nir: use enum operator helper for nir_variable_mode and nir_metadata
[mesa.git] / src / compiler / nir / nir.h
1 /*
2 * Copyright © 2014 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Connor Abbott (cwabbott0@gmail.com)
25 *
26 */
27
28 #ifndef NIR_H
29 #define NIR_H
30
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/ralloc.h"
36 #include "util/set.h"
37 #include "util/bitscan.h"
38 #include "util/bitset.h"
39 #include "util/enum_operators.h"
40 #include "util/macros.h"
41 #include "util/format/u_format.h"
42 #include "compiler/nir_types.h"
43 #include "compiler/shader_enums.h"
44 #include "compiler/shader_info.h"
45 #define XXH_INLINE_ALL
46 #include "util/xxhash.h"
47 #include <stdio.h>
48
49 #ifndef NDEBUG
50 #include "util/debug.h"
51 #endif /* NDEBUG */
52
53 #include "nir_opcodes.h"
54
55 #if defined(_WIN32) && !defined(snprintf)
56 #define snprintf _snprintf
57 #endif
58
59 #ifdef __cplusplus
60 extern "C" {
61 #endif
62
63 #define NIR_FALSE 0u
64 #define NIR_TRUE (~0u)
65 #define NIR_MAX_VEC_COMPONENTS 16
66 #define NIR_MAX_MATRIX_COLUMNS 4
67 #define NIR_STREAM_PACKED (1 << 8)
68 typedef uint16_t nir_component_mask_t;
69
70 static inline bool
71 nir_num_components_valid(unsigned num_components)
72 {
73 return (num_components >= 1 &&
74 num_components <= 4) ||
75 num_components == 8 ||
76 num_components == 16;
77 }
78
79 /** Defines a cast function
80 *
81 * This macro defines a cast function from in_type to out_type where
82 * out_type is some structure type that contains a field of type out_type.
83 *
84 * Note that you have to be a bit careful as the generated cast function
85 * destroys constness.
86 */
87 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
88 type_field, type_value) \
89 static inline out_type * \
90 name(const in_type *parent) \
91 { \
92 assert(parent && parent->type_field == type_value); \
93 return exec_node_data(out_type, parent, field); \
94 }
95
96 struct nir_function;
97 struct nir_shader;
98 struct nir_instr;
99 struct nir_builder;
100
101
102 /**
103 * Description of built-in state associated with a uniform
104 *
105 * \sa nir_variable::state_slots
106 */
107 typedef struct {
108 gl_state_index16 tokens[STATE_LENGTH];
109 uint16_t swizzle;
110 } nir_state_slot;
111
112 typedef enum {
113 nir_var_shader_in = (1 << 0),
114 nir_var_shader_out = (1 << 1),
115 nir_var_shader_temp = (1 << 2),
116 nir_var_function_temp = (1 << 3),
117 nir_var_uniform = (1 << 4),
118 nir_var_mem_ubo = (1 << 5),
119 nir_var_system_value = (1 << 6),
120 nir_var_mem_ssbo = (1 << 7),
121 nir_var_mem_shared = (1 << 8),
122 nir_var_mem_global = (1 << 9),
123 nir_var_mem_push_const = (1 << 10), /* not actually used for variables */
124 nir_num_variable_modes = 11,
125 nir_var_all = (1 << nir_num_variable_modes) - 1,
126 } nir_variable_mode;
127 MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_variable_mode)
128
129 /**
130 * Rounding modes.
131 */
132 typedef enum {
133 nir_rounding_mode_undef = 0,
134 nir_rounding_mode_rtne = 1, /* round to nearest even */
135 nir_rounding_mode_ru = 2, /* round up */
136 nir_rounding_mode_rd = 3, /* round down */
137 nir_rounding_mode_rtz = 4, /* round towards zero */
138 } nir_rounding_mode;
139
140 typedef union {
141 bool b;
142 float f32;
143 double f64;
144 int8_t i8;
145 uint8_t u8;
146 int16_t i16;
147 uint16_t u16;
148 int32_t i32;
149 uint32_t u32;
150 int64_t i64;
151 uint64_t u64;
152 } nir_const_value;
153
154 #define nir_const_value_to_array(arr, c, components, m) \
155 { \
156 for (unsigned i = 0; i < components; ++i) \
157 arr[i] = c[i].m; \
158 } while (false)
159
160 static inline nir_const_value
161 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
162 {
163 nir_const_value v;
164 memset(&v, 0, sizeof(v));
165
166 switch (bit_size) {
167 case 1: v.b = x; break;
168 case 8: v.u8 = x; break;
169 case 16: v.u16 = x; break;
170 case 32: v.u32 = x; break;
171 case 64: v.u64 = x; break;
172 default:
173 unreachable("Invalid bit size");
174 }
175
176 return v;
177 }
178
179 static inline nir_const_value
180 nir_const_value_for_int(int64_t i, unsigned bit_size)
181 {
182 nir_const_value v;
183 memset(&v, 0, sizeof(v));
184
185 assert(bit_size <= 64);
186 if (bit_size < 64) {
187 assert(i >= (-(1ll << (bit_size - 1))));
188 assert(i < (1ll << (bit_size - 1)));
189 }
190
191 return nir_const_value_for_raw_uint(i, bit_size);
192 }
193
194 static inline nir_const_value
195 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
196 {
197 nir_const_value v;
198 memset(&v, 0, sizeof(v));
199
200 assert(bit_size <= 64);
201 if (bit_size < 64)
202 assert(u < (1ull << bit_size));
203
204 return nir_const_value_for_raw_uint(u, bit_size);
205 }
206
207 static inline nir_const_value
208 nir_const_value_for_bool(bool b, unsigned bit_size)
209 {
210 /* Booleans use a 0/-1 convention */
211 return nir_const_value_for_int(-(int)b, bit_size);
212 }
213
214 /* This one isn't inline because it requires half-float conversion */
215 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
216
217 static inline int64_t
218 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
219 {
220 switch (bit_size) {
221 /* int1_t uses 0/-1 convention */
222 case 1: return -(int)value.b;
223 case 8: return value.i8;
224 case 16: return value.i16;
225 case 32: return value.i32;
226 case 64: return value.i64;
227 default:
228 unreachable("Invalid bit size");
229 }
230 }
231
232 static inline uint64_t
233 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
234 {
235 switch (bit_size) {
236 case 1: return value.b;
237 case 8: return value.u8;
238 case 16: return value.u16;
239 case 32: return value.u32;
240 case 64: return value.u64;
241 default:
242 unreachable("Invalid bit size");
243 }
244 }
245
246 static inline bool
247 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
248 {
249 int64_t i = nir_const_value_as_int(value, bit_size);
250
251 /* Booleans of any size use 0/-1 convention */
252 assert(i == 0 || i == -1);
253
254 return i;
255 }
256
257 /* This one isn't inline because it requires half-float conversion */
258 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
259
260 typedef struct nir_constant {
261 /**
262 * Value of the constant.
263 *
264 * The field used to back the values supplied by the constant is determined
265 * by the type associated with the \c nir_variable. Constants may be
266 * scalars, vectors, or matrices.
267 */
268 nir_const_value values[NIR_MAX_VEC_COMPONENTS];
269
270 /* we could get this from the var->type but makes clone *much* easier to
271 * not have to care about the type.
272 */
273 unsigned num_elements;
274
275 /* Array elements / Structure Fields */
276 struct nir_constant **elements;
277 } nir_constant;
278
279 /**
280 * \brief Layout qualifiers for gl_FragDepth.
281 *
282 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
283 * with a layout qualifier.
284 */
285 typedef enum {
286 nir_depth_layout_none, /**< No depth layout is specified. */
287 nir_depth_layout_any,
288 nir_depth_layout_greater,
289 nir_depth_layout_less,
290 nir_depth_layout_unchanged
291 } nir_depth_layout;
292
293 /**
294 * Enum keeping track of how a variable was declared.
295 */
296 typedef enum {
297 /**
298 * Normal declaration.
299 */
300 nir_var_declared_normally = 0,
301
302 /**
303 * Variable is implicitly generated by the compiler and should not be
304 * visible via the API.
305 */
306 nir_var_hidden,
307 } nir_var_declaration_type;
308
309 /**
310 * Either a uniform, global variable, shader input, or shader output. Based on
311 * ir_variable - it should be easy to translate between the two.
312 */
313
314 typedef struct nir_variable {
315 struct exec_node node;
316
317 /**
318 * Declared type of the variable
319 */
320 const struct glsl_type *type;
321
322 /**
323 * Declared name of the variable
324 */
325 char *name;
326
327 struct nir_variable_data {
328 /**
329 * Storage class of the variable.
330 *
331 * \sa nir_variable_mode
332 */
333 unsigned mode:11;
334
335 /**
336 * Is the variable read-only?
337 *
338 * This is set for variables declared as \c const, shader inputs,
339 * and uniforms.
340 */
341 unsigned read_only:1;
342 unsigned centroid:1;
343 unsigned sample:1;
344 unsigned patch:1;
345 unsigned invariant:1;
346
347 /**
348 * Precision qualifier.
349 *
350 * In desktop GLSL we do not care about precision qualifiers at all, in
351 * fact, the spec says that precision qualifiers are ignored.
352 *
353 * To make things easy, we make it so that this field is always
354 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
355 * have the same precision value and the checks we add in the compiler
356 * for this field will never break a desktop shader compile.
357 */
358 unsigned precision:2;
359
360 /**
361 * Can this variable be coalesced with another?
362 *
363 * This is set by nir_lower_io_to_temporaries to say that any
364 * copies involving this variable should stay put. Propagating it can
365 * duplicate the resulting load/store, which is not wanted, and may
366 * result in a load/store of the variable with an indirect offset which
367 * the backend may not be able to handle.
368 */
369 unsigned cannot_coalesce:1;
370
371 /**
372 * When separate shader programs are enabled, only input/outputs between
373 * the stages of a multi-stage separate program can be safely removed
374 * from the shader interface. Other input/outputs must remains active.
375 *
376 * This is also used to make sure xfb varyings that are unused by the
377 * fragment shader are not removed.
378 */
379 unsigned always_active_io:1;
380
381 /**
382 * Interpolation mode for shader inputs / outputs
383 *
384 * \sa glsl_interp_mode
385 */
386 unsigned interpolation:3;
387
388 /**
389 * If non-zero, then this variable may be packed along with other variables
390 * into a single varying slot, so this offset should be applied when
391 * accessing components. For example, an offset of 1 means that the x
392 * component of this variable is actually stored in component y of the
393 * location specified by \c location.
394 */
395 unsigned location_frac:2;
396
397 /**
398 * If true, this variable represents an array of scalars that should
399 * be tightly packed. In other words, consecutive array elements
400 * should be stored one component apart, rather than one slot apart.
401 */
402 unsigned compact:1;
403
404 /**
405 * Whether this is a fragment shader output implicitly initialized with
406 * the previous contents of the specified render target at the
407 * framebuffer location corresponding to this shader invocation.
408 */
409 unsigned fb_fetch_output:1;
410
411 /**
412 * Non-zero if this variable is considered bindless as defined by
413 * ARB_bindless_texture.
414 */
415 unsigned bindless:1;
416
417 /**
418 * Was an explicit binding set in the shader?
419 */
420 unsigned explicit_binding:1;
421
422 /**
423 * Was the location explicitly set in the shader?
424 *
425 * If the location is explicitly set in the shader, it \b cannot be changed
426 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
427 * no effect).
428 */
429 unsigned explicit_location:1;
430
431 /**
432 * Was a transfer feedback buffer set in the shader?
433 */
434 unsigned explicit_xfb_buffer:1;
435
436 /**
437 * Was a transfer feedback stride set in the shader?
438 */
439 unsigned explicit_xfb_stride:1;
440
441 /**
442 * Was an explicit offset set in the shader?
443 */
444 unsigned explicit_offset:1;
445
446 /**
447 * Layout of the matrix. Uses glsl_matrix_layout values.
448 */
449 unsigned matrix_layout:2;
450
451 /**
452 * Non-zero if this variable was created by lowering a named interface
453 * block.
454 */
455 unsigned from_named_ifc_block:1;
456
457 /**
458 * How the variable was declared. See nir_var_declaration_type.
459 *
460 * This is used to detect variables generated by the compiler, so should
461 * not be visible via the API.
462 */
463 unsigned how_declared:2;
464
465 /**
466 * Is this variable per-view? If so, we know it must be an array with
467 * size corresponding to the number of views.
468 */
469 unsigned per_view:1;
470
471 /**
472 * \brief Layout qualifier for gl_FragDepth. See nir_depth_layout.
473 *
474 * This is not equal to \c ir_depth_layout_none if and only if this
475 * variable is \c gl_FragDepth and a layout qualifier is specified.
476 */
477 unsigned depth_layout:3;
478
479 /**
480 * Vertex stream output identifier.
481 *
482 * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
483 * indicate the stream of the i-th component.
484 */
485 unsigned stream:9;
486
487 /**
488 * See gl_access_qualifier.
489 *
490 * Access flags for memory variables (SSBO/global), image uniforms, and
491 * bindless images in uniforms/inputs/outputs.
492 */
493 unsigned access:8;
494
495 /**
496 * Descriptor set binding for sampler or UBO.
497 */
498 unsigned descriptor_set:5;
499
500 /**
501 * output index for dual source blending.
502 */
503 unsigned index;
504
505 /**
506 * Initial binding point for a sampler or UBO.
507 *
508 * For array types, this represents the binding point for the first element.
509 */
510 unsigned binding;
511
512 /**
513 * Storage location of the base of this variable
514 *
515 * The precise meaning of this field depends on the nature of the variable.
516 *
517 * - Vertex shader input: one of the values from \c gl_vert_attrib.
518 * - Vertex shader output: one of the values from \c gl_varying_slot.
519 * - Geometry shader input: one of the values from \c gl_varying_slot.
