nir: Add nir_address_format_32bit_index_offset_pack64
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/macros.h"
40 #include "util/format/u_format.h"
41 #include "compiler/nir_types.h"
42 #include "compiler/shader_enums.h"
43 #include "compiler/shader_info.h"
44 #define XXH_INLINE_ALL
45 #include "util/xxhash.h"
46 #include <stdio.h>
47
48 #ifndef NDEBUG
49 #include "util/debug.h"
50 #endif /* NDEBUG */
51
52 #include "nir_opcodes.h"
53
54 #if defined(_WIN32) && !defined(snprintf)
55 #define snprintf _snprintf
56 #endif
57
58 #ifdef __cplusplus
59 extern "C" {
60 #endif
61
62 #define NIR_FALSE 0u
63 #define NIR_TRUE (~0u)
64 #define NIR_MAX_VEC_COMPONENTS 16
65 #define NIR_MAX_MATRIX_COLUMNS 4
66 #define NIR_STREAM_PACKED (1 << 8)
67 typedef uint16_t nir_component_mask_t;
68
69 static inline bool
70 nir_num_components_valid(unsigned num_components)
71 {
72 return (num_components >= 1 &&
73 num_components <= 4) ||
74 num_components == 8 ||
75 num_components == 16;
76 }
77
78 /** Defines a cast function
79 *
80 * This macro defines a cast function from in_type to out_type where
81 * out_type is some structure type that contains a field of type out_type.
82 *
83 * Note that you have to be a bit careful as the generated cast function
84 * destroys constness.
85 */
86 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
87 type_field, type_value) \
88 static inline out_type * \
89 name(const in_type *parent) \
90 { \
91 assert(parent && parent->type_field == type_value); \
92 return exec_node_data(out_type, parent, field); \
93 }
94
95 struct nir_function;
96 struct nir_shader;
97 struct nir_instr;
98 struct nir_builder;
99
100
101 /**
102 * Description of built-in state associated with a uniform
103 *
104 * \sa nir_variable::state_slots
105 */
106 typedef struct {
107 gl_state_index16 tokens[STATE_LENGTH];
108 uint16_t swizzle;
109 } nir_state_slot;
110
111 typedef enum {
112 nir_var_shader_in = (1 << 0),
113 nir_var_shader_out = (1 << 1),
114 nir_var_shader_temp = (1 << 2),
115 nir_var_function_temp = (1 << 3),
116 nir_var_uniform = (1 << 4),
117 nir_var_mem_ubo = (1 << 5),
118 nir_var_system_value = (1 << 6),
119 nir_var_mem_ssbo = (1 << 7),
120 nir_var_mem_shared = (1 << 8),
121 nir_var_mem_global = (1 << 9),
122 nir_var_mem_push_const = (1 << 10), /* not actually used for variables */
123 nir_num_variable_modes = 11,
124 nir_var_all = (1 << nir_num_variable_modes) - 1,
125 } nir_variable_mode;
126
127 /**
128 * Rounding modes.
129 */
130 typedef enum {
131 nir_rounding_mode_undef = 0,
132 nir_rounding_mode_rtne = 1, /* round to nearest even */
133 nir_rounding_mode_ru = 2, /* round up */
134 nir_rounding_mode_rd = 3, /* round down */
135 nir_rounding_mode_rtz = 4, /* round towards zero */
136 } nir_rounding_mode;
137
138 typedef union {
139 bool b;
140 float f32;
141 double f64;
142 int8_t i8;
143 uint8_t u8;
144 int16_t i16;
145 uint16_t u16;
146 int32_t i32;
147 uint32_t u32;
148 int64_t i64;
149 uint64_t u64;
150 } nir_const_value;
151
152 #define nir_const_value_to_array(arr, c, components, m) \
153 { \
154 for (unsigned i = 0; i < components; ++i) \
155 arr[i] = c[i].m; \
156 } while (false)
157
158 static inline nir_const_value
159 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
160 {
161 nir_const_value v;
162 memset(&v, 0, sizeof(v));
163
164 switch (bit_size) {
165 case 1: v.b = x; break;
166 case 8: v.u8 = x; break;
167 case 16: v.u16 = x; break;
168 case 32: v.u32 = x; break;
169 case 64: v.u64 = x; break;
170 default:
171 unreachable("Invalid bit size");
172 }
173
174 return v;
175 }
176
177 static inline nir_const_value
178 nir_const_value_for_int(int64_t i, unsigned bit_size)
179 {
180 nir_const_value v;
181 memset(&v, 0, sizeof(v));
182
183 assert(bit_size <= 64);
184 if (bit_size < 64) {
185 assert(i >= (-(1ll << (bit_size - 1))));
186 assert(i < (1ll << (bit_size - 1)));
187 }
188
189 return nir_const_value_for_raw_uint(i, bit_size);
190 }
191
192 static inline nir_const_value
193 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
194 {
195 nir_const_value v;
196 memset(&v, 0, sizeof(v));
197
198 assert(bit_size <= 64);
199 if (bit_size < 64)
200 assert(u < (1ull << bit_size));
201
202 return nir_const_value_for_raw_uint(u, bit_size);
203 }
204
205 static inline nir_const_value
206 nir_const_value_for_bool(bool b, unsigned bit_size)
207 {
208 /* Booleans use a 0/-1 convention */
209 return nir_const_value_for_int(-(int)b, bit_size);
210 }
211
212 /* This one isn't inline because it requires half-float conversion */
213 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
214
215 static inline int64_t
216 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
217 {
218 switch (bit_size) {
219 /* int1_t uses 0/-1 convention */
220 case 1: return -(int)value.b;
221 case 8: return value.i8;
222 case 16: return value.i16;
223 case 32: return value.i32;
224 case 64: return value.i64;
225 default:
226 unreachable("Invalid bit size");
227 }
228 }
229
230 static inline uint64_t
231 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
232 {
233 switch (bit_size) {
234 case 1: return value.b;
235 case 8: return value.u8;
236 case 16: return value.u16;
237 case 32: return value.u32;
238 case 64: return value.u64;
239 default:
240 unreachable("Invalid bit size");
241 }
242 }
243
244 static inline bool
245 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
246 {
247 int64_t i = nir_const_value_as_int(value, bit_size);
248
249 /* Booleans of any size use 0/-1 convention */
250 assert(i == 0 || i == -1);
251
252 return i;
253 }
254
255 /* This one isn't inline because it requires half-float conversion */
256 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
257
258 typedef struct nir_constant {
259 /**
260 * Value of the constant.
261 *
262 * The field used to back the values supplied by the constant is determined
263 * by the type associated with the \c nir_variable. Constants may be
264 * scalars, vectors, or matrices.
265 */
266 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
267
268 /* we could get this from the var->type but makes clone *much* easier to
269 * not have to care about the type.
270 */
271 unsigned num_elements;
272
273 /* Array elements / Structure Fields */
274 struct nir_constant **elements;
275 } nir_constant;
276
277 /**
278 * \brief Layout qualifiers for gl_FragDepth.
279 *
280 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
281 * with a layout qualifier.
282 */
283 typedef enum {
284 nir_depth_layout_none, /**< No depth layout is specified. */
285 nir_depth_layout_any,
286 nir_depth_layout_greater,
287 nir_depth_layout_less,
288 nir_depth_layout_unchanged
289 } nir_depth_layout;
290
291 /**
292 * Enum keeping track of how a variable was declared.
293 */
294 typedef enum {
295 /**
296 * Normal declaration.
297 */
298 nir_var_declared_normally = 0,
299
300 /**
301 * Variable is implicitly generated by the compiler and should not be
302 * visible via the API.
303 */
304 nir_var_hidden,
305 } nir_var_declaration_type;
306
307 /**
308 * Either a uniform, global variable, shader input, or shader output. Based on
309 * ir_variable - it should be easy to translate between the two.
310 */
311
312 typedef struct nir_variable {
313 struct exec_node node;
314
315 /**
316 * Declared type of the variable
317 */
318 const struct glsl_type *type;
319
320 /**
321 * Declared name of the variable
322 */
323 char *name;
324
325 struct nir_variable_data {
326 /**
327 * Storage class of the variable.
328 *
329 * \sa nir_variable_mode
330 */
331 nir_variable_mode mode:11;
332
333 /**
334 * Is the variable read-only?
335 *
336 * This is set for variables declared as \c const, shader inputs,
337 * and uniforms.
338 */
339 unsigned read_only:1;
340 unsigned centroid:1;
341 unsigned sample:1;
342 unsigned patch:1;
343 unsigned invariant:1;
344
345 /**
346 * Precision qualifier.
347 *
348 * In desktop GLSL we do not care about precision qualifiers at all, in
349 * fact, the spec says that precision qualifiers are ignored.
350 *
351 * To make things easy, we make it so that this field is always
352 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
353 * have the same precision value and the checks we add in the compiler
354 * for this field will never break a desktop shader compile.
355 */
356 unsigned precision:2;
357
358 /**
359 * Can this variable be coalesced with another?
360 *
361 * This is set by nir_lower_io_to_temporaries to say that any
362 * copies involving this variable should stay put. Propagating it can
363 * duplicate the resulting load/store, which is not wanted, and may
364 * result in a load/store of the variable with an indirect offset which
365 * the backend may not be able to handle.
366 */
367 unsigned cannot_coalesce:1;
368
369 /**
370 * When separate shader programs are enabled, only input/outputs between
371 * the stages of a multi-stage separate program can be safely removed
372 * from the shader interface. Other input/outputs must remains active.
373 *
374 * This is also used to make sure xfb varyings that are unused by the
375 * fragment shader are not removed.
376 */
377 unsigned always_active_io:1;
378
379 /**
380 * Interpolation mode for shader inputs / outputs
381 *
382 * \sa glsl_interp_mode
383 */
384 unsigned interpolation:3;
385
386 /**
387 * If non-zero, then this variable may be packed along with other variables
388 * into a single varying slot, so this offset should be applied when
389 * accessing components. For example, an offset of 1 means that the x
390 * component of this variable is actually stored in component y of the
391 * location specified by \c location.
392 */
393 unsigned location_frac:2;
394
395 /**
396 * If true, this variable represents an array of scalars that should
397 * be tightly packed. In other words, consecutive array elements
398 * should be stored one component apart, rather than one slot apart.
399 */
400 unsigned compact:1;
401
402 /**
403 * Whether this is a fragment shader output implicitly initialized with
404 * the previous contents of the specified render target at the
405 * framebuffer location corresponding to this shader invocation.
406 */
407 unsigned fb_fetch_output:1;
408
409 /**
410 * Non-zero if this variable is considered bindless as defined by
411 * ARB_bindless_texture.
412 */
413 unsigned bindless:1;
414
415 /**
416 * Was an explicit binding set in the shader?
417 */
418 unsigned explicit_binding:1;
419
420 /**
421 * Was the location explicitly set in the shader?
422 *
423 * If the location is explicitly set in the shader, it \b cannot be changed
424 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
425 * no effect).
426 */
427 unsigned explicit_location:1;
428
429 /**
430 * Was a transfer feedback buffer set in the shader?
431 */
432 unsigned explicit_xfb_buffer:1;
433
434 /**
435 * Was a transfer feedback stride set in the shader?
436 */
437 unsigned explicit_xfb_stride:1;
438
439 /**
440 * Was an explicit offset set in the shader?
441 */
442 unsigned explicit_offset:1;
443
444 /**
445 * Layout of the matrix. Uses glsl_matrix_layout values.
446 */
447 unsigned matrix_layout:2;
448
449 /**
450 * Non-zero if this variable was created by lowering a named interface
451 * block.
452 */
453 unsigned from_named_ifc_block:1;
454
455 /**
456 * How the variable was declared. See nir_var_declaration_type.
457 *
458 * This is used to detect variables generated by the compiler, so should
459 * not be visible via the API.
460 */
461 unsigned how_declared:2;
462
463 /**
464 * Is this variable per-view? If so, we know it must be an array with
465 * size corresponding to the number of views.
466 */
467 unsigned per_view:1;
468
469 /**
470 * \brief Layout qualifier for gl_FragDepth.
471 *
472 * This is not equal to \c ir_depth_layout_none if and only if this
473 * variable is \c gl_FragDepth and a layout qualifier is specified.
474 */
475 nir_depth_layout depth_layout:3;
476
477 /**
478 * Vertex stream output identifier.
479 *
480 * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
481 * indicate the stream of the i-th component.
482 */
483 unsigned stream:9;
484
485 /**
486 * Access flags for memory variables (SSBO/global), image uniforms, and
487 * bindless images in uniforms/inputs/outputs.
488 */
489 enum gl_access_qualifier access:8;
490
491 /**
492 * Descriptor set binding for sampler or UBO.
493 */
494 unsigned descriptor_set:5;
495
496 /**
497 * output index for dual source blending.
498 */
499 unsigned index;
500
501 /**
502 * Initial binding point for a sampler or UBO.
503 *
504 * For array types, this represents the binding point for the first element.
505 */
506 unsigned binding;
507
508 /**
509 * Storage location of the base of this variable
510 *
511 * The precise meaning of this field depends on the nature of the variable.
512 *
513 * - Vertex shader input: one of the values from \c gl_vert_attrib.
514 * - Vertex shader output: one of the values from \c gl_varying_slot.
515 * - Geometry shader input: one of the values from \c gl_varying_slot.
516 * - Geometry shader output: one of the values from \c gl_varying_slot.
517 * - Fragment shader input: one of the values from \c gl_varying_slot.
518 * - Fragment shader output: one of the values from \c gl_frag_result.
519 * - Uniforms: Per-stage uniform slot number for default uniform block.
520 * - Uniforms: Index within the uniform block definition for UBO members.
521 * - Non-UBO Uniforms: uniform slot number.
522 * - Other: This field is not currently used.
523 *
524 * If the variable is a uniform, shader input, or shader output, and the
525 * slot has not been assigned, the value will be -1.
526 */
527 int location;
528
529 /**
530 * The actual location of the variable in the IR. Only valid for inputs,
531 * outputs, and uniforms (including samplers and images).
532 */
533 unsigned driver_location;
534
535 /**
536 * Location an atomic counter or transform feedback is stored at.
537 */
538 unsigned offset;
539
540 union {
541 struct {
542 /** Image internal format if specified explicitly, otherwise PIPE_FORMAT_NONE. */
543 enum pipe_format format;
544 } image;
545
546 struct {
547 /**
548 * Transform feedback buffer.
549 */
550 uint16_t buffer:2;
551
552 /**
553 * Transform feedback stride.
554 */
555 uint16_t stride;
556 } xfb;
557 };
558 } data;
559
560 /**
561 * Identifier for this variable generated by nir_index_vars() that is unique
562 * among other variables in the same exec_list.
563 */
564 unsigned index;
565
566 /* Number of nir_variable_data members */
567 uint16_t num_members;
568
569 /**
570 * Built-in state that backs this uniform
571 *
572 * Once set at variable creation, \c state_slots must remain invariant.
573 * This is because, ideally, this array would be shared by all clones of
574 * this variable in the IR tree. In other words, we'd really like for it
575 * to be a fly-weight.
576 *
577 * If the variable is not a uniform, \c num_state_slots will be zero and
578 * \c state_slots will be \c NULL.
579 */
580 /*@{*/
581 uint16_t num_state_slots; /**< Number of state slots used */
582 nir_state_slot *state_slots; /**< State descriptors. */
583 /*@}*/
584
585 /**
586 * Constant expression assigned in the initializer of the variable
587 *
588 * This field should only be used temporarily by creators of NIR shaders
589 * and then lower_constant_initializers can be used to get rid of them.
590 * Most of the rest of NIR ignores this field or asserts that it's NULL.
591 */
592 nir_constant *constant_initializer;
593
594 /**
595 * Global variable assigned in the initializer of the variable
596 * This field should only be used temporarily by creators of NIR shaders
597 * and then lower_constant_initializers can be used to get rid of them.
598 * Most of the rest of NIR ignores this field or asserts that it's NULL.
599 */
600 struct nir_variable *pointer_initializer;
601
602 /**
603 * For variables that are in an interface block or are an instance of an
604 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
605 *
606 * \sa ir_variable::location
607 */
608 const struct glsl_type *interface_type;
609
610 /**
611 * Description of per-member data for per-member struct variables
612 *
613 * This is used for variables which are actually an amalgamation of
614 * multiple entities such as a struct of built-in values or a struct of
615 * inputs each with their own layout specifier. This is only allowed on
616 * variables with a struct or array of array of struct type.
