glsl: move to compiler/
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #pragma once
29
30 #include "util/hash_table.h"
31 #include "compiler/glsl/list.h"
32 #include "GL/gl.h" /* GLenum */
33 #include "util/list.h"
34 #include "util/ralloc.h"
35 #include "util/set.h"
36 #include "util/bitset.h"
37 #include "compiler/nir_types.h"
38 #include "compiler/shader_enums.h"
39 #include <stdio.h>
40
41 #include "nir_opcodes.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47 struct gl_program;
48 struct gl_shader_program;
49
50 #define NIR_FALSE 0u
51 #define NIR_TRUE (~0u)
52
53 /** Defines a cast function
54 *
55 * This macro defines a cast function from in_type to out_type where
56 * out_type is some structure type that contains a field of type out_type.
57 *
58 * Note that you have to be a bit careful as the generated cast function
59 * destroys constness.
60 */
61 #define NIR_DEFINE_CAST(name, in_type, out_type, field) \
62 static inline out_type * \
63 name(const in_type *parent) \
64 { \
65 return exec_node_data(out_type, parent, field); \
66 }
67
68 struct nir_function;
69 struct nir_shader;
70 struct nir_instr;
71
72
73 /**
74 * Description of built-in state associated with a uniform
75 *
76 * \sa nir_variable::state_slots
77 */
78 typedef struct {
79 int tokens[5];
80 int swizzle;
81 } nir_state_slot;
82
83 typedef enum {
84 nir_var_all = -1,
85 nir_var_shader_in,
86 nir_var_shader_out,
87 nir_var_global,
88 nir_var_local,
89 nir_var_uniform,
90 nir_var_shader_storage,
91 nir_var_system_value
92 } nir_variable_mode;
93
94 /**
95 * Data stored in an nir_constant
96 */
97 union nir_constant_data {
98 unsigned u[16];
99 int i[16];
100 float f[16];
101 bool b[16];
102 };
103
104 typedef struct nir_constant {
105 /**
106 * Value of the constant.
107 *
108 * The field used to back the values supplied by the constant is determined
109 * by the type associated with the \c nir_variable. Constants may be
110 * scalars, vectors, or matrices.
111 */
112 union nir_constant_data value;
113
114 /* we could get this from the var->type but makes clone *much* easier to
115 * not have to care about the type.
116 */
117 unsigned num_elements;
118
119 /* Array elements / Structure Fields */
120 struct nir_constant **elements;
121 } nir_constant;
122
123 /**
124 * \brief Layout qualifiers for gl_FragDepth.
125 *
126 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
127 * with a layout qualifier.
128 */
129 typedef enum {
130 nir_depth_layout_none, /**< No depth layout is specified. */
131 nir_depth_layout_any,
132 nir_depth_layout_greater,
133 nir_depth_layout_less,
134 nir_depth_layout_unchanged
135 } nir_depth_layout;
136
137 /**
138 * Either a uniform, global variable, shader input, or shader output. Based on
139 * ir_variable - it should be easy to translate between the two.
140 */
141
142 typedef struct nir_variable {
143 struct exec_node node;
144
145 /**
146 * Declared type of the variable
147 */
148 const struct glsl_type *type;
149
150 /**
151 * Declared name of the variable
152 */
153 char *name;
154
155 struct nir_variable_data {
156
157 /**
158 * Is the variable read-only?
159 *
160 * This is set for variables declared as \c const, shader inputs,
161 * and uniforms.
162 */
163 unsigned read_only:1;
164 unsigned centroid:1;
165 unsigned sample:1;
166 unsigned patch:1;
167 unsigned invariant:1;
168
169 /**
170 * Storage class of the variable.
171 *
172 * \sa nir_variable_mode
173 */
174 nir_variable_mode mode:4;
175
176 /**
177 * Interpolation mode for shader inputs / outputs
178 *
179 * \sa glsl_interp_qualifier
180 */
181 unsigned interpolation:2;
182
183 /**
184 * \name ARB_fragment_coord_conventions
185 * @{
186 */
187 unsigned origin_upper_left:1;
188 unsigned pixel_center_integer:1;
189 /*@}*/
190
191 /**
192 * Was the location explicitly set in the shader?
193 *
194 * If the location is explicitly set in the shader, it \b cannot be changed
195 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
196 * no effect).
197 */
198 unsigned explicit_location:1;
199 unsigned explicit_index:1;
200
201 /**
202 * Was an initial binding explicitly set in the shader?
203 *
204 * If so, constant_initializer contains an integer nir_constant
205 * representing the initial binding point.
206 */
207 unsigned explicit_binding:1;
208
209 /**
210 * Does this variable have an initializer?
211 *
212 * This is used by the linker to cross-validiate initializers of global
213 * variables.
214 */
215 unsigned has_initializer:1;
216
217 /**
218 * If non-zero, then this variable may be packed along with other variables
219 * into a single varying slot, so this offset should be applied when
220 * accessing components. For example, an offset of 1 means that the x
221 * component of this variable is actually stored in component y of the
222 * location specified by \c location.
223 */
224 unsigned location_frac:2;
225
226 /**
227 * Non-zero if this variable was created by lowering a named interface
228 * block which was not an array.
229 *
230 * Note that this variable and \c from_named_ifc_block_array will never
231 * both be non-zero.
232 */
233 unsigned from_named_ifc_block_nonarray:1;
234
235 /**
236 * Non-zero if this variable was created by lowering a named interface
237 * block which was an array.
238 *
239 * Note that this variable and \c from_named_ifc_block_nonarray will never
240 * both be non-zero.
241 */
242 unsigned from_named_ifc_block_array:1;
243
244 /**
245 * \brief Layout qualifier for gl_FragDepth.
246 *
247 * This is not equal to \c ir_depth_layout_none if and only if this
248 * variable is \c gl_FragDepth and a layout qualifier is specified.
249 */
250 nir_depth_layout depth_layout;
251
252 /**
253 * Storage location of the base of this variable
254 *
255 * The precise meaning of this field depends on the nature of the variable.
256 *
257 * - Vertex shader input: one of the values from \c gl_vert_attrib.
258 * - Vertex shader output: one of the values from \c gl_varying_slot.
259 * - Geometry shader input: one of the values from \c gl_varying_slot.
260 * - Geometry shader output: one of the values from \c gl_varying_slot.
261 * - Fragment shader input: one of the values from \c gl_varying_slot.
262 * - Fragment shader output: one of the values from \c gl_frag_result.
263 * - Uniforms: Per-stage uniform slot number for default uniform block.
264 * - Uniforms: Index within the uniform block definition for UBO members.
265 * - Non-UBO Uniforms: uniform slot number.
266 * - Other: This field is not currently used.
267 *
268 * If the variable is a uniform, shader input, or shader output, and the
269 * slot has not been assigned, the value will be -1.
270 */
271 int location;
272
273 /**
274 * The actual location of the variable in the IR. Only valid for inputs
275 * and outputs.
276 */
277 unsigned int driver_location;
278
279 /**
280 * output index for dual source blending.
281 */
282 int index;
283
284 /**
285 * Initial binding point for a sampler or UBO.
286 *
287 * For array types, this represents the binding point for the first element.
288 */
289 int binding;
290
291 /**
292 * Location an atomic counter is stored at.
293 */
294 unsigned offset;
295
296 /**
297 * ARB_shader_image_load_store qualifiers.
298 */
299 struct {
300 bool read_only; /**< "readonly" qualifier. */
301 bool write_only; /**< "writeonly" qualifier. */
302 bool coherent;
303 bool _volatile;
304 bool restrict_flag;
305
306 /** Image internal format if specified explicitly, otherwise GL_NONE. */
307 GLenum format;
308 } image;
309
310 /**
311 * Highest element accessed with a constant expression array index
312 *
313 * Not used for non-array variables.
314 */
315 unsigned max_array_access;
316
317 } data;
318
319 /**
320 * Built-in state that backs this uniform
321 *
322 * Once set at variable creation, \c state_slots must remain invariant.