520 * - Geometry shader output: one of the values from \c gl_varying_slot.
521 * - Fragment shader input: one of the values from \c gl_varying_slot.
522 * - Fragment shader output: one of the values from \c gl_frag_result.
523 * - Uniforms: Per-stage uniform slot number for default uniform block.
524 * - Uniforms: Index within the uniform block definition for UBO members.
525 * - Non-UBO Uniforms: uniform slot number.
526 * - Other: This field is not currently used.
527 *
528 * If the variable is a uniform, shader input, or shader output, and the
529 * slot has not been assigned, the value will be -1.
530 */
531 int location;
532
533 /**
534 * The actual location of the variable in the IR. Only valid for inputs,
535 * outputs, and uniforms (including samplers and images).
536 */
537 unsigned driver_location;
538
539 /**
540 * Location an atomic counter or transform feedback is stored at.
541 */
542 unsigned offset;
543
544 union {
545 struct {
546 /** Image internal format if specified explicitly, otherwise PIPE_FORMAT_NONE. */
547 enum pipe_format format;
548 } image;
549
550 struct {
551 /**
552 * For OpenCL inline samplers. See cl_sampler_addressing_mode and cl_sampler_filter_mode
553 */
554 unsigned is_inline_sampler : 1;
555 unsigned addressing_mode : 3;
556 unsigned normalized_coordinates : 1;
557 unsigned filter_mode : 1;
558 } sampler;
559
560 struct {
561 /**
562 * Transform feedback buffer.
563 */
564 uint16_t buffer:2;
565
566 /**
567 * Transform feedback stride.
568 */
569 uint16_t stride;
570 } xfb;
571 };
572 } data;
573
574 /**
575 * Identifier for this variable generated by nir_index_vars() that is unique
576 * among other variables in the same exec_list.
577 */
578 unsigned index;
579
580 /* Number of nir_variable_data members */
581 uint16_t num_members;
582
583 /**
584 * Built-in state that backs this uniform
585 *
586 * Once set at variable creation, \c state_slots must remain invariant.
587 * This is because, ideally, this array would be shared by all clones of
588 * this variable in the IR tree. In other words, we'd really like for it
589 * to be a fly-weight.
590 *
591 * If the variable is not a uniform, \c num_state_slots will be zero and
592 * \c state_slots will be \c NULL.
593 */
594 /*@{*/
595 uint16_t num_state_slots; /**< Number of state slots used */
596 nir_state_slot *state_slots; /**< State descriptors. */
597 /*@}*/
598
599 /**
600 * Constant expression assigned in the initializer of the variable
601 *
602 * This field should only be used temporarily by creators of NIR shaders
603 * and then lower_constant_initializers can be used to get rid of them.
604 * Most of the rest of NIR ignores this field or asserts that it's NULL.
605 */
606 nir_constant *constant_initializer;
607
608 /**
609 * Global variable assigned in the initializer of the variable
610 * This field should only be used temporarily by creators of NIR shaders
611 * and then lower_constant_initializers can be used to get rid of them.
612 * Most of the rest of NIR ignores this field or asserts that it's NULL.
613 */
614 struct nir_variable *pointer_initializer;
615
616 /**
617 * For variables that are in an interface block or are an instance of an
618 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
619 *
620 * \sa ir_variable::location
621 */
622 const struct glsl_type *interface_type;
623
624 /**
625 * Description of per-member data for per-member struct variables
626 *
627 * This is used for variables which are actually an amalgamation of
628 * multiple entities such as a struct of built-in values or a struct of
629 * inputs each with their own layout specifier. This is only allowed on
630 * variables with a struct or array of array of struct type.
631 */
632 struct nir_variable_data *members;
633 } nir_variable;
634
635 static inline bool
636 _nir_shader_variable_has_mode(nir_variable *var, unsigned modes)
637 {
638 /* This isn't a shader variable */
639 assert(!(modes & nir_var_function_temp));
640 return var->data.mode & modes;
641 }
642
643 #define nir_foreach_variable_in_list(var, var_list) \
644 foreach_list_typed(nir_variable, var, node, var_list)
645
646 #define nir_foreach_variable_in_list_safe(var, var_list) \
647 foreach_list_typed_safe(nir_variable, var, node, var_list)
648
649 #define nir_foreach_variable_in_shader(var, shader) \
650 nir_foreach_variable_in_list(var, &(shader)->variables)
651
652 #define nir_foreach_variable_in_shader_safe(var, shader) \
653 nir_foreach_variable_in_list_safe(var, &(shader)->variables)
654
655 #define nir_foreach_variable_with_modes(var, shader, modes) \
656 nir_foreach_variable_in_shader(var, shader) \
657 if (_nir_shader_variable_has_mode(var, modes))
658
659 #define nir_foreach_variable_with_modes_safe(var, shader, modes) \
660 nir_foreach_variable_in_shader_safe(var, shader) \
661 if (_nir_shader_variable_has_mode(var, modes))
662
663 #define nir_foreach_shader_in_variable(var, shader) \
664 nir_foreach_variable_with_modes(var, shader, nir_var_shader_in)
665
666 #define nir_foreach_shader_in_variable_safe(var, shader) \
667 nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_in)
668
669 #define nir_foreach_shader_out_variable(var, shader) \
670 nir_foreach_variable_with_modes(var, shader, nir_var_shader_out)
671
672 #define nir_foreach_shader_out_variable_safe(var, shader) \
673 nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_out)
674
675 #define nir_foreach_uniform_variable(var, shader) \
676 nir_foreach_variable_with_modes(var, shader, nir_var_uniform)
677
678 #define nir_foreach_uniform_variable_safe(var, shader) \
679 nir_foreach_variable_with_modes_safe(var, shader, nir_var_uniform)
680
681 static inline bool
682 nir_variable_is_global(const nir_variable *var)
683 {
684 return var->data.mode != nir_var_function_temp;
685 }
686
687 typedef struct nir_register {
688 struct exec_node node;
689
690 unsigned num_components; /** < number of vector components */
691 unsigned num_array_elems; /** < size of array (0 for no array) */
692
693 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
694 uint8_t bit_size;
695
696 /** generic register index. */
697 unsigned index;
698
699 /** only for debug purposes, can be NULL */
700 const char *name;
701
702 /** set of nir_srcs where this register is used (read from) */
703 struct list_head uses;
704
705 /** set of nir_dests where this register is defined (written to) */
706 struct list_head defs;
707
708 /** set of nir_ifs where this register is used as a condition */
709 struct list_head if_uses;
710 } nir_register;
711
712 #define nir_foreach_register(reg, reg_list) \
713 foreach_list_typed(nir_register, reg, node, reg_list)
714 #define nir_foreach_register_safe(reg, reg_list) \
715 foreach_list_typed_safe(nir_register, reg, node, reg_list)
716
717 typedef enum PACKED {
718 nir_instr_type_alu,
719 nir_instr_type_deref,
720 nir_instr_type_call,
721 nir_instr_type_tex,
722 nir_instr_type_intrinsic,
723 nir_instr_type_load_const,
724 nir_instr_type_jump,
725 nir_instr_type_ssa_undef,
726 nir_instr_type_phi,
727 nir_instr_type_parallel_copy,
728 } nir_instr_type;
729
730 typedef struct nir_instr {
731 struct exec_node node;
732 struct nir_block *block;
733 nir_instr_type type;
734
735 /* A temporary for optimization and analysis passes to use for storing
736 * flags. For instance, DCE uses this to store the "dead/live" info.
737 */
738 uint8_t pass_flags;
739
740 /** generic instruction index. */
741 unsigned index;
742 } nir_instr;
743
744 static inline nir_instr *
745 nir_instr_next(nir_instr *instr)
746 {
747 struct exec_node *next = exec_node_get_next(&instr->node);
748 if (exec_node_is_tail_sentinel(next))
749 return NULL;
750 else
751 return exec_node_data(nir_instr, next, node);
752 }
753
754 static inline nir_instr *
755 nir_instr_prev(nir_instr *instr)
756 {
757 struct exec_node *prev = exec_node_get_prev(&instr->node);
758 if (exec_node_is_head_sentinel(prev))
759 return NULL;
760 else
761 return exec_node_data(nir_instr, prev, node);
762 }
763
764 static inline bool
765 nir_instr_is_first(const nir_instr *instr)
766 {
767 return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
768 }
769
770 static inline bool
771 nir_instr_is_last(const nir_instr *instr)
772 {
773 return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
774 }
775
776 typedef struct nir_ssa_def {
777 /** for debugging only, can be NULL */
778 const char* name;
779
780 /** generic SSA definition index. */
781 unsigned index;
782
783 /** Ordered SSA definition index used by nir_liveness. */
784 unsigned live_index;
785
786 /** Instruction which produces this SSA value. */
787 nir_instr *parent_instr;
788
789 /** set of nir_instrs where this register is used (read from) */
790 struct list_head uses;
791
792 /** set of nir_ifs where this register is used as a condition */
793 struct list_head if_uses;
794
795 uint8_t num_components;
796
797 /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
798 uint8_t bit_size;
799
800 /**
801 * True if this SSA value may have different values in different SIMD
802 * invocations of the shader. This is set by nir_divergence_analysis.
803 */
804 bool divergent;
805 } nir_ssa_def;
806
807 struct nir_src;
808
809 typedef struct {
810 nir_register *reg;
811 struct nir_src *indirect; /** < NULL for no indirect offset */
812 unsigned base_offset;
813
814 /* TODO use-def chain goes here */
815 } nir_reg_src;
816
817 typedef struct {
818 nir_instr *parent_instr;
819 struct list_head def_link;
820
821 nir_register *reg;
822 struct nir_src *indirect; /** < NULL for no indirect offset */
823 unsigned base_offset;
824
825 /* TODO def-use chain goes here */
826 } nir_reg_dest;
827
828 struct nir_if;
829
830 typedef struct nir_src {
831 union {
832 /** Instruction that consumes this value as a source. */
833 nir_instr *parent_instr;
834 struct nir_if *parent_if;
835 };
836
837 struct list_head use_link;
838
839 union {
840 nir_reg_src reg;
841 nir_ssa_def *ssa;
842 };
843
844 bool is_ssa;
845 } nir_src;
846
847 static inline nir_src
848 nir_src_init(void)
849 {
850 nir_src src = { { NULL } };
851 return src;
852 }
853
854 #define NIR_SRC_INIT nir_src_init()
855
856 #define nir_foreach_use(src, reg_or_ssa_def) \
857 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
858
859 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
860 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
861
862 #define nir_foreach_if_use(src, reg_or_ssa_def) \
863 list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
864
865 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
866 list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
867
868 typedef struct {
869 union {
870 nir_reg_dest reg;
871 nir_ssa_def ssa;
872 };
873
874 bool is_ssa;
875 } nir_dest;
876
877 static inline nir_dest
878 nir_dest_init(void)
879 {
880 nir_dest dest = { { { NULL } } };
881 return dest;
882 }
883
884 #define NIR_DEST_INIT nir_dest_init()
885
886 #define nir_foreach_def(dest, reg) \
887 list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
888
889 #define nir_foreach_def_safe(dest, reg) \
890 list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
891
892 static inline nir_src
893 nir_src_for_ssa(nir_ssa_def *def)
894 {
895 nir_src src = NIR_SRC_INIT;
896
897 src.is_ssa = true;
898 src.ssa = def;
899
900 return src;
901 }
902
903 static inline nir_src
904 nir_src_for_reg(nir_register *reg)
905 {
906 nir_src src = NIR_SRC_INIT;
907
908 src.is_ssa = false;
909 src.reg.reg = reg;
910 src.reg.indirect = NULL;
911 src.reg.base_offset = 0;
912
913 return src;
914 }
915
916 static inline nir_dest
917 nir_dest_for_reg(nir_register *reg)
918 {
919 nir_dest dest = NIR_DEST_INIT;
920
921 dest.reg.reg = reg;
922
923 return dest;
924 }
925
926 static inline unsigned
927 nir_src_bit_size(nir_src src)
928 {
929 return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
930 }
931
932 static inline unsigned
933 nir_src_num_components(nir_src src)
934 {
935 return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
936 }
937
938 static inline bool
939 nir_src_is_const(nir_src src)
940 {
941 return src.is_ssa &&
942 src.ssa->parent_instr->type == nir_instr_type_load_const;
943 }
944
945 static inline bool
946 nir_src_is_divergent(nir_src src)
947 {
948 assert(src.is_ssa);
949 return src.ssa->divergent;
950 }
951
952 static inline unsigned
953 nir_dest_bit_size(nir_dest dest)
954 {
955 return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
956 }
957
958 static inline unsigned
959 nir_dest_num_components(nir_dest dest)
960 {
961 return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
962 }
963
964 static inline bool
965 nir_dest_is_divergent(nir_dest dest)
966 {
967 assert(dest.is_ssa);
968 return dest.ssa.divergent;
969 }
970
971 /* Are all components the same, ie. .xxxx */
972 static inline bool
973 nir_is_same_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
974 {
975 for (unsigned i = 1; i < nr_comp; i++)
976 if (swiz[i] != swiz[0])
977 return false;
978 return true;
979 }
980
981 /* Are all components sequential, ie. .yzw */
982 static inline bool
983 nir_is_sequential_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
984 {
985 for (unsigned i = 1; i < nr_comp; i++)
986 if (swiz[i] != (swiz[0] + i))
987 return false;
988 return true;
989 }
990
991 void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
992 void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
993
994 typedef struct {
995 nir_src src;
996
997 /**
998 * \name input modifiers
999 */
1000 /*@{*/
1001 /**
1002 * For inputs interpreted as floating point, flips the sign bit. For
1003 * inputs interpreted as integers, performs the two's complement negation.
1004 */
1005 bool negate;
1006
1007 /**
1008 * Clears the sign bit for floating point values, and computes the integer
1009 * absolute value for integers. Note that the negate modifier acts after
1010 * the absolute value modifier, therefore if both are set then all inputs
1011 * will become negative.