617 */
618 struct nir_variable_data *members;
619 } nir_variable;
620
621 static inline bool
622 _nir_shader_variable_has_mode(nir_variable *var, unsigned modes)
623 {
624 /* This isn't a shader variable */
625 assert(!(modes & nir_var_function_temp));
626 return var->data.mode & modes;
627 }
628
629 #define nir_foreach_variable_in_list(var, var_list) \
630 foreach_list_typed(nir_variable, var, node, var_list)
631
632 #define nir_foreach_variable_in_list_safe(var, var_list) \
633 foreach_list_typed_safe(nir_variable, var, node, var_list)
634
635 #define nir_foreach_variable_in_shader(var, shader) \
636 nir_foreach_variable_in_list(var, &(shader)->variables)
637
638 #define nir_foreach_variable_in_shader_safe(var, shader) \
639 nir_foreach_variable_in_list_safe(var, &(shader)->variables)
640
641 #define nir_foreach_variable_with_modes(var, shader, modes) \
642 nir_foreach_variable_in_shader(var, shader) \
643 if (_nir_shader_variable_has_mode(var, modes))
644
645 #define nir_foreach_variable_with_modes_safe(var, shader, modes) \
646 nir_foreach_variable_in_shader_safe(var, shader) \
647 if (_nir_shader_variable_has_mode(var, modes))
648
649 #define nir_foreach_shader_in_variable(var, shader) \
650 nir_foreach_variable_with_modes(var, shader, nir_var_shader_in)
651
652 #define nir_foreach_shader_in_variable_safe(var, shader) \
653 nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_in)
654
655 #define nir_foreach_shader_out_variable(var, shader) \
656 nir_foreach_variable_with_modes(var, shader, nir_var_shader_out)
657
658 #define nir_foreach_shader_out_variable_safe(var, shader) \
659 nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_out)
660
661 #define nir_foreach_uniform_variable(var, shader) \
662 nir_foreach_variable_with_modes(var, shader, nir_var_uniform)
663
664 #define nir_foreach_uniform_variable_safe(var, shader) \
665 nir_foreach_variable_with_modes_safe(var, shader, nir_var_uniform)
666
667 static inline bool
668 nir_variable_is_global(const nir_variable *var)
669 {
670 return var->data.mode != nir_var_function_temp;
671 }
672
673 typedef struct nir_register {
674 struct exec_node node;
675
676 unsigned num_components; /** < number of vector components */
677 unsigned num_array_elems; /** < size of array (0 for no array) */
678
679 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
680 uint8_t bit_size;
681
682 /** generic register index. */
683 unsigned index;
684
685 /** only for debug purposes, can be NULL */
686 const char *name;
687
688 /** set of nir_srcs where this register is used (read from) */
689 struct list_head uses;
690
691 /** set of nir_dests where this register is defined (written to) */
692 struct list_head defs;
693
694 /** set of nir_ifs where this register is used as a condition */
695 struct list_head if_uses;
696 } nir_register;
697
698 #define nir_foreach_register(reg, reg_list) \
699 foreach_list_typed(nir_register, reg, node, reg_list)
700 #define nir_foreach_register_safe(reg, reg_list) \
701 foreach_list_typed_safe(nir_register, reg, node, reg_list)
702
703 typedef enum PACKED {
704 nir_instr_type_alu,
705 nir_instr_type_deref,
706 nir_instr_type_call,
707 nir_instr_type_tex,
708 nir_instr_type_intrinsic,
709 nir_instr_type_load_const,
710 nir_instr_type_jump,
711 nir_instr_type_ssa_undef,
712 nir_instr_type_phi,
713 nir_instr_type_parallel_copy,
714 } nir_instr_type;
715
716 typedef struct nir_instr {
717 struct exec_node node;
718 struct nir_block *block;
719 nir_instr_type type;
720
721 /* A temporary for optimization and analysis passes to use for storing
722 * flags. For instance, DCE uses this to store the "dead/live" info.
723 */
724 uint8_t pass_flags;
725
726 /** generic instruction index. */
727 unsigned index;
728 } nir_instr;
729
730 static inline nir_instr *
731 nir_instr_next(nir_instr *instr)
732 {
733 struct exec_node *next = exec_node_get_next(&instr->node);
734 if (exec_node_is_tail_sentinel(next))
735 return NULL;
736 else
737 return exec_node_data(nir_instr, next, node);
738 }
739
740 static inline nir_instr *
741 nir_instr_prev(nir_instr *instr)
742 {
743 struct exec_node *prev = exec_node_get_prev(&instr->node);
744 if (exec_node_is_head_sentinel(prev))
745 return NULL;
746 else
747 return exec_node_data(nir_instr, prev, node);
748 }
749
750 static inline bool
751 nir_instr_is_first(const nir_instr *instr)
752 {
753 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
754 }
755
756 static inline bool
757 nir_instr_is_last(const nir_instr *instr)
758 {
759 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
760 }
761
762 typedef struct nir_ssa_def {
763 /** for debugging only, can be NULL */
764 const char* name;
765
766 /** generic SSA definition index. */
767 unsigned index;
768
769 /** Index into the live_in and live_out bitfields */
770 unsigned live_index;
771
772 /** Instruction which produces this SSA value. */
773 nir_instr *parent_instr;
774
775 /** set of nir_instrs where this register is used (read from) */
776 struct list_head uses;
777
778 /** set of nir_ifs where this register is used as a condition */
779 struct list_head if_uses;
780
781 uint8_t num_components;
782
783 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
784 uint8_t bit_size;
785
786 /**
787 * True if this SSA value may have different values in different SIMD
788 * invocations of the shader. This is set by nir_divergence_analysis.
789 */
790 bool divergent;
791 } nir_ssa_def;
792
793 struct nir_src;
794
795 typedef struct {
796 nir_register *reg;
797 struct nir_src *indirect; /** < NULL for no indirect offset */
798 unsigned base_offset;
799
800 /* TODO use-def chain goes here */
801 } nir_reg_src;
802
803 typedef struct {
804 nir_instr *parent_instr;
805 struct list_head def_link;
806
807 nir_register *reg;
808 struct nir_src *indirect; /** < NULL for no indirect offset */
809 unsigned base_offset;
810
811 /* TODO def-use chain goes here */
812 } nir_reg_dest;
813
814 struct nir_if;
815
816 typedef struct nir_src {
817 union {
818 /** Instruction that consumes this value as a source. */
819 nir_instr *parent_instr;
820 struct nir_if *parent_if;
821 };
822
823 struct list_head use_link;
824
825 union {
826 nir_reg_src reg;
827 nir_ssa_def *ssa;
828 };
829
830 bool is_ssa;
831 } nir_src;
832
833 static inline nir_src
834 nir_src_init(void)
835 {
836 nir_src src = { { NULL } };
837 return src;
838 }
839
840 #define NIR_SRC_INIT nir_src_init()
841
842 #define nir_foreach_use(src, reg_or_ssa_def) \
843 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
844
845 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
846 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
847
848 #define nir_foreach_if_use(src, reg_or_ssa_def) \
849 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
850
851 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
852 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
853
854 typedef struct {
855 union {
856 nir_reg_dest reg;
857 nir_ssa_def ssa;
858 };
859
860 bool is_ssa;
861 } nir_dest;
862
863 static inline nir_dest
864 nir_dest_init(void)
865 {
866 nir_dest dest = { { { NULL } } };
867 return dest;
868 }
869
870 #define NIR_DEST_INIT nir_dest_init()
871
872 #define nir_foreach_def(dest, reg) \
873 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
874
875 #define nir_foreach_def_safe(dest, reg) \
876 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
877
878 static inline nir_src
879 nir_src_for_ssa(nir_ssa_def *def)
880 {
881 nir_src src = NIR_SRC_INIT;
882
883 src.is_ssa = true;
884 src.ssa = def;
885
886 return src;
887 }
888
889 static inline nir_src
890 nir_src_for_reg(nir_register *reg)
891 {
892 nir_src src = NIR_SRC_INIT;
893
894 src.is_ssa = false;
895 src.reg.reg = reg;
896 src.reg.indirect = NULL;
897 src.reg.base_offset = 0;
898
899 return src;
900 }
901
902 static inline nir_dest
903 nir_dest_for_reg(nir_register *reg)
904 {
905 nir_dest dest = NIR_DEST_INIT;
906
907 dest.reg.reg = reg;
908
909 return dest;
910 }
911
912 static inline unsigned
913 nir_src_bit_size(nir_src src)
914 {
915 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
916 }
917
918 static inline unsigned
919 nir_src_num_components(nir_src src)
920 {
921 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
922 }
923
924 static inline bool
925 nir_src_is_const(nir_src src)
926 {
927 return src.is_ssa &&
928 src.ssa->parent_instr->type == nir_instr_type_load_const;
929 }
930
931 static inline bool
932 nir_src_is_divergent(nir_src src)
933 {
934 assert(src.is_ssa);
935 return src.ssa->divergent;
936 }
937
938 static inline unsigned
939 nir_dest_bit_size(nir_dest dest)
940 {
941 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
942 }
943
944 static inline unsigned
945 nir_dest_num_components(nir_dest dest)
946 {
947 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
948 }
949
950 static inline bool
951 nir_dest_is_divergent(nir_dest dest)
952 {
953 assert(dest.is_ssa);
954 return dest.ssa.divergent;
955 }
956
957 /* Are all components the same, ie. .xxxx */
958 static inline bool
959 nir_is_same_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
960 {
961 for (unsigned i = 1; i < nr_comp; i++)
962 if (swiz[i] != swiz[0])
963 return false;
964 return true;
965 }
966
967 /* Are all components sequential, ie. .yzw */
968 static inline bool
969 nir_is_sequential_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
970 {
971 for (unsigned i = 1; i < nr_comp; i++)
972 if (swiz[i] != (swiz[0] + i))
973 return false;
974 return true;
975 }
976
977 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
978 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
979
980 typedef struct {
981 nir_src src;
982
983 /**
984 * \name input modifiers
985 */
986 /*@{*/
987 /**
988 * For inputs interpreted as floating point, flips the sign bit. For
989 * inputs interpreted as integers, performs the two's complement negation.
990 */
991 bool negate;
992
993 /**
994 * Clears the sign bit for floating point values, and computes the integer
995 * absolute value for integers. Note that the negate modifier acts after
996 * the absolute value modifier, therefore if both are set then all inputs
997 * will become negative.
998 */
999 bool abs;
1000 /*@}*/
1001
1002 /**
1003 * For each input component, says which component of the register it is
1004 * chosen from. Note that which elements of the swizzle are used and which
1005 * are ignored are based on the write mask for most opcodes - for example,
1006 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
1007 * a swizzle of {2, x, 1, 0} where x means "don't care."
1008 */
1009 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
1010 } nir_alu_src;
1011
1012 typedef struct {
1013 nir_dest dest;
1014
1015 /**
1016 * \name saturate output modifier
1017 *
1018 * Only valid for opcodes that output floating-point numbers. Clamps the
1019 * output to between 0.0 and 1.0 inclusive.
1020 */
1021
1022 bool saturate;
1023
1024 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
1025 } nir_alu_dest;
1026
1027 /** NIR sized and unsized types
1028 *
1029 * The values in this enum are carefully chosen so that the sized type is
1030 * just the unsized type OR the number of bits.
1031 */
1032 typedef enum PACKED {
1033 nir_type_invalid = 0, /* Not a valid type */
1034 nir_type_int = 2,
1035 nir_type_uint = 4,
1036 nir_type_bool = 6,
1037 nir_type_float = 128,
1038 nir_type_bool1 = 1 | nir_type_bool,
1039 nir_type_bool8 = 8 | nir_type_bool,
1040 nir_type_bool16 = 16 | nir_type_bool,
1041 nir_type_bool32 = 32 | nir_type_bool,
1042 nir_type_int1 = 1 | nir_type_int,
1043 nir_type_int8 = 8 | nir_type_int,
1044 nir_type_int16 = 16 | nir_type_int,
1045 nir_type_int32 = 32 | nir_type_int,
1046 nir_type_int64 = 64 | nir_type_int,
1047 nir_type_uint1 = 1 | nir_type_uint,
1048 nir_type_uint8 = 8 | nir_type_uint,
1049 nir_type_uint16 = 16 | nir_type_uint,
1050 nir_type_uint32 = 32 | nir_type_uint,
1051 nir_type_uint64 = 64 | nir_type_uint,
1052 nir_type_float16 = 16 | nir_type_float,
1053 nir_type_float32 = 32 | nir_type_float,
1054 nir_type_float64 = 64 | nir_type_float,
1055 } nir_alu_type;
1056
1057 #define NIR_ALU_TYPE_SIZE_MASK 0x79
1058 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
1059
1060 static inline unsigned
1061 nir_alu_type_get_type_size(nir_alu_type type)
1062 {
1063 return type & NIR_ALU_TYPE_SIZE_MASK;
1064 }
1065
1066 static inline nir_alu_type
1067 nir_alu_type_get_base_type(nir_alu_type type)
1068 {
1069 return (nir_alu_type)(type & NIR_ALU_TYPE_BASE_TYPE_MASK);
1070 }
1071
1072 static inline nir_alu_type
1073 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
1074 {
1075 switch (base_type) {
1076 case GLSL_TYPE_BOOL:
1077 return nir_type_bool1;
1078 break;
1079 case GLSL_TYPE_UINT:
1080 return nir_type_uint32;
1081 break;
1082 case GLSL_TYPE_INT:
1083 return nir_type_int32;
1084 break;
1085 case GLSL_TYPE_UINT16:
1086 return nir_type_uint16;
1087 break;
1088 case GLSL_TYPE_INT16:
1089 return nir_type_int16;
1090 break;
1091 case GLSL_TYPE_UINT8:
1092 return nir_type_uint8;
1093 case GLSL_TYPE_INT8:
1094 return nir_type_int8;
1095 case GLSL_TYPE_UINT64:
1096 return nir_type_uint64;
1097 break;
1098 case GLSL_TYPE_INT64:
1099 return nir_type_int64;
1100 break;
1101 case GLSL_TYPE_FLOAT:
1102 return nir_type_float32;
1103 break;
1104 case GLSL_TYPE_FLOAT16:
1105 return nir_type_float16;
1106 break;
1107 case GLSL_TYPE_DOUBLE:
1108 return nir_type_float64;
1109 break;
1110
1111 case GLSL_TYPE_SAMPLER:
1112 case GLSL_TYPE_IMAGE:
1113 case GLSL_TYPE_ATOMIC_UINT:
1114 case GLSL_TYPE_STRUCT:
1115 case GLSL_TYPE_INTERFACE:
1116 case GLSL_TYPE_ARRAY:
1117 case GLSL_TYPE_VOID:
1118 case GLSL_TYPE_SUBROUTINE:
1119 case GLSL_TYPE_FUNCTION:
1120 case GLSL_TYPE_ERROR:
1121 return nir_type_invalid;
1122 }
1123
1124 unreachable("unknown type");
1125 }
1126
1127 static inline nir_alu_type
1128 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
1129 {
1130 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
1131 }
1132
1133 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
1134 nir_rounding_mode rnd);
1135
1136 static inline nir_op
1137 nir_op_vec(unsigned components)
1138 {
1139 switch (components) {
1140 case 1: return nir_op_mov;
1141 case 2: return nir_op_vec2;
1142 case 3: return nir_op_vec3;
1143 case 4: return nir_op_vec4;
1144 case 8: return nir_op_vec8;
1145 case 16: return nir_op_vec16;
1146 default: unreachable("bad component count");
1147 }
1148 }
1149
1150 static inline bool
1151 nir_op_is_vec(nir_op op)
1152 {
1153 switch (op) {
1154 case nir_op_mov:
1155 case nir_op_vec2:
1156 case nir_op_vec3:
1157 case nir_op_vec4:
1158 case nir_op_vec8:
1159 case nir_op_vec16:
1160 return true;
1161 default:
1162 return false;
1163 }
1164 }
1165
1166 static inline bool
1167 nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
1168 {
1169 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
1170 (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
1171 (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1172 }
1173
1174 static inline bool
1175 nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1176 {
1177 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1178 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1179 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1180 }
1181
1182 static inline bool
1183 nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1184 {
1185 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1186 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1187 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1188 }
1189
1190 static inline bool
1191 nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1192 {
1193 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1194 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1195 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1196 }
1197
1198 static inline bool
1199 nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1200 {
1201 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1202 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1203 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1204 }
1205
1206 static inline bool
1207 nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1208 {
1209 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1210 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1211 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1212 }
1213
1214 static inline bool
1215 nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1216 {
1217 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1218 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1219 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1220 }
1221
1222 static inline nir_rounding_mode
1223 nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1224 nir_alu_type type)
1225 {
1226 if (nir_alu_type_get_base_type(type) != nir_type_float)
1227 return nir_rounding_mode_undef;
1228
1229 unsigned bit_size = nir_alu_type_get_type_size(type);
1230
1231 if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1232 return nir_rounding_mode_rtz;
1233 if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1234 return nir_rounding_mode_rtne;
1235 return nir_rounding_mode_undef;
1236 }
1237
1238 static inline bool
1239 nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1240 {
1241 bool result =
1242 nir_has_any_rounding_mode_rtne(execution_mode) ||
1243 nir_has_any_rounding_mode_rtz(execution_mode);
1244 return result;
1245 }
1246
1247 typedef enum {
1248 /**
1249 * Operation where the first two sources are commutative.
1250 *
1251 * For 2-source operations, this just mathematical commutativity. Some
1252 * 3-source operations, like ffma, are only commutative in the first two
1253 * sources.
1254 */
1255 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1256 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1257 } nir_op_algebraic_property;
1258
1259 typedef struct {
1260 const char *name;
1261
1262 uint8_t num_inputs;
1263
1264 /**
1265 * The number of components in the output
1266 *
1267 * If non-zero, this is the size of the output and input sizes are
1268 * explicitly given; swizzle and writemask are still in effect, but if
1269 * the output component is masked out, then the input component may
1270 * still be in use.
1271 *
1272 * If zero, the opcode acts in the standard, per-component manner; the
1273 * operation is performed on each component (except the ones that are
1274 * masked out) with the input being taken from the input swizzle for
1275 * that component.
1276 *
1277 * The size of some of the inputs may be given (i.e. non-zero) even
1278 * though output_size is zero; in that case, the inputs with a zero
1279 * size act per-component, while the inputs with non-zero size don't.
1280 */
1281 uint8_t output_size;
1282
1283 /**
1284 * The type of vector that the instruction outputs. Note that the
1285 * staurate modifier is only allowed on outputs with the float type.
1286 */
1287
1288 nir_alu_type output_type;
1289
1290 /**
1291 * The number of components in each input
1292 */
1293 uint8_t input_sizes[NIR_MAX_VEC_COMPONENTS];
1294
1295 /**
1296 * The type of vector that each input takes. Note that negate and
1297 * absolute value are only allowed on inputs with int or float type and
1298 * behave differently on the two.
1299 */
1300 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
1301
1302 nir_op_algebraic_property algebraic_properties;
1303
1304 /* Whether this represents a numeric conversion opcode */
1305 bool is_conversion;
1306 } nir_op_info;
1307
1308 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1309
1310 typedef struct nir_alu_instr {
1311 nir_instr instr;
1312 nir_op op;
1313
1314 /** Indicates that this ALU instruction generates an exact value
1315 *
1316 * This is kind of a mixture of GLSL "precise" and "invariant" and not
1317 * really equivalent to either. This indicates that the value generated by
1318 * this operation is high-precision and any code transformations that touch
1319 * it must ensure that the resulting value is bit-for-bit identical to the
1320 * original.
1321 */
1322 bool exact:1;
1323
1324 /**
1325 * Indicates that this instruction do not cause wrapping to occur, in the
1326 * form of overflow or underflow.