323 * This is because, ideally, this array would be shared by all clones of
324 * this variable in the IR tree. In other words, we'd really like for it
325 * to be a fly-weight.
326 *
327 * If the variable is not a uniform, \c num_state_slots will be zero and
328 * \c state_slots will be \c NULL.
329 */
330 /*@{*/
331 unsigned num_state_slots; /**< Number of state slots used */
332 nir_state_slot *state_slots; /**< State descriptors. */
333 /*@}*/
334
335 /**
336 * Constant expression assigned in the initializer of the variable
337 */
338 nir_constant *constant_initializer;
339
340 /**
341 * For variables that are in an interface block or are an instance of an
342 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
343 *
344 * \sa ir_variable::location
345 */
346 const struct glsl_type *interface_type;
347 } nir_variable;
348
349 #define nir_foreach_variable(var, var_list) \
350 foreach_list_typed(nir_variable, var, node, var_list)
351
352 typedef struct nir_register {
353 struct exec_node node;
354
355 unsigned num_components; /** < number of vector components */
356 unsigned num_array_elems; /** < size of array (0 for no array) */
357
358 /** generic register index. */
359 unsigned index;
360
361 /** only for debug purposes, can be NULL */
362 const char *name;
363
364 /** whether this register is local (per-function) or global (per-shader) */
365 bool is_global;
366
367 /**
368 * If this flag is set to true, then accessing channels >= num_components
369 * is well-defined, and simply spills over to the next array element. This
370 * is useful for backends that can do per-component accessing, in
371 * particular scalar backends. By setting this flag and making
372 * num_components equal to 1, structures can be packed tightly into
373 * registers and then registers can be accessed per-component to get to
374 * each structure member, even if it crosses vec4 boundaries.
375 */
376 bool is_packed;
377
378 /** set of nir_src's where this register is used (read from) */
379 struct list_head uses;
380
381 /** set of nir_dest's where this register is defined (written to) */
382 struct list_head defs;
383
384 /** set of nir_if's where this register is used as a condition */
385 struct list_head if_uses;
386 } nir_register;
387
388 typedef enum {
389 nir_instr_type_alu,
390 nir_instr_type_call,
391 nir_instr_type_tex,
392 nir_instr_type_intrinsic,
393 nir_instr_type_load_const,
394 nir_instr_type_jump,
395 nir_instr_type_ssa_undef,
396 nir_instr_type_phi,
397 nir_instr_type_parallel_copy,
398 } nir_instr_type;
399
400 typedef struct nir_instr {
401 struct exec_node node;
402 nir_instr_type type;
403 struct nir_block *block;
404
405 /** generic instruction index. */
406 unsigned index;
407
408 /* A temporary for optimization and analysis passes to use for storing
409 * flags. For instance, DCE uses this to store the "dead/live" info.
410 */
411 uint8_t pass_flags;
412 } nir_instr;
413
414 static inline nir_instr *
415 nir_instr_next(nir_instr *instr)
416 {
417 struct exec_node *next = exec_node_get_next(&instr->node);
418 if (exec_node_is_tail_sentinel(next))
419 return NULL;
420 else
421 return exec_node_data(nir_instr, next, node);
422 }
423
424 static inline nir_instr *
425 nir_instr_prev(nir_instr *instr)
426 {
427 struct exec_node *prev = exec_node_get_prev(&instr->node);
428 if (exec_node_is_head_sentinel(prev))
429 return NULL;
430 else
431 return exec_node_data(nir_instr, prev, node);
432 }
433
434 static inline bool
435 nir_instr_is_first(nir_instr *instr)
436 {
437 return exec_node_is_head_sentinel(exec_node_get_prev(&instr->node));
438 }
439
440 static inline bool
441 nir_instr_is_last(nir_instr *instr)
442 {
443 return exec_node_is_tail_sentinel(exec_node_get_next(&instr->node));
444 }
445
446 typedef struct nir_ssa_def {
447 /** for debugging only, can be NULL */
448 const char* name;
449
450 /** generic SSA definition index. */
451 unsigned index;
452
453 /** Index into the live_in and live_out bitfields */
454 unsigned live_index;
455
456 nir_instr *parent_instr;
457
458 /** set of nir_instr's where this register is used (read from) */
459 struct list_head uses;
460
461 /** set of nir_if's where this register is used as a condition */
462 struct list_head if_uses;
463
464 uint8_t num_components;
465 } nir_ssa_def;
466
467 struct nir_src;
468
469 typedef struct {
470 nir_register *reg;
471 struct nir_src *indirect; /** < NULL for no indirect offset */
472 unsigned base_offset;
473
474 /* TODO use-def chain goes here */
475 } nir_reg_src;
476
477 typedef struct {
478 nir_instr *parent_instr;
479 struct list_head def_link;
480
481 nir_register *reg;
482 struct nir_src *indirect; /** < NULL for no indirect offset */
483 unsigned base_offset;
484
485 /* TODO def-use chain goes here */
486 } nir_reg_dest;
487
488 struct nir_if;
489
490 typedef struct nir_src {
491 union {
492 nir_instr *parent_instr;
493 struct nir_if *parent_if;
494 };
495
496 struct list_head use_link;
497
498 union {
499 nir_reg_src reg;
500 nir_ssa_def *ssa;
501 };
502
503 bool is_ssa;
504 } nir_src;
505
506 #define NIR_SRC_INIT (nir_src) { { NULL } }
507
508 #define nir_foreach_use(reg_or_ssa_def, src) \
509 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
510
511 #define nir_foreach_use_safe(reg_or_ssa_def, src) \
512 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
513
514 #define nir_foreach_if_use(reg_or_ssa_def, src) \
515 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
516
517 #define nir_foreach_if_use_safe(reg_or_ssa_def, src) \
518 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
519
520 typedef struct {
521 union {
522 nir_reg_dest reg;
523 nir_ssa_def ssa;
524 };
525
526 bool is_ssa;
527 } nir_dest;
528
529 #define NIR_DEST_INIT (nir_dest) { { { NULL } } }
530
531 #define nir_foreach_def(reg, dest) \
532 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
533
534 #define nir_foreach_def_safe(reg, dest) \
535 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
536
537 static inline nir_src
538 nir_src_for_ssa(nir_ssa_def *def)
539 {
540 nir_src src = NIR_SRC_INIT;
541
542 src.is_ssa = true;
543 src.ssa = def;
544
545 return src;
546 }
547
548 static inline nir_src
549 nir_src_for_reg(nir_register *reg)
550 {
551 nir_src src = NIR_SRC_INIT;
552
553 src.is_ssa = false;
554 src.reg.reg = reg;
555 src.reg.indirect = NULL;
556 src.reg.base_offset = 0;
557
558 return src;
559 }
560
561 static inline nir_dest
562 nir_dest_for_reg(nir_register *reg)
563 {
564 nir_dest dest = NIR_DEST_INIT;
565
566 dest.reg.reg = reg;
567
568 return dest;
569 }
570
571 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
572 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
573
574 typedef struct {
575 nir_src src;
576
577 /**
578 * \name input modifiers
579 */
580 /*@{*/
581 /**
582 * For inputs interpreted as floating point, flips the sign bit. For
583 * inputs interpreted as integers, performs the two's complement negation.
584 */
585 bool negate;
586
587 /**
588 * Clears the sign bit for floating point values, and computes the integer
589 * absolute value for integers. Note that the negate modifier acts after
590 * the absolute value modifier, therefore if both are set then all inputs
591 * will become negative.
592 */
593 bool abs;
594 /*@}*/
595
596 /**
597 * For each input component, says which component of the register it is
598 * chosen from. Note that which elements of the swizzle are used and which
599 * are ignored are based on the write mask for most opcodes - for example,
600 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
601 * a swizzle of {2, x, 1, 0} where x means "don't care."