1012 */
1013 bool abs;
1014 /*@}*/
1015
1016 /**
1017 * For each input component, says which component of the register it is
1018 * chosen from. Note that which elements of the swizzle are used and which
1019 * are ignored are based on the write mask for most opcodes - for example,
1020 * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
1021 * a swizzle of {2, x, 1, 0} where x means "don't care."
1022 */
1023 uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
1024 } nir_alu_src;
1025
1026 typedef struct {
1027 nir_dest dest;
1028
1029 /**
1030 * \name saturate output modifier
1031 *
1032 * Only valid for opcodes that output floating-point numbers. Clamps the
1033 * output to between 0.0 and 1.0 inclusive.
1034 */
1035
1036 bool saturate;
1037
1038 unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
1039 } nir_alu_dest;
1040
1041 /** NIR sized and unsized types
1042 *
1043 * The values in this enum are carefully chosen so that the sized type is
1044 * just the unsized type OR the number of bits.
1045 */
1046 typedef enum PACKED {
1047 nir_type_invalid = 0, /* Not a valid type */
1048 nir_type_int = 2,
1049 nir_type_uint = 4,
1050 nir_type_bool = 6,
1051 nir_type_float = 128,
1052 nir_type_bool1 = 1 | nir_type_bool,
1053 nir_type_bool8 = 8 | nir_type_bool,
1054 nir_type_bool16 = 16 | nir_type_bool,
1055 nir_type_bool32 = 32 | nir_type_bool,
1056 nir_type_int1 = 1 | nir_type_int,
1057 nir_type_int8 = 8 | nir_type_int,
1058 nir_type_int16 = 16 | nir_type_int,
1059 nir_type_int32 = 32 | nir_type_int,
1060 nir_type_int64 = 64 | nir_type_int,
1061 nir_type_uint1 = 1 | nir_type_uint,
1062 nir_type_uint8 = 8 | nir_type_uint,
1063 nir_type_uint16 = 16 | nir_type_uint,
1064 nir_type_uint32 = 32 | nir_type_uint,
1065 nir_type_uint64 = 64 | nir_type_uint,
1066 nir_type_float16 = 16 | nir_type_float,
1067 nir_type_float32 = 32 | nir_type_float,
1068 nir_type_float64 = 64 | nir_type_float,
1069 } nir_alu_type;
1070
1071 #define NIR_ALU_TYPE_SIZE_MASK 0x79
1072 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
1073
1074 static inline unsigned
1075 nir_alu_type_get_type_size(nir_alu_type type)
1076 {
1077 return type & NIR_ALU_TYPE_SIZE_MASK;
1078 }
1079
1080 static inline nir_alu_type
1081 nir_alu_type_get_base_type(nir_alu_type type)
1082 {
1083 return (nir_alu_type)(type & NIR_ALU_TYPE_BASE_TYPE_MASK);
1084 }
1085
1086 static inline nir_alu_type
1087 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
1088 {
1089 switch (base_type) {
1090 case GLSL_TYPE_BOOL:
1091 return nir_type_bool1;
1092 break;
1093 case GLSL_TYPE_UINT:
1094 return nir_type_uint32;
1095 break;
1096 case GLSL_TYPE_INT:
1097 return nir_type_int32;
1098 break;
1099 case GLSL_TYPE_UINT16:
1100 return nir_type_uint16;
1101 break;
1102 case GLSL_TYPE_INT16:
1103 return nir_type_int16;
1104 break;
1105 case GLSL_TYPE_UINT8:
1106 return nir_type_uint8;
1107 case GLSL_TYPE_INT8:
1108 return nir_type_int8;
1109 case GLSL_TYPE_UINT64:
1110 return nir_type_uint64;
1111 break;
1112 case GLSL_TYPE_INT64:
1113 return nir_type_int64;
1114 break;
1115 case GLSL_TYPE_FLOAT:
1116 return nir_type_float32;
1117 break;
1118 case GLSL_TYPE_FLOAT16:
1119 return nir_type_float16;
1120 break;
1121 case GLSL_TYPE_DOUBLE:
1122 return nir_type_float64;
1123 break;
1124
1125 case GLSL_TYPE_SAMPLER:
1126 case GLSL_TYPE_IMAGE:
1127 case GLSL_TYPE_ATOMIC_UINT:
1128 case GLSL_TYPE_STRUCT:
1129 case GLSL_TYPE_INTERFACE:
1130 case GLSL_TYPE_ARRAY:
1131 case GLSL_TYPE_VOID:
1132 case GLSL_TYPE_SUBROUTINE:
1133 case GLSL_TYPE_FUNCTION:
1134 case GLSL_TYPE_ERROR:
1135 return nir_type_invalid;
1136 }
1137
1138 unreachable("unknown type");
1139 }
1140
1141 static inline nir_alu_type
1142 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
1143 {
1144 return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
1145 }
1146
1147 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
1148 nir_rounding_mode rnd);
1149
1150 static inline nir_op
1151 nir_op_vec(unsigned components)
1152 {
1153 switch (components) {
1154 case 1: return nir_op_mov;
1155 case 2: return nir_op_vec2;
1156 case 3: return nir_op_vec3;
1157 case 4: return nir_op_vec4;
1158 case 8: return nir_op_vec8;
1159 case 16: return nir_op_vec16;
1160 default: unreachable("bad component count");
1161 }
1162 }
1163
1164 static inline bool
1165 nir_op_is_vec(nir_op op)
1166 {
1167 switch (op) {
1168 case nir_op_mov:
1169 case nir_op_vec2:
1170 case nir_op_vec3:
1171 case nir_op_vec4:
1172 case nir_op_vec8:
1173 case nir_op_vec16:
1174 return true;
1175 default:
1176 return false;
1177 }
1178 }
1179
1180 static inline bool
1181 nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
1182 {
1183 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
1184 (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
1185 (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1186 }
1187
1188 static inline bool
1189 nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1190 {
1191 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1192 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1193 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1194 }
1195
1196 static inline bool
1197 nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1198 {
1199 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1200 (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1201 (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1202 }
1203
1204 static inline bool
1205 nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1206 {
1207 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1208 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1209 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1210 }
1211
1212 static inline bool
1213 nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1214 {
1215 return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1216 (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1217 (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1218 }
1219
1220 static inline bool
1221 nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1222 {
1223 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1224 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1225 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1226 }
1227
1228 static inline bool
1229 nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1230 {
1231 return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1232 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1233 (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1234 }
1235
1236 static inline nir_rounding_mode
1237 nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1238 nir_alu_type type)
1239 {
1240 if (nir_alu_type_get_base_type(type) != nir_type_float)
1241 return nir_rounding_mode_undef;
1242
1243 unsigned bit_size = nir_alu_type_get_type_size(type);
1244
1245 if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1246 return nir_rounding_mode_rtz;
1247 if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1248 return nir_rounding_mode_rtne;
1249 return nir_rounding_mode_undef;
1250 }
1251
1252 static inline bool
1253 nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1254 {
1255 bool result =
1256 nir_has_any_rounding_mode_rtne(execution_mode) ||
1257 nir_has_any_rounding_mode_rtz(execution_mode);
1258 return result;
1259 }
1260
1261 typedef enum {
1262 /**
1263 * Operation where the first two sources are commutative.
1264 *
1265 * For 2-source operations, this just mathematical commutativity. Some
1266 * 3-source operations, like ffma, are only commutative in the first two
1267 * sources.
1268 */
1269 NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1270 NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1271 } nir_op_algebraic_property;
1272
1273 typedef struct {
1274 const char *name;
1275
1276 uint8_t num_inputs;
1277
1278 /**
1279 * The number of components in the output
1280 *
1281 * If non-zero, this is the size of the output and input sizes are
1282 * explicitly given; swizzle and writemask are still in effect, but if
1283 * the output component is masked out, then the input component may
1284 * still be in use.
1285 *
1286 * If zero, the opcode acts in the standard, per-component manner; the
1287 * operation is performed on each component (except the ones that are
1288 * masked out) with the input being taken from the input swizzle for
1289 * that component.
1290 *
1291 * The size of some of the inputs may be given (i.e. non-zero) even
1292 * though output_size is zero; in that case, the inputs with a zero
1293 * size act per-component, while the inputs with non-zero size don't.
1294 */
1295 uint8_t output_size;
1296
1297 /**
1298 * The type of vector that the instruction outputs. Note that the
1299 * staurate modifier is only allowed on outputs with the float type.
1300 */
1301
1302 nir_alu_type output_type;
1303
1304 /**
1305 * The number of components in each input
1306 */
1307 uint8_t input_sizes[NIR_MAX_VEC_COMPONENTS];
1308
1309 /**
1310 * The type of vector that each input takes. Note that negate and
1311 * absolute value are only allowed on inputs with int or float type and
1312 * behave differently on the two.
1313 */
1314 nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
1315
1316 nir_op_algebraic_property algebraic_properties;
1317
1318 /* Whether this represents a numeric conversion opcode */
1319 bool is_conversion;
1320 } nir_op_info;
1321
1322 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1323
1324 typedef struct nir_alu_instr {
1325 nir_instr instr;
1326 nir_op op;
1327
1328 /** Indicates that this ALU instruction generates an exact value
1329 *
1330 * This is kind of a mixture of GLSL "precise" and "invariant" and not
1331 * really equivalent to either. This indicates that the value generated by
1332 * this operation is high-precision and any code transformations that touch
1333 * it must ensure that the resulting value is bit-for-bit identical to the
1334 * original.
1335 */
1336 bool exact:1;
1337
1338 /**
1339 * Indicates that this instruction do not cause wrapping to occur, in the
1340 * form of overflow or underflow.
1341 */
1342 bool no_signed_wrap:1;
1343 bool no_unsigned_wrap:1;
1344
1345 nir_alu_dest dest;
1346 nir_alu_src src[];
1347 } nir_alu_instr;
1348
1349 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
1350 nir_alu_instr *instr);
1351 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
1352 nir_alu_instr *instr);
1353
1354 /* is this source channel used? */
1355 static inline bool
1356 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1357 unsigned channel)
1358 {
1359 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1360 return channel < nir_op_infos[instr->op].input_sizes[src];
1361
1362 return (instr->dest.write_mask >> channel) & 1;
1363 }
1364
1365 static inline nir_component_mask_t
1366 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1367 {
1368 nir_component_mask_t read_mask = 0;
1369 for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1370 if (!nir_alu_instr_channel_used(instr, src, c))
1371 continue;
1372
1373 read_mask |= (1 << instr->src[src].swizzle[c]);
1374 }
1375 return read_mask;
1376 }
1377
1378 /**
1379 * Get the number of channels used for a source
1380 */
1381 static inline unsigned
1382 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1383 {
1384 if (nir_op_infos[instr->op].input_sizes[src] > 0)
1385 return nir_op_infos[instr->op].input_sizes[src];
1386
1387 return nir_dest_num_components(instr->dest.dest);
1388 }
1389
1390 static inline bool
1391 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1392 {
1393 switch (instr->op) {
1394 case nir_op_flt:
1395 case nir_op_fge:
1396 case nir_op_feq:
1397 case nir_op_fneu:
1398 case nir_op_ilt:
1399 case nir_op_ult:
1400 case nir_op_ige:
1401 case nir_op_uge:
1402 case nir_op_ieq:
1403 case nir_op_ine:
1404 case nir_op_i2b1:
1405 case nir_op_f2b1:
1406 case nir_op_inot:
1407 return true;
1408 default:
1409 return false;
1410 }
1411 }
1412
1413 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1414 nir_alu_type full_type);
1415
1416 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1417 unsigned src1, unsigned src2);
1418
1419 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1420 const nir_alu_instr *alu2,
1421 unsigned src1, unsigned src2);
1422
1423 typedef enum {
1424 nir_deref_type_var,
1425 nir_deref_type_array,
1426 nir_deref_type_array_wildcard,
1427 nir_deref_type_ptr_as_array,
1428 nir_deref_type_struct,
1429 nir_deref_type_cast,
1430 } nir_deref_type;
1431
1432 typedef struct {
1433 nir_instr instr;
1434
1435 /** The type of this deref instruction */
1436 nir_deref_type deref_type;
1437
1438 /** The mode of the underlying variable */
1439 nir_variable_mode mode;
1440
1441 /** The dereferenced type of the resulting pointer value */
1442 const struct glsl_type *type;
1443
1444 union {
1445 /** Variable being dereferenced if deref_type is a deref_var */
1446 nir_variable *var;
1447
1448 /** Parent deref if deref_type is not deref_var */
1449 nir_src parent;
1450 };
1451
1452 /** Additional deref parameters */
1453 union {
1454 struct {
1455 nir_src index;
1456 } arr;
1457
1458 struct {
1459 unsigned index;
1460 } strct;
1461
1462 struct {
1463 unsigned ptr_stride;
1464 } cast;
1465 };
1466
1467 /** Destination to store the resulting "pointer" */
1468 nir_dest dest;
1469 } nir_deref_instr;
1470
1471 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1472
1473 static inline nir_deref_instr *
1474 nir_deref_instr_parent(const nir_deref_instr *instr)
1475 {
1476 if (instr->deref_type == nir_deref_type_var)
1477 return NULL;
1478 else
1479 return nir_src_as_deref(instr->parent);
1480 }
1481
1482 static inline nir_variable *
1483 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1484 {
1485 while (instr->deref_type != nir_deref_type_var) {
1486 if (instr->deref_type == nir_deref_type_cast)
1487 return NULL;
1488
1489 instr = nir_deref_instr_parent(instr);
1490 }
1491
1492 return instr->var;
1493 }
1494
1495 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1496 bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1497 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1498
1499 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1500
1501 unsigned nir_deref_instr_ptr_as_array_stride(nir_deref_instr *instr);
1502
1503 typedef struct {
1504 nir_instr instr;
1505
1506 struct nir_function *callee;
1507
1508 unsigned num_params;
1509 nir_src params[];
1510 } nir_call_instr;
1511
1512 #include "nir_intrinsics.h"
1513
1514 #define NIR_INTRINSIC_MAX_CONST_INDEX 5
1515
1516 /** Represents an intrinsic
1517 *
1518 * An intrinsic is an instruction type for handling things that are
1519 * more-or-less regular operations but don't just consume and produce SSA
1520 * values like ALU operations do. Intrinsics are not for things that have
1521 * special semantic meaning such as phi nodes and parallel copies.