1327 */
1328 bool no_signed_wrap:1;
1329 bool no_unsigned_wrap:1;
1330
1331 nir_alu_dest dest;
1332 nir_alu_src src[];
1333 } nir_alu_instr;
1334
1335 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
1336 nir_alu_instr *instr);
1337 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
1338 nir_alu_instr *instr);
1339
1340 /* is this source channel used? */
1341 static inline bool
1342 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1343 unsigned channel)
1344 {
1345 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1346 return channel < nir_op_infos[instr->op].input_sizes[src];
1347
1348 return (instr->dest.write_mask >> channel) & 1;
1349 }
1350
1351 static inline nir_component_mask_t
1352 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1353 {
1354 nir_component_mask_t read_mask = 0;
1355 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1356 if (!nir_alu_instr_channel_used(instr, src, c))
1357 continue;
1358
1359 read_mask |= (1 << instr->src[src].swizzle[c]);
1360 }
1361 return read_mask;
1362 }
1363
1364 /**
1365 * Get the number of channels used for a source
1366 */
1367 static inline unsigned
1368 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1369 {
1370 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1371 return nir_op_infos[instr->op].input_sizes[src];
1372
1373 return nir_dest_num_components(instr->dest.dest);
1374 }
1375
1376 static inline bool
1377 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1378 {
1379 switch (instr->op) {
1380 case nir_op_flt:
1381 case nir_op_fge:
1382 case nir_op_feq:
1383 case nir_op_fne:
1384 case nir_op_ilt:
1385 case nir_op_ult:
1386 case nir_op_ige:
1387 case nir_op_uge:
1388 case nir_op_ieq:
1389 case nir_op_ine:
1390 case nir_op_i2b1:
1391 case nir_op_f2b1:
1392 case nir_op_inot:
1393 return true;
1394 default:
1395 return false;
1396 }
1397 }
1398
1399 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1400 nir_alu_type full_type);
1401
1402 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1403 unsigned src1, unsigned src2);
1404
1405 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1406 const nir_alu_instr *alu2,
1407 unsigned src1, unsigned src2);
1408
1409 typedef enum {
1410 nir_deref_type_var,
1411 nir_deref_type_array,
1412 nir_deref_type_array_wildcard,
1413 nir_deref_type_ptr_as_array,
1414 nir_deref_type_struct,
1415 nir_deref_type_cast,
1416 } nir_deref_type;
1417
1418 typedef struct {
1419 nir_instr instr;
1420
1421 /** The type of this deref instruction */
1422 nir_deref_type deref_type;
1423
1424 /** The mode of the underlying variable */
1425 nir_variable_mode mode;
1426
1427 /** The dereferenced type of the resulting pointer value */
1428 const struct glsl_type *type;
1429
1430 union {
1431 /** Variable being dereferenced if deref_type is a deref_var */
1432 nir_variable *var;
1433
1434 /** Parent deref if deref_type is not deref_var */
1435 nir_src parent;
1436 };
1437
1438 /** Additional deref parameters */
1439 union {
1440 struct {
1441 nir_src index;
1442 } arr;
1443
1444 struct {
1445 unsigned index;
1446 } strct;
1447
1448 struct {
1449 unsigned ptr_stride;
1450 } cast;
1451 };
1452
1453 /** Destination to store the resulting "pointer" */
1454 nir_dest dest;
1455 } nir_deref_instr;
1456
1457 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1458
1459 static inline nir_deref_instr *
1460 nir_deref_instr_parent(const nir_deref_instr *instr)
1461 {
1462 if (instr->deref_type == nir_deref_type_var)
1463 return NULL;
1464 else
1465 return nir_src_as_deref(instr->parent);
1466 }
1467
1468 static inline nir_variable *
1469 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1470 {
1471 while (instr->deref_type != nir_deref_type_var) {
1472 if (instr->deref_type == nir_deref_type_cast)
1473 return NULL;
1474
1475 instr = nir_deref_instr_parent(instr);
1476 }
1477
1478 return instr->var;
1479 }
1480
1481 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1482 bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1483 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1484
1485 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1486
1487 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1488
1489 typedef struct {
1490 nir_instr instr;
1491
1492 struct nir_function *callee;
1493
1494 unsigned num_params;
1495 nir_src params[];
1496 } nir_call_instr;
1497
1498 #include "nir_intrinsics.h"
1499
1500 #define NIR_INTRINSIC_MAX_CONST_INDEX 4
1501
1502 /** Represents an intrinsic
1503 *
1504 * An intrinsic is an instruction type for handling things that are
1505 * more-or-less regular operations but don't just consume and produce SSA
1506 * values like ALU operations do. Intrinsics are not for things that have
1507 * special semantic meaning such as phi nodes and parallel copies.
1508 * Examples of intrinsics include variable load/store operations, system
1509 * value loads, and the like. Even though texturing more-or-less falls
1510 * under this category, texturing is its own instruction type because
1511 * trying to represent texturing with intrinsics would lead to a
1512 * combinatorial explosion of intrinsic opcodes.
1513 *
1514 * By having a single instruction type for handling a lot of different
1515 * cases, optimization passes can look for intrinsics and, for the most
1516 * part, completely ignore them. Each intrinsic type also has a few
1517 * possible flags that govern whether or not they can be reordered or
1518 * eliminated. That way passes like dead code elimination can still work
1519 * on intrisics without understanding the meaning of each.
1520 *
1521 * Each intrinsic has some number of constant indices, some number of
1522 * variables, and some number of sources. What these sources, variables,
1523 * and indices mean depends on the intrinsic and is documented with the
1524 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1525 * instructions are the only types of instruction that can operate on
1526 * variables.
1527 */
1528 typedef struct {
1529 nir_instr instr;
1530
1531 nir_intrinsic_op intrinsic;
1532
1533 nir_dest dest;
1534
1535 /** number of components if this is a vectorized intrinsic
1536 *
1537 * Similarly to ALU operations, some intrinsics are vectorized.
1538 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1539 * For vectorized intrinsics, the num_components field specifies the
1540 * number of destination components and the number of source components
1541 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1542 */
1543 uint8_t num_components;
1544
1545 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1546
1547 nir_src src[];
1548 } nir_intrinsic_instr;
1549
1550 static inline nir_variable *
1551 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1552 {
1553 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1554 }
1555
1556 typedef enum {
1557 /* Memory ordering. */
1558 NIR_MEMORY_ACQUIRE = 1 << 0,
1559 NIR_MEMORY_RELEASE = 1 << 1,
1560 NIR_MEMORY_ACQ_REL = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE,
1561
1562 /* Memory visibility operations. */
1563 NIR_MEMORY_MAKE_AVAILABLE = 1 << 2,
1564 NIR_MEMORY_MAKE_VISIBLE = 1 << 3,
1565 } nir_memory_semantics;
1566
1567 typedef enum {
1568 NIR_SCOPE_NONE,
1569 NIR_SCOPE_INVOCATION,
1570 NIR_SCOPE_SUBGROUP,
1571 NIR_SCOPE_WORKGROUP,
1572 NIR_SCOPE_QUEUE_FAMILY,
1573 NIR_SCOPE_DEVICE,
1574 } nir_scope;
1575
1576 /**
1577 * \name NIR intrinsics semantic flags
1578 *
1579 * information about what the compiler can do with the intrinsics.
1580 *
1581 * \sa nir_intrinsic_info::flags
1582 */
1583 typedef enum {
1584 /**
1585 * whether the intrinsic can be safely eliminated if none of its output
1586 * value is not being used.
1587 */
1588 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1589
1590 /**
1591 * Whether the intrinsic can be reordered with respect to any other
1592 * intrinsic, i.e. whether the only reordering dependencies of the
1593 * intrinsic are due to the register reads/writes.
1594 */
1595 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1596 } nir_intrinsic_semantic_flag;
1597
1598 /**
1599 * \name NIR intrinsics const-index flag
1600 *
1601 * Indicates the usage of a const_index slot.
1602 *
1603 * \sa nir_intrinsic_info::index_map
1604 */
1605 typedef enum {
1606 /**
1607 * Generally instructions that take a offset src argument, can encode
1608 * a constant 'base' value which is added to the offset.
1609 */
1610 NIR_INTRINSIC_BASE = 1,
1611
1612 /**
1613 * For store instructions, a writemask for the store.
1614 */
1615 NIR_INTRINSIC_WRMASK,
1616
1617 /**
1618 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1619 */
1620 NIR_INTRINSIC_STREAM_ID,
1621
1622 /**
1623 * The clip-plane id for load_user_clip_plane intrinsic.
1624 */
1625 NIR_INTRINSIC_UCP_ID,
1626
1627 /**
1628 * The amount of data, starting from BASE, that this instruction may
1629 * access. This is used to provide bounds if the offset is not constant.
1630 */
1631 NIR_INTRINSIC_RANGE,
1632
1633 /**
1634 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1635 */
1636 NIR_INTRINSIC_DESC_SET,
1637
1638 /**
1639 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1640 */
1641 NIR_INTRINSIC_BINDING,
1642
1643 /**
1644 * Component offset.
1645 */
1646 NIR_INTRINSIC_COMPONENT,
1647
1648 /**
1649 * Interpolation mode (only meaningful for FS inputs).
1650 */
1651 NIR_INTRINSIC_INTERP_MODE,
1652
1653 /**
1654 * A binary nir_op to use when performing a reduction or scan operation
1655 */
1656 NIR_INTRINSIC_REDUCTION_OP,
1657
1658 /**
1659 * Cluster size for reduction operations
1660 */
1661 NIR_INTRINSIC_CLUSTER_SIZE,
1662
1663 /**
1664 * Parameter index for a load_param intrinsic
1665 */
1666 NIR_INTRINSIC_PARAM_IDX,
1667
1668 /**
1669 * Image dimensionality for image intrinsics
1670 *
1671 * One of GLSL_SAMPLER_DIM_*
1672 */
1673 NIR_INTRINSIC_IMAGE_DIM,
1674
1675 /**
1676 * Non-zero if we are accessing an array image
1677 */
1678 NIR_INTRINSIC_IMAGE_ARRAY,
1679
1680 /**
1681 * Image format for image intrinsics
1682 */
1683 NIR_INTRINSIC_FORMAT,
1684
1685 /**
1686 * Access qualifiers for image and memory access intrinsics
1687 */
1688 NIR_INTRINSIC_ACCESS,
1689
1690 /**
1691 * Alignment for offsets and addresses
1692 *
1693 * These two parameters, specify an alignment in terms of a multiplier and
1694 * an offset. The offset or address parameter X of the intrinsic is
1695 * guaranteed to satisfy the following:
1696 *
1697 * (X - align_offset) % align_mul == 0
1698 */
1699 NIR_INTRINSIC_ALIGN_MUL,
1700 NIR_INTRINSIC_ALIGN_OFFSET,
1701
1702 /**
1703 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1704 */
1705 NIR_INTRINSIC_DESC_TYPE,
1706
1707 /**
1708 * The nir_alu_type of a uniform/input/output
1709 */
1710 NIR_INTRINSIC_TYPE,
1711
1712 /**
1713 * The swizzle mask for the instructions
1714 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1715 */
1716 NIR_INTRINSIC_SWIZZLE_MASK,
1717
1718 /* Separate source/dest access flags for copies */
1719 NIR_INTRINSIC_SRC_ACCESS,
1720 NIR_INTRINSIC_DST_ACCESS,
1721
1722 /* Driver location for nir_load_patch_location_ir3 */
1723 NIR_INTRINSIC_DRIVER_LOCATION,
1724
1725 /**
1726 * Mask of nir_memory_semantics, includes ordering and visibility.
1727 */
1728 NIR_INTRINSIC_MEMORY_SEMANTICS,
1729
1730 /**
1731 * Mask of nir_variable_modes affected by the memory operation.
1732 */
1733 NIR_INTRINSIC_MEMORY_MODES,
1734
1735 /**
1736 * Value of nir_scope.
1737 */
1738 NIR_INTRINSIC_MEMORY_SCOPE,
1739
1740 /**
1741 * Value of nir_scope.
1742 */
1743 NIR_INTRINSIC_EXECUTION_SCOPE,
1744
1745 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1746
1747 } nir_intrinsic_index_flag;
1748
1749 #define NIR_INTRINSIC_MAX_INPUTS 5
1750
1751 typedef struct {
1752 const char *name;
1753
1754 uint8_t num_srcs; /** < number of register/SSA inputs */
1755
1756 /** number of components of each input register
1757 *
1758 * If this value is 0, the number of components is given by the
1759 * num_components field of nir_intrinsic_instr. If this value is -1, the
1760 * intrinsic consumes however many components are provided and it is not
1761 * validated at all.
1762 */
1763 int8_t src_components[NIR_INTRINSIC_MAX_INPUTS];
1764
1765 bool has_dest;
1766
1767 /** number of components of the output register
1768 *
1769 * If this value is 0, the number of components is given by the
1770 * num_components field of nir_intrinsic_instr.
1771 */
1772 uint8_t dest_components;
1773
1774 /** bitfield of legal bit sizes */
1775 uint8_t dest_bit_sizes;
1776
1777 /** the number of constant indices used by the intrinsic */
1778 uint8_t num_indices;
1779
1780 /** indicates the usage of intr->const_index[n] */
1781 uint8_t index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1782
1783 /** semantic flags for calls to this intrinsic */
1784 nir_intrinsic_semantic_flag flags;
1785 } nir_intrinsic_info;
1786
1787 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1788
1789 static inline unsigned
1790 nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn)
1791 {
1792 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1793 assert(srcn < info->num_srcs);
1794 if (info->src_components[srcn] > 0)
1795 return info->src_components[srcn];
1796 else if (info->src_components[srcn] == 0)
1797 return intr->num_components;
1798 else
1799 return nir_src_num_components(intr->src[srcn]);
1800 }
1801
1802 static inline unsigned
1803 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1804 {
1805 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1806 if (!info->has_dest)
1807 return 0;
1808 else if (info->dest_components)
1809 return info->dest_components;
1810 else
1811 return intr->num_components;
1812 }
1813
1814 /**
1815 * Helper to copy const_index[] from src to dst, without assuming they
1816 * match in order.
1817 */
1818 static inline void
1819 nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src)
1820 {
1821 if (src->intrinsic == dst->intrinsic) {
1822 memcpy(dst->const_index, src->const_index, sizeof(dst->const_index));
1823 return;
1824 }
1825
1826 const nir_intrinsic_info *src_info = &nir_intrinsic_infos[src->intrinsic];
1827 const nir_intrinsic_info *dst_info = &nir_intrinsic_infos[dst->intrinsic];
1828
1829 for (unsigned i = 0; i < NIR_INTRINSIC_NUM_INDEX_FLAGS; i++) {
1830 if (src_info->index_map[i] == 0)
1831 continue;
1832
1833 /* require that dst instruction also uses the same const_index[]: */
1834 assert(dst_info->index_map[i] > 0);
1835
1836 dst->const_index[dst_info->index_map[i] - 1] =
1837 src->const_index[src_info->index_map[i] - 1];
1838 }
1839 }
1840
1841 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1842 static inline type \
1843 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1844 { \
1845 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1846 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1847 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1848 } \
1849 static inline void \
1850 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1851 { \
1852 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1853 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1854 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1855 }
1856
1857 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1858 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1859 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1860 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1861 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1862 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1863 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1864 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1865 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1866 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1867 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1868 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1869 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1870 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1871 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1872 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1873 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1874 INTRINSIC_IDX_ACCESSORS(format, FORMAT, enum pipe_format)
1875 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1876 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1877 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1878 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1879 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1880 INTRINSIC_IDX_ACCESSORS(driver_location, DRIVER_LOCATION, unsigned)
1881 INTRINSIC_IDX_ACCESSORS(memory_semantics, MEMORY_SEMANTICS, nir_memory_semantics)
1882 INTRINSIC_IDX_ACCESSORS(memory_modes, MEMORY_MODES, nir_variable_mode)
1883 INTRINSIC_IDX_ACCESSORS(memory_scope, MEMORY_SCOPE, nir_scope)
1884 INTRINSIC_IDX_ACCESSORS(execution_scope, EXECUTION_SCOPE, nir_scope)
1885
1886 static inline void
1887 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1888 unsigned align_mul, unsigned align_offset)
1889 {
1890 assert(util_is_power_of_two_nonzero(align_mul));
1891 assert(align_offset < align_mul);
1892 nir_intrinsic_set_align_mul(intrin, align_mul);
1893 nir_intrinsic_set_align_offset(intrin, align_offset);
1894 }
1895
1896 /** Returns a simple alignment for a load/store intrinsic offset
1897 *
1898 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1899 * and ALIGN_OFFSET parameters, this helper takes both into account and
1900 * provides a single simple alignment parameter. The offset X is guaranteed
1901 * to satisfy X % align == 0.
1902 */
1903 static inline unsigned
1904 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1905 {
1906 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1907 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1908 assert(align_offset < align_mul);
1909 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1910 }
1911
1912 unsigned
1913 nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr);
1914
1915 /* Converts a image_deref_* intrinsic into a image_* one */
1916 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1917 nir_ssa_def *handle, bool bindless);
1918
1919 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1920 static inline bool
1921 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1922 {
1923 if (instr->intrinsic == nir_intrinsic_load_deref ||
1924 instr->intrinsic == nir_intrinsic_load_ssbo ||
1925 instr->intrinsic == nir_intrinsic_bindless_image_load ||
1926 instr->intrinsic == nir_intrinsic_image_deref_load ||
1927 instr->intrinsic == nir_intrinsic_image_load) {
1928 return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1929 } else {
1930 const nir_intrinsic_info *info =
1931 &nir_intrinsic_infos[instr->intrinsic];
1932 return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1933 (info->flags & NIR_INTRINSIC_CAN_REORDER);
1934 }
1935 }
1936
1937 /**
1938 * \group texture information
1939 *
1940 * This gives semantic information about textures which is useful to the
1941 * frontend, the backend, and lowering passes, but not the optimizer.