602 */
603 uint8_t swizzle[4];
604 } nir_alu_src;
605
606 typedef struct {
607 nir_dest dest;
608
609 /**
610 * \name saturate output modifier
611 *
612 * Only valid for opcodes that output floating-point numbers. Clamps the
613 * output to between 0.0 and 1.0 inclusive.
614 */
615
616 bool saturate;
617
618 unsigned write_mask : 4; /* ignored if dest.is_ssa is true */
619 } nir_alu_dest;
620
621 typedef enum {
622 nir_type_invalid = 0, /* Not a valid type */
623 nir_type_float,
624 nir_type_int,
625 nir_type_uint,
626 nir_type_bool
627 } nir_alu_type;
628
629 typedef enum {
630 NIR_OP_IS_COMMUTATIVE = (1 << 0),
631 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
632 } nir_op_algebraic_property;
633
634 typedef struct {
635 const char *name;
636
637 unsigned num_inputs;
638
639 /**
640 * The number of components in the output
641 *
642 * If non-zero, this is the size of the output and input sizes are
643 * explicitly given; swizzle and writemask are still in effect, but if
644 * the output component is masked out, then the input component may
645 * still be in use.
646 *
647 * If zero, the opcode acts in the standard, per-component manner; the
648 * operation is performed on each component (except the ones that are
649 * masked out) with the input being taken from the input swizzle for
650 * that component.
651 *
652 * The size of some of the inputs may be given (i.e. non-zero) even
653 * though output_size is zero; in that case, the inputs with a zero
654 * size act per-component, while the inputs with non-zero size don't.
655 */
656 unsigned output_size;
657
658 /**
659 * The type of vector that the instruction outputs. Note that the
660 * staurate modifier is only allowed on outputs with the float type.
661 */
662
663 nir_alu_type output_type;
664
665 /**
666 * The number of components in each input
667 */
668 unsigned input_sizes[4];
669
670 /**
671 * The type of vector that each input takes. Note that negate and
672 * absolute value are only allowed on inputs with int or float type and
673 * behave differently on the two.
674 */
675 nir_alu_type input_types[4];
676
677 nir_op_algebraic_property algebraic_properties;
678 } nir_op_info;
679
680 extern const nir_op_info nir_op_infos[nir_num_opcodes];
681
682 typedef struct nir_alu_instr {
683 nir_instr instr;
684 nir_op op;
685 nir_alu_dest dest;
686 nir_alu_src src[];
687 } nir_alu_instr;
688
689 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
690 nir_alu_instr *instr);
691 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
692 nir_alu_instr *instr);
693
694 /* is this source channel used? */
695 static inline bool
696 nir_alu_instr_channel_used(nir_alu_instr *instr, unsigned src, unsigned channel)
697 {
698 if (nir_op_infos[instr->op].input_sizes[src] > 0)
699 return channel < nir_op_infos[instr->op].input_sizes[src];
700
701 return (instr->dest.write_mask >> channel) & 1;
702 }
703
704 /*
705 * For instructions whose destinations are SSA, get the number of channels
706 * used for a source
707 */
708 static inline unsigned
709 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
710 {
711 assert(instr->dest.dest.is_ssa);
712
713 if (nir_op_infos[instr->op].input_sizes[src] > 0)
714 return nir_op_infos[instr->op].input_sizes[src];
715
716 return instr->dest.dest.ssa.num_components;
717 }
718
719 typedef enum {
720 nir_deref_type_var,
721 nir_deref_type_array,
722 nir_deref_type_struct
723 } nir_deref_type;
724
725 typedef struct nir_deref {
726 nir_deref_type deref_type;
727 struct nir_deref *child;
728 const struct glsl_type *type;
729 } nir_deref;
730
731 typedef struct {
732 nir_deref deref;
733
734 nir_variable *var;
735 } nir_deref_var;
736
737 /* This enum describes how the array is referenced. If the deref is
738 * direct then the base_offset is used. If the deref is indirect then then
739 * offset is given by base_offset + indirect. If the deref is a wildcard
740 * then the deref refers to all of the elements of the array at the same
741 * time. Wildcard dereferences are only ever allowed in copy_var
742 * intrinsics and the source and destination derefs must have matching
743 * wildcards.
744 */
745 typedef enum {
746 nir_deref_array_type_direct,
747 nir_deref_array_type_indirect,
748 nir_deref_array_type_wildcard,
749 } nir_deref_array_type;
750
751 typedef struct {
752 nir_deref deref;
753
754 nir_deref_array_type deref_array_type;
755 unsigned base_offset;
756 nir_src indirect;
757 } nir_deref_array;
758
759 typedef struct {
760 nir_deref deref;
761
762 unsigned index;
763 } nir_deref_struct;
764
765 NIR_DEFINE_CAST(nir_deref_as_var, nir_deref, nir_deref_var, deref)
766 NIR_DEFINE_CAST(nir_deref_as_array, nir_deref, nir_deref_array, deref)
767 NIR_DEFINE_CAST(nir_deref_as_struct, nir_deref, nir_deref_struct, deref)
768
769 /* Returns the last deref in the chain. */
770 static inline nir_deref *
771 nir_deref_tail(nir_deref *deref)
772 {
773 while (deref->child)
774 deref = deref->child;
775 return deref;
776 }
777
778 typedef struct {
779 nir_instr instr;
780
781 unsigned num_params;
782 nir_deref_var **params;
783 nir_deref_var *return_deref;
784
785 struct nir_function *callee;
786 } nir_call_instr;
787
788 #define INTRINSIC(name, num_srcs, src_components, has_dest, dest_components, \
789 num_variables, num_indices, flags) \
790 nir_intrinsic_##name,
791
792 #define LAST_INTRINSIC(name) nir_last_intrinsic = nir_intrinsic_##name,
793
794 typedef enum {
795 #include "nir_intrinsics.h"
796 nir_num_intrinsics = nir_last_intrinsic + 1
797 } nir_intrinsic_op;
798
799 #undef INTRINSIC
800 #undef LAST_INTRINSIC
801
802 /** Represents an intrinsic
803 *
804 * An intrinsic is an instruction type for handling things that are
805 * more-or-less regular operations but don't just consume and produce SSA
806 * values like ALU operations do. Intrinsics are not for things that have
807 * special semantic meaning such as phi nodes and parallel copies.
808 * Examples of intrinsics include variable load/store operations, system
809 * value loads, and the like. Even though texturing more-or-less falls
810 * under this category, texturing is its own instruction type because
811 * trying to represent texturing with intrinsics would lead to a
812 * combinatorial explosion of intrinsic opcodes.
813 *
814 * By having a single instruction type for handling a lot of different
815 * cases, optimization passes can look for intrinsics and, for the most
816 * part, completely ignore them. Each intrinsic type also has a few
817 * possible flags that govern whether or not they can be reordered or
818 * eliminated. That way passes like dead code elimination can still work
819 * on intrisics without understanding the meaning of each.
820 *
821 * Each intrinsic has some number of constant indices, some number of
822 * variables, and some number of sources. What these sources, variables,
823 * and indices mean depends on the intrinsic and is documented with the
824 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
825 * instructions are the only types of instruction that can operate on
826 * variables.
827 */
828 typedef struct {
829 nir_instr instr;
830
831 nir_intrinsic_op intrinsic;
832
833 nir_dest dest;
834
835 /** number of components if this is a vectorized intrinsic
836 *
837 * Similarly to ALU operations, some intrinsics are vectorized.
838 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
839 * For vectorized intrinsics, the num_components field specifies the
840 * number of destination components and the number of source components
841 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
842 */
843 uint8_t num_components;
844
845 int const_index[3];
846
847 nir_deref_var *variables[2];
848
849 nir_src src[];
850 } nir_intrinsic_instr;
851
852 /**
853 * \name NIR intrinsics semantic flags
854 *
855 * information about what the compiler can do with the intrinsics.
856 *
857 * \sa nir_intrinsic_info::flags
858 */
859 typedef enum {
860 /**
861 * whether the intrinsic can be safely eliminated if none of its output
862 * value is not being used.