1522 * Examples of intrinsics include variable load/store operations, system
1523 * value loads, and the like. Even though texturing more-or-less falls
1524 * under this category, texturing is its own instruction type because
1525 * trying to represent texturing with intrinsics would lead to a
1526 * combinatorial explosion of intrinsic opcodes.
1527 *
1528 * By having a single instruction type for handling a lot of different
1529 * cases, optimization passes can look for intrinsics and, for the most
1530 * part, completely ignore them. Each intrinsic type also has a few
1531 * possible flags that govern whether or not they can be reordered or
1532 * eliminated. That way passes like dead code elimination can still work
1533 * on intrisics without understanding the meaning of each.
1534 *
1535 * Each intrinsic has some number of constant indices, some number of
1536 * variables, and some number of sources. What these sources, variables,
1537 * and indices mean depends on the intrinsic and is documented with the
1538 * intrinsic declaration in nir_intrinsics.h. Intrinsics and texture
1539 * instructions are the only types of instruction that can operate on
1540 * variables.
1541 */
1542 typedef struct {
1543 nir_instr instr;
1544
1545 nir_intrinsic_op intrinsic;
1546
1547 nir_dest dest;
1548
1549 /** number of components if this is a vectorized intrinsic
1550 *
1551 * Similarly to ALU operations, some intrinsics are vectorized.
1552 * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1553 * For vectorized intrinsics, the num_components field specifies the
1554 * number of destination components and the number of source components
1555 * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1556 */
1557 uint8_t num_components;
1558
1559 int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1560
1561 nir_src src[];
1562 } nir_intrinsic_instr;
1563
1564 static inline nir_variable *
1565 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1566 {
1567 return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1568 }
1569
1570 typedef enum {
1571 /* Memory ordering. */
1572 NIR_MEMORY_ACQUIRE = 1 << 0,
1573 NIR_MEMORY_RELEASE = 1 << 1,
1574 NIR_MEMORY_ACQ_REL = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE,
1575
1576 /* Memory visibility operations. */
1577 NIR_MEMORY_MAKE_AVAILABLE = 1 << 2,
1578 NIR_MEMORY_MAKE_VISIBLE = 1 << 3,
1579 } nir_memory_semantics;
1580
1581 typedef enum {
1582 NIR_SCOPE_NONE,
1583 NIR_SCOPE_INVOCATION,
1584 NIR_SCOPE_SUBGROUP,
1585 NIR_SCOPE_WORKGROUP,
1586 NIR_SCOPE_QUEUE_FAMILY,
1587 NIR_SCOPE_DEVICE,
1588 } nir_scope;
1589
1590 /**
1591 * \name NIR intrinsics semantic flags
1592 *
1593 * information about what the compiler can do with the intrinsics.
1594 *
1595 * \sa nir_intrinsic_info::flags
1596 */
1597 typedef enum {
1598 /**
1599 * whether the intrinsic can be safely eliminated if none of its output
1600 * value is not being used.
1601 */
1602 NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1603
1604 /**
1605 * Whether the intrinsic can be reordered with respect to any other
1606 * intrinsic, i.e. whether the only reordering dependencies of the
1607 * intrinsic are due to the register reads/writes.
1608 */
1609 NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1610 } nir_intrinsic_semantic_flag;
1611
1612 /**
1613 * \name NIR intrinsics const-index flag
1614 *
1615 * Indicates the usage of a const_index slot.
1616 *
1617 * \sa nir_intrinsic_info::index_map
1618 */
1619 typedef enum {
1620 /**
1621 * Generally instructions that take a offset src argument, can encode
1622 * a constant 'base' value which is added to the offset.
1623 */
1624 NIR_INTRINSIC_BASE = 1,
1625
1626 /**
1627 * For store instructions, a writemask for the store.
1628 */
1629 NIR_INTRINSIC_WRMASK,
1630
1631 /**
1632 * The stream-id for GS emit_vertex/end_primitive intrinsics.
1633 */
1634 NIR_INTRINSIC_STREAM_ID,
1635
1636 /**
1637 * The clip-plane id for load_user_clip_plane intrinsic.
1638 */
1639 NIR_INTRINSIC_UCP_ID,
1640
1641 /**
1642 * The amount of data, starting from BASE, that this instruction may
1643 * access. This is used to provide bounds if the offset is not constant.
1644 */
1645 NIR_INTRINSIC_RANGE,
1646
1647 /**
1648 * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1649 */
1650 NIR_INTRINSIC_DESC_SET,
1651
1652 /**
1653 * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1654 */
1655 NIR_INTRINSIC_BINDING,
1656
1657 /**
1658 * Component offset.
1659 */
1660 NIR_INTRINSIC_COMPONENT,
1661
1662 /**
1663 * Interpolation mode (only meaningful for FS inputs).
1664 */
1665 NIR_INTRINSIC_INTERP_MODE,
1666
1667 /**
1668 * A binary nir_op to use when performing a reduction or scan operation
1669 */
1670 NIR_INTRINSIC_REDUCTION_OP,
1671
1672 /**
1673 * Cluster size for reduction operations
1674 */
1675 NIR_INTRINSIC_CLUSTER_SIZE,
1676
1677 /**
1678 * Parameter index for a load_param intrinsic
1679 */
1680 NIR_INTRINSIC_PARAM_IDX,
1681
1682 /**
1683 * Image dimensionality for image intrinsics
1684 *
1685 * One of GLSL_SAMPLER_DIM_*
1686 */
1687 NIR_INTRINSIC_IMAGE_DIM,
1688
1689 /**
1690 * Non-zero if we are accessing an array image
1691 */
1692 NIR_INTRINSIC_IMAGE_ARRAY,
1693
1694 /**
1695 * Image format for image intrinsics
1696 */
1697 NIR_INTRINSIC_FORMAT,
1698
1699 /**
1700 * Access qualifiers for image and memory access intrinsics
1701 */
1702 NIR_INTRINSIC_ACCESS,
1703
1704 /**
1705 * Alignment for offsets and addresses
1706 *
1707 * These two parameters, specify an alignment in terms of a multiplier and
1708 * an offset. The offset or address parameter X of the intrinsic is
1709 * guaranteed to satisfy the following:
1710 *
1711 * (X - align_offset) % align_mul == 0
1712 */
1713 NIR_INTRINSIC_ALIGN_MUL,
1714 NIR_INTRINSIC_ALIGN_OFFSET,
1715
1716 /**
1717 * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1718 */
1719 NIR_INTRINSIC_DESC_TYPE,
1720
1721 /**
1722 * The nir_alu_type of a uniform/input/output
1723 */
1724 NIR_INTRINSIC_TYPE,
1725
1726 /**
1727 * The swizzle mask for the instructions
1728 * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1729 */
1730 NIR_INTRINSIC_SWIZZLE_MASK,
1731
1732 /* Separate source/dest access flags for copies */
1733 NIR_INTRINSIC_SRC_ACCESS,
1734 NIR_INTRINSIC_DST_ACCESS,
1735
1736 /* Driver location for nir_load_patch_location_ir3 */
1737 NIR_INTRINSIC_DRIVER_LOCATION,
1738
1739 /**
1740 * Mask of nir_memory_semantics, includes ordering and visibility.
1741 */
1742 NIR_INTRINSIC_MEMORY_SEMANTICS,
1743
1744 /**
1745 * Mask of nir_variable_modes affected by the memory operation.
1746 */
1747 NIR_INTRINSIC_MEMORY_MODES,
1748
1749 /**
1750 * Value of nir_scope.
1751 */
1752 NIR_INTRINSIC_MEMORY_SCOPE,
1753
1754 /**
1755 * Value of nir_scope.
1756 */
1757 NIR_INTRINSIC_EXECUTION_SCOPE,
1758
1759 /**
1760 * Value of nir_io_semantics.
1761 */
1762 NIR_INTRINSIC_IO_SEMANTICS,
1763
1764 NIR_INTRINSIC_NUM_INDEX_FLAGS,
1765
1766 } nir_intrinsic_index_flag;
1767
1768 typedef struct {
1769 unsigned location:7; /* gl_vert_attrib, gl_varying_slot, or gl_frag_result */
1770 unsigned num_slots:6; /* max 32, may be pessimistic with const indexing */
1771 unsigned dual_source_blend_index:1;
1772 unsigned fb_fetch_output:1; /* for GL_KHR_blend_equation_advanced */
1773 unsigned gs_streams:8; /* xxyyzzww: 2-bit stream index for each component */
1774 unsigned _pad:9;
1775 } nir_io_semantics;
1776
1777 #define NIR_INTRINSIC_MAX_INPUTS 5
1778
1779 typedef struct {
1780 const char *name;
1781
1782 uint8_t num_srcs; /** < number of register/SSA inputs */
1783
1784 /** number of components of each input register
1785 *
1786 * If this value is 0, the number of components is given by the
1787 * num_components field of nir_intrinsic_instr. If this value is -1, the
1788 * intrinsic consumes however many components are provided and it is not
1789 * validated at all.
1790 */
1791 int8_t src_components[NIR_INTRINSIC_MAX_INPUTS];
1792
1793 bool has_dest;
1794
1795 /** number of components of the output register
1796 *
1797 * If this value is 0, the number of components is given by the
1798 * num_components field of nir_intrinsic_instr.
1799 */
1800 uint8_t dest_components;
1801
1802 /** bitfield of legal bit sizes */
1803 uint8_t dest_bit_sizes;
1804
1805 /** the number of constant indices used by the intrinsic */
1806 uint8_t num_indices;
1807
1808 /** indicates the usage of intr->const_index[n] */
1809 uint8_t index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1810
1811 /** semantic flags for calls to this intrinsic */
1812 nir_intrinsic_semantic_flag flags;
1813 } nir_intrinsic_info;
1814
1815 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1816
1817 static inline unsigned
1818 nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn)
1819 {
1820 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1821 assert(srcn < info->num_srcs);
1822 if (info->src_components[srcn] > 0)
1823 return info->src_components[srcn];
1824 else if (info->src_components[srcn] == 0)
1825 return intr->num_components;
1826 else
1827 return nir_src_num_components(intr->src[srcn]);
1828 }
1829
1830 static inline unsigned
1831 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1832 {
1833 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1834 if (!info->has_dest)
1835 return 0;
1836 else if (info->dest_components)
1837 return info->dest_components;
1838 else
1839 return intr->num_components;
1840 }
1841
1842 /**
1843 * Helper to copy const_index[] from src to dst, without assuming they
1844 * match in order.
1845 */
1846 static inline void
1847 nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src)
1848 {
1849 if (src->intrinsic == dst->intrinsic) {
1850 memcpy(dst->const_index, src->const_index, sizeof(dst->const_index));
1851 return;
1852 }
1853
1854 const nir_intrinsic_info *src_info = &nir_intrinsic_infos[src->intrinsic];
1855 const nir_intrinsic_info *dst_info = &nir_intrinsic_infos[dst->intrinsic];
1856
1857 for (unsigned i = 0; i < NIR_INTRINSIC_NUM_INDEX_FLAGS; i++) {
1858 if (src_info->index_map[i] == 0)
1859 continue;
1860
1861 /* require that dst instruction also uses the same const_index[]: */
1862 assert(dst_info->index_map[i] > 0);
1863
1864 dst->const_index[dst_info->index_map[i] - 1] =
1865 src->const_index[src_info->index_map[i] - 1];
1866 }
1867 }
1868
1869 #define INTRINSIC_IDX_ACCESSORS(name, flag, type) \
1870 static inline type \
1871 nir_intrinsic_##name(const nir_intrinsic_instr *instr) \
1872 { \
1873 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1874 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1875 return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
1876 } \
1877 static inline void \
1878 nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val) \
1879 { \
1880 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1881 assert(info->index_map[NIR_INTRINSIC_##flag] > 0); \
1882 instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val; \
1883 } \
1884 static inline bool \
1885 nir_intrinsic_has_##name(nir_intrinsic_instr *instr) \
1886 { \
1887 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic]; \
1888 return info->index_map[NIR_INTRINSIC_##flag] > 0; \
1889 }
1890
1891 INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
1892 INTRINSIC_IDX_ACCESSORS(base, BASE, int)
1893 INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
1894 INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
1895 INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
1896 INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
1897 INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
1898 INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
1899 INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
1900 INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
1901 INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
1902 INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
1903 INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
1904 INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
1905 INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
1906 INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
1907 INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
1908 INTRINSIC_IDX_ACCESSORS(format, FORMAT, enum pipe_format)
1909 INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
1910 INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
1911 INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
1912 INTRINSIC_IDX_ACCESSORS(type, TYPE, nir_alu_type)
1913 INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
1914 INTRINSIC_IDX_ACCESSORS(driver_location, DRIVER_LOCATION, unsigned)
1915 INTRINSIC_IDX_ACCESSORS(memory_semantics, MEMORY_SEMANTICS, nir_memory_semantics)
1916 INTRINSIC_IDX_ACCESSORS(memory_modes, MEMORY_MODES, nir_variable_mode)
1917 INTRINSIC_IDX_ACCESSORS(memory_scope, MEMORY_SCOPE, nir_scope)
1918 INTRINSIC_IDX_ACCESSORS(execution_scope, EXECUTION_SCOPE, nir_scope)
1919
1920 static inline void
1921 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1922 unsigned align_mul, unsigned align_offset)
1923 {
1924 assert(util_is_power_of_two_nonzero(align_mul));
1925 assert(align_offset < align_mul);
1926 nir_intrinsic_set_align_mul(intrin, align_mul);
1927 nir_intrinsic_set_align_offset(intrin, align_offset);
1928 }
1929
1930 /** Returns a simple alignment for a load/store intrinsic offset
1931 *
1932 * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1933 * and ALIGN_OFFSET parameters, this helper takes both into account and
1934 * provides a single simple alignment parameter. The offset X is guaranteed
1935 * to satisfy X % align == 0.