1942 */
1943
1944 typedef enum {
1945 nir_tex_src_coord,
1946 nir_tex_src_projector,
1947 nir_tex_src_comparator, /* shadow comparator */
1948 nir_tex_src_offset,
1949 nir_tex_src_bias,
1950 nir_tex_src_lod,
1951 nir_tex_src_min_lod,
1952 nir_tex_src_ms_index, /* MSAA sample index */
1953 nir_tex_src_ms_mcs, /* MSAA compression value */
1954 nir_tex_src_ddx,
1955 nir_tex_src_ddy,
1956 nir_tex_src_texture_deref, /* < deref pointing to the texture */
1957 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
1958 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
1959 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
1960 nir_tex_src_texture_handle, /* < bindless texture handle */
1961 nir_tex_src_sampler_handle, /* < bindless sampler handle */
1962 nir_tex_src_plane, /* < selects plane for planar textures */
1963 nir_num_tex_src_types
1964 } nir_tex_src_type;
1965
1966 typedef struct {
1967 nir_src src;
1968 nir_tex_src_type src_type;
1969 } nir_tex_src;
1970
1971 typedef enum {
1972 nir_texop_tex, /**< Regular texture look-up */
1973 nir_texop_txb, /**< Texture look-up with LOD bias */
1974 nir_texop_txl, /**< Texture look-up with explicit LOD */
1975 nir_texop_txd, /**< Texture look-up with partial derivatives */
1976 nir_texop_txf, /**< Texel fetch with explicit LOD */
1977 nir_texop_txf_ms, /**< Multisample texture fetch */
1978 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
1979 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
1980 nir_texop_txs, /**< Texture size */
1981 nir_texop_lod, /**< Texture lod query */
1982 nir_texop_tg4, /**< Texture gather */
1983 nir_texop_query_levels, /**< Texture levels query */
1984 nir_texop_texture_samples, /**< Texture samples query */
1985 nir_texop_samples_identical, /**< Query whether all samples are definitely
1986 * identical.
1987 */
1988 nir_texop_tex_prefetch, /**< Regular texture look-up, eligible for pre-dispatch */
1989 nir_texop_fragment_fetch, /**< Multisample fragment color texture fetch */
1990 nir_texop_fragment_mask_fetch,/**< Multisample fragment mask texture fetch */
1991 } nir_texop;
1992
1993 typedef struct {
1994 nir_instr instr;
1995
1996 enum glsl_sampler_dim sampler_dim;
1997 nir_alu_type dest_type;
1998
1999 nir_texop op;
2000 nir_dest dest;
2001 nir_tex_src *src;
2002 unsigned num_srcs, coord_components;
2003 bool is_array, is_shadow;
2004
2005 /**
2006 * If is_shadow is true, whether this is the old-style shadow that outputs 4
2007 * components or the new-style shadow that outputs 1 component.
2008 */
2009 bool is_new_style_shadow;
2010
2011 /* gather component selector */
2012 unsigned component : 2;
2013
2014 /* gather offsets */
2015 int8_t tg4_offsets[4][2];
2016
2017 /* True if the texture index or handle is not dynamically uniform */
2018 bool texture_non_uniform;
2019
2020 /* True if the sampler index or handle is not dynamically uniform */
2021 bool sampler_non_uniform;
2022
2023 /** The texture index
2024 *
2025 * If this texture instruction has a nir_tex_src_texture_offset source,
2026 * then the texture index is given by texture_index + texture_offset.
2027 */
2028 unsigned texture_index;
2029
2030 /** The sampler index
2031 *
2032 * The following operations do not require a sampler and, as such, this
2033 * field should be ignored:
2034 * - nir_texop_txf
2035 * - nir_texop_txf_ms
2036 * - nir_texop_txs
2037 * - nir_texop_lod
2038 * - nir_texop_query_levels
2039 * - nir_texop_texture_samples
2040 * - nir_texop_samples_identical
2041 *
2042 * If this texture instruction has a nir_tex_src_sampler_offset source,
2043 * then the sampler index is given by sampler_index + sampler_offset.
2044 */
2045 unsigned sampler_index;
2046 } nir_tex_instr;
2047
2048 /*
2049 * Returns true if the texture operation requires a sampler as a general rule,
2050 * see the documentation of sampler_index.
2051 *
2052 * Note that the specific hw/driver backend could require to a sampler
2053 * object/configuration packet in any case, for some other reason.
2054 */
2055 static inline bool
2056 nir_tex_instr_need_sampler(const nir_tex_instr *instr)
2057 {
2058 switch (instr->op) {
2059 case nir_texop_txf:
2060 case nir_texop_txf_ms:
2061 case nir_texop_txs:
2062 case nir_texop_lod:
2063 case nir_texop_query_levels:
2064 case nir_texop_texture_samples:
2065 case nir_texop_samples_identical:
2066 return false;
2067 default:
2068 return true;
2069 }
2070 }
2071
2072 static inline unsigned
2073 nir_tex_instr_dest_size(const nir_tex_instr *instr)
2074 {
2075 switch (instr->op) {
2076 case nir_texop_txs: {
2077 unsigned ret;
2078 switch (instr->sampler_dim) {
2079 case GLSL_SAMPLER_DIM_1D:
2080 case GLSL_SAMPLER_DIM_BUF:
2081 ret = 1;
2082 break;
2083 case GLSL_SAMPLER_DIM_2D:
2084 case GLSL_SAMPLER_DIM_CUBE:
2085 case GLSL_SAMPLER_DIM_MS:
2086 case GLSL_SAMPLER_DIM_RECT:
2087 case GLSL_SAMPLER_DIM_EXTERNAL:
2088 case GLSL_SAMPLER_DIM_SUBPASS:
2089 ret = 2;
2090 break;
2091 case GLSL_SAMPLER_DIM_3D:
2092 ret = 3;
2093 break;
2094 default:
2095 unreachable("not reached");
2096 }
2097 if (instr->is_array)
2098 ret++;
2099 return ret;
2100 }
2101
2102 case nir_texop_lod:
2103 return 2;
2104
2105 case nir_texop_texture_samples:
2106 case nir_texop_query_levels:
2107 case nir_texop_samples_identical:
2108 case nir_texop_fragment_mask_fetch:
2109 return 1;
2110
2111 default:
2112 if (instr->is_shadow && instr->is_new_style_shadow)
2113 return 1;
2114
2115 return 4;
2116 }
2117 }
2118
2119 /* Returns true if this texture operation queries something about the texture
2120 * rather than actually sampling it.
2121 */
2122 static inline bool
2123 nir_tex_instr_is_query(const nir_tex_instr *instr)
2124 {
2125 switch (instr->op) {
2126 case nir_texop_txs:
2127 case nir_texop_lod:
2128 case nir_texop_texture_samples:
2129 case nir_texop_query_levels:
2130 case nir_texop_txf_ms_mcs:
2131 return true;
2132 case nir_texop_tex:
2133 case nir_texop_txb:
2134 case nir_texop_txl:
2135 case nir_texop_txd:
2136 case nir_texop_txf:
2137 case nir_texop_txf_ms:
2138 case nir_texop_txf_ms_fb:
2139 case nir_texop_tg4:
2140 return false;
2141 default:
2142 unreachable("Invalid texture opcode");
2143 }
2144 }
2145
2146 static inline bool
2147 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
2148 {
2149 switch (instr->op) {
2150 case nir_texop_tex:
2151 case nir_texop_txb:
2152 case nir_texop_lod:
2153 return true;
2154 default:
2155 return false;
2156 }
2157 }
2158
2159 static inline nir_alu_type
2160 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
2161 {
2162 switch (instr->src[src].src_type) {
2163 case nir_tex_src_coord:
2164 switch (instr->op) {
2165 case nir_texop_txf:
2166 case nir_texop_txf_ms:
2167 case nir_texop_txf_ms_fb:
2168 case nir_texop_txf_ms_mcs:
2169 case nir_texop_samples_identical:
2170 return nir_type_int;
2171
2172 default:
2173 return nir_type_float;
2174 }
2175
2176 case nir_tex_src_lod:
2177 switch (instr->op) {
2178 case nir_texop_txs:
2179 case nir_texop_txf:
2180 return nir_type_int;
2181
2182 default:
2183 return nir_type_float;
2184 }
2185
2186 case nir_tex_src_projector:
2187 case nir_tex_src_comparator:
2188 case nir_tex_src_bias:
2189 case nir_tex_src_min_lod:
2190 case nir_tex_src_ddx:
2191 case nir_tex_src_ddy:
2192 return nir_type_float;
2193
2194 case nir_tex_src_offset:
2195 case nir_tex_src_ms_index:
2196 case nir_tex_src_plane:
2197 return nir_type_int;
2198
2199 case nir_tex_src_ms_mcs:
2200 case nir_tex_src_texture_deref:
2201 case nir_tex_src_sampler_deref:
2202 case nir_tex_src_texture_offset:
2203 case nir_tex_src_sampler_offset:
2204 case nir_tex_src_texture_handle:
2205 case nir_tex_src_sampler_handle:
2206 return nir_type_uint;
2207
2208 case nir_num_tex_src_types:
2209 unreachable("nir_num_tex_src_types is not a valid source type");
2210 }
2211
2212 unreachable("Invalid texture source type");
2213 }
2214
2215 static inline unsigned
2216 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
2217 {
2218 if (instr->src[src].src_type == nir_tex_src_coord)
2219 return instr->coord_components;
2220
2221 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
2222 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
2223 return 4;
2224
2225 if (instr->src[src].src_type == nir_tex_src_ddx ||
2226 instr->src[src].src_type == nir_tex_src_ddy) {
2227 if (instr->is_array)
2228 return instr->coord_components - 1;
2229 else
2230 return instr->coord_components;
2231 }
2232
2233 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
2234 * the offset, since a cube maps to a single face.
2235 */
2236 if (instr->src[src].src_type == nir_tex_src_offset) {
2237 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2238 return 2;
2239 else if (instr->is_array)
2240 return instr->coord_components - 1;
2241 else
2242 return instr->coord_components;
2243 }
2244
2245 return 1;
2246 }
2247
2248 static inline int
2249 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2250 {
2251 for (unsigned i = 0; i < instr->num_srcs; i++)
2252 if (instr->src[i].src_type == type)
2253 return (int) i;
2254
2255 return -1;
2256 }
2257
2258 void nir_tex_instr_add_src(nir_tex_instr *tex,
2259 nir_tex_src_type src_type,
2260 nir_src src);
2261
2262 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2263
2264 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2265
2266 typedef struct {
2267 nir_instr instr;
2268
2269 nir_ssa_def def;
2270
2271 nir_const_value value[];
2272 } nir_load_const_instr;
2273
2274 typedef enum {
2275 /** Return from a function
2276 *
2277 * This instruction is a classic function return. It jumps to
2278 * nir_function_impl::end_block. No return value is provided in this
2279 * instruction. Instead, the function is expected to write any return
2280 * data to a deref passed in from the caller.
2281 */
2282 nir_jump_return,
2283
2284 /** Break out of the inner-most loop
2285 *
2286 * This has the same semantics as C's "break" statement.
2287 */
2288 nir_jump_break,
2289
2290 /** Jump back to the top of the inner-most loop
2291 *
2292 * This has the same semantics as C's "continue" statement assuming that a
2293 * NIR loop is implemented as "while (1) { body }".
2294 */
2295 nir_jump_continue,
2296
2297 /** Jumps for unstructured CFG.
2298 *
2299 * As within an unstructured CFG we can't rely on block ordering we need to
2300 * place explicit jumps at the end of every block.
2301 */
2302 nir_jump_goto,
2303 nir_jump_goto_if,
2304 } nir_jump_type;
2305
2306 typedef struct {
2307 nir_instr instr;
2308 nir_jump_type type;
2309 nir_src condition;
2310 struct nir_block *target;
2311 struct nir_block *else_target;
2312 } nir_jump_instr;
2313
2314 /* creates a new SSA variable in an undefined state */
2315
2316 typedef struct {
2317 nir_instr instr;
2318 nir_ssa_def def;
2319 } nir_ssa_undef_instr;
2320
2321 typedef struct {
2322 struct exec_node node;
2323
2324 /* The predecessor block corresponding to this source */
2325 struct nir_block *pred;
2326
2327 nir_src src;
2328 } nir_phi_src;
2329
2330 #define nir_foreach_phi_src(phi_src, phi) \
2331 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2332 #define nir_foreach_phi_src_safe(phi_src, phi) \
2333 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2334
2335 typedef struct {
2336 nir_instr instr;
2337
2338 struct exec_list srcs; /** < list of nir_phi_src */
2339
2340 nir_dest dest;
2341 } nir_phi_instr;
2342
2343 typedef struct {
2344 struct exec_node node;
2345 nir_src src;
2346 nir_dest dest;
2347 } nir_parallel_copy_entry;
2348
2349 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
2350 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2351
2352 typedef struct {
2353 nir_instr instr;
2354
2355 /* A list of nir_parallel_copy_entrys. The sources of all of the
2356 * entries are copied to the corresponding destinations "in parallel".
2357 * In other words, if we have two entries: a -> b and b -> a, the values
2358 * get swapped.
2359 */
2360 struct exec_list entries;
2361 } nir_parallel_copy_instr;
2362
2363 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2364 type, nir_instr_type_alu)
2365 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2366 type, nir_instr_type_deref)
2367 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2368 type, nir_instr_type_call)
2369 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2370 type, nir_instr_type_jump)
2371 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2372 type, nir_instr_type_tex)
2373 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2374 type, nir_instr_type_intrinsic)
2375 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2376 type, nir_instr_type_load_const)
2377 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
2378 type, nir_instr_type_ssa_undef)
2379 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2380 type, nir_instr_type_phi)
2381 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2382 nir_parallel_copy_instr, instr,
2383 type, nir_instr_type_parallel_copy)
2384
2385
2386 #define NIR_DEFINE_SRC_AS_CONST(type, suffix) \
2387 static inline type \
2388 nir_src_comp_as_##suffix(nir_src src, unsigned comp) \
2389 { \
2390 assert(nir_src_is_const(src)); \
2391 nir_load_const_instr *load = \
2392 nir_instr_as_load_const(src.ssa->parent_instr); \
2393 assert(comp < load->def.num_components); \
2394 return nir_const_value_as_##suffix(load->value[comp], \
2395 load->def.bit_size); \
2396 } \
2397 \
2398 static inline type \
2399 nir_src_as_##suffix(nir_src src) \
2400 { \
2401 assert(nir_src_num_components(src) == 1); \
2402 return nir_src_comp_as_##suffix(src, 0); \
2403 }
2404
2405 NIR_DEFINE_SRC_AS_CONST(int64_t, int)
2406 NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
2407 NIR_DEFINE_SRC_AS_CONST(bool, bool)
2408 NIR_DEFINE_SRC_AS_CONST(double, float)
2409
2410 #undef NIR_DEFINE_SRC_AS_CONST
2411
2412
2413 typedef struct {
2414 nir_ssa_def *def;
2415 unsigned comp;
2416 } nir_ssa_scalar;
2417
2418 static inline bool
2419 nir_ssa_scalar_is_const(nir_ssa_scalar s)
2420 {
2421 return s.def->parent_instr->type == nir_instr_type_load_const;
2422 }
2423
2424 static inline nir_const_value
2425 nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2426 {
2427 assert(s.comp < s.def->num_components);
2428 nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2429 return load->value[s.comp];
2430 }
2431
2432 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix) \
2433 static inline type \
2434 nir_ssa_scalar_as_##suffix(nir_ssa_scalar s) \
2435 { \
2436 return nir_const_value_as_##suffix( \
2437 nir_ssa_scalar_as_const_value(s), s.def->bit_size); \
2438 }
2439
2440 NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
2441 NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
2442 NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
2443 NIR_DEFINE_SCALAR_AS_CONST(double, float)
2444
2445 #undef NIR_DEFINE_SCALAR_AS_CONST
2446
2447 static inline bool
2448 nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2449 {
2450 return s.def->parent_instr->type == nir_instr_type_alu;
2451 }
2452
2453 static inline nir_op
2454 nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2455 {
2456 return nir_instr_as_alu(s.def->parent_instr)->op;
2457 }
2458
2459 static inline nir_ssa_scalar
2460 nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2461 {
2462 nir_ssa_scalar out = { NULL, 0 };
2463
2464 nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2465 assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2466
2467 /* Our component must be written */
2468 assert(s.comp < s.def->num_components);
2469 assert(alu->dest.write_mask & (1u << s.comp));
2470
2471 assert(alu->src[alu_src_idx].src.is_ssa);
2472 out.def = alu->src[alu_src_idx].src.ssa;
2473
2474 if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2475 /* The ALU src is unsized so the source component follows the
2476 * destination component.
2477 */
2478 out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2479 } else {
2480 /* This is a sized source so all source components work together to
2481 * produce all the destination components. Since we need to return a
2482 * scalar, this only works if the source is a scalar.
2483 */
2484 assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2485 out.comp = alu->src[alu_src_idx].swizzle[0];
2486 }
2487 assert(out.comp < out.def->num_components);
2488
2489 return out;
2490 }
2491
2492
2493 /*
2494 * Control flow
2495 *
2496 * Control flow consists of a tree of control flow nodes, which include
2497 * if-statements and loops. The leaves of the tree are basic blocks, lists of
2498 * instructions that always run start-to-finish. Each basic block also keeps
2499 * track of its successors (blocks which may run immediately after the current
2500 * block) and predecessors (blocks which could have run immediately before the
2501 * current block). Each function also has a start block and an end block which
2502 * all return statements point to (which is always empty). Together, all the
2503 * blocks with their predecessors and successors make up the control flow
2504 * graph (CFG) of the function. There are helpers that modify the tree of
2505 * control flow nodes while modifying the CFG appropriately; these should be
2506 * used instead of modifying the tree directly.
2507 */
2508
2509 typedef enum {
2510 nir_cf_node_block,
2511 nir_cf_node_if,
2512 nir_cf_node_loop,
2513 nir_cf_node_function
2514 } nir_cf_node_type;
2515
2516 typedef struct nir_cf_node {
2517 struct exec_node node;
2518 nir_cf_node_type type;
2519 struct nir_cf_node *parent;
2520 } nir_cf_node;
2521
2522 typedef struct nir_block {
2523 nir_cf_node cf_node;
2524
2525 struct exec_list instr_list; /** < list of nir_instr */
2526
2527 /** generic block index; generated by nir_index_blocks */
2528 unsigned index;
2529
2530 /*
2531 * Each block can only have up to 2 successors, so we put them in a simple
2532 * array - no need for anything more complicated.