863 */
864 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
865
866 /**
867 * Whether the intrinsic can be reordered with respect to any other
868 * intrinsic, i.e. whether the only reordering dependencies of the
869 * intrinsic are due to the register reads/writes.
870 */
871 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
872 } nir_intrinsic_semantic_flag;
873
874 #define NIR_INTRINSIC_MAX_INPUTS 4
875
876 typedef struct {
877 const char *name;
878
879 unsigned num_srcs; /** < number of register/SSA inputs */
880
881 /** number of components of each input register
882 *
883 * If this value is 0, the number of components is given by the
884 * num_components field of nir_intrinsic_instr.
885 */
886 unsigned src_components[NIR_INTRINSIC_MAX_INPUTS];
887
888 bool has_dest;
889
890 /** number of components of the output register
891 *
892 * If this value is 0, the number of components is given by the
893 * num_components field of nir_intrinsic_instr.
894 */
895 unsigned dest_components;
896
897 /** the number of inputs/outputs that are variables */
898 unsigned num_variables;
899
900 /** the number of constant indices used by the intrinsic */
901 unsigned num_indices;
902
903 /** semantic flags for calls to this intrinsic */
904 nir_intrinsic_semantic_flag flags;
905 } nir_intrinsic_info;
906
907 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
908
909 /**
910 * \group texture information
911 *
912 * This gives semantic information about textures which is useful to the
913 * frontend, the backend, and lowering passes, but not the optimizer.
914 */
915
916 typedef enum {
917 nir_tex_src_coord,
918 nir_tex_src_projector,
919 nir_tex_src_comparitor, /* shadow comparitor */
920 nir_tex_src_offset,
921 nir_tex_src_bias,
922 nir_tex_src_lod,
923 nir_tex_src_ms_index, /* MSAA sample index */
924 nir_tex_src_ddx,
925 nir_tex_src_ddy,
926 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
927 nir_num_tex_src_types
928 } nir_tex_src_type;
929
930 typedef struct {
931 nir_src src;
932 nir_tex_src_type src_type;
933 } nir_tex_src;
934
935 typedef enum {
936 nir_texop_tex, /**< Regular texture look-up */
937 nir_texop_txb, /**< Texture look-up with LOD bias */
938 nir_texop_txl, /**< Texture look-up with explicit LOD */
939 nir_texop_txd, /**< Texture look-up with partial derivatvies */
940 nir_texop_txf, /**< Texel fetch with explicit LOD */
941 nir_texop_txf_ms, /**< Multisample texture fetch */
942 nir_texop_txs, /**< Texture size */
943 nir_texop_lod, /**< Texture lod query */
944 nir_texop_tg4, /**< Texture gather */
945 nir_texop_query_levels, /**< Texture levels query */
946 nir_texop_texture_samples, /**< Texture samples query */
947 nir_texop_samples_identical, /**< Query whether all samples are definitely
948 * identical.
949 */
950 } nir_texop;
951
952 typedef struct {
953 nir_instr instr;
954
955 enum glsl_sampler_dim sampler_dim;
956 nir_alu_type dest_type;
957
958 nir_texop op;
959 nir_dest dest;
960 nir_tex_src *src;
961 unsigned num_srcs, coord_components;
962 bool is_array, is_shadow;
963
964 /**
965 * If is_shadow is true, whether this is the old-style shadow that outputs 4
966 * components or the new-style shadow that outputs 1 component.
967 */
968 bool is_new_style_shadow;
969
970 /* constant offset - must be 0 if the offset source is used */
971 int const_offset[4];
972
973 /* gather component selector */
974 unsigned component : 2;
975
976 /** The sampler index
977 *
978 * If this texture instruction has a nir_tex_src_sampler_offset source,
979 * then the sampler index is given by sampler_index + sampler_offset.
980 */
981 unsigned sampler_index;
982
983 /** The size of the sampler array or 0 if it's not an array */
984 unsigned sampler_array_size;
985
986 nir_deref_var *sampler; /* if this is NULL, use sampler_index instead */
987 } nir_tex_instr;
988
989 static inline unsigned
990 nir_tex_instr_dest_size(nir_tex_instr *instr)
991 {
992 switch (instr->op) {
993 case nir_texop_txs: {
994 unsigned ret;
995 switch (instr->sampler_dim) {
996 case GLSL_SAMPLER_DIM_1D:
997 case GLSL_SAMPLER_DIM_BUF:
998 ret = 1;
999 break;
1000 case GLSL_SAMPLER_DIM_2D:
1001 case GLSL_SAMPLER_DIM_CUBE:
1002 case GLSL_SAMPLER_DIM_MS:
1003 case GLSL_SAMPLER_DIM_RECT:
1004 case GLSL_SAMPLER_DIM_EXTERNAL:
1005 ret = 2;
1006 break;
1007 case GLSL_SAMPLER_DIM_3D:
1008 ret = 3;
1009 break;
1010 default:
1011 unreachable("not reached");
1012 }
1013 if (instr->is_array)
1014 ret++;
1015 return ret;
1016 }
1017
1018 case nir_texop_lod:
1019 return 2;
1020
1021 case nir_texop_texture_samples:
1022 case nir_texop_query_levels:
1023 case nir_texop_samples_identical:
1024 return 1;
1025
1026 default:
1027 if (instr->is_shadow && instr->is_new_style_shadow)
1028 return 1;
1029
1030 return 4;
1031 }
1032 }
1033
1034 /* Returns true if this texture operation queries something about the texture
1035 * rather than actually sampling it.
1036 */
1037 static inline bool
1038 nir_tex_instr_is_query(nir_tex_instr *instr)
1039 {
1040 switch (instr->op) {
1041 case nir_texop_txs:
1042 case nir_texop_lod:
1043 case nir_texop_texture_samples:
1044 case nir_texop_query_levels:
1045 return true;
1046 case nir_texop_tex:
1047 case nir_texop_txb:
1048 case nir_texop_txl:
1049 case nir_texop_txd:
1050 case nir_texop_txf:
1051 case nir_texop_txf_ms:
1052 case nir_texop_tg4:
1053 return false;
1054 default:
1055 unreachable("Invalid texture opcode");
1056 }
1057 }
1058
1059 static inline unsigned
1060 nir_tex_instr_src_size(nir_tex_instr *instr, unsigned src)
1061 {
1062 if (instr->src[src].src_type == nir_tex_src_coord)
1063 return instr->coord_components;
1064
1065
1066 if (instr->src[src].src_type == nir_tex_src_offset ||
1067 instr->src[src].src_type == nir_tex_src_ddx ||
1068 instr->src[src].src_type == nir_tex_src_ddy) {
1069 if (instr->is_array)
1070 return instr->coord_components - 1;
1071 else
1072 return instr->coord_components;
1073 }
1074
1075 return 1;
1076 }
1077
1078 static inline int
1079 nir_tex_instr_src_index(nir_tex_instr *instr, nir_tex_src_type type)
1080 {
1081 for (unsigned i = 0; i < instr->num_srcs; i++)
1082 if (instr->src[i].src_type == type)
1083 return (int) i;
1084
1085 return -1;
1086 }
1087
1088 typedef struct {
1089 union {
1090 float f[4];
1091 int32_t i[4];
1092 uint32_t u[4];
1093 };
1094 } nir_const_value;
1095
1096 typedef struct {
1097 nir_instr instr;
1098
1099 nir_const_value value;
1100
1101 nir_ssa_def def;
1102 } nir_load_const_instr;
1103
1104 typedef enum {
1105 nir_jump_return,
1106 nir_jump_break,
1107 nir_jump_continue,
1108 } nir_jump_type;
1109
1110 typedef struct {
1111 nir_instr instr;
1112 nir_jump_type type;
1113 } nir_jump_instr;
1114
1115 /* creates a new SSA variable in an undefined state */
1116
1117 typedef struct {
1118 nir_instr instr;
1119 nir_ssa_def def;
1120 } nir_ssa_undef_instr;
1121
1122 typedef struct {
1123 struct exec_node node;
1124
1125 /* The predecessor block corresponding to this source */
1126 struct nir_block *pred;
1127
1128 nir_src src;
1129 } nir_phi_src;
1130
1131 #define nir_foreach_phi_src(phi, entry) \
1132 foreach_list_typed(nir_phi_src, entry, node, &(phi)->srcs)
1133 #define nir_foreach_phi_src_safe(phi, entry) \
1134 foreach_list_typed_safe(nir_phi_src, entry, node, &(phi)->srcs)
1135
1136 typedef struct {
1137 nir_instr instr;
1138
1139 struct exec_list srcs; /** < list of nir_phi_src */
1140
1141 nir_dest dest;
1142 } nir_phi_instr;
1143
1144 typedef struct {
1145 struct exec_node node;
1146 nir_src src;
1147 nir_dest dest;
1148 } nir_parallel_copy_entry;
1149
1150 #define nir_foreach_parallel_copy_entry(pcopy, entry) \
1151 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
1152
1153 typedef struct {
1154 nir_instr instr;
1155
1156 /* A list of nir_parallel_copy_entry's. The sources of all of the
1157 * entries are copied to the corresponding destinations "in parallel".