1936 */
1937 static inline unsigned
1938 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1939 {
1940 const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1941 const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1942 assert(align_offset < align_mul);
1943 return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1944 }
1945
1946 static inline void
1947 nir_intrinsic_set_io_semantics(nir_intrinsic_instr *intrin,
1948 nir_io_semantics semantics)
1949 {
1950 const nir_intrinsic_info *info = &nir_intrinsic_infos[intrin->intrinsic];
1951 assert(info->index_map[NIR_INTRINSIC_IO_SEMANTICS] > 0);
1952 STATIC_ASSERT(sizeof(nir_io_semantics) == sizeof(intrin->const_index[0]));
1953 semantics._pad = 0; /* clear padding bits */
1954 memcpy(&intrin->const_index[info->index_map[NIR_INTRINSIC_IO_SEMANTICS] - 1],
1955 &semantics, sizeof(semantics));
1956 }
1957
1958 static inline nir_io_semantics
1959 nir_intrinsic_io_semantics(const nir_intrinsic_instr *intrin)
1960 {
1961 const nir_intrinsic_info *info = &nir_intrinsic_infos[intrin->intrinsic];
1962 assert(info->index_map[NIR_INTRINSIC_IO_SEMANTICS] > 0);
1963 nir_io_semantics semantics;
1964 memcpy(&semantics,
1965 &intrin->const_index[info->index_map[NIR_INTRINSIC_IO_SEMANTICS] - 1],
1966 sizeof(semantics));
1967 return semantics;
1968 }
1969
1970 unsigned
1971 nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr);
1972
1973 /* Converts a image_deref_* intrinsic into a image_* one */
1974 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1975 nir_ssa_def *handle, bool bindless);
1976
1977 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
1978 static inline bool
1979 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
1980 {
1981 if (instr->intrinsic == nir_intrinsic_load_deref ||
1982 instr->intrinsic == nir_intrinsic_load_ssbo ||
1983 instr->intrinsic == nir_intrinsic_bindless_image_load ||
1984 instr->intrinsic == nir_intrinsic_image_deref_load ||
1985 instr->intrinsic == nir_intrinsic_image_load) {
1986 return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
1987 } else {
1988 const nir_intrinsic_info *info =
1989 &nir_intrinsic_infos[instr->intrinsic];
1990 return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
1991 (info->flags & NIR_INTRINSIC_CAN_REORDER);
1992 }
1993 }
1994
1995 /**
1996 * \group texture information
1997 *
1998 * This gives semantic information about textures which is useful to the
1999 * frontend, the backend, and lowering passes, but not the optimizer.
2000 */
2001
2002 typedef enum {
2003 nir_tex_src_coord,
2004 nir_tex_src_projector,
2005 nir_tex_src_comparator, /* shadow comparator */
2006 nir_tex_src_offset,
2007 nir_tex_src_bias,
2008 nir_tex_src_lod,
2009 nir_tex_src_min_lod,
2010 nir_tex_src_ms_index, /* MSAA sample index */
2011 nir_tex_src_ms_mcs, /* MSAA compression value */
2012 nir_tex_src_ddx,
2013 nir_tex_src_ddy,
2014 nir_tex_src_texture_deref, /* < deref pointing to the texture */
2015 nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
2016 nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
2017 nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
2018 nir_tex_src_texture_handle, /* < bindless texture handle */
2019 nir_tex_src_sampler_handle, /* < bindless sampler handle */
2020 nir_tex_src_plane, /* < selects plane for planar textures */
2021 nir_num_tex_src_types
2022 } nir_tex_src_type;
2023
2024 typedef struct {
2025 nir_src src;
2026 nir_tex_src_type src_type;
2027 } nir_tex_src;
2028
2029 typedef enum {
2030 nir_texop_tex, /**< Regular texture look-up */
2031 nir_texop_txb, /**< Texture look-up with LOD bias */
2032 nir_texop_txl, /**< Texture look-up with explicit LOD */
2033 nir_texop_txd, /**< Texture look-up with partial derivatives */
2034 nir_texop_txf, /**< Texel fetch with explicit LOD */
2035 nir_texop_txf_ms, /**< Multisample texture fetch */
2036 nir_texop_txf_ms_fb, /**< Multisample texture fetch from framebuffer */
2037 nir_texop_txf_ms_mcs, /**< Multisample compression value fetch */
2038 nir_texop_txs, /**< Texture size */
2039 nir_texop_lod, /**< Texture lod query */
2040 nir_texop_tg4, /**< Texture gather */
2041 nir_texop_query_levels, /**< Texture levels query */
2042 nir_texop_texture_samples, /**< Texture samples query */
2043 nir_texop_samples_identical, /**< Query whether all samples are definitely
2044 * identical.
2045 */
2046 nir_texop_tex_prefetch, /**< Regular texture look-up, eligible for pre-dispatch */
2047 nir_texop_fragment_fetch, /**< Multisample fragment color texture fetch */
2048 nir_texop_fragment_mask_fetch,/**< Multisample fragment mask texture fetch */
2049 } nir_texop;
2050
2051 typedef struct {
2052 nir_instr instr;
2053
2054 enum glsl_sampler_dim sampler_dim;
2055 nir_alu_type dest_type;
2056
2057 nir_texop op;
2058 nir_dest dest;
2059 nir_tex_src *src;
2060 unsigned num_srcs, coord_components;
2061 bool is_array, is_shadow;
2062
2063 /**
2064 * If is_shadow is true, whether this is the old-style shadow that outputs 4
2065 * components or the new-style shadow that outputs 1 component.
2066 */
2067 bool is_new_style_shadow;
2068
2069 /* gather component selector */
2070 unsigned component : 2;
2071
2072 /* gather offsets */
2073 int8_t tg4_offsets[4][2];
2074
2075 /* True if the texture index or handle is not dynamically uniform */
2076 bool texture_non_uniform;
2077
2078 /* True if the sampler index or handle is not dynamically uniform */
2079 bool sampler_non_uniform;
2080
2081 /** The texture index
2082 *
2083 * If this texture instruction has a nir_tex_src_texture_offset source,
2084 * then the texture index is given by texture_index + texture_offset.
2085 */
2086 unsigned texture_index;
2087
2088 /** The sampler index
2089 *
2090 * The following operations do not require a sampler and, as such, this
2091 * field should be ignored:
2092 * - nir_texop_txf
2093 * - nir_texop_txf_ms
2094 * - nir_texop_txs
2095 * - nir_texop_lod
2096 * - nir_texop_query_levels
2097 * - nir_texop_texture_samples
2098 * - nir_texop_samples_identical
2099 *
2100 * If this texture instruction has a nir_tex_src_sampler_offset source,
2101 * then the sampler index is given by sampler_index + sampler_offset.
2102 */
2103 unsigned sampler_index;
2104 } nir_tex_instr;
2105
2106 /*
2107 * Returns true if the texture operation requires a sampler as a general rule,
2108 * see the documentation of sampler_index.
2109 *
2110 * Note that the specific hw/driver backend could require to a sampler
2111 * object/configuration packet in any case, for some other reason.
2112 */
2113 static inline bool
2114 nir_tex_instr_need_sampler(const nir_tex_instr *instr)
2115 {
2116 switch (instr->op) {
2117 case nir_texop_txf:
2118 case nir_texop_txf_ms:
2119 case nir_texop_txs:
2120 case nir_texop_lod:
2121 case nir_texop_query_levels:
2122 case nir_texop_texture_samples:
2123 case nir_texop_samples_identical:
2124 return false;
2125 default:
2126 return true;
2127 }
2128 }
2129
2130 static inline unsigned
2131 nir_tex_instr_dest_size(const nir_tex_instr *instr)
2132 {
2133 switch (instr->op) {
2134 case nir_texop_txs: {
2135 unsigned ret;
2136 switch (instr->sampler_dim) {
2137 case GLSL_SAMPLER_DIM_1D:
2138 case GLSL_SAMPLER_DIM_BUF:
2139 ret = 1;
2140 break;
2141 case GLSL_SAMPLER_DIM_2D:
2142 case GLSL_SAMPLER_DIM_CUBE:
2143 case GLSL_SAMPLER_DIM_MS:
2144 case GLSL_SAMPLER_DIM_RECT:
2145 case GLSL_SAMPLER_DIM_EXTERNAL:
2146 case GLSL_SAMPLER_DIM_SUBPASS:
2147 ret = 2;
2148 break;
2149 case GLSL_SAMPLER_DIM_3D:
2150 ret = 3;
2151 break;
2152 default:
2153 unreachable("not reached");
2154 }
2155 if (instr->is_array)
2156 ret++;
2157 return ret;
2158 }
2159
2160 case nir_texop_lod:
2161 return 2;
2162
2163 case nir_texop_texture_samples:
2164 case nir_texop_query_levels:
2165 case nir_texop_samples_identical:
2166 case nir_texop_fragment_mask_fetch:
2167 return 1;
2168
2169 default:
2170 if (instr->is_shadow && instr->is_new_style_shadow)
2171 return 1;
2172
2173 return 4;
2174 }
2175 }
2176
2177 /* Returns true if this texture operation queries something about the texture
2178 * rather than actually sampling it.
2179 */
2180 static inline bool
2181 nir_tex_instr_is_query(const nir_tex_instr *instr)
2182 {
2183 switch (instr->op) {
2184 case nir_texop_txs:
2185 case nir_texop_lod:
2186 case nir_texop_texture_samples:
2187 case nir_texop_query_levels:
2188 case nir_texop_txf_ms_mcs:
2189 return true;
2190 case nir_texop_tex:
2191 case nir_texop_txb:
2192 case nir_texop_txl:
2193 case nir_texop_txd:
2194 case nir_texop_txf:
2195 case nir_texop_txf_ms:
2196 case nir_texop_txf_ms_fb:
2197 case nir_texop_tg4:
2198 return false;
2199 default:
2200 unreachable("Invalid texture opcode");
2201 }
2202 }
2203
2204 static inline bool
2205 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
2206 {
2207 switch (instr->op) {
2208 case nir_texop_tex:
2209 case nir_texop_txb:
2210 case nir_texop_lod:
2211 return true;
2212 default:
2213 return false;
2214 }
2215 }
2216
2217 static inline nir_alu_type
2218 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
2219 {
2220 switch (instr->src[src].src_type) {
2221 case nir_tex_src_coord:
2222 switch (instr->op) {
2223 case nir_texop_txf:
2224 case nir_texop_txf_ms:
2225 case nir_texop_txf_ms_fb:
2226 case nir_texop_txf_ms_mcs:
2227 case nir_texop_samples_identical:
2228 return nir_type_int;
2229
2230 default:
2231 return nir_type_float;
2232 }
2233
2234 case nir_tex_src_lod:
2235 switch (instr->op) {
2236 case nir_texop_txs:
2237 case nir_texop_txf:
2238 return nir_type_int;
2239
2240 default:
2241 return nir_type_float;
2242 }
2243
2244 case nir_tex_src_projector:
2245 case nir_tex_src_comparator:
2246 case nir_tex_src_bias:
2247 case nir_tex_src_min_lod:
2248 case nir_tex_src_ddx:
2249 case nir_tex_src_ddy:
2250 return nir_type_float;
2251
2252 case nir_tex_src_offset:
2253 case nir_tex_src_ms_index:
2254 case nir_tex_src_plane:
2255 return nir_type_int;
2256
2257 case nir_tex_src_ms_mcs:
2258 case nir_tex_src_texture_deref:
2259 case nir_tex_src_sampler_deref:
2260 case nir_tex_src_texture_offset:
2261 case nir_tex_src_sampler_offset:
2262 case nir_tex_src_texture_handle:
2263 case nir_tex_src_sampler_handle:
2264 return nir_type_uint;
2265
2266 case nir_num_tex_src_types:
2267 unreachable("nir_num_tex_src_types is not a valid source type");
2268 }
2269
2270 unreachable("Invalid texture source type");
2271 }
2272
2273 static inline unsigned
2274 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
2275 {
2276 if (instr->src[src].src_type == nir_tex_src_coord)
2277 return instr->coord_components;
2278
2279 /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
2280 if (instr->src[src].src_type == nir_tex_src_ms_mcs)
2281 return 4;
2282
2283 if (instr->src[src].src_type == nir_tex_src_ddx ||
2284 instr->src[src].src_type == nir_tex_src_ddy) {
2285 if (instr->is_array)
2286 return instr->coord_components - 1;
2287 else
2288 return instr->coord_components;
2289 }
2290
2291 /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
2292 * the offset, since a cube maps to a single face.
2293 */
2294 if (instr->src[src].src_type == nir_tex_src_offset) {
2295 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2296 return 2;
2297 else if (instr->is_array)
2298 return instr->coord_components - 1;
2299 else
2300 return instr->coord_components;
2301 }
2302
2303 return 1;
2304 }
2305
2306 static inline int
2307 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2308 {
2309 for (unsigned i = 0; i < instr->num_srcs; i++)
2310 if (instr->src[i].src_type == type)
2311 return (int) i;
2312
2313 return -1;
2314 }
2315
2316 void nir_tex_instr_add_src(nir_tex_instr *tex,
2317 nir_tex_src_type src_type,
2318 nir_src src);
2319
2320 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2321
2322 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2323
2324 typedef struct {
2325 nir_instr instr;
2326
2327 nir_ssa_def def;
2328
2329 nir_const_value value[];
2330 } nir_load_const_instr;
2331
2332 typedef enum {
2333 /** Return from a function
2334 *
2335 * This instruction is a classic function return. It jumps to
2336 * nir_function_impl::end_block. No return value is provided in this
2337 * instruction. Instead, the function is expected to write any return
2338 * data to a deref passed in from the caller.