2533 */
2534 struct nir_block *successors[2];
2535
2536 /* Set of nir_block predecessors in the CFG */
2537 struct set *predecessors;
2538
2539 /*
2540 * this node's immediate dominator in the dominance tree - set to NULL for
2541 * the start block.
2542 */
2543 struct nir_block *imm_dom;
2544
2545 /* This node's children in the dominance tree */
2546 unsigned num_dom_children;
2547 struct nir_block **dom_children;
2548
2549 /* Set of nir_blocks on the dominance frontier of this block */
2550 struct set *dom_frontier;
2551
2552 /*
2553 * These two indices have the property that dom_{pre,post}_index for each
2554 * child of this block in the dominance tree will always be between
2555 * dom_pre_index and dom_post_index for this block, which makes testing if
2556 * a given block is dominated by another block an O(1) operation.
2557 */
2558 int16_t dom_pre_index, dom_post_index;
2559
2560 /* live in and out for this block; used for liveness analysis */
2561 BITSET_WORD *live_in;
2562 BITSET_WORD *live_out;
2563 } nir_block;
2564
2565 static inline bool
2566 nir_block_is_reachable(nir_block *b)
2567 {
2568 /* See also nir_block_dominates */
2569 return b->dom_post_index != -1;
2570 }
2571
2572 static inline nir_instr *
2573 nir_block_first_instr(nir_block *block)
2574 {
2575 struct exec_node *head = exec_list_get_head(&block->instr_list);
2576 return exec_node_data(nir_instr, head, node);
2577 }
2578
2579 static inline nir_instr *
2580 nir_block_last_instr(nir_block *block)
2581 {
2582 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2583 return exec_node_data(nir_instr, tail, node);
2584 }
2585
2586 static inline bool
2587 nir_block_ends_in_jump(nir_block *block)
2588 {
2589 return !exec_list_is_empty(&block->instr_list) &&
2590 nir_block_last_instr(block)->type == nir_instr_type_jump;
2591 }
2592
2593 #define nir_foreach_instr(instr, block) \
2594 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2595 #define nir_foreach_instr_reverse(instr, block) \
2596 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2597 #define nir_foreach_instr_safe(instr, block) \
2598 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2599 #define nir_foreach_instr_reverse_safe(instr, block) \
2600 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2601
2602 typedef enum {
2603 nir_selection_control_none = 0x0,
2604 nir_selection_control_flatten = 0x1,
2605 nir_selection_control_dont_flatten = 0x2,
2606 } nir_selection_control;
2607
2608 typedef struct nir_if {
2609 nir_cf_node cf_node;
2610 nir_src condition;
2611 nir_selection_control control;
2612
2613 struct exec_list then_list; /** < list of nir_cf_node */
2614 struct exec_list else_list; /** < list of nir_cf_node */
2615 } nir_if;
2616
2617 typedef struct {
2618 nir_if *nif;
2619
2620 /** Instruction that generates nif::condition. */
2621 nir_instr *conditional_instr;
2622
2623 /** Block within ::nif that has the break instruction. */
2624 nir_block *break_block;
2625
2626 /** Last block for the then- or else-path that does not contain the break. */
2627 nir_block *continue_from_block;
2628
2629 /** True when ::break_block is in the else-path of ::nif. */
2630 bool continue_from_then;
2631 bool induction_rhs;
2632
2633 /* This is true if the terminators exact trip count is unknown. For
2634 * example:
2635 *
2636 * for (int i = 0; i < imin(x, 4); i++)
2637 * ...
2638 *
2639 * Here loop analysis would have set a max_trip_count of 4 however we dont
2640 * know for sure that this is the exact trip count.
2641 */
2642 bool exact_trip_count_unknown;
2643
2644 struct list_head loop_terminator_link;
2645 } nir_loop_terminator;
2646
2647 typedef struct {
2648 /* Estimated cost (in number of instructions) of the loop */
2649 unsigned instr_cost;
2650
2651 /* Guessed trip count based on array indexing */
2652 unsigned guessed_trip_count;
2653
2654 /* Maximum number of times the loop is run (if known) */
2655 unsigned max_trip_count;
2656
2657 /* Do we know the exact number of times the loop will be run */
2658 bool exact_trip_count_known;
2659
2660 /* Unroll the loop regardless of its size */
2661 bool force_unroll;
2662
2663 /* Does the loop contain complex loop terminators, continues or other
2664 * complex behaviours? If this is true we can't rely on
2665 * loop_terminator_list to be complete or accurate.
2666 */
2667 bool complex_loop;
2668
2669 nir_loop_terminator *limiting_terminator;
2670
2671 /* A list of loop_terminators terminating this loop. */
2672 struct list_head loop_terminator_list;
2673 } nir_loop_info;
2674
2675 typedef enum {
2676 nir_loop_control_none = 0x0,
2677 nir_loop_control_unroll = 0x1,
2678 nir_loop_control_dont_unroll = 0x2,
2679 } nir_loop_control;
2680
2681 typedef struct {
2682 nir_cf_node cf_node;
2683
2684 struct exec_list body; /** < list of nir_cf_node */
2685
2686 nir_loop_info *info;
2687 nir_loop_control control;
2688 bool partially_unrolled;
2689 } nir_loop;
2690
2691 /**
2692 * Various bits of metadata that can may be created or required by
2693 * optimization and analysis passes
2694 */
2695 typedef enum {
2696 nir_metadata_none = 0x0,
2697
2698 /** Indicates that nir_block::index values are valid.
2699 *
2700 * The start block has index 0 and they increase through a natural walk of
2701 * the CFG. nir_function_impl::num_blocks is the number of blocks and
2702 * every block index is in the range [0, nir_function_impl::num_blocks].
2703 *
2704 * A pass can preserve this metadata type if it doesn't touch the CFG.
2705 */
2706 nir_metadata_block_index = 0x1,
2707
2708 /** Indicates that block dominance information is valid
2709 *
2710 * This includes:
2711 *
2712 * - nir_block::num_dom_children
2713 * - nir_block::dom_children
2714 * - nir_block::dom_frontier
2715 * - nir_block::dom_pre_index
2716 * - nir_block::dom_post_index
2717 *
2718 * A pass can preserve this metadata type if it doesn't touch the CFG.
2719 */
2720 nir_metadata_dominance = 0x2,
2721
2722 /** Indicates that SSA def data-flow liveness information is valid
2723 *
2724 * This includes:
2725 *
2726 * - nir_ssa_def::live_index
2727 * - nir_block::live_in
2728 * - nir_block::live_out
2729 *
2730 * A pass can preserve this metadata type if it never adds or removes any
2731 * SSA defs (most passes shouldn't preserve this metadata type).
2732 */
2733 nir_metadata_live_ssa_defs = 0x4,
2734
2735 /** A dummy metadata value to track when a pass forgot to call
2736 * nir_metadata_preserve.
2737 *
2738 * A pass should always clear this value even if it doesn't make any
2739 * progress to indicate that it thought about preserving metadata.
2740 */
2741 nir_metadata_not_properly_reset = 0x8,
2742
2743 /** Indicates that loop analysis information is valid.
2744 *
2745 * This includes everything pointed to by nir_loop::info.
2746 *
2747 * A pass can preserve this metadata type if it is guaranteed to not affect
2748 * any loop metadata. However, since loop metadata includes things like
2749 * loop counts which depend on arithmetic in the loop, this is very hard to
2750 * determine. Most passes shouldn't preserve this metadata type.
2751 */
2752 nir_metadata_loop_analysis = 0x10,
2753
2754 /** All metadata
2755 *
2756 * This includes all nir_metadata flags except not_properly_reset. Passes
2757 * which do not change the shader in any way should call
2758 *
2759 * nir_metadata_preserve(impl, nir_metadata_all);
2760 */
2761 nir_metadata_all = ~nir_metadata_not_properly_reset,
2762 } nir_metadata;
2763
2764 typedef struct {
2765 nir_cf_node cf_node;
2766
2767 /** pointer to the function of which this is an implementation */
2768 struct nir_function *function;
2769
2770 struct exec_list body; /** < list of nir_cf_node */
2771
2772 nir_block *end_block;
2773
2774 /** list for all local variables in the function */
2775 struct exec_list locals;
2776
2777 /** list of local registers in the function */
2778 struct exec_list registers;
2779
2780 /** next available local register index */
2781 unsigned reg_alloc;
2782
2783 /** next available SSA value index */
2784 unsigned ssa_alloc;
2785
2786 /* total number of basic blocks, only valid when block_index_dirty = false */
2787 unsigned num_blocks;
2788
2789 /** True if this nir_function_impl uses structured control-flow
2790 *
2791 * Structured nir_function_impls have different validation rules.
2792 */
2793 bool structured;
2794
2795 nir_metadata valid_metadata;
2796 } nir_function_impl;
2797
2798 #define nir_foreach_function_temp_variable(var, impl) \
2799 foreach_list_typed(nir_variable, var, node, &(impl)->locals)
2800
2801 #define nir_foreach_function_temp_variable_safe(var, impl) \
2802 foreach_list_typed_safe(nir_variable, var, node, &(impl)->locals)
2803
2804 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2805 nir_start_block(nir_function_impl *impl)
2806 {
2807 return (nir_block *) impl->body.head_sentinel.next;
2808 }
2809
2810 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2811 nir_impl_last_block(nir_function_impl *impl)
2812 {
2813 return (nir_block *) impl->body.tail_sentinel.prev;
2814 }
2815
2816 static inline nir_cf_node *
2817 nir_cf_node_next(nir_cf_node *node)
2818 {
2819 struct exec_node *next = exec_node_get_next(&node->node);
2820 if (exec_node_is_tail_sentinel(next))
2821 return NULL;
2822 else
2823 return exec_node_data(nir_cf_node, next, node);
2824 }
2825
2826 static inline nir_cf_node *
2827 nir_cf_node_prev(nir_cf_node *node)
2828 {
2829 struct exec_node *prev = exec_node_get_prev(&node->node);
2830 if (exec_node_is_head_sentinel(prev))
2831 return NULL;
2832 else
2833 return exec_node_data(nir_cf_node, prev, node);
2834 }
2835
2836 static inline bool
2837 nir_cf_node_is_first(const nir_cf_node *node)
2838 {
2839 return exec_node_is_head_sentinel(node->node.prev);
2840 }
2841
2842 static inline bool
2843 nir_cf_node_is_last(const nir_cf_node *node)
2844 {
2845 return exec_node_is_tail_sentinel(node->node.next);
2846 }
2847
2848 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2849 type, nir_cf_node_block)
2850 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2851 type, nir_cf_node_if)
2852 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2853 type, nir_cf_node_loop)
2854 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2855 nir_function_impl, cf_node, type, nir_cf_node_function)
2856
2857 static inline nir_block *
2858 nir_if_first_then_block(nir_if *if_stmt)
2859 {
2860 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2861 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2862 }
2863
2864 static inline nir_block *
2865 nir_if_last_then_block(nir_if *if_stmt)
2866 {
2867 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2868 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2869 }
2870
2871 static inline nir_block *
2872 nir_if_first_else_block(nir_if *if_stmt)
2873 {
2874 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2875 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2876 }
2877
2878 static inline nir_block *
2879 nir_if_last_else_block(nir_if *if_stmt)
2880 {
2881 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2882 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2883 }
2884
2885 static inline nir_block *
2886 nir_loop_first_block(nir_loop *loop)
2887 {
2888 struct exec_node *head = exec_list_get_head(&loop->body);
2889 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2890 }
2891
2892 static inline nir_block *
2893 nir_loop_last_block(nir_loop *loop)
2894 {
2895 struct exec_node *tail = exec_list_get_tail(&loop->body);
2896 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2897 }
2898
2899 /**
2900 * Return true if this list of cf_nodes contains a single empty block.
2901 */
2902 static inline bool
2903 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2904 {
2905 if (exec_list_is_singular(cf_list)) {
2906 struct exec_node *head = exec_list_get_head(cf_list);
2907 nir_block *block =
2908 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2909 return exec_list_is_empty(&block->instr_list);
2910 }
2911 return false;
2912 }
2913
2914 typedef struct {
2915 uint8_t num_components;
2916 uint8_t bit_size;
2917 } nir_parameter;
2918
2919 typedef struct nir_function {
2920 struct exec_node node;
2921
2922 const char *name;
2923 struct nir_shader *shader;
2924
2925 unsigned num_params;
2926 nir_parameter *params;
2927
2928 /** The implementation of this function.
2929 *
2930 * If the function is only declared and not implemented, this is NULL.
2931 */
2932 nir_function_impl *impl;
2933
2934 bool is_entrypoint;
2935 } nir_function;
2936
2937 typedef enum {
2938 nir_lower_imul64 = (1 << 0),
2939 nir_lower_isign64 = (1 << 1),
2940 /** Lower all int64 modulus and division opcodes */
2941 nir_lower_divmod64 = (1 << 2),
2942 /** Lower all 64-bit umul_high and imul_high opcodes */
2943 nir_lower_imul_high64 = (1 << 3),
2944 nir_lower_mov64 = (1 << 4),
2945 nir_lower_icmp64 = (1 << 5),
2946 nir_lower_iadd64 = (1 << 6),
2947 nir_lower_iabs64 = (1 << 7),
2948 nir_lower_ineg64 = (1 << 8),
2949 nir_lower_logic64 = (1 << 9),
2950 nir_lower_minmax64 = (1 << 10),
2951 nir_lower_shift64 = (1 << 11),
2952 nir_lower_imul_2x32_64 = (1 << 12),
2953 nir_lower_extract64 = (1 << 13),
2954 nir_lower_ufind_msb64 = (1 << 14),
2955 } nir_lower_int64_options;
2956
2957 typedef enum {
2958 nir_lower_drcp = (1 << 0),
2959 nir_lower_dsqrt = (1 << 1),
2960 nir_lower_drsq = (1 << 2),
2961 nir_lower_dtrunc = (1 << 3),
2962 nir_lower_dfloor = (1 << 4),
2963 nir_lower_dceil = (1 << 5),
2964 nir_lower_dfract = (1 << 6),
2965 nir_lower_dround_even = (1 << 7),
2966 nir_lower_dmod = (1 << 8),
2967 nir_lower_dsub = (1 << 9),
2968 nir_lower_ddiv = (1 << 10),
2969 nir_lower_fp64_full_software = (1 << 11),
2970 } nir_lower_doubles_options;
2971
2972 typedef enum {
2973 nir_divergence_single_prim_per_subgroup = (1 << 0),
2974 nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
2975 nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
2976 nir_divergence_view_index_uniform = (1 << 3),
2977 } nir_divergence_options;
2978
2979 typedef struct nir_shader_compiler_options {
2980 bool lower_fdiv;
2981 bool lower_ffma;
2982 bool fuse_ffma;
2983 bool lower_flrp16;
2984 bool lower_flrp32;
2985 /** Lowers flrp when it does not support doubles */
2986 bool lower_flrp64;
2987 bool lower_fpow;
2988 bool lower_fsat;
2989 bool lower_fsqrt;
2990 bool lower_sincos;
2991 bool lower_fmod;
2992 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
2993 bool lower_bitfield_extract;
2994 /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
2995 bool lower_bitfield_extract_to_shifts;
2996 /** Lowers bitfield_insert to bfi/bfm */
2997 bool lower_bitfield_insert;
2998 /** Lowers bitfield_insert to compares, and shifts. */
2999 bool lower_bitfield_insert_to_shifts;
3000 /** Lowers bitfield_insert to bfm/bitfield_select. */
3001 bool lower_bitfield_insert_to_bitfield_select;
3002 /** Lowers bitfield_reverse to shifts. */
3003 bool lower_bitfield_reverse;
3004 /** Lowers bit_count to shifts. */
3005 bool lower_bit_count;
3006 /** Lowers ifind_msb to compare and ufind_msb */
3007 bool lower_ifind_msb;
3008 /** Lowers find_lsb to ufind_msb and logic ops */
3009 bool lower_find_lsb;
3010 bool lower_uadd_carry;
3011 bool lower_usub_borrow;
3012 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
3013 bool lower_mul_high;
3014 /** lowers fneg and ineg to fsub and isub. */
3015 bool lower_negate;
3016 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
3017 bool lower_sub;
3018
3019 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fne} + b2f: */
3020 bool lower_scmp;
3021
3022 /* lower fall_equalN/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
3023 bool lower_vector_cmp;
3024
3025 /** enables rules to lower idiv by power-of-two: */
3026 bool lower_idiv;
3027
3028 /** enable rules to avoid bit ops */
3029 bool lower_bitops;
3030
3031 /** enables rules to lower isign to imin+imax */
3032 bool lower_isign;
3033
3034 /** enables rules to lower fsign to fsub and flt */
3035 bool lower_fsign;
3036
3037 /* lower fdph to fdot4 */
3038 bool lower_fdph;
3039
3040 /** lower fdot to fmul and fsum/fadd. */
3041 bool lower_fdot;
3042
3043 /* Does the native fdot instruction replicate its result for four
3044 * components? If so, then opt_algebraic_late will turn all fdotN
3045 * instructions into fdot_replicatedN instructions.
3046 */
3047 bool fdot_replicates;
3048
3049 /** lowers ffloor to fsub+ffract: */
3050 bool lower_ffloor;
3051
3052 /** lowers ffract to fsub+ffloor: */
3053 bool lower_ffract;
3054
3055 /** lowers fceil to fneg+ffloor+fneg: */
3056 bool lower_fceil;
3057
3058 bool lower_ftrunc;
3059
3060 bool lower_ldexp;
3061
3062 bool lower_pack_half_2x16;
3063 bool lower_pack_unorm_2x16;
3064 bool lower_pack_snorm_2x16;
3065 bool lower_pack_unorm_4x8;
3066 bool lower_pack_snorm_4x8;
3067 bool lower_unpack_half_2x16;
3068 bool lower_unpack_unorm_2x16;
3069 bool lower_unpack_snorm_2x16;
3070 bool lower_unpack_unorm_4x8;
3071 bool lower_unpack_snorm_4x8;
3072
3073 bool lower_pack_split;
3074
3075 bool lower_extract_byte;
3076 bool lower_extract_word;
3077
3078 bool lower_all_io_to_temps;
3079 bool lower_all_io_to_elements;
3080
3081 /* Indicates that the driver only has zero-based vertex id */
3082 bool vertex_id_zero_based;
3083
3084 /**
3085 * If enabled, gl_BaseVertex will be lowered as:
3086 * is_indexed_draw (~0/0) & firstvertex
3087 */
3088 bool lower_base_vertex;
3089
3090 /**
3091 * If enabled, gl_HelperInvocation will be lowered as:
3092 *
3093 * !((1 << sample_id) & sample_mask_in))
3094 *
3095 * This depends on some possibly hw implementation details, which may
3096 * not be true for all hw. In particular that the FS is only executed
3097 * for covered samples or for helper invocations. So, do not blindly
3098 * enable this option.