1158 * In other words, if we have two entries: a -> b and b -> a, the values
1159 * get swapped.
1160 */
1161 struct exec_list entries;
1162 } nir_parallel_copy_instr;
1163
1164 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr)
1165 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr)
1166 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr)
1167 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr)
1168 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr)
1169 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr)
1170 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr)
1171 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr)
1172 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
1173 nir_parallel_copy_instr, instr)
1174
1175 /*
1176 * Control flow
1177 *
1178 * Control flow consists of a tree of control flow nodes, which include
1179 * if-statements and loops. The leaves of the tree are basic blocks, lists of
1180 * instructions that always run start-to-finish. Each basic block also keeps
1181 * track of its successors (blocks which may run immediately after the current
1182 * block) and predecessors (blocks which could have run immediately before the
1183 * current block). Each function also has a start block and an end block which
1184 * all return statements point to (which is always empty). Together, all the
1185 * blocks with their predecessors and successors make up the control flow
1186 * graph (CFG) of the function. There are helpers that modify the tree of
1187 * control flow nodes while modifying the CFG appropriately; these should be
1188 * used instead of modifying the tree directly.
1189 */
1190
1191 typedef enum {
1192 nir_cf_node_block,
1193 nir_cf_node_if,
1194 nir_cf_node_loop,
1195 nir_cf_node_function
1196 } nir_cf_node_type;
1197
1198 typedef struct nir_cf_node {
1199 struct exec_node node;
1200 nir_cf_node_type type;
1201 struct nir_cf_node *parent;
1202 } nir_cf_node;
1203
1204 typedef struct nir_block {
1205 nir_cf_node cf_node;
1206
1207 struct exec_list instr_list; /** < list of nir_instr */
1208
1209 /** generic block index; generated by nir_index_blocks */
1210 unsigned index;
1211
1212 /*
1213 * Each block can only have up to 2 successors, so we put them in a simple
1214 * array - no need for anything more complicated.
1215 */
1216 struct nir_block *successors[2];
1217
1218 /* Set of nir_block predecessors in the CFG */
1219 struct set *predecessors;
1220
1221 /*
1222 * this node's immediate dominator in the dominance tree - set to NULL for
1223 * the start block.
1224 */
1225 struct nir_block *imm_dom;
1226
1227 /* This node's children in the dominance tree */
1228 unsigned num_dom_children;
1229 struct nir_block **dom_children;
1230
1231 /* Set of nir_block's on the dominance frontier of this block */
1232 struct set *dom_frontier;
1233
1234 /*
1235 * These two indices have the property that dom_{pre,post}_index for each
1236 * child of this block in the dominance tree will always be between
1237 * dom_pre_index and dom_post_index for this block, which makes testing if
1238 * a given block is dominated by another block an O(1) operation.
1239 */
1240 unsigned dom_pre_index, dom_post_index;
1241
1242 /* live in and out for this block; used for liveness analysis */
1243 BITSET_WORD *live_in;
1244 BITSET_WORD *live_out;
1245 } nir_block;
1246
1247 static inline nir_instr *
1248 nir_block_first_instr(nir_block *block)
1249 {
1250 struct exec_node *head = exec_list_get_head(&block->instr_list);
1251 return exec_node_data(nir_instr, head, node);
1252 }
1253
1254 static inline nir_instr *
1255 nir_block_last_instr(nir_block *block)
1256 {
1257 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
1258 return exec_node_data(nir_instr, tail, node);
1259 }
1260
1261 #define nir_foreach_instr(block, instr) \
1262 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
1263 #define nir_foreach_instr_reverse(block, instr) \
1264 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
1265 #define nir_foreach_instr_safe(block, instr) \
1266 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
1267 #define nir_foreach_instr_reverse_safe(block, instr) \
1268 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
1269
1270 typedef struct nir_if {
1271 nir_cf_node cf_node;
1272 nir_src condition;
1273
1274 struct exec_list then_list; /** < list of nir_cf_node */
1275 struct exec_list else_list; /** < list of nir_cf_node */
1276 } nir_if;
1277
1278 static inline nir_cf_node *
1279 nir_if_first_then_node(nir_if *if_stmt)
1280 {
1281 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
1282 return exec_node_data(nir_cf_node, head, node);
1283 }
1284
1285 static inline nir_cf_node *
1286 nir_if_last_then_node(nir_if *if_stmt)
1287 {
1288 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
1289 return exec_node_data(nir_cf_node, tail, node);
1290 }
1291
1292 static inline nir_cf_node *
1293 nir_if_first_else_node(nir_if *if_stmt)
1294 {
1295 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
1296 return exec_node_data(nir_cf_node, head, node);
1297 }
1298
1299 static inline nir_cf_node *
1300 nir_if_last_else_node(nir_if *if_stmt)
1301 {
1302 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
1303 return exec_node_data(nir_cf_node, tail, node);
1304 }
1305
1306 typedef struct {
1307 nir_cf_node cf_node;
1308
1309 struct exec_list body; /** < list of nir_cf_node */
1310 } nir_loop;
1311
1312 static inline nir_cf_node *
1313 nir_loop_first_cf_node(nir_loop *loop)
1314 {
1315 return exec_node_data(nir_cf_node, exec_list_get_head(&loop->body), node);
1316 }
1317
1318 static inline nir_cf_node *
1319 nir_loop_last_cf_node(nir_loop *loop)
1320 {
1321 return exec_node_data(nir_cf_node, exec_list_get_tail(&loop->body), node);
1322 }
1323
1324 /**
1325 * Various bits of metadata that can may be created or required by
1326 * optimization and analysis passes
1327 */
1328 typedef enum {
1329 nir_metadata_none = 0x0,
1330 nir_metadata_block_index = 0x1,
1331 nir_metadata_dominance = 0x2,
1332 nir_metadata_live_ssa_defs = 0x4,
1333 nir_metadata_not_properly_reset = 0x8,
1334 } nir_metadata;
1335
1336 typedef struct {
1337 nir_cf_node cf_node;
1338
1339 /** pointer to the function of which this is an implementation */
1340 struct nir_function *function;
1341
1342 struct exec_list body; /** < list of nir_cf_node */
1343
1344 nir_block *end_block;
1345
1346 /** list for all local variables in the function */
1347 struct exec_list locals;
1348
1349 /** array of variables used as parameters */
1350 unsigned num_params;
1351 nir_variable **params;
1352
1353 /** variable used to hold the result of the function */
1354 nir_variable *return_var;
1355
1356 /** list of local registers in the function */
1357 struct exec_list registers;
1358
1359 /** next available local register index */
1360 unsigned reg_alloc;
1361
1362 /** next available SSA value index */
1363 unsigned ssa_alloc;
1364
1365 /* total number of basic blocks, only valid when block_index_dirty = false */
1366 unsigned num_blocks;
1367
1368 nir_metadata valid_metadata;
1369 } nir_function_impl;
1370
1371 static inline nir_block *
1372 nir_start_block(nir_function_impl *impl)
1373 {
1374 return (nir_block *) exec_list_get_head(&impl->body);
1375 }
1376
1377 static inline nir_cf_node *
1378 nir_cf_node_next(nir_cf_node *node)
1379 {
1380 struct exec_node *next = exec_node_get_next(&node->node);
1381 if (exec_node_is_tail_sentinel(next))
1382 return NULL;
1383 else
1384 return exec_node_data(nir_cf_node, next, node);
1385 }
1386
1387 static inline nir_cf_node *
1388 nir_cf_node_prev(nir_cf_node *node)
1389 {
1390 struct exec_node *prev = exec_node_get_prev(&node->node);
1391 if (exec_node_is_head_sentinel(prev))
1392 return NULL;
1393 else
1394 return exec_node_data(nir_cf_node, prev, node);
1395 }
1396
1397 static inline bool
1398 nir_cf_node_is_first(const nir_cf_node *node)
1399 {
1400 return exec_node_is_head_sentinel(node->node.prev);
1401 }
1402
1403 static inline bool
1404 nir_cf_node_is_last(const nir_cf_node *node)
1405 {
1406 return exec_node_is_tail_sentinel(node->node.next);
1407 }
1408
1409 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node)
1410 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node)
1411 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node)
1412 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node, nir_function_impl, cf_node)
1413
1414 typedef enum {
1415 nir_parameter_in,
1416 nir_parameter_out,
1417 nir_parameter_inout,
1418 } nir_parameter_type;
1419
1420 typedef struct {
1421 nir_parameter_type param_type;
1422 const struct glsl_type *type;
1423 } nir_parameter;
1424
1425 typedef struct nir_function {
1426 struct exec_node node;
1427
1428 const char *name;
1429 struct nir_shader *shader;
1430
1431 unsigned num_params;
1432 nir_parameter *params;
1433 const struct glsl_type *return_type;
1434
1435 /** The implementation of this function.