2339 */
2340 nir_jump_return,
2341
2342 /** Break out of the inner-most loop
2343 *
2344 * This has the same semantics as C's "break" statement.
2345 */
2346 nir_jump_break,
2347
2348 /** Jump back to the top of the inner-most loop
2349 *
2350 * This has the same semantics as C's "continue" statement assuming that a
2351 * NIR loop is implemented as "while (1) { body }".
2352 */
2353 nir_jump_continue,
2354
2355 /** Jumps for unstructured CFG.
2356 *
2357 * As within an unstructured CFG we can't rely on block ordering we need to
2358 * place explicit jumps at the end of every block.
2359 */
2360 nir_jump_goto,
2361 nir_jump_goto_if,
2362 } nir_jump_type;
2363
2364 typedef struct {
2365 nir_instr instr;
2366 nir_jump_type type;
2367 nir_src condition;
2368 struct nir_block *target;
2369 struct nir_block *else_target;
2370 } nir_jump_instr;
2371
2372 /* creates a new SSA variable in an undefined state */
2373
2374 typedef struct {
2375 nir_instr instr;
2376 nir_ssa_def def;
2377 } nir_ssa_undef_instr;
2378
2379 typedef struct {
2380 struct exec_node node;
2381
2382 /* The predecessor block corresponding to this source */
2383 struct nir_block *pred;
2384
2385 nir_src src;
2386 } nir_phi_src;
2387
2388 #define nir_foreach_phi_src(phi_src, phi) \
2389 foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2390 #define nir_foreach_phi_src_safe(phi_src, phi) \
2391 foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2392
2393 typedef struct {
2394 nir_instr instr;
2395
2396 struct exec_list srcs; /** < list of nir_phi_src */
2397
2398 nir_dest dest;
2399 } nir_phi_instr;
2400
2401 typedef struct {
2402 struct exec_node node;
2403 nir_src src;
2404 nir_dest dest;
2405 } nir_parallel_copy_entry;
2406
2407 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
2408 foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2409
2410 typedef struct {
2411 nir_instr instr;
2412
2413 /* A list of nir_parallel_copy_entrys. The sources of all of the
2414 * entries are copied to the corresponding destinations "in parallel".
2415 * In other words, if we have two entries: a -> b and b -> a, the values
2416 * get swapped.
2417 */
2418 struct exec_list entries;
2419 } nir_parallel_copy_instr;
2420
2421 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2422 type, nir_instr_type_alu)
2423 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2424 type, nir_instr_type_deref)
2425 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2426 type, nir_instr_type_call)
2427 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2428 type, nir_instr_type_jump)
2429 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2430 type, nir_instr_type_tex)
2431 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2432 type, nir_instr_type_intrinsic)
2433 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2434 type, nir_instr_type_load_const)
2435 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
2436 type, nir_instr_type_ssa_undef)
2437 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2438 type, nir_instr_type_phi)
2439 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2440 nir_parallel_copy_instr, instr,
2441 type, nir_instr_type_parallel_copy)
2442
2443
2444 #define NIR_DEFINE_SRC_AS_CONST(type, suffix) \
2445 static inline type \
2446 nir_src_comp_as_##suffix(nir_src src, unsigned comp) \
2447 { \
2448 assert(nir_src_is_const(src)); \
2449 nir_load_const_instr *load = \
2450 nir_instr_as_load_const(src.ssa->parent_instr); \
2451 assert(comp < load->def.num_components); \
2452 return nir_const_value_as_##suffix(load->value[comp], \
2453 load->def.bit_size); \
2454 } \
2455 \
2456 static inline type \
2457 nir_src_as_##suffix(nir_src src) \
2458 { \
2459 assert(nir_src_num_components(src) == 1); \
2460 return nir_src_comp_as_##suffix(src, 0); \
2461 }
2462
2463 NIR_DEFINE_SRC_AS_CONST(int64_t, int)
2464 NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
2465 NIR_DEFINE_SRC_AS_CONST(bool, bool)
2466 NIR_DEFINE_SRC_AS_CONST(double, float)
2467
2468 #undef NIR_DEFINE_SRC_AS_CONST
2469
2470
2471 typedef struct {
2472 nir_ssa_def *def;
2473 unsigned comp;
2474 } nir_ssa_scalar;
2475
2476 static inline bool
2477 nir_ssa_scalar_is_const(nir_ssa_scalar s)
2478 {
2479 return s.def->parent_instr->type == nir_instr_type_load_const;
2480 }
2481
2482 static inline nir_const_value
2483 nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2484 {
2485 assert(s.comp < s.def->num_components);
2486 nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2487 return load->value[s.comp];
2488 }
2489
2490 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix) \
2491 static inline type \
2492 nir_ssa_scalar_as_##suffix(nir_ssa_scalar s) \
2493 { \
2494 return nir_const_value_as_##suffix( \
2495 nir_ssa_scalar_as_const_value(s), s.def->bit_size); \
2496 }
2497
2498 NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
2499 NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
2500 NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
2501 NIR_DEFINE_SCALAR_AS_CONST(double, float)
2502
2503 #undef NIR_DEFINE_SCALAR_AS_CONST
2504
2505 static inline bool
2506 nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2507 {
2508 return s.def->parent_instr->type == nir_instr_type_alu;
2509 }
2510
2511 static inline nir_op
2512 nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2513 {
2514 return nir_instr_as_alu(s.def->parent_instr)->op;
2515 }
2516
2517 static inline nir_ssa_scalar
2518 nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2519 {
2520 nir_ssa_scalar out = { NULL, 0 };
2521
2522 nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2523 assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2524
2525 /* Our component must be written */
2526 assert(s.comp < s.def->num_components);
2527 assert(alu->dest.write_mask & (1u << s.comp));
2528
2529 assert(alu->src[alu_src_idx].src.is_ssa);
2530 out.def = alu->src[alu_src_idx].src.ssa;
2531
2532 if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2533 /* The ALU src is unsized so the source component follows the
2534 * destination component.
2535 */
2536 out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2537 } else {
2538 /* This is a sized source so all source components work together to
2539 * produce all the destination components. Since we need to return a
2540 * scalar, this only works if the source is a scalar.
2541 */
2542 assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2543 out.comp = alu->src[alu_src_idx].swizzle[0];
2544 }
2545 assert(out.comp < out.def->num_components);
2546
2547 return out;
2548 }
2549
2550
2551 /*
2552 * Control flow
2553 *
2554 * Control flow consists of a tree of control flow nodes, which include
2555 * if-statements and loops. The leaves of the tree are basic blocks, lists of
2556 * instructions that always run start-to-finish. Each basic block also keeps
2557 * track of its successors (blocks which may run immediately after the current
2558 * block) and predecessors (blocks which could have run immediately before the
2559 * current block). Each function also has a start block and an end block which
2560 * all return statements point to (which is always empty). Together, all the
2561 * blocks with their predecessors and successors make up the control flow
2562 * graph (CFG) of the function. There are helpers that modify the tree of
2563 * control flow nodes while modifying the CFG appropriately; these should be
2564 * used instead of modifying the tree directly.
2565 */
2566
2567 typedef enum {
2568 nir_cf_node_block,
2569 nir_cf_node_if,
2570 nir_cf_node_loop,
2571 nir_cf_node_function
2572 } nir_cf_node_type;
2573
2574 typedef struct nir_cf_node {
2575 struct exec_node node;
2576 nir_cf_node_type type;
2577 struct nir_cf_node *parent;
2578 } nir_cf_node;
2579
2580 typedef struct nir_block {
2581 nir_cf_node cf_node;
2582
2583 struct exec_list instr_list; /** < list of nir_instr */
2584
2585 /** generic block index; generated by nir_index_blocks */
2586 unsigned index;
2587
2588 /*
2589 * Each block can only have up to 2 successors, so we put them in a simple
2590 * array - no need for anything more complicated.
2591 */
2592 struct nir_block *successors[2];
2593
2594 /* Set of nir_block predecessors in the CFG */
2595 struct set *predecessors;
2596
2597 /*
2598 * this node's immediate dominator in the dominance tree - set to NULL for
2599 * the start block.
2600 */
2601 struct nir_block *imm_dom;
2602
2603 /* This node's children in the dominance tree */
2604 unsigned num_dom_children;
2605 struct nir_block **dom_children;
2606
2607 /* Set of nir_blocks on the dominance frontier of this block */
2608 struct set *dom_frontier;
2609
2610 /*
2611 * These two indices have the property that dom_{pre,post}_index for each
2612 * child of this block in the dominance tree will always be between
2613 * dom_pre_index and dom_post_index for this block, which makes testing if
2614 * a given block is dominated by another block an O(1) operation.
2615 */
2616 int16_t dom_pre_index, dom_post_index;
2617
2618 /* SSA def live in and out for this block; used for liveness analysis.
2619 * Indexed by ssa_def->index
2620 */
2621 BITSET_WORD *live_in;
2622 BITSET_WORD *live_out;
2623 } nir_block;
2624
2625 static inline bool
2626 nir_block_is_reachable(nir_block *b)
2627 {
2628 /* See also nir_block_dominates */
2629 return b->dom_post_index != -1;
2630 }
2631
2632 static inline nir_instr *
2633 nir_block_first_instr(nir_block *block)
2634 {
2635 struct exec_node *head = exec_list_get_head(&block->instr_list);
2636 return exec_node_data(nir_instr, head, node);
2637 }
2638
2639 static inline nir_instr *
2640 nir_block_last_instr(nir_block *block)
2641 {
2642 struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2643 return exec_node_data(nir_instr, tail, node);
2644 }
2645
2646 static inline bool
2647 nir_block_ends_in_jump(nir_block *block)
2648 {
2649 return !exec_list_is_empty(&block->instr_list) &&
2650 nir_block_last_instr(block)->type == nir_instr_type_jump;
2651 }
2652
2653 #define nir_foreach_instr(instr, block) \
2654 foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2655 #define nir_foreach_instr_reverse(instr, block) \
2656 foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2657 #define nir_foreach_instr_safe(instr, block) \
2658 foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2659 #define nir_foreach_instr_reverse_safe(instr, block) \
2660 foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2661
2662 typedef enum {
2663 nir_selection_control_none = 0x0,
2664 nir_selection_control_flatten = 0x1,
2665 nir_selection_control_dont_flatten = 0x2,
2666 } nir_selection_control;
2667
2668 typedef struct nir_if {
2669 nir_cf_node cf_node;
2670 nir_src condition;
2671 nir_selection_control control;
2672
2673 struct exec_list then_list; /** < list of nir_cf_node */
2674 struct exec_list else_list; /** < list of nir_cf_node */
2675 } nir_if;
2676
2677 typedef struct {
2678 nir_if *nif;
2679
2680 /** Instruction that generates nif::condition. */
2681 nir_instr *conditional_instr;
2682
2683 /** Block within ::nif that has the break instruction. */
2684 nir_block *break_block;
2685
2686 /** Last block for the then- or else-path that does not contain the break. */
2687 nir_block *continue_from_block;
2688
2689 /** True when ::break_block is in the else-path of ::nif. */
2690 bool continue_from_then;
2691 bool induction_rhs;
2692
2693 /* This is true if the terminators exact trip count is unknown. For
2694 * example:
2695 *
2696 * for (int i = 0; i < imin(x, 4); i++)
2697 * ...
2698 *
2699 * Here loop analysis would have set a max_trip_count of 4 however we dont
2700 * know for sure that this is the exact trip count.
2701 */
2702 bool exact_trip_count_unknown;
2703
2704 struct list_head loop_terminator_link;
2705 } nir_loop_terminator;
2706
2707 typedef struct {
2708 /* Estimated cost (in number of instructions) of the loop */
2709 unsigned instr_cost;
2710
2711 /* Guessed trip count based on array indexing */
2712 unsigned guessed_trip_count;
2713
2714 /* Maximum number of times the loop is run (if known) */
2715 unsigned max_trip_count;
2716
2717 /* Do we know the exact number of times the loop will be run */
2718 bool exact_trip_count_known;
2719
2720 /* Unroll the loop regardless of its size */
2721 bool force_unroll;
2722
2723 /* Does the loop contain complex loop terminators, continues or other
2724 * complex behaviours? If this is true we can't rely on
2725 * loop_terminator_list to be complete or accurate.
2726 */
2727 bool complex_loop;
2728
2729 nir_loop_terminator *limiting_terminator;
2730
2731 /* A list of loop_terminators terminating this loop. */
2732 struct list_head loop_terminator_list;
2733 } nir_loop_info;
2734
2735 typedef enum {
2736 nir_loop_control_none = 0x0,
2737 nir_loop_control_unroll = 0x1,
2738 nir_loop_control_dont_unroll = 0x2,
2739 } nir_loop_control;
2740
2741 typedef struct {
2742 nir_cf_node cf_node;
2743
2744 struct exec_list body; /** < list of nir_cf_node */
2745
2746 nir_loop_info *info;
2747 nir_loop_control control;
2748 bool partially_unrolled;
2749 } nir_loop;
2750
2751 /**
2752 * Various bits of metadata that can may be created or required by
2753 * optimization and analysis passes
2754 */
2755 typedef enum {
2756 nir_metadata_none = 0x0,
2757
2758 /** Indicates that nir_block::index values are valid.
2759 *
2760 * The start block has index 0 and they increase through a natural walk of
2761 * the CFG. nir_function_impl::num_blocks is the number of blocks and
2762 * every block index is in the range [0, nir_function_impl::num_blocks].