3099 *
3100 * Note: See also issue #22 in ARB_shader_image_load_store
3101 */
3102 bool lower_helper_invocation;
3103
3104 /**
3105 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
3106 *
3107 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
3108 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
3109 */
3110 bool optimize_sample_mask_in;
3111
3112 bool lower_cs_local_index_from_id;
3113 bool lower_cs_local_id_from_index;
3114
3115 bool lower_device_index_to_zero;
3116
3117 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
3118 bool lower_wpos_pntc;
3119
3120 /**
3121 * Set if nir_op_[iu]hadd and nir_op_[iu]rhadd instructions should be
3122 * lowered to simple arithmetic.
3123 *
3124 * If this flag is set, the lowering will be applied to all bit-sizes of
3125 * these instructions.
3126 *
3127 * \sa ::lower_hadd64
3128 */
3129 bool lower_hadd;
3130
3131 /**
3132 * Set if only 64-bit nir_op_[iu]hadd and nir_op_[iu]rhadd instructions
3133 * should be lowered to simple arithmetic.
3134 *
3135 * If this flag is set, the lowering will be applied to only 64-bit
3136 * versions of these instructions.
3137 *
3138 * \sa ::lower_hadd
3139 */
3140 bool lower_hadd64;
3141
3142 /**
3143 * Set if nir_op_add_sat and nir_op_usub_sat should be lowered to simple
3144 * arithmetic.
3145 *
3146 * If this flag is set, the lowering will be applied to all bit-sizes of
3147 * these instructions.
3148 *
3149 * \sa ::lower_usub_sat64
3150 */
3151 bool lower_add_sat;
3152
3153 /**
3154 * Set if only 64-bit nir_op_usub_sat should be lowered to simple
3155 * arithmetic.
3156 *
3157 * \sa ::lower_add_sat
3158 */
3159 bool lower_usub_sat64;
3160
3161 /**
3162 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
3163 * for IO purposes and would prefer loads/stores be vectorized.
3164 */
3165 bool vectorize_io;
3166 bool lower_to_scalar;
3167
3168 /**
3169 * Whether nir_opt_vectorize should only create 16-bit 2D vectors.
3170 */
3171 bool vectorize_vec2_16bit;
3172
3173 /**
3174 * Should the linker unify inputs_read/outputs_written between adjacent
3175 * shader stages which are linked into a single program?
3176 */
3177 bool unify_interfaces;
3178
3179 /**
3180 * Should nir_lower_io() create load_interpolated_input intrinsics?
3181 *
3182 * If not, it generates regular load_input intrinsics and interpolation
3183 * information must be inferred from the list of input nir_variables.
3184 */
3185 bool use_interpolated_input_intrinsics;
3186
3187 /* Lowers when 32x32->64 bit multiplication is not supported */
3188 bool lower_mul_2x32_64;
3189
3190 /* Lowers when rotate instruction is not supported */
3191 bool lower_rotate;
3192
3193 /**
3194 * Backend supports imul24, and would like to use it (when possible)
3195 * for address/offset calculation. If true, driver should call
3196 * nir_lower_amul(). (If not set, amul will automatically be lowered
3197 * to imul.)
3198 */
3199 bool has_imul24;
3200
3201 /** Backend supports umul24, if not set umul24 will automatically be lowered
3202 * to imul with masked inputs */
3203 bool has_umul24;
3204
3205 /** Backend supports umad24, if not set umad24 will automatically be lowered
3206 * to imul with masked inputs and iadd */
3207 bool has_umad24;
3208
3209 /* Whether to generate only scoped_barrier intrinsics instead of the set of
3210 * memory and control barrier intrinsics based on GLSL.
3211 */
3212 bool use_scoped_barrier;
3213
3214 /**
3215 * Is this the Intel vec4 backend?
3216 *
3217 * Used to inhibit algebraic optimizations that are known to be harmful on
3218 * the Intel vec4 backend. This is generally applicable to any
3219 * optimization that might cause more immediate values to be used in
3220 * 3-source (e.g., ffma and flrp) instructions.
3221 */
3222 bool intel_vec4;
3223
3224 /** Lower nir_op_ibfe and nir_op_ubfe that have two constant sources. */
3225 bool lower_bfe_with_two_constants;
3226
3227 /** Whether 8-bit ALU is supported. */
3228 bool support_8bit_alu;
3229
3230 /** Whether 16-bit ALU is supported. */
3231 bool support_16bit_alu;
3232
3233 unsigned max_unroll_iterations;
3234
3235 nir_lower_int64_options lower_int64_options;
3236 nir_lower_doubles_options lower_doubles_options;
3237 } nir_shader_compiler_options;
3238
3239 typedef struct nir_shader {
3240 /** list of uniforms (nir_variable) */
3241 struct exec_list variables;
3242
3243 /** Set of driver-specific options for the shader.
3244 *
3245 * The memory for the options is expected to be kept in a single static
3246 * copy by the driver.
3247 */
3248 const struct nir_shader_compiler_options *options;
3249
3250 /** Various bits of compile-time information about a given shader */
3251 struct shader_info info;
3252
3253 struct exec_list functions; /** < list of nir_function */
3254
3255 /**
3256 * the highest index a load_input_*, load_uniform_*, etc. intrinsic can
3257 * access plus one
3258 */
3259 unsigned num_inputs, num_uniforms, num_outputs, num_shared;
3260
3261 /** Size in bytes of required scratch space */
3262 unsigned scratch_size;
3263
3264 /** Constant data associated with this shader.
3265 *
3266 * Constant data is loaded through load_constant intrinsics (as compared to
3267 * the NIR load_const instructions which have the constant value inlined
3268 * into them). This is usually generated by nir_opt_large_constants (so
3269 * shaders don't have to load_const into a temporary array when they want
3270 * to indirect on a const array).
3271 */
3272 void *constant_data;
3273 /** Size of the constant data associated with the shader, in bytes */
3274 unsigned constant_data_size;
3275 } nir_shader;
3276
3277 #define nir_foreach_function(func, shader) \
3278 foreach_list_typed(nir_function, func, node, &(shader)->functions)
3279
3280 static inline nir_function_impl *
3281 nir_shader_get_entrypoint(nir_shader *shader)
3282 {
3283 nir_function *func = NULL;
3284
3285 nir_foreach_function(function, shader) {
3286 assert(func == NULL);
3287 if (function->is_entrypoint) {
3288 func = function;
3289 #ifndef NDEBUG
3290 break;
3291 #endif
3292 }
3293 }
3294
3295 if (!func)
3296 return NULL;
3297
3298 assert(func->num_params == 0);
3299 assert(func->impl);
3300 return func->impl;
3301 }
3302
3303 nir_shader *nir_shader_create(void *mem_ctx,
3304 gl_shader_stage stage,
3305 const nir_shader_compiler_options *options,
3306 shader_info *si);
3307
3308 nir_register *nir_local_reg_create(nir_function_impl *impl);
3309
3310 void nir_reg_remove(nir_register *reg);
3311
3312 /** Adds a variable to the appropriate list in nir_shader */
3313 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
3314
3315 static inline void
3316 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
3317 {
3318 assert(var->data.mode == nir_var_function_temp);
3319 exec_list_push_tail(&impl->locals, &var->node);
3320 }
3321
3322 /** creates a variable, sets a few defaults, and adds it to the list */
3323 nir_variable *nir_variable_create(nir_shader *shader,
3324 nir_variable_mode mode,
3325 const struct glsl_type *type,
3326 const char *name);
3327 /** creates a local variable and adds it to the list */
3328 nir_variable *nir_local_variable_create(nir_function_impl *impl,
3329 const struct glsl_type *type,
3330 const char *name);
3331
3332 nir_variable *nir_find_variable_with_location(nir_shader *shader,
3333 nir_variable_mode mode,
3334 unsigned location);
3335
3336 nir_variable *nir_find_variable_with_driver_location(nir_shader *shader,
3337 nir_variable_mode mode,
3338 unsigned location);
3339
3340 /** creates a function and adds it to the shader's list of functions */
3341 nir_function *nir_function_create(nir_shader *shader, const char *name);
3342
3343 nir_function_impl *nir_function_impl_create(nir_function *func);
3344 /** creates a function_impl that isn't tied to any particular function */
3345 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
3346
3347 nir_block *nir_block_create(nir_shader *shader);
3348 nir_if *nir_if_create(nir_shader *shader);
3349 nir_loop *nir_loop_create(nir_shader *shader);
3350
3351 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
3352
3353 /** requests that the given pieces of metadata be generated */
3354 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
3355 /** dirties all but the preserved metadata */
3356 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
3357 /** Preserves all metadata for the given shader */
3358 void nir_shader_preserve_all_metadata(nir_shader *shader);
3359
3360 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
3361 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
3362
3363 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
3364 nir_deref_type deref_type);
3365
3366 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
3367
3368 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
3369 unsigned num_components,
3370 unsigned bit_size);
3371
3372 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
3373 nir_intrinsic_op op);
3374
3375 nir_call_instr *nir_call_instr_create(nir_shader *shader,
3376 nir_function *callee);
3377
3378 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
3379
3380 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
3381
3382 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
3383
3384 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
3385 unsigned num_components,
3386 unsigned bit_size);
3387
3388 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
3389
3390 /**
3391 * NIR Cursors and Instruction Insertion API
3392 * @{
3393 *
3394 * A tiny struct representing a point to insert/extract instructions or
3395 * control flow nodes. Helps reduce the combinatorial explosion of possible
3396 * points to insert/extract.
3397 *
3398 * \sa nir_control_flow.h
3399 */
3400 typedef enum {
3401 nir_cursor_before_block,
3402 nir_cursor_after_block,
3403 nir_cursor_before_instr,
3404 nir_cursor_after_instr,
3405 } nir_cursor_option;
3406
3407 typedef struct {
3408 nir_cursor_option option;
3409 union {
3410 nir_block *block;
3411 nir_instr *instr;
3412 };
3413 } nir_cursor;
3414
3415 static inline nir_block *
3416 nir_cursor_current_block(nir_cursor cursor)
3417 {
3418 if (cursor.option == nir_cursor_before_instr ||
3419 cursor.option == nir_cursor_after_instr) {
3420 return cursor.instr->block;
3421 } else {
3422 return cursor.block;
3423 }
3424 }
3425
3426 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
3427
3428 static inline nir_cursor
3429 nir_before_block(nir_block *block)
3430 {
3431 nir_cursor cursor;
3432 cursor.option = nir_cursor_before_block;
3433 cursor.block = block;
3434 return cursor;
3435 }
3436
3437 static inline nir_cursor
3438 nir_after_block(nir_block *block)
3439 {
3440 nir_cursor cursor;
3441 cursor.option = nir_cursor_after_block;
3442 cursor.block = block;
3443 return cursor;
3444 }
3445
3446 static inline nir_cursor
3447 nir_before_instr(nir_instr *instr)
3448 {
3449 nir_cursor cursor;
3450 cursor.option = nir_cursor_before_instr;
3451 cursor.instr = instr;
3452 return cursor;
3453 }
3454
3455 static inline nir_cursor
3456 nir_after_instr(nir_instr *instr)
3457 {
3458 nir_cursor cursor;
3459 cursor.option = nir_cursor_after_instr;
3460 cursor.instr = instr;
3461 return cursor;
3462 }
3463
3464 static inline nir_cursor
3465 nir_after_block_before_jump(nir_block *block)
3466 {
3467 nir_instr *last_instr = nir_block_last_instr(block);
3468 if (last_instr && last_instr->type == nir_instr_type_jump) {
3469 return nir_before_instr(last_instr);
3470 } else {
3471 return nir_after_block(block);
3472 }
3473 }
3474
3475 static inline nir_cursor
3476 nir_before_src(nir_src *src, bool is_if_condition)
3477 {
3478 if (is_if_condition) {
3479 nir_block *prev_block =
3480 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
3481 assert(!nir_block_ends_in_jump(prev_block));
3482 return nir_after_block(prev_block);
3483 } else if (src->parent_instr->type == nir_instr_type_phi) {
3484 #ifndef NDEBUG
3485 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
3486 bool found = false;
3487 nir_foreach_phi_src(phi_src, cond_phi) {
3488 if (phi_src->src.ssa == src->ssa) {
3489 found = true;
3490 break;
3491 }
3492 }
3493 assert(found);
3494 #endif
3495 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
3496 * to have a more specific name.
3497 */
3498 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
3499 return nir_after_block_before_jump(phi_src->pred);
3500 } else {
3501 return nir_before_instr(src->parent_instr);
3502 }
3503 }
3504
3505 static inline nir_cursor
3506 nir_before_cf_node(nir_cf_node *node)
3507 {
3508 if (node->type == nir_cf_node_block)
3509 return nir_before_block(nir_cf_node_as_block(node));
3510
3511 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
3512 }
3513
3514 static inline nir_cursor
3515 nir_after_cf_node(nir_cf_node *node)
3516 {
3517 if (node->type == nir_cf_node_block)
3518 return nir_after_block(nir_cf_node_as_block(node));
3519
3520 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
3521 }
3522
3523 static inline nir_cursor
3524 nir_after_phis(nir_block *block)
3525 {
3526 nir_foreach_instr(instr, block) {
3527 if (instr->type != nir_instr_type_phi)
3528 return nir_before_instr(instr);
3529 }
3530 return nir_after_block(block);
3531 }
3532
3533 static inline nir_cursor
3534 nir_after_cf_node_and_phis(nir_cf_node *node)
3535 {
3536 if (node->type == nir_cf_node_block)
3537 return nir_after_block(nir_cf_node_as_block(node));
3538
3539 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
3540
3541 return nir_after_phis(block);
3542 }
3543
3544 static inline nir_cursor
3545 nir_before_cf_list(struct exec_list *cf_list)
3546 {
3547 nir_cf_node *first_node = exec_node_data(nir_cf_node,
3548 exec_list_get_head(cf_list), node);
3549 return nir_before_cf_node(first_node);
3550 }
3551
3552 static inline nir_cursor
3553 nir_after_cf_list(struct exec_list *cf_list)
3554 {
3555 nir_cf_node *last_node = exec_node_data(nir_cf_node,
3556 exec_list_get_tail(cf_list), node);
3557 return nir_after_cf_node(last_node);
3558 }
3559
3560 /**
3561 * Insert a NIR instruction at the given cursor.
3562 *
3563 * Note: This does not update the cursor.
3564 */
3565 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
3566
3567 static inline void
3568 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
3569 {
3570 nir_instr_insert(nir_before_instr(instr), before);
3571 }
3572
3573 static inline void
3574 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
3575 {
3576 nir_instr_insert(nir_after_instr(instr), after);
3577 }
3578
3579 static inline void
3580 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
3581 {
3582 nir_instr_insert(nir_before_block(block), before);
3583 }
3584
3585 static inline void
3586 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
3587 {
3588 nir_instr_insert(nir_after_block(block), after);
3589 }
3590
3591 static inline void
3592 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
3593 {
3594 nir_instr_insert(nir_before_cf_node(node), before);
3595 }
3596
3597 static inline void
3598 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
3599 {
3600 nir_instr_insert(nir_after_cf_node(node), after);
3601 }
3602
3603 static inline void
3604 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
3605 {
3606 nir_instr_insert(nir_before_cf_list(list), before);
3607 }
3608
3609 static inline void
3610 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
3611 {
3612 nir_instr_insert(nir_after_cf_list(list), after);
3613 }
3614
3615 void nir_instr_remove_v(nir_instr *instr);
3616
3617 static inline nir_cursor
3618 nir_instr_remove(nir_instr *instr)
3619 {
3620 nir_cursor cursor;
3621 nir_instr *prev = nir_instr_prev(instr);
3622 if (prev) {
3623 cursor = nir_after_instr(prev);
3624 } else {
3625 cursor = nir_before_block(instr->block);
3626 }
3627 nir_instr_remove_v(instr);
3628 return cursor;
3629 }
3630
3631 /** @} */
3632
3633 nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
3634
3635 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
3636 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
3637 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
3638 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
3639 void *state);
3640 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
3641 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
3642 bool nir_foreach_phi_src_leaving_block(nir_block *instr,
3643 nir_foreach_src_cb cb,
3644 void *state);
3645
3646 nir_const_value *nir_src_as_const_value(nir_src src);
3647
3648 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
3649 static inline c_type * \
3650 nir_src_as_ ## name (nir_src src) \
3651 { \
3652 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
3653 ? cast_macro(src.ssa->parent_instr) : NULL; \
3654 }
3655
3656 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
3657 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
3658 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
3659 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
3660
3661 bool nir_src_is_dynamically_uniform(nir_src src);
3662 bool nir_srcs_equal(nir_src src1, nir_src src2);
3663 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
3664 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
3665 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
3666 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
3667 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
3668 nir_dest new_dest);
3669
3670 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
3671 unsigned num_components, unsigned bit_size,
3672 const char *name);
3673 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
3674 unsigned num_components, unsigned bit_size,
3675 const char *name);
3676 static inline void
3677 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
3678 const struct glsl_type *type,
3679 const char *name)
3680 {
3681 assert(glsl_type_is_vector_or_scalar(type));
3682 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
3683 glsl_get_bit_size(type), name);
3684 }
3685 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
3686 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
3687 nir_instr *after_me);
3688
3689 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
3690
3691
3692 /** Returns the next block, disregarding structure
3693 *
3694 * The ordering is deterministic but has no guarantees beyond that. In
3695 * particular, it is not guaranteed to be dominance-preserving.