1436 *
1437 * If the function is only declared and not implemented, this is NULL.
1438 */
1439 nir_function_impl *impl;
1440 } nir_function;
1441
1442 typedef struct nir_shader_compiler_options {
1443 bool lower_fdiv;
1444 bool lower_ffma;
1445 bool lower_flrp;
1446 bool lower_fpow;
1447 bool lower_fsat;
1448 bool lower_fsqrt;
1449 bool lower_fmod;
1450 bool lower_bitfield_extract;
1451 bool lower_bitfield_insert;
1452 bool lower_uadd_carry;
1453 bool lower_usub_borrow;
1454 /** lowers fneg and ineg to fsub and isub. */
1455 bool lower_negate;
1456 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
1457 bool lower_sub;
1458
1459 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
1460 bool lower_scmp;
1461
1462 /* Does the native fdot instruction replicate its result for four
1463 * components? If so, then opt_algebraic_late will turn all fdotN
1464 * instructions into fdot_replicatedN instructions.
1465 */
1466 bool fdot_replicates;
1467
1468 /** lowers ffract to fsub+ffloor: */
1469 bool lower_ffract;
1470
1471 /**
1472 * Does the driver support real 32-bit integers? (Otherwise, integers
1473 * are simulated by floats.)
1474 */
1475 bool native_integers;
1476 } nir_shader_compiler_options;
1477
1478 typedef struct nir_shader_info {
1479 const char *name;
1480
1481 /* Descriptive name provided by the client; may be NULL */
1482 const char *label;
1483
1484 /* Number of textures used by this shader */
1485 unsigned num_textures;
1486 /* Number of uniform buffers used by this shader */
1487 unsigned num_ubos;
1488 /* Number of atomic buffers used by this shader */
1489 unsigned num_abos;
1490 /* Number of shader storage buffers used by this shader */
1491 unsigned num_ssbos;
1492 /* Number of images used by this shader */
1493 unsigned num_images;
1494
1495 /* Which inputs are actually read */
1496 uint64_t inputs_read;
1497 /* Which outputs are actually written */
1498 uint64_t outputs_written;
1499 /* Which system values are actually read */
1500 uint64_t system_values_read;
1501
1502 /* Which patch inputs are actually read */
1503 uint32_t patch_inputs_read;
1504 /* Which patch outputs are actually written */
1505 uint32_t patch_outputs_written;
1506
1507 /* Whether or not this shader ever uses textureGather() */
1508 bool uses_texture_gather;
1509
1510 /* Whether or not this shader uses the gl_ClipDistance output */
1511 bool uses_clip_distance_out;
1512
1513 /* Whether or not separate shader objects were used */
1514 bool separate_shader;
1515
1516 /** Was this shader linked with any transform feedback varyings? */
1517 bool has_transform_feedback_varyings;
1518
1519 union {
1520 struct {
1521 /** The number of vertices recieves per input primitive */
1522 unsigned vertices_in;
1523
1524 /** The output primitive type (GL enum value) */
1525 unsigned output_primitive;
1526
1527 /** The maximum number of vertices the geometry shader might write. */
1528 unsigned vertices_out;
1529
1530 /** 1 .. MAX_GEOMETRY_SHADER_INVOCATIONS */
1531 unsigned invocations;
1532
1533 /** Whether or not this shader uses EndPrimitive */
1534 bool uses_end_primitive;
1535
1536 /** Whether or not this shader uses non-zero streams */
1537 bool uses_streams;
1538 } gs;
1539
1540 struct {
1541 bool uses_discard;
1542
1543 /**
1544 * Whether early fragment tests are enabled as defined by
1545 * ARB_shader_image_load_store.
1546 */
1547 bool early_fragment_tests;
1548
1549 /** gl_FragDepth layout for ARB_conservative_depth. */
1550 enum gl_frag_depth_layout depth_layout;
1551 } fs;
1552
1553 struct {
1554 unsigned local_size[3];
1555 } cs;
1556
1557 struct {
1558 /** The number of vertices in the TCS output patch. */
1559 unsigned vertices_out;
1560 } tcs;
1561 };
1562 } nir_shader_info;
1563
1564 typedef struct nir_shader {
1565 /** list of uniforms (nir_variable) */
1566 struct exec_list uniforms;
1567
1568 /** list of inputs (nir_variable) */
1569 struct exec_list inputs;
1570
1571 /** list of outputs (nir_variable) */
1572 struct exec_list outputs;
1573
1574 /** Set of driver-specific options for the shader.
1575 *
1576 * The memory for the options is expected to be kept in a single static
1577 * copy by the driver.