2763 *
2764 * A pass can preserve this metadata type if it doesn't touch the CFG.
2765 */
2766 nir_metadata_block_index = 0x1,
2767
2768 /** Indicates that block dominance information is valid
2769 *
2770 * This includes:
2771 *
2772 * - nir_block::num_dom_children
2773 * - nir_block::dom_children
2774 * - nir_block::dom_frontier
2775 * - nir_block::dom_pre_index
2776 * - nir_block::dom_post_index
2777 *
2778 * A pass can preserve this metadata type if it doesn't touch the CFG.
2779 */
2780 nir_metadata_dominance = 0x2,
2781
2782 /** Indicates that SSA def data-flow liveness information is valid
2783 *
2784 * This includes:
2785 *
2786 * - nir_ssa_def::live_index
2787 * - nir_block::live_in
2788 * - nir_block::live_out
2789 *
2790 * A pass can preserve this metadata type if it never adds or removes any
2791 * SSA defs (most passes shouldn't preserve this metadata type).
2792 */
2793 nir_metadata_live_ssa_defs = 0x4,
2794
2795 /** A dummy metadata value to track when a pass forgot to call
2796 * nir_metadata_preserve.
2797 *
2798 * A pass should always clear this value even if it doesn't make any
2799 * progress to indicate that it thought about preserving metadata.
2800 */
2801 nir_metadata_not_properly_reset = 0x8,
2802
2803 /** Indicates that loop analysis information is valid.
2804 *
2805 * This includes everything pointed to by nir_loop::info.
2806 *
2807 * A pass can preserve this metadata type if it is guaranteed to not affect
2808 * any loop metadata. However, since loop metadata includes things like
2809 * loop counts which depend on arithmetic in the loop, this is very hard to
2810 * determine. Most passes shouldn't preserve this metadata type.
2811 */
2812 nir_metadata_loop_analysis = 0x10,
2813
2814 /** All metadata
2815 *
2816 * This includes all nir_metadata flags except not_properly_reset. Passes
2817 * which do not change the shader in any way should call
2818 *
2819 * nir_metadata_preserve(impl, nir_metadata_all);
2820 */
2821 nir_metadata_all = ~nir_metadata_not_properly_reset,
2822 } nir_metadata;
2823 MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_metadata)
2824
2825 typedef struct {
2826 nir_cf_node cf_node;
2827
2828 /** pointer to the function of which this is an implementation */
2829 struct nir_function *function;
2830
2831 struct exec_list body; /** < list of nir_cf_node */
2832
2833 nir_block *end_block;
2834
2835 /** list for all local variables in the function */
2836 struct exec_list locals;
2837
2838 /** list of local registers in the function */
2839 struct exec_list registers;
2840
2841 /** next available local register index */
2842 unsigned reg_alloc;
2843
2844 /** next available SSA value index */
2845 unsigned ssa_alloc;
2846
2847 /* total number of basic blocks, only valid when block_index_dirty = false */
2848 unsigned num_blocks;
2849
2850 /** True if this nir_function_impl uses structured control-flow
2851 *
2852 * Structured nir_function_impls have different validation rules.
2853 */
2854 bool structured;
2855
2856 nir_metadata valid_metadata;
2857 } nir_function_impl;
2858
2859 #define nir_foreach_function_temp_variable(var, impl) \
2860 foreach_list_typed(nir_variable, var, node, &(impl)->locals)
2861
2862 #define nir_foreach_function_temp_variable_safe(var, impl) \
2863 foreach_list_typed_safe(nir_variable, var, node, &(impl)->locals)
2864
2865 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2866 nir_start_block(nir_function_impl *impl)
2867 {
2868 return (nir_block *) impl->body.head_sentinel.next;
2869 }
2870
2871 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
2872 nir_impl_last_block(nir_function_impl *impl)
2873 {
2874 return (nir_block *) impl->body.tail_sentinel.prev;
2875 }
2876
2877 static inline nir_cf_node *
2878 nir_cf_node_next(nir_cf_node *node)
2879 {
2880 struct exec_node *next = exec_node_get_next(&node->node);
2881 if (exec_node_is_tail_sentinel(next))
2882 return NULL;
2883 else
2884 return exec_node_data(nir_cf_node, next, node);
2885 }
2886
2887 static inline nir_cf_node *
2888 nir_cf_node_prev(nir_cf_node *node)
2889 {
2890 struct exec_node *prev = exec_node_get_prev(&node->node);
2891 if (exec_node_is_head_sentinel(prev))
2892 return NULL;
2893 else
2894 return exec_node_data(nir_cf_node, prev, node);
2895 }
2896
2897 static inline bool
2898 nir_cf_node_is_first(const nir_cf_node *node)
2899 {
2900 return exec_node_is_head_sentinel(node->node.prev);
2901 }
2902
2903 static inline bool
2904 nir_cf_node_is_last(const nir_cf_node *node)
2905 {
2906 return exec_node_is_tail_sentinel(node->node.next);
2907 }
2908
2909 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
2910 type, nir_cf_node_block)
2911 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
2912 type, nir_cf_node_if)
2913 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
2914 type, nir_cf_node_loop)
2915 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
2916 nir_function_impl, cf_node, type, nir_cf_node_function)
2917
2918 static inline nir_block *
2919 nir_if_first_then_block(nir_if *if_stmt)
2920 {
2921 struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
2922 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2923 }
2924
2925 static inline nir_block *
2926 nir_if_last_then_block(nir_if *if_stmt)
2927 {
2928 struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
2929 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2930 }
2931
2932 static inline nir_block *
2933 nir_if_first_else_block(nir_if *if_stmt)
2934 {
2935 struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
2936 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2937 }
2938
2939 static inline nir_block *
2940 nir_if_last_else_block(nir_if *if_stmt)
2941 {
2942 struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
2943 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2944 }
2945
2946 static inline nir_block *
2947 nir_loop_first_block(nir_loop *loop)
2948 {
2949 struct exec_node *head = exec_list_get_head(&loop->body);
2950 return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2951 }
2952
2953 static inline nir_block *
2954 nir_loop_last_block(nir_loop *loop)
2955 {
2956 struct exec_node *tail = exec_list_get_tail(&loop->body);
2957 return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
2958 }
2959
2960 /**
2961 * Return true if this list of cf_nodes contains a single empty block.
2962 */
2963 static inline bool
2964 nir_cf_list_is_empty_block(struct exec_list *cf_list)
2965 {
2966 if (exec_list_is_singular(cf_list)) {
2967 struct exec_node *head = exec_list_get_head(cf_list);
2968 nir_block *block =
2969 nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
2970 return exec_list_is_empty(&block->instr_list);
2971 }
2972 return false;
2973 }
2974
2975 typedef struct {
2976 uint8_t num_components;
2977 uint8_t bit_size;
2978 } nir_parameter;
2979
2980 typedef struct nir_function {
2981 struct exec_node node;
2982
2983 const char *name;
2984 struct nir_shader *shader;
2985
2986 unsigned num_params;
2987 nir_parameter *params;
2988
2989 /** The implementation of this function.
2990 *
2991 * If the function is only declared and not implemented, this is NULL.
2992 */
2993 nir_function_impl *impl;
2994
2995 bool is_entrypoint;
2996 } nir_function;
2997
2998 typedef enum {
2999 nir_lower_imul64 = (1 << 0),
3000 nir_lower_isign64 = (1 << 1),
3001 /** Lower all int64 modulus and division opcodes */
3002 nir_lower_divmod64 = (1 << 2),
3003 /** Lower all 64-bit umul_high and imul_high opcodes */
3004 nir_lower_imul_high64 = (1 << 3),
3005 nir_lower_mov64 = (1 << 4),
3006 nir_lower_icmp64 = (1 << 5),
3007 nir_lower_iadd64 = (1 << 6),
3008 nir_lower_iabs64 = (1 << 7),
3009 nir_lower_ineg64 = (1 << 8),
3010 nir_lower_logic64 = (1 << 9),
3011 nir_lower_minmax64 = (1 << 10),
3012 nir_lower_shift64 = (1 << 11),
3013 nir_lower_imul_2x32_64 = (1 << 12),
3014 nir_lower_extract64 = (1 << 13),
3015 nir_lower_ufind_msb64 = (1 << 14),
3016 nir_lower_bit_count64 = (1 << 15),
3017 } nir_lower_int64_options;
3018
3019 typedef enum {
3020 nir_lower_drcp = (1 << 0),
3021 nir_lower_dsqrt = (1 << 1),
3022 nir_lower_drsq = (1 << 2),
3023 nir_lower_dtrunc = (1 << 3),
3024 nir_lower_dfloor = (1 << 4),
3025 nir_lower_dceil = (1 << 5),
3026 nir_lower_dfract = (1 << 6),
3027 nir_lower_dround_even = (1 << 7),
3028 nir_lower_dmod = (1 << 8),
3029 nir_lower_dsub = (1 << 9),
3030 nir_lower_ddiv = (1 << 10),
3031 nir_lower_fp64_full_software = (1 << 11),
3032 } nir_lower_doubles_options;
3033
3034 typedef enum {
3035 nir_divergence_single_prim_per_subgroup = (1 << 0),
3036 nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
3037 nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
3038 nir_divergence_view_index_uniform = (1 << 3),
3039 } nir_divergence_options;
3040
3041 typedef struct nir_shader_compiler_options {
3042 bool lower_fdiv;
3043 bool lower_ffma;
3044 bool fuse_ffma;
3045 bool lower_flrp16;
3046 bool lower_flrp32;
3047 /** Lowers flrp when it does not support doubles */
3048 bool lower_flrp64;
3049 bool lower_fpow;
3050 bool lower_fsat;
3051 bool lower_fsqrt;
3052 bool lower_sincos;
3053 bool lower_fmod;
3054 /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
3055 bool lower_bitfield_extract;
3056 /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
3057 bool lower_bitfield_extract_to_shifts;
3058 /** Lowers bitfield_insert to bfi/bfm */
3059 bool lower_bitfield_insert;
3060 /** Lowers bitfield_insert to compares, and shifts. */
3061 bool lower_bitfield_insert_to_shifts;
3062 /** Lowers bitfield_insert to bfm/bitfield_select. */
3063 bool lower_bitfield_insert_to_bitfield_select;
3064 /** Lowers bitfield_reverse to shifts. */
3065 bool lower_bitfield_reverse;
3066 /** Lowers bit_count to shifts. */
3067 bool lower_bit_count;
3068 /** Lowers ifind_msb to compare and ufind_msb */
3069 bool lower_ifind_msb;
3070 /** Lowers find_lsb to ufind_msb and logic ops */
3071 bool lower_find_lsb;
3072 bool lower_uadd_carry;
3073 bool lower_usub_borrow;
3074 /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
3075 bool lower_mul_high;
3076 /** lowers fneg and ineg to fsub and isub. */
3077 bool lower_negate;
3078 /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
3079 bool lower_sub;
3080
3081 /* lower {slt,sge,seq,sne} to {flt,fge,feq,fneu} + b2f: */
3082 bool lower_scmp;
3083
3084 /* lower fall_equalN/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
3085 bool lower_vector_cmp;
3086
3087 /** enables rules to lower idiv by power-of-two: */
3088 bool lower_idiv;
3089
3090 /** enable rules to avoid bit ops */
3091 bool lower_bitops;
3092
3093 /** enables rules to lower isign to imin+imax */
3094 bool lower_isign;
3095
3096 /** enables rules to lower fsign to fsub and flt */
3097 bool lower_fsign;
3098
3099 /** enables rules to lower iabs to ineg+imax */
3100 bool lower_iabs;
3101
3102 /* lower fdph to fdot4 */
3103 bool lower_fdph;
3104
3105 /** lower fdot to fmul and fsum/fadd. */
3106 bool lower_fdot;
3107
3108 /* Does the native fdot instruction replicate its result for four
3109 * components? If so, then opt_algebraic_late will turn all fdotN
3110 * instructions into fdot_replicatedN instructions.
3111 */
3112 bool fdot_replicates;
3113
3114 /** lowers ffloor to fsub+ffract: */
3115 bool lower_ffloor;
3116
3117 /** lowers ffract to fsub+ffloor: */
3118 bool lower_ffract;
3119
3120 /** lowers fceil to fneg+ffloor+fneg: */
3121 bool lower_fceil;
3122
3123 bool lower_ftrunc;
3124
3125 bool lower_ldexp;
3126
3127 bool lower_pack_half_2x16;
3128 bool lower_pack_unorm_2x16;
3129 bool lower_pack_snorm_2x16;
3130 bool lower_pack_unorm_4x8;
3131 bool lower_pack_snorm_4x8;
3132 bool lower_pack_64_2x32_split;
3133 bool lower_pack_32_2x16_split;
3134 bool lower_unpack_half_2x16;
3135 bool lower_unpack_unorm_2x16;
3136 bool lower_unpack_snorm_2x16;
3137 bool lower_unpack_unorm_4x8;
3138 bool lower_unpack_snorm_4x8;
3139 bool lower_unpack_64_2x32_split;
3140 bool lower_unpack_32_2x16_split;
3141
3142 bool lower_pack_split;
3143
3144 bool lower_extract_byte;
3145 bool lower_extract_word;
3146
3147 bool lower_all_io_to_temps;
3148 bool lower_all_io_to_elements;
3149
3150 /* Indicates that the driver only has zero-based vertex id */
3151 bool vertex_id_zero_based;
3152
3153 /**
3154 * If enabled, gl_BaseVertex will be lowered as:
3155 * is_indexed_draw (~0/0) & firstvertex
3156 */
3157 bool lower_base_vertex;
3158
3159 /**
3160 * If enabled, gl_HelperInvocation will be lowered as:
3161 *
3162 * !((1 << sample_id) & sample_mask_in))
3163 *
3164 * This depends on some possibly hw implementation details, which may
3165 * not be true for all hw. In particular that the FS is only executed
3166 * for covered samples or for helper invocations. So, do not blindly
3167 * enable this option.