3696 */
3697 nir_block *nir_block_unstructured_next(nir_block *block);
3698 nir_block *nir_unstructured_start_block(nir_function_impl *impl);
3699
3700 #define nir_foreach_block_unstructured(block, impl) \
3701 for (nir_block *block = nir_unstructured_start_block(impl); block != NULL; \
3702 block = nir_block_unstructured_next(block))
3703
3704 #define nir_foreach_block_unstructured_safe(block, impl) \
3705 for (nir_block *block = nir_unstructured_start_block(impl), \
3706 *next = nir_block_unstructured_next(block); \
3707 block != NULL; \
3708 block = next, next = nir_block_unstructured_next(block))
3709
3710 /*
3711 * finds the next basic block in source-code order, returns NULL if there is
3712 * none
3713 */
3714
3715 nir_block *nir_block_cf_tree_next(nir_block *block);
3716
3717 /* Performs the opposite of nir_block_cf_tree_next() */
3718
3719 nir_block *nir_block_cf_tree_prev(nir_block *block);
3720
3721 /* Gets the first block in a CF node in source-code order */
3722
3723 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
3724
3725 /* Gets the last block in a CF node in source-code order */
3726
3727 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
3728
3729 /* Gets the next block after a CF node in source-code order */
3730
3731 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
3732
3733 /* Macros for loops that visit blocks in source-code order */
3734
3735 #define nir_foreach_block(block, impl) \
3736 for (nir_block *block = nir_start_block(impl); block != NULL; \
3737 block = nir_block_cf_tree_next(block))
3738
3739 #define nir_foreach_block_safe(block, impl) \
3740 for (nir_block *block = nir_start_block(impl), \
3741 *next = nir_block_cf_tree_next(block); \
3742 block != NULL; \
3743 block = next, next = nir_block_cf_tree_next(block))
3744
3745 #define nir_foreach_block_reverse(block, impl) \
3746 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
3747 block = nir_block_cf_tree_prev(block))
3748
3749 #define nir_foreach_block_reverse_safe(block, impl) \
3750 for (nir_block *block = nir_impl_last_block(impl), \
3751 *prev = nir_block_cf_tree_prev(block); \
3752 block != NULL; \
3753 block = prev, prev = nir_block_cf_tree_prev(block))
3754
3755 #define nir_foreach_block_in_cf_node(block, node) \
3756 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
3757 block != nir_cf_node_cf_tree_next(node); \
3758 block = nir_block_cf_tree_next(block))
3759
3760 /* If the following CF node is an if, this function returns that if.
3761 * Otherwise, it returns NULL.
3762 */
3763 nir_if *nir_block_get_following_if(nir_block *block);
3764
3765 nir_loop *nir_block_get_following_loop(nir_block *block);
3766
3767 void nir_index_local_regs(nir_function_impl *impl);
3768 void nir_index_ssa_defs(nir_function_impl *impl);
3769 unsigned nir_index_instrs(nir_function_impl *impl);
3770
3771 void nir_index_blocks(nir_function_impl *impl);
3772
3773 unsigned nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes);
3774 unsigned nir_function_impl_index_vars(nir_function_impl *impl);
3775
3776 void nir_print_shader(nir_shader *shader, FILE *fp);
3777 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
3778 void nir_print_instr(const nir_instr *instr, FILE *fp);
3779 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
3780
3781 /** Shallow clone of a single ALU instruction. */
3782 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
3783
3784 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
3785 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
3786 const nir_function_impl *fi);
3787 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
3788 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
3789
3790 void nir_shader_replace(nir_shader *dest, nir_shader *src);
3791
3792 void nir_shader_serialize_deserialize(nir_shader *s);
3793
3794 #ifndef NDEBUG
3795 void nir_validate_shader(nir_shader *shader, const char *when);
3796 void nir_metadata_set_validation_flag(nir_shader *shader);
3797 void nir_metadata_check_validation_flag(nir_shader *shader);
3798
3799 static inline bool
3800 should_skip_nir(const char *name)
3801 {
3802 static const char *list = NULL;
3803 if (!list) {
3804 /* Comma separated list of names to skip. */
3805 list = getenv("NIR_SKIP");
3806 if (!list)
3807 list = "";
3808 }
3809
3810 if (!list[0])
3811 return false;
3812
3813 return comma_separated_list_contains(list, name);
3814 }
3815
3816 static inline bool
3817 should_clone_nir(void)
3818 {
3819 static int should_clone = -1;
3820 if (should_clone < 0)
3821 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
3822
3823 return should_clone;
3824 }
3825
3826 static inline bool
3827 should_serialize_deserialize_nir(void)
3828 {
3829 static int test_serialize = -1;
3830 if (test_serialize < 0)
3831 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
3832
3833 return test_serialize;
3834 }
3835
3836 static inline bool
3837 should_print_nir(void)
3838 {
3839 static int should_print = -1;
3840 if (should_print < 0)
3841 should_print = env_var_as_boolean("NIR_PRINT", false);
3842
3843 return should_print;
3844 }
3845 #else
3846 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
3847 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3848 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3849 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3850 static inline bool should_clone_nir(void) { return false; }
3851 static inline bool should_serialize_deserialize_nir(void) { return false; }
3852 static inline bool should_print_nir(void) { return false; }
3853 #endif /* NDEBUG */
3854
3855 #define _PASS(pass, nir, do_pass) do { \
3856 if (should_skip_nir(#pass)) { \
3857 printf("skipping %s\n", #pass); \
3858 break; \
3859 } \
3860 do_pass \
3861 nir_validate_shader(nir, "after " #pass); \
3862 if (should_clone_nir()) { \
3863 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3864 nir_shader_replace(nir, clone); \
3865 } \
3866 if (should_serialize_deserialize_nir()) { \
3867 nir_shader_serialize_deserialize(nir); \
3868 } \
3869 } while (0)
3870
3871 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3872 nir_metadata_set_validation_flag(nir); \
3873 if (should_print_nir()) \
3874 printf("%s\n", #pass); \
3875 if (pass(nir, ##__VA_ARGS__)) { \
3876 progress = true; \
3877 if (should_print_nir()) \
3878 nir_print_shader(nir, stdout); \
3879 nir_metadata_check_validation_flag(nir); \
3880 } \
3881 )
3882
3883 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3884 if (should_print_nir()) \
3885 printf("%s\n", #pass); \
3886 pass(nir, ##__VA_ARGS__); \
3887 if (should_print_nir()) \
3888 nir_print_shader(nir, stdout); \
3889 )
3890
3891 #define NIR_SKIP(name) should_skip_nir(#name)
3892
3893 /** An instruction filtering callback
3894 *
3895 * Returns true if the instruction should be processed and false otherwise.
3896 */
3897 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3898
3899 /** A simple instruction lowering callback
3900 *
3901 * Many instruction lowering passes can be written as a simple function which
3902 * takes an instruction as its input and returns a sequence of instructions
3903 * that implement the consumed instruction. This function type represents
3904 * such a lowering function. When called, a function with this prototype
3905 * should either return NULL indicating that no lowering needs to be done or
3906 * emit a sequence of instructions using the provided builder (whose cursor
3907 * will already be placed after the instruction to be lowered) and return the
3908 * resulting nir_ssa_def.
3909 */
3910 typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
3911 nir_instr *, void *);
3912
3913 /**
3914 * Special return value for nir_lower_instr_cb when some progress occurred
3915 * (like changing an input to the instr) that didn't result in a replacement
3916 * SSA def being generated.
3917 */
3918 #define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
3919
3920 /** Iterate over all the instructions in a nir_function_impl and lower them
3921 * using the provided callbacks
3922 *
3923 * This function implements the guts of a standard lowering pass for you. It
3924 * iterates over all of the instructions in a nir_function_impl and calls the
3925 * filter callback on each one. If the filter callback returns true, it then
3926 * calls the lowering call back on the instruction. (Splitting it this way
3927 * allows us to avoid some save/restore work for instructions we know won't be
3928 * lowered.) If the instruction is dead after the lowering is complete, it
3929 * will be removed. If new instructions are added, the lowering callback will
3930 * also be called on them in case multiple lowerings are required.
3931 *
3932 * The metadata for the nir_function_impl will also be updated. If any blocks
3933 * are added (they cannot be removed), dominance and block indices will be
3934 * invalidated.
3935 */
3936 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
3937 nir_instr_filter_cb filter,
3938 nir_lower_instr_cb lower,
3939 void *cb_data);
3940 bool nir_shader_lower_instructions(nir_shader *shader,
3941 nir_instr_filter_cb filter,
3942 nir_lower_instr_cb lower,
3943 void *cb_data);
3944
3945 void nir_calc_dominance_impl(nir_function_impl *impl);
3946 void nir_calc_dominance(nir_shader *shader);
3947
3948 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
3949 bool nir_block_dominates(nir_block *parent, nir_block *child);
3950 bool nir_block_is_unreachable(nir_block *block);
3951
3952 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
3953 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
3954
3955 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
3956 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
3957
3958 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
3959 void nir_dump_cfg(nir_shader *shader, FILE *fp);
3960
3961 int nir_gs_count_vertices(const nir_shader *shader);
3962
3963 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
3964 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
3965 bool nir_split_var_copies(nir_shader *shader);
3966 bool nir_split_per_member_structs(nir_shader *shader);
3967 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
3968
3969 bool nir_lower_returns_impl(nir_function_impl *impl);
3970 bool nir_lower_returns(nir_shader *shader);
3971
3972 void nir_inline_function_impl(struct nir_builder *b,
3973 const nir_function_impl *impl,
3974 nir_ssa_def **params);
3975 bool nir_inline_functions(nir_shader *shader);
3976
3977 bool nir_propagate_invariant(nir_shader *shader);
3978
3979 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
3980 void nir_lower_deref_copy_instr(struct nir_builder *b,
3981 nir_intrinsic_instr *copy);
3982 bool nir_lower_var_copies(nir_shader *shader);
3983
3984 void nir_fixup_deref_modes(nir_shader *shader);
3985
3986 bool nir_lower_global_vars_to_local(nir_shader *shader);
3987
3988 typedef enum {
3989 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
3990 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
3991 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
3992 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
3993 } nir_lower_array_deref_of_vec_options;
3994
3995 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
3996 nir_lower_array_deref_of_vec_options options);
3997
3998 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
3999
4000 bool nir_lower_locals_to_regs(nir_shader *shader);
4001
4002 void nir_lower_io_to_temporaries(nir_shader *shader,
4003 nir_function_impl *entrypoint,
4004 bool outputs, bool inputs);
4005
4006 bool nir_lower_vars_to_scratch(nir_shader *shader,
4007 nir_variable_mode modes,
4008 int size_threshold,
4009 glsl_type_size_align_func size_align);
4010
4011 void nir_lower_clip_halfz(nir_shader *shader);
4012
4013 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
4014
4015 void nir_gather_ssa_types(nir_function_impl *impl,
4016 BITSET_WORD *float_types,
4017 BITSET_WORD *int_types);
4018
4019 void nir_assign_var_locations(nir_shader *shader, nir_variable_mode mode,
4020 unsigned *size,
4021 int (*type_size)(const struct glsl_type *, bool));
4022
4023 /* Some helpers to do very simple linking */
4024 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
4025 bool nir_remove_unused_io_vars(nir_shader *shader, nir_variable_mode mode,
4026 uint64_t *used_by_other_stage,
4027 uint64_t *used_by_other_stage_patches);
4028 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
4029 bool default_to_smooth_interp);
4030 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
4031 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
4032
4033 bool nir_lower_amul(nir_shader *shader,
4034 int (*type_size)(const struct glsl_type *, bool));
4035
4036 void nir_assign_io_var_locations(nir_shader *shader,
4037 nir_variable_mode mode,
4038 unsigned *size,
4039 gl_shader_stage stage);
4040
4041 typedef struct {
4042 uint8_t num_linked_io_vars;
4043 uint8_t num_linked_patch_io_vars;
4044 } nir_linked_io_var_info;
4045
4046 nir_linked_io_var_info
4047 nir_assign_linked_io_var_locations(nir_shader *producer,
4048 nir_shader *consumer);
4049
4050 typedef enum {
4051 /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
4052 * to 32-bit operations. This is only valid for nir_var_shader_in/out
4053 * modes.
4054 */
4055 nir_lower_io_lower_64bit_to_32 = (1 << 0),
4056
4057 /* If set, this forces all non-flat fragment shader inputs to be
4058 * interpolated as if with the "sample" qualifier. This requires
4059 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
4060 */
4061 nir_lower_io_force_sample_interpolation = (1 << 1),
4062 } nir_lower_io_options;
4063 bool nir_lower_io(nir_shader *shader,
4064 nir_variable_mode modes,
4065 int (*type_size)(const struct glsl_type *, bool),
4066 nir_lower_io_options);
4067
4068 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode);
4069
4070 bool
4071 nir_lower_vars_to_explicit_types(nir_shader *shader,
4072 nir_variable_mode modes,
4073 glsl_type_size_align_func type_info);
4074
4075 typedef enum {
4076 /**
4077 * An address format which is a simple 32-bit global GPU address.
4078 */
4079 nir_address_format_32bit_global,
4080
4081 /**
4082 * An address format which is a simple 64-bit global GPU address.
4083 */
4084 nir_address_format_64bit_global,
4085
4086 /**
4087 * An address format which is a bounds-checked 64-bit global GPU address.
4088 *
4089 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
4090 * address stored with the low bits in .x and high bits in .y, .z is a
4091 * size, and .w is an offset. When the final I/O operation is lowered, .w
4092 * is checked against .z and the operation is predicated on the result.
4093 */
4094 nir_address_format_64bit_bounded_global,
4095
4096 /**
4097 * An address format which is comprised of a vec2 where the first
4098 * component is a buffer index and the second is an offset.
4099 */
4100 nir_address_format_32bit_index_offset,
4101
4102 /**
4103 * An address format which is a 64-bit value, where the high 32 bits
4104 * are a buffer index, and the low 32 bits are an offset.
4105 */
4106 nir_address_format_32bit_index_offset_pack64,
4107
4108 /**
4109 * An address format which is comprised of a vec3 where the first two
4110 * components specify the buffer and the third is an offset.
4111 */
4112 nir_address_format_vec2_index_32bit_offset,
4113
4114 /**
4115 * An address format which is a simple 32-bit offset.
4116 */
4117 nir_address_format_32bit_offset,
4118
4119 /**
4120 * An address format which is a simple 32-bit offset cast to 64-bit.
4121 */
4122 nir_address_format_32bit_offset_as_64bit,
4123
4124 /**
4125 * An address format representing a purely logical addressing model. In
4126 * this model, all deref chains must be complete from the dereference
4127 * operation to the variable. Cast derefs are not allowed. These
4128 * addresses will be 32-bit scalars but the format is immaterial because
4129 * you can always chase the chain.
4130 */
4131 nir_address_format_logical,
4132 } nir_address_format;
4133
4134 static inline unsigned
4135 nir_address_format_bit_size(nir_address_format addr_format)
4136 {
4137 switch (addr_format) {
4138 case nir_address_format_32bit_global: return 32;
4139 case nir_address_format_64bit_global: return 64;
4140 case nir_address_format_64bit_bounded_global: return 32;
4141 case nir_address_format_32bit_index_offset: return 32;
4142 case nir_address_format_32bit_index_offset_pack64: return 64;
4143 case nir_address_format_vec2_index_32bit_offset: return 32;
4144 case nir_address_format_32bit_offset: return 32;
4145 case nir_address_format_32bit_offset_as_64bit: return 64;
4146 case nir_address_format_logical: return 32;
4147 }
4148 unreachable("Invalid address format");
4149 }
4150
4151 static inline unsigned
4152 nir_address_format_num_components(nir_address_format addr_format)
4153 {
4154 switch (addr_format) {
4155 case nir_address_format_32bit_global: return 1;
4156 case nir_address_format_64bit_global: return 1;
4157 case nir_address_format_64bit_bounded_global: return 4;
4158 case nir_address_format_32bit_index_offset: return 2;
4159 case nir_address_format_32bit_index_offset_pack64: return 1;
4160 case nir_address_format_vec2_index_32bit_offset: return 3;
4161 case nir_address_format_32bit_offset: return 1;
4162 case nir_address_format_32bit_offset_as_64bit: return 1;
4163 case nir_address_format_logical: return 1;
4164 }
4165 unreachable("Invalid address format");
4166 }
4167
4168 static inline const struct glsl_type *
4169 nir_address_format_to_glsl_type(nir_address_format addr_format)
4170 {
4171 unsigned bit_size = nir_address_format_bit_size(addr_format);
4172 assert(bit_size == 32 || bit_size == 64);
4173 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
4174 nir_address_format_num_components(addr_format));
4175 }
4176
4177 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
4178
4179 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
4180 nir_address_format addr_format);
4181
4182 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
4183 nir_address_format addr_format);
4184
4185 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
4186 nir_deref_instr *deref,
4187 nir_ssa_def *base_addr,
4188 nir_address_format addr_format);
4189 void nir_lower_explicit_io_instr(struct nir_builder *b,
4190 nir_intrinsic_instr *io_instr,
4191 nir_ssa_def *addr,
4192 nir_address_format addr_format);
4193
4194 bool nir_lower_explicit_io(nir_shader *shader,
4195 nir_variable_mode modes,
4196 nir_address_format);
4197
4198 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
4199 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
4200
4201 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
4202
4203 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
4204 bool nir_lower_regs_to_ssa(nir_shader *shader);
4205 bool nir_lower_vars_to_ssa(nir_shader *shader);
4206
4207 bool nir_remove_dead_derefs(nir_shader *shader);
4208 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
4209 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes,
4210 bool (*can_remove_var)(nir_variable *var));
4211 bool nir_lower_variable_initializers(nir_shader *shader,
4212 nir_variable_mode modes);
4213
4214 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
4215 bool nir_lower_vec_to_movs(nir_shader *shader);
4216 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
4217 bool alpha_to_one,
4218 const gl_state_index16 *alpha_ref_state_tokens);
4219 bool nir_lower_alu(nir_shader *shader);
4220
4221 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
4222 bool always_precise, bool have_ffma);
4223
4224 bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
4225 bool nir_lower_bool_to_bitsize(nir_shader *shader);
4226 bool nir_lower_bool_to_float(nir_shader *shader);
4227 bool nir_lower_bool_to_int32(nir_shader *shader);
4228 bool nir_lower_int_to_float(nir_shader *shader);
4229 bool nir_lower_load_const_to_scalar(nir_shader *shader);
4230 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
4231 bool nir_lower_phis_to_scalar(nir_shader *shader);
4232 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
4233 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
4234 bool outputs_only);
4235 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
4236 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
4237 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
4238
4239 bool nir_lower_fragcolor(nir_shader *shader);
4240 bool nir_lower_fragcoord_wtrans(nir_shader *shader);
4241 void nir_lower_viewport_transform(nir_shader *shader);
4242 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
4243
4244 typedef struct nir_lower_subgroups_options {
4245 uint8_t subgroup_size;
4246 uint8_t ballot_bit_size;
4247 bool lower_to_scalar:1;
4248 bool lower_vote_trivial:1;
4249 bool lower_vote_eq_to_ballot:1;
4250 bool lower_subgroup_masks:1;
4251 bool lower_shuffle:1;
4252 bool lower_shuffle_to_32bit:1;
4253 bool lower_shuffle_to_swizzle_amd:1;
4254 bool lower_quad:1;
4255 bool lower_quad_broadcast_dynamic:1;
4256 bool lower_quad_broadcast_dynamic_to_const:1;
4257 } nir_lower_subgroups_options;
4258
4259 bool nir_lower_subgroups(nir_shader *shader,
4260 const nir_lower_subgroups_options *options);
4261
4262 bool nir_lower_system_values(nir_shader *shader);
4263
4264 enum PACKED nir_lower_tex_packing {
4265 nir_lower_tex_packing_none = 0,
4266 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
4267 * or unsigned ints based on the sampler type
4268 */
4269 nir_lower_tex_packing_16,
4270 /* The sampler returns 1 32-bit word of 4x8 unorm */
4271 nir_lower_tex_packing_8,
4272 };
4273
4274 typedef struct nir_lower_tex_options {
4275 /**
4276 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
4277 * sampler types a texture projector is lowered.