1578 */
1579 const struct nir_shader_compiler_options *options;
1580
1581 /** Various bits of compile-time information about a given shader */
1582 struct nir_shader_info info;
1583
1584 /** list of global variables in the shader (nir_variable) */
1585 struct exec_list globals;
1586
1587 /** list of system value variables in the shader (nir_variable) */
1588 struct exec_list system_values;
1589
1590 struct exec_list functions; /** < list of nir_function */
1591
1592 /** list of global register in the shader */
1593 struct exec_list registers;
1594
1595 /** next available global register index */
1596 unsigned reg_alloc;
1597
1598 /**
1599 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
1600 * access plus one
1601 */
1602 unsigned num_inputs, num_uniforms, num_outputs;
1603
1604 /** The shader stage, such as MESA_SHADER_VERTEX. */
1605 gl_shader_stage stage;
1606 } nir_shader;
1607
1608 #define nir_foreach_function(shader, func) \
1609 foreach_list_typed(nir_function, func, node, &(shader)->functions)
1610
1611 nir_shader *nir_shader_create(void *mem_ctx,
1612 gl_shader_stage stage,
1613 const nir_shader_compiler_options *options);
1614
1615 /** creates a register, including assigning it an index and adding it to the list */
1616 nir_register *nir_global_reg_create(nir_shader *shader);
1617
1618 nir_register *nir_local_reg_create(nir_function_impl *impl);
1619
1620 void nir_reg_remove(nir_register *reg);
1621
1622 /** Adds a variable to the appropreate list in nir_shader */
1623 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
1624
1625 static inline void
1626 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
1627 {
1628 assert(var->data.mode == nir_var_local);
1629 exec_list_push_tail(&impl->locals, &var->node);
1630 }
1631
1632 /** creates a variable, sets a few defaults, and adds it to the list */
1633 nir_variable *nir_variable_create(nir_shader *shader,
1634 nir_variable_mode mode,
1635 const struct glsl_type *type,
1636 const char *name);
1637 /** creates a local variable and adds it to the list */
1638 nir_variable *nir_local_variable_create(nir_function_impl *impl,
1639 const struct glsl_type *type,
1640 const char *name);
1641
1642 /** creates a function and adds it to the shader's list of functions */
1643 nir_function *nir_function_create(nir_shader *shader, const char *name);
1644
1645 nir_function_impl *nir_function_impl_create(nir_function *func);
1646
1647 nir_block *nir_block_create(nir_shader *shader);
1648 nir_if *nir_if_create(nir_shader *shader);
1649 nir_loop *nir_loop_create(nir_shader *shader);
1650
1651 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
1652
1653 /** requests that the given pieces of metadata be generated */
1654 void nir_metadata_require(nir_function_impl *impl, nir_metadata required);
1655 /** dirties all but the preserved metadata */
1656 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
1657
1658 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
1659 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
1660
1661 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
1662
1663 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
1664 unsigned num_components);
1665
1666 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
1667 nir_intrinsic_op op);
1668
1669 nir_call_instr *nir_call_instr_create(nir_shader *shader,
1670 nir_function *callee);
1671
1672 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
1673
1674 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
1675
1676 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
1677
1678 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
1679 unsigned num_components);
1680
1681 nir_deref_var *nir_deref_var_create(void *mem_ctx, nir_variable *var);
1682 nir_deref_array *nir_deref_array_create(void *mem_ctx);
1683 nir_deref_struct *nir_deref_struct_create(void *mem_ctx, unsigned field_index);
1684
1685 nir_deref *nir_copy_deref(void *mem_ctx, nir_deref *deref);
1686
1687 nir_load_const_instr *
1688 nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref);
1689
1690 /**
1691 * NIR Cursors and Instruction Insertion API
1692 * @{
1693 *
1694 * A tiny struct representing a point to insert/extract instructions or
1695 * control flow nodes. Helps reduce the combinatorial explosion of possible
1696 * points to insert/extract.
1697 *
1698 * \sa nir_control_flow.h
1699 */
1700 typedef enum {
1701 nir_cursor_before_block,
1702 nir_cursor_after_block,
1703 nir_cursor_before_instr,
1704 nir_cursor_after_instr,
1705 } nir_cursor_option;
1706
1707 typedef struct {
1708 nir_cursor_option option;
1709 union {
1710 nir_block *block;
1711 nir_instr *instr;
1712 };
1713 } nir_cursor;
1714
1715 static inline nir_cursor
1716 nir_before_block(nir_block *block)
1717 {
1718 nir_cursor cursor;
1719 cursor.option = nir_cursor_before_block;
1720 cursor.block = block;
1721 return cursor;
1722 }
1723
1724 static inline nir_cursor
1725 nir_after_block(nir_block *block)
1726 {
1727 nir_cursor cursor;
1728 cursor.option = nir_cursor_after_block;
1729 cursor.block = block;
1730 return cursor;
1731 }
1732
1733 static inline nir_cursor
1734 nir_before_instr(nir_instr *instr)
1735 {
1736 nir_cursor cursor;
1737 cursor.option = nir_cursor_before_instr;
1738 cursor.instr = instr;
1739 return cursor;
1740 }
1741
1742 static inline nir_cursor
1743 nir_after_instr(nir_instr *instr)
1744 {
1745 nir_cursor cursor;
1746 cursor.option = nir_cursor_after_instr;
1747 cursor.instr = instr;
1748 return cursor;
1749 }
1750
1751 static inline nir_cursor
1752 nir_after_block_before_jump(nir_block *block)
1753 {
1754 nir_instr *last_instr = nir_block_last_instr(block);
1755 if (last_instr && last_instr->type == nir_instr_type_jump) {
1756 return nir_before_instr(last_instr);
1757 } else {
1758 return nir_after_block(block);
1759 }
1760 }
1761
1762 static inline nir_cursor
1763 nir_before_cf_node(nir_cf_node *node)
1764 {
1765 if (node->type == nir_cf_node_block)
1766 return nir_before_block(nir_cf_node_as_block(node));
1767
1768 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
1769 }
1770
1771 static inline nir_cursor
1772 nir_after_cf_node(nir_cf_node *node)
1773 {
1774 if (node->type == nir_cf_node_block)
1775 return nir_after_block(nir_cf_node_as_block(node));
1776
1777 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
1778 }
1779
1780 static inline nir_cursor
1781 nir_before_cf_list(struct exec_list *cf_list)
1782 {
1783 nir_cf_node *first_node = exec_node_data(nir_cf_node,
1784 exec_list_get_head(cf_list), node);
1785 return nir_before_cf_node(first_node);
1786 }
1787
1788 static inline nir_cursor
1789 nir_after_cf_list(struct exec_list *cf_list)
1790 {
1791 nir_cf_node *last_node = exec_node_data(nir_cf_node,
1792 exec_list_get_tail(cf_list), node);
1793 return nir_after_cf_node(last_node);
1794 }
1795
1796 /**
1797 * Insert a NIR instruction at the given cursor.
1798 *
1799 * Note: This does not update the cursor.
1800 */
1801 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
1802
1803 static inline void
1804 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
1805 {
1806 nir_instr_insert(nir_before_instr(instr), before);
1807 }
1808
1809 static inline void
1810 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
1811 {
1812 nir_instr_insert(nir_after_instr(instr), after);
1813 }
1814
1815 static inline void
1816 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
1817 {
1818 nir_instr_insert(nir_before_block(block), before);
1819 }
1820
1821 static inline void
1822 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
1823 {
1824 nir_instr_insert(nir_after_block(block), after);
1825 }
1826
1827 static inline void
1828 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
1829 {
1830 nir_instr_insert(nir_before_cf_node(node), before);
1831 }
1832
1833 static inline void
1834 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
1835 {
1836 nir_instr_insert(nir_after_cf_node(node), after);
1837 }
1838
1839 static inline void
1840 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
1841 {
1842 nir_instr_insert(nir_before_cf_list(list), before);
1843 }
1844
1845 static inline void
1846 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
1847 {
1848 nir_instr_insert(nir_after_cf_list(list), after);
1849 }
1850
1851 void nir_instr_remove(nir_instr *instr);
1852
1853 /** @} */
1854
1855 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
1856 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
1857 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
1858 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
1859 void *state);
1860 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
1861 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
1862
1863 nir_const_value *nir_src_as_const_value(nir_src src);
1864 bool nir_src_is_dynamically_uniform(nir_src src);
1865 bool nir_srcs_equal(nir_src src1, nir_src src2);
1866 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
1867 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
1868 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
1869 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
1870 nir_dest new_dest);
1871
1872 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
1873 unsigned num_components, const char *name);
1874 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
1875 unsigned num_components, const char *name);
1876 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
1877 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
1878 nir_instr *after_me);
1879
1880 /* visits basic blocks in source-code order */
1881 typedef bool (*nir_foreach_block_cb)(nir_block *block, void *state);
1882 bool nir_foreach_block(nir_function_impl *impl, nir_foreach_block_cb cb,
1883 void *state);
1884 bool nir_foreach_block_reverse(nir_function_impl *impl, nir_foreach_block_cb cb,
1885 void *state);
1886 bool nir_foreach_block_in_cf_node(nir_cf_node *node, nir_foreach_block_cb cb,
1887 void *state);
1888
1889 /* If the following CF node is an if, this function returns that if.
