *impl);
3608 bool nir_opt_deref(nir_shader *shader);
3609
3610 bool nir_opt_find_array_copies(nir_shader *shader);
3611
3612 bool nir_opt_gcm(nir_shader *shader, bool value_number);
3613
3614 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
3615
3616 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
3617
3618 bool nir_opt_intrinsics(nir_shader *shader);
3619
3620 bool nir_opt_large_constants(nir_shader *shader,
3621 glsl_type_size_align_func size_align,
3622 unsigned threshold);
3623
3624 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
3625
3626 bool nir_opt_move_comparisons(nir_shader *shader);
3627
3628 bool nir_opt_move_load_ubo(nir_shader *shader);
3629
3630 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
3631 bool indirect_load_ok, bool expensive_alu_ok);
3632
3633 bool nir_opt_rematerialize_compares(nir_shader *shader);
3634
3635 bool nir_opt_remove_phis(nir_shader *shader);
3636
3637 bool nir_opt_shrink_load(nir_shader *shader);
3638
3639 bool nir_opt_trivial_continues(nir_shader *shader);
3640
3641 bool nir_opt_undef(nir_shader *shader);
3642
3643 bool nir_opt_vectorize(nir_shader *shader);
3644
3645 bool nir_opt_conditional_discard(nir_shader *shader);
3646
3647 void nir_strip(nir_shader *shader);
3648
3649 void nir_sweep(nir_shader *shader);
3650
3651 void nir_remap_dual_slot_attributes(nir_shader *shader,
3652 uint64_t *dual_slot_inputs);
3653 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
3654
3655 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
3656 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
3657
3658 bool nir_lower_sincos(nir_shader *shader);
3659
3660 #ifdef __cplusplus
3661 } /* extern "C" */
3662 #endif
3663
3664 #endif /* NIR_H */