4278 */
4279 unsigned lower_txp;
4280
4281 /**
4282 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
4283 */
4284 bool lower_txf_offset;
4285
4286 /**
4287 * If true, lower away nir_tex_src_offset for all rect textures.
4288 */
4289 bool lower_rect_offset;
4290
4291 /**
4292 * If true, lower rect textures to 2D, using txs to fetch the
4293 * texture dimensions and dividing the texture coords by the
4294 * texture dims to normalize.
4295 */
4296 bool lower_rect;
4297
4298 /**
4299 * If true, convert yuv to rgb.
4300 */
4301 unsigned lower_y_uv_external;
4302 unsigned lower_y_u_v_external;
4303 unsigned lower_yx_xuxv_external;
4304 unsigned lower_xy_uxvx_external;
4305 unsigned lower_ayuv_external;
4306 unsigned lower_xyuv_external;
4307 unsigned bt709_external;
4308 unsigned bt2020_external;
4309
4310 /**
4311 * To emulate certain texture wrap modes, this can be used
4312 * to saturate the specified tex coord to [0.0, 1.0]. The
4313 * bits are according to sampler #, ie. if, for example:
4314 *
4315 * (conf->saturate_s & (1 << n))
4316 *
4317 * is true, then the s coord for sampler n is saturated.
4318 *
4319 * Note that clamping must happen *after* projector lowering
4320 * so any projected texture sample instruction with a clamped
4321 * coordinate gets automatically lowered, regardless of the
4322 * 'lower_txp' setting.
4323 */
4324 unsigned saturate_s;
4325 unsigned saturate_t;
4326 unsigned saturate_r;
4327
4328 /* Bitmask of textures that need swizzling.
4329 *
4330 * If (swizzle_result & (1 << texture_index)), then the swizzle in
4331 * swizzles[texture_index] is applied to the result of the texturing
4332 * operation.
4333 */
4334 unsigned swizzle_result;
4335
4336 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
4337 * while 4 and 5 represent 0 and 1 respectively.
4338 */
4339 uint8_t swizzles[32][4];
4340
4341 /* Can be used to scale sampled values in range required by the format. */
4342 float scale_factors[32];
4343
4344 /**
4345 * Bitmap of textures that need srgb to linear conversion. If
4346 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
4347 * of the texture are lowered to linear.
4348 */
4349 unsigned lower_srgb;
4350
4351 /**
4352 * If true, lower nir_texop_tex on shaders that doesn't support implicit
4353 * LODs to nir_texop_txl.
4354 */
4355 bool lower_tex_without_implicit_lod;
4356
4357 /**
4358 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
4359 */
4360 bool lower_txd_cube_map;
4361
4362 /**
4363 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
4364 */
4365 bool lower_txd_3d;
4366
4367 /**
4368 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
4369 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
4370 * with lower_txd_cube_map.
4371 */
4372 bool lower_txd_shadow;
4373
4374 /**
4375 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
4376 * Implies lower_txd_cube_map and lower_txd_shadow.
4377 */
4378 bool lower_txd;
4379
4380 /**
4381 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
4382 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
4383 */
4384 bool lower_txb_shadow_clamp;
4385
4386 /**
4387 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
4388 * with nir_texop_txl. This includes cube maps.
4389 */
4390 bool lower_txd_shadow_clamp;
4391
4392 /**
4393 * If true, lower nir_texop_txd on when it uses both offset and min_lod
4394 * with nir_texop_txl. This includes cube maps.
4395 */
4396 bool lower_txd_offset_clamp;
4397
4398 /**
4399 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
4400 * sampler is bindless.
4401 */
4402 bool lower_txd_clamp_bindless_sampler;
4403
4404 /**
4405 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
4406 * sampler index is not statically determinable to be less than 16.
4407 */
4408 bool lower_txd_clamp_if_sampler_index_not_lt_16;
4409
4410 /**
4411 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
4412 * 0-lod followed by a nir_ishr.
4413 */
4414 bool lower_txs_lod;
4415
4416 /**
4417 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
4418 * mixed-up tg4 locations.
4419 */
4420 bool lower_tg4_broadcom_swizzle;
4421
4422 /**
4423 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
4424 */
4425 bool lower_tg4_offsets;
4426
4427 enum nir_lower_tex_packing lower_tex_packing[32];
4428 } nir_lower_tex_options;
4429
4430 bool nir_lower_tex(nir_shader *shader,
4431 const nir_lower_tex_options *options);
4432
4433 enum nir_lower_non_uniform_access_type {
4434 nir_lower_non_uniform_ubo_access = (1 << 0),
4435 nir_lower_non_uniform_ssbo_access = (1 << 1),
4436 nir_lower_non_uniform_texture_access = (1 << 2),
4437 nir_lower_non_uniform_image_access = (1 << 3),
4438 };
4439
4440 bool nir_lower_non_uniform_access(nir_shader *shader,
4441 enum nir_lower_non_uniform_access_type);
4442
4443 enum nir_lower_idiv_path {
4444 /* This path is based on NV50LegalizeSSA::handleDIV(). It is the faster of
4445 * the two but it is not exact in some cases (for example, 1091317713u /
4446 * 1034u gives 5209173 instead of 1055432) */
4447 nir_lower_idiv_fast,
4448 /* This path is based on AMDGPUTargetLowering::LowerUDIVREM() and
4449 * AMDGPUTargetLowering::LowerSDIVREM(). It requires more instructions than
4450 * the nv50 path and many of them are integer multiplications, so it is
4451 * probably slower. It should always return the correct result, though. */
4452 nir_lower_idiv_precise,
4453 };
4454
4455 bool nir_lower_idiv(nir_shader *shader, enum nir_lower_idiv_path path);
4456
4457 bool nir_lower_input_attachments(nir_shader *shader, bool use_fragcoord_sysval);
4458
4459 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
4460 bool use_vars,
4461 bool use_clipdist_array,
4462 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4463 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
4464 bool use_clipdist_array,
4465 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4466 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
4467 bool use_clipdist_array);
4468 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
4469 bool nir_lower_clip_disable(nir_shader *shader, unsigned clip_plane_enable);
4470
4471 void nir_lower_point_size_mov(nir_shader *shader,
4472 const gl_state_index16 *pointsize_state_tokens);
4473
4474 bool nir_lower_frexp(nir_shader *nir);
4475
4476 void nir_lower_two_sided_color(nir_shader *shader, bool face_sysval);
4477
4478 bool nir_lower_clamp_color_outputs(nir_shader *shader);
4479
4480 bool nir_lower_flatshade(nir_shader *shader);
4481
4482 void nir_lower_passthrough_edgeflags(nir_shader *shader);
4483 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
4484 const gl_state_index16 *uniform_state_tokens);
4485
4486 typedef struct nir_lower_wpos_ytransform_options {
4487 gl_state_index16 state_tokens[STATE_LENGTH];
4488 bool fs_coord_origin_upper_left :1;
4489 bool fs_coord_origin_lower_left :1;
4490 bool fs_coord_pixel_center_integer :1;
4491 bool fs_coord_pixel_center_half_integer :1;
4492 } nir_lower_wpos_ytransform_options;
4493
4494 bool nir_lower_wpos_ytransform(nir_shader *shader,
4495 const nir_lower_wpos_ytransform_options *options);
4496 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
4497
4498 bool nir_lower_wrmasks(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
4499
4500 bool nir_lower_fb_read(nir_shader *shader);
4501
4502 typedef struct nir_lower_drawpixels_options {
4503 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
4504 gl_state_index16 scale_state_tokens[STATE_LENGTH];
4505 gl_state_index16 bias_state_tokens[STATE_LENGTH];
4506 unsigned drawpix_sampler;
4507 unsigned pixelmap_sampler;
4508 bool pixel_maps :1;
4509 bool scale_and_bias :1;
4510 } nir_lower_drawpixels_options;
4511
4512 void nir_lower_drawpixels(nir_shader *shader,
4513 const nir_lower_drawpixels_options *options);
4514
4515 typedef struct nir_lower_bitmap_options {
4516 unsigned sampler;
4517 bool swizzle_xxxx;
4518 } nir_lower_bitmap_options;
4519
4520 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
4521
4522 bool nir_lower_atomics_to_ssbo(nir_shader *shader);
4523
4524 typedef enum {
4525 nir_lower_int_source_mods = 1 << 0,
4526 nir_lower_float_source_mods = 1 << 1,
4527 nir_lower_triop_abs = 1 << 2,
4528 nir_lower_all_source_mods = (1 << 3) - 1
4529 } nir_lower_to_source_mods_flags;
4530
4531
4532 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
4533
4534 bool nir_lower_gs_intrinsics(nir_shader *shader, bool per_stream);
4535
4536 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
4537
4538 bool nir_lower_bit_size(nir_shader *shader,
4539 nir_lower_bit_size_callback callback,
4540 void *callback_data);
4541
4542 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
4543 bool nir_lower_int64(nir_shader *shader);
4544
4545 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
4546 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
4547 nir_lower_doubles_options options);
4548 bool nir_lower_pack(nir_shader *shader);
4549
4550 void nir_lower_mediump_outputs(nir_shader *nir);
4551
4552 bool nir_lower_point_size(nir_shader *shader, float min, float max);
4553
4554 typedef enum {
4555 nir_lower_interpolation_at_sample = (1 << 1),
4556 nir_lower_interpolation_at_offset = (1 << 2),
4557 nir_lower_interpolation_centroid = (1 << 3),
4558 nir_lower_interpolation_pixel = (1 << 4),
4559 nir_lower_interpolation_sample = (1 << 5),
4560 } nir_lower_interpolation_options;
4561
4562 bool nir_lower_interpolation(nir_shader *shader,
4563 nir_lower_interpolation_options options);
4564
4565 bool nir_lower_discard_to_demote(nir_shader *shader);
4566
4567 bool nir_lower_memory_model(nir_shader *shader);
4568
4569 bool nir_lower_goto_ifs(nir_shader *shader);
4570
4571 bool nir_normalize_cubemap_coords(nir_shader *shader);
4572
4573 void nir_live_ssa_defs_impl(nir_function_impl *impl);
4574
4575 void nir_loop_analyze_impl(nir_function_impl *impl,
4576 nir_variable_mode indirect_mask);
4577
4578 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
4579
4580 bool nir_repair_ssa_impl(nir_function_impl *impl);
4581 bool nir_repair_ssa(nir_shader *shader);
4582
4583 void nir_convert_loop_to_lcssa(nir_loop *loop);
4584 bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
4585 void nir_divergence_analysis(nir_shader *shader, nir_divergence_options options);
4586
4587 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
4588 * registers. If false, convert all values (even those not involved in a phi
4589 * node) to registers.
4590 */
4591 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
4592
4593 bool nir_lower_phis_to_regs_block(nir_block *block);
4594 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
4595 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
4596
4597 bool nir_lower_samplers(nir_shader *shader);
4598 bool nir_lower_ssbo(nir_shader *shader);
4599
4600 /* This is here for unit tests. */
4601 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
4602
4603 bool nir_opt_comparison_pre(nir_shader *shader);
4604
4605 bool nir_opt_access(nir_shader *shader);
4606 bool nir_opt_algebraic(nir_shader *shader);
4607 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
4608 bool nir_opt_algebraic_late(nir_shader *shader);
4609 bool nir_opt_algebraic_distribute_src_mods(nir_shader *shader);
4610 bool nir_opt_constant_folding(nir_shader *shader);
4611
4612 /* Try to combine a and b into a. Return true if combination was possible,
4613 * which will result in b being removed by the pass. Return false if
4614 * combination wasn't possible.
4615 */
4616 typedef bool (*nir_combine_memory_barrier_cb)(
4617 nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *data);
4618
4619 bool nir_opt_combine_memory_barriers(nir_shader *shader,
4620 nir_combine_memory_barrier_cb combine_cb,
4621 void *data);
4622
4623 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
4624
4625 bool nir_copy_prop(nir_shader *shader);
4626
4627 bool nir_opt_copy_prop_vars(nir_shader *shader);
4628
4629 bool nir_opt_cse(nir_shader *shader);
4630
4631 bool nir_opt_dce(nir_shader *shader);
4632
4633 bool nir_opt_dead_cf(nir_shader *shader);
4634
4635 bool nir_opt_dead_write_vars(nir_shader *shader);
4636
4637 bool nir_opt_deref_impl(nir_function_impl *impl);
4638 bool nir_opt_deref(nir_shader *shader);
4639
4640 bool nir_opt_find_array_copies(nir_shader *shader);
4641
4642 bool nir_opt_gcm(nir_shader *shader, bool value_number);
4643
4644 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
4645
4646 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
4647
4648 bool nir_opt_intrinsics(nir_shader *shader);
4649
4650 bool nir_opt_large_constants(nir_shader *shader,
4651 glsl_type_size_align_func size_align,
4652 unsigned threshold);
4653
4654 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
4655
4656 typedef enum {
4657 nir_move_const_undef = (1 << 0),
4658 nir_move_load_ubo = (1 << 1),
4659 nir_move_load_input = (1 << 2),
4660 nir_move_comparisons = (1 << 3),
4661 nir_move_copies = (1 << 4),
4662 } nir_move_options;
4663
4664 bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
4665
4666 bool nir_opt_sink(nir_shader *shader, nir_move_options options);
4667
4668 bool nir_opt_move(nir_shader *shader, nir_move_options options);
4669
4670 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
4671 bool indirect_load_ok, bool expensive_alu_ok);
4672
4673 bool nir_opt_rematerialize_compares(nir_shader *shader);
4674
4675 bool nir_opt_remove_phis(nir_shader *shader);
4676 bool nir_opt_remove_phis_block(nir_block *block);
4677
4678 bool nir_opt_shrink_vectors(nir_shader *shader);
4679
4680 bool nir_opt_trivial_continues(nir_shader *shader);
4681
4682 bool nir_opt_undef(nir_shader *shader);
4683
4684 bool nir_opt_vectorize(nir_shader *shader);
4685
4686 bool nir_opt_conditional_discard(nir_shader *shader);
4687
4688 typedef bool (*nir_should_vectorize_mem_func)(unsigned align, unsigned bit_size,
4689 unsigned num_components, unsigned high_offset,
4690 nir_intrinsic_instr *low, nir_intrinsic_instr *high);
4691
4692 bool nir_opt_load_store_vectorize(nir_shader *shader, nir_variable_mode modes,
4693 nir_should_vectorize_mem_func callback,
4694 nir_variable_mode robust_modes);
4695
4696 void nir_sweep(nir_shader *shader);
4697
4698 void nir_remap_dual_slot_attributes(nir_shader *shader,
4699 uint64_t *dual_slot_inputs);
4700 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
4701
4702 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
4703 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
4704
4705 static inline bool
4706 nir_variable_is_in_ubo(const nir_variable *var)
4707 {
4708 return (var->data.mode == nir_var_mem_ubo &&
4709 var->interface_type != NULL);
4710 }
4711
4712 static inline bool
4713 nir_variable_is_in_ssbo(const nir_variable *var)
4714 {
4715 return (var->data.mode == nir_var_mem_ssbo &&
4716 var->interface_type != NULL);
4717 }
4718
4719 static inline bool
4720 nir_variable_is_in_block(const nir_variable *var)
4721 {
4722 return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
4723 }
4724
4725 typedef struct nir_unsigned_upper_bound_config {
4726 unsigned min_subgroup_size;
4727 unsigned max_subgroup_size;
4728 unsigned max_work_group_invocations;
4729 unsigned max_work_group_count[3];
4730 unsigned max_work_group_size[3];
4731
4732 uint32_t vertex_attrib_max[32];
4733 } nir_unsigned_upper_bound_config;
4734
4735 uint32_t
4736 nir_unsigned_upper_bound(nir_shader *shader, struct hash_table *range_ht,
4737 nir_ssa_scalar scalar,
4738 const nir_unsigned_upper_bound_config *config);
4739
4740 bool
4741 nir_addition_might_overflow(nir_shader *shader, struct hash_table *range_ht,
4742 nir_ssa_scalar ssa, unsigned const_val,
4743 const nir_unsigned_upper_bound_config *config);
4744
4745 #ifdef __cplusplus
4746 } /* extern "C" */
4747 #endif
4748
4749 #endif /* NIR_H */