1890 * Otherwise, it returns NULL.
1891 */
1892 nir_if *nir_block_get_following_if(nir_block *block);
1893
1894 nir_loop *nir_block_get_following_loop(nir_block *block);
1895
1896 void nir_index_local_regs(nir_function_impl *impl);
1897 void nir_index_global_regs(nir_shader *shader);
1898 void nir_index_ssa_defs(nir_function_impl *impl);
1899 unsigned nir_index_instrs(nir_function_impl *impl);
1900
1901 void nir_index_blocks(nir_function_impl *impl);
1902
1903 void nir_print_shader(nir_shader *shader, FILE *fp);
1904 void nir_print_instr(const nir_instr *instr, FILE *fp);
1905
1906 nir_shader * nir_shader_clone(void *mem_ctx, const nir_shader *s);
1907
1908 #ifdef DEBUG
1909 void nir_validate_shader(nir_shader *shader);
1910 void nir_metadata_set_validation_flag(nir_shader *shader);
1911 void nir_metadata_check_validation_flag(nir_shader *shader);
1912
1913 #include "util/debug.h"
1914 static inline bool
1915 should_clone_nir(void)
1916 {
1917 static int should_clone = -1;
1918 if (should_clone < 0)
1919 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
1920
1921 return should_clone;
1922 }
1923 #else
1924 static inline void nir_validate_shader(nir_shader *shader) { (void) shader; }
1925 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
1926 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
1927 static inline bool should_clone_nir(void) { return false; }
1928 #endif /* DEBUG */
1929
1930 #define _PASS(nir, do_pass) do { \
1931 do_pass \
1932 nir_validate_shader(nir); \
1933 if (should_clone_nir()) { \
1934 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
1935 ralloc_free(nir); \
1936 nir = clone; \
1937 } \
1938 } while (0)
1939
1940 #define NIR_PASS(progress, nir, pass, ...) _PASS(nir, \
1941 nir_metadata_set_validation_flag(nir); \
1942 if (pass(nir, ##__VA_ARGS__)) { \
1943 progress = true; \
1944 nir_metadata_check_validation_flag(nir); \
1945 } \
1946 )
1947
1948 #define NIR_PASS_V(nir, pass, ...) _PASS(nir, \
1949 pass(nir, ##__VA_ARGS__); \
1950 )
1951
1952 void nir_calc_dominance_impl(nir_function_impl *impl);
1953 void nir_calc_dominance(nir_shader *shader);
1954
1955 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
1956 bool nir_block_dominates(nir_block *parent, nir_block *child);
1957
1958 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
1959 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
1960
1961 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
1962 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
1963
1964 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
1965 void nir_dump_cfg(nir_shader *shader, FILE *fp);
1966
1967 int nir_gs_count_vertices(const nir_shader *shader);
1968
1969 bool nir_split_var_copies(nir_shader *shader);
1970
1971 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, void *mem_ctx);
1972 void nir_lower_var_copies(nir_shader *shader);
1973
1974 bool nir_lower_global_vars_to_local(nir_shader *shader);
1975
1976 bool nir_lower_locals_to_regs(nir_shader *shader);
1977
1978 void nir_lower_outputs_to_temporaries(nir_shader *shader);
1979
1980 void nir_assign_var_locations(struct exec_list *var_list,
1981 unsigned *size,
1982 int (*type_size)(const struct glsl_type *));
1983
1984 void nir_lower_io(nir_shader *shader,
1985 nir_variable_mode mode,
1986 int (*type_size)(const struct glsl_type *));
1987 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
1988 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
1989
1990 void nir_lower_vars_to_ssa(nir_shader *shader);
1991
1992 bool nir_remove_dead_variables(nir_shader *shader);
1993
1994 void nir_move_vec_src_uses_to_dest(nir_shader *shader);
1995 bool nir_lower_vec_to_movs(nir_shader *shader);
1996 void nir_lower_alu_to_scalar(nir_shader *shader);
1997 void nir_lower_load_const_to_scalar(nir_shader *shader);
1998
1999 void nir_lower_phis_to_scalar(nir_shader *shader);
2000
2001 void nir_lower_samplers(nir_shader *shader,
2002 const struct gl_shader_program *shader_program);
2003
2004 bool nir_lower_system_values(nir_shader *shader);
2005
2006 typedef struct nir_lower_tex_options {
2007 /**
2008 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
2009 * sampler types a texture projector is lowered.
2010 */
2011 unsigned lower_txp;
2012
2013 /**
2014 * If true, lower rect textures to 2D, using txs to fetch the
2015 * texture dimensions and dividing the texture coords by the
2016 * texture dims to normalize.
2017 */
2018 bool lower_rect;
2019
2020 /**
2021 * To emulate certain texture wrap modes, this can be used
2022 * to saturate the specified tex coord to [0.0, 1.0]. The
2023 * bits are according to sampler #, ie. if, for example:
2024 *
2025 * (conf->saturate_s & (1 << n))
2026 *
2027 * is true, then the s coord for sampler n is saturated.
2028 *
2029 * Note that clamping must happen *after* projector lowering
2030 * so any projected texture sample instruction with a clamped
2031 * coordinate gets automatically lowered, regardless of the
2032 * 'lower_txp' setting.
2033 */
2034 unsigned saturate_s;
2035 unsigned saturate_t;
2036 unsigned saturate_r;
2037
2038 /* Bitmask of samplers that need swizzling.
2039 *
2040 * If (swizzle_result & (1 << sampler_index)), then the swizzle in
2041 * swizzles[sampler_index] is applied to the result of the texturing
2042 * operation.
2043 */
2044 unsigned swizzle_result;
2045
2046 /* A swizzle for each sampler. Values 0-3 represent x, y, z, or w swizzles
2047 * while 4 and 5 represent 0 and 1 respectively.
2048 */
2049 uint8_t swizzles[32][4];
2050 } nir_lower_tex_options;
2051
2052 bool nir_lower_tex(nir_shader *shader,
2053 const nir_lower_tex_options *options);
2054
2055 void nir_lower_idiv(nir_shader *shader);
2056
2057 void nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables);
2058 void nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables);
2059
2060 void nir_lower_two_sided_color(nir_shader *shader);
2061
2062 void nir_lower_atomics(nir_shader *shader,
2063 const struct gl_shader_program *shader_program);
2064 void nir_lower_to_source_mods(nir_shader *shader);
2065
2066 bool nir_lower_gs_intrinsics(nir_shader *shader);
2067
2068 bool nir_normalize_cubemap_coords(nir_shader *shader);
2069
2070 void nir_live_ssa_defs_impl(nir_function_impl *impl);
2071 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
2072
2073 void nir_convert_to_ssa_impl(nir_function_impl *impl);
2074 void nir_convert_to_ssa(nir_shader *shader);
2075
2076 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
2077 * registers. If false, convert all values (even those not involved in a phi
2078 * node) to registers.
2079 */
2080 void nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
2081
2082 bool nir_opt_algebraic(nir_shader *shader);
2083 bool nir_opt_algebraic_late(nir_shader *shader);
2084 bool nir_opt_constant_folding(nir_shader *shader);
2085
2086 bool nir_opt_global_to_local(nir_shader *shader);
2087
2088 bool nir_copy_prop(nir_shader *shader);
2089
2090 bool nir_opt_cse(nir_shader *shader);
2091
2092 bool nir_opt_dce(nir_shader *shader);
2093
2094 bool nir_opt_dead_cf(nir_shader *shader);
2095
2096 void nir_opt_gcm(nir_shader *shader);
2097
2098 bool nir_opt_peephole_select(nir_shader *shader);
2099
2100 bool nir_opt_remove_phis(nir_shader *shader);
2101
2102 bool nir_opt_undef(nir_shader *shader);
2103
2104 void nir_sweep(nir_shader *shader);
2105
2106 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
2107 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
2108
2109 #ifdef __cplusplus
2110 } /* extern "C" */
2111 #endif