3168 *
3169 * Note: See also issue #22 in ARB_shader_image_load_store
3170 */
3171 bool lower_helper_invocation;
3172
3173 /**
3174 * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
3175 *
3176 * gl_SampleMaskIn == 0 ---> gl_HelperInvocation
3177 * gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
3178 */
3179 bool optimize_sample_mask_in;
3180
3181 bool lower_cs_local_index_from_id;
3182 bool lower_cs_local_id_from_index;
3183
3184 /* Prevents lowering global_invocation_id to be in terms of work_group_id */
3185 bool has_cs_global_id;
3186
3187 bool lower_device_index_to_zero;
3188
3189 /* Set if nir_lower_wpos_ytransform() should also invert gl_PointCoord. */
3190 bool lower_wpos_pntc;
3191
3192 /**
3193 * Set if nir_op_[iu]hadd and nir_op_[iu]rhadd instructions should be
3194 * lowered to simple arithmetic.
3195 *
3196 * If this flag is set, the lowering will be applied to all bit-sizes of
3197 * these instructions.
3198 *
3199 * \sa ::lower_hadd64
3200 */
3201 bool lower_hadd;
3202
3203 /**
3204 * Set if only 64-bit nir_op_[iu]hadd and nir_op_[iu]rhadd instructions
3205 * should be lowered to simple arithmetic.
3206 *
3207 * If this flag is set, the lowering will be applied to only 64-bit
3208 * versions of these instructions.
3209 *
3210 * \sa ::lower_hadd
3211 */
3212 bool lower_hadd64;
3213
3214 /**
3215 * Set if nir_op_add_sat and nir_op_usub_sat should be lowered to simple
3216 * arithmetic.
3217 *
3218 * If this flag is set, the lowering will be applied to all bit-sizes of
3219 * these instructions.
3220 *
3221 * \sa ::lower_usub_sat64
3222 */
3223 bool lower_add_sat;
3224
3225 /**
3226 * Set if only 64-bit nir_op_usub_sat should be lowered to simple
3227 * arithmetic.
3228 *
3229 * \sa ::lower_add_sat
3230 */
3231 bool lower_usub_sat64;
3232
3233 /**
3234 * Should IO be re-vectorized? Some scalar ISAs still operate on vec4's
3235 * for IO purposes and would prefer loads/stores be vectorized.
3236 */
3237 bool vectorize_io;
3238 bool lower_to_scalar;
3239
3240 /**
3241 * Whether nir_opt_vectorize should only create 16-bit 2D vectors.
3242 */
3243 bool vectorize_vec2_16bit;
3244
3245 /**
3246 * Should the linker unify inputs_read/outputs_written between adjacent
3247 * shader stages which are linked into a single program?
3248 */
3249 bool unify_interfaces;
3250
3251 /**
3252 * Should nir_lower_io() create load_interpolated_input intrinsics?
3253 *
3254 * If not, it generates regular load_input intrinsics and interpolation
3255 * information must be inferred from the list of input nir_variables.
3256 */
3257 bool use_interpolated_input_intrinsics;
3258
3259 /* Lowers when 32x32->64 bit multiplication is not supported */
3260 bool lower_mul_2x32_64;
3261
3262 /* Lowers when rotate instruction is not supported */
3263 bool lower_rotate;
3264
3265 /**
3266 * Backend supports imul24, and would like to use it (when possible)
3267 * for address/offset calculation. If true, driver should call
3268 * nir_lower_amul(). (If not set, amul will automatically be lowered
3269 * to imul.)
3270 */
3271 bool has_imul24;
3272
3273 /** Backend supports umul24, if not set umul24 will automatically be lowered
3274 * to imul with masked inputs */
3275 bool has_umul24;
3276
3277 /** Backend supports umad24, if not set umad24 will automatically be lowered
3278 * to imul with masked inputs and iadd */
3279 bool has_umad24;
3280
3281 /* Whether to generate only scoped_barrier intrinsics instead of the set of
3282 * memory and control barrier intrinsics based on GLSL.
3283 */
3284 bool use_scoped_barrier;
3285
3286 /**
3287 * Is this the Intel vec4 backend?
3288 *
3289 * Used to inhibit algebraic optimizations that are known to be harmful on
3290 * the Intel vec4 backend. This is generally applicable to any
3291 * optimization that might cause more immediate values to be used in
3292 * 3-source (e.g., ffma and flrp) instructions.
3293 */
3294 bool intel_vec4;
3295
3296 /** Lower nir_op_ibfe and nir_op_ubfe that have two constant sources. */
3297 bool lower_bfe_with_two_constants;
3298
3299 /** Whether 8-bit ALU is supported. */
3300 bool support_8bit_alu;
3301
3302 /** Whether 16-bit ALU is supported. */
3303 bool support_16bit_alu;
3304
3305 unsigned max_unroll_iterations;
3306
3307 nir_lower_int64_options lower_int64_options;
3308 nir_lower_doubles_options lower_doubles_options;
3309 } nir_shader_compiler_options;
3310
3311 typedef struct nir_shader {
3312 /** list of uniforms (nir_variable) */
3313 struct exec_list variables;
3314
3315 /** Set of driver-specific options for the shader.
3316 *
3317 * The memory for the options is expected to be kept in a single static
3318 * copy by the driver.
3319 */
3320 const struct nir_shader_compiler_options *options;
3321
3322 /** Various bits of compile-time information about a given shader */
3323 struct shader_info info;
3324
3325 struct exec_list functions; /** < list of nir_function */
3326
3327 /**
3328 * The size of the variable space for load_input_*, load_uniform_*, etc.
3329 * intrinsics. This is in back-end specific units which is likely one of
3330 * bytes, dwords, or vec4s depending on context and back-end.
3331 */
3332 unsigned num_inputs, num_uniforms, num_outputs;
3333
3334 /** Size in bytes of required shared memory */
3335 unsigned shared_size;
3336
3337 /** Size in bytes of required scratch space */
3338 unsigned scratch_size;
3339
3340 /** Constant data associated with this shader.
3341 *
3342 * Constant data is loaded through load_constant intrinsics (as compared to
3343 * the NIR load_const instructions which have the constant value inlined
3344 * into them). This is usually generated by nir_opt_large_constants (so
3345 * shaders don't have to load_const into a temporary array when they want
3346 * to indirect on a const array).
3347 */
3348 void *constant_data;
3349 /** Size of the constant data associated with the shader, in bytes */
3350 unsigned constant_data_size;
3351 } nir_shader;
3352
3353 #define nir_foreach_function(func, shader) \
3354 foreach_list_typed(nir_function, func, node, &(shader)->functions)
3355
3356 static inline nir_function_impl *
3357 nir_shader_get_entrypoint(nir_shader *shader)
3358 {
3359 nir_function *func = NULL;
3360
3361 nir_foreach_function(function, shader) {
3362 assert(func == NULL);
3363 if (function->is_entrypoint) {
3364 func = function;
3365 #ifndef NDEBUG
3366 break;
3367 #endif
3368 }
3369 }
3370
3371 if (!func)
3372 return NULL;
3373
3374 assert(func->num_params == 0);
3375 assert(func->impl);
3376 return func->impl;
3377 }
3378
3379 nir_shader *nir_shader_create(void *mem_ctx,
3380 gl_shader_stage stage,
3381 const nir_shader_compiler_options *options,
3382 shader_info *si);
3383
3384 nir_register *nir_local_reg_create(nir_function_impl *impl);
3385
3386 void nir_reg_remove(nir_register *reg);
3387
3388 /** Adds a variable to the appropriate list in nir_shader */
3389 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
3390
3391 static inline void
3392 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
3393 {
3394 assert(var->data.mode == nir_var_function_temp);
3395 exec_list_push_tail(&impl->locals, &var->node);
3396 }
3397
3398 /** creates a variable, sets a few defaults, and adds it to the list */
3399 nir_variable *nir_variable_create(nir_shader *shader,
3400 nir_variable_mode mode,
3401 const struct glsl_type *type,
3402 const char *name);
3403 /** creates a local variable and adds it to the list */
3404 nir_variable *nir_local_variable_create(nir_function_impl *impl,
3405 const struct glsl_type *type,
3406 const char *name);
3407
3408 nir_variable *nir_find_variable_with_location(nir_shader *shader,
3409 nir_variable_mode mode,
3410 unsigned location);
3411
3412 nir_variable *nir_find_variable_with_driver_location(nir_shader *shader,
3413 nir_variable_mode mode,
3414 unsigned location);
3415
3416 /** creates a function and adds it to the shader's list of functions */
3417 nir_function *nir_function_create(nir_shader *shader, const char *name);
3418
3419 nir_function_impl *nir_function_impl_create(nir_function *func);
3420 /** creates a function_impl that isn't tied to any particular function */
3421 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
3422
3423 nir_block *nir_block_create(nir_shader *shader);
3424 nir_if *nir_if_create(nir_shader *shader);
3425 nir_loop *nir_loop_create(nir_shader *shader);
3426
3427 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
3428
3429 /** requests that the given pieces of metadata be generated */
3430 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
3431 /** dirties all but the preserved metadata */
3432 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
3433 /** Preserves all metadata for the given shader */
3434 void nir_shader_preserve_all_metadata(nir_shader *shader);
3435
3436 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
3437 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
3438
3439 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
3440 nir_deref_type deref_type);
3441
3442 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
3443
3444 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
3445 unsigned num_components,
3446 unsigned bit_size);
3447
3448 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
3449 nir_intrinsic_op op);
3450
3451 nir_call_instr *nir_call_instr_create(nir_shader *shader,
3452 nir_function *callee);
3453
3454 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
3455
3456 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
3457
3458 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
3459
3460 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
3461 unsigned num_components,
3462 unsigned bit_size);
3463
3464 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
3465
3466 /**
3467 * NIR Cursors and Instruction Insertion API
3468 * @{
3469 *
3470 * A tiny struct representing a point to insert/extract instructions or
3471 * control flow nodes. Helps reduce the combinatorial explosion of possible
3472 * points to insert/extract.
3473 *
3474 * \sa nir_control_flow.h
3475 */
3476 typedef enum {
3477 nir_cursor_before_block,
3478 nir_cursor_after_block,
3479 nir_cursor_before_instr,
3480 nir_cursor_after_instr,
3481 } nir_cursor_option;
3482
3483 typedef struct {
3484 nir_cursor_option option;
3485 union {
3486 nir_block *block;
3487 nir_instr *instr;
3488 };
3489 } nir_cursor;
3490
3491 static inline nir_block *
3492 nir_cursor_current_block(nir_cursor cursor)
3493 {
3494 if (cursor.option == nir_cursor_before_instr ||
3495 cursor.option == nir_cursor_after_instr) {
3496 return cursor.instr->block;
3497 } else {
3498 return cursor.block;
3499 }
3500 }
3501
3502 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
3503
3504 static inline nir_cursor
3505 nir_before_block(nir_block *block)
3506 {
3507 nir_cursor cursor;
3508 cursor.option = nir_cursor_before_block;
3509 cursor.block = block;
3510 return cursor;
3511 }
3512
3513 static inline nir_cursor
3514 nir_after_block(nir_block *block)
3515 {
3516 nir_cursor cursor;
3517 cursor.option = nir_cursor_after_block;
3518 cursor.block = block;
3519 return cursor;
3520 }
3521
3522 static inline nir_cursor
3523 nir_before_instr(nir_instr *instr)
3524 {
3525 nir_cursor cursor;
3526 cursor.option = nir_cursor_before_instr;
3527 cursor.instr = instr;
3528 return cursor;
3529 }
3530
3531 static inline nir_cursor
3532 nir_after_instr(nir_instr *instr)
3533 {
3534 nir_cursor cursor;
3535 cursor.option = nir_cursor_after_instr;
3536 cursor.instr = instr;
3537 return cursor;
3538 }
3539
3540 static inline nir_cursor
3541 nir_after_block_before_jump(nir_block *block)
3542 {
3543 nir_instr *last_instr = nir_block_last_instr(block);
3544 if (last_instr && last_instr->type == nir_instr_type_jump) {
3545 return nir_before_instr(last_instr);
3546 } else {
3547 return nir_after_block(block);
3548 }
3549 }
3550
3551 static inline nir_cursor
3552 nir_before_src(nir_src *src, bool is_if_condition)
3553 {
3554 if (is_if_condition) {
3555 nir_block *prev_block =
3556 nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
3557 assert(!nir_block_ends_in_jump(prev_block));
3558 return nir_after_block(prev_block);
3559 } else if (src->parent_instr->type == nir_instr_type_phi) {
3560 #ifndef NDEBUG
3561 nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
3562 bool found = false;
3563 nir_foreach_phi_src(phi_src, cond_phi) {
3564 if (phi_src->src.ssa == src->ssa) {
3565 found = true;
3566 break;
3567 }
3568 }
3569 assert(found);
3570 #endif
3571 /* The LIST_ENTRY macro is a generic container-of macro, it just happens
3572 * to have a more specific name.
3573 */
3574 nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
3575 return nir_after_block_before_jump(phi_src->pred);
3576 } else {
3577 return nir_before_instr(src->parent_instr);
3578 }
3579 }
3580
3581 static inline nir_cursor
3582 nir_before_cf_node(nir_cf_node *node)
3583 {
3584 if (node->type == nir_cf_node_block)
3585 return nir_before_block(nir_cf_node_as_block(node));
3586
3587 return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
3588 }
3589
3590 static inline nir_cursor
3591 nir_after_cf_node(nir_cf_node *node)
3592 {
3593 if (node->type == nir_cf_node_block)
3594 return nir_after_block(nir_cf_node_as_block(node));
3595
3596 return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
3597 }
3598
3599 static inline nir_cursor
3600 nir_after_phis(nir_block *block)
3601 {
3602 nir_foreach_instr(instr, block) {
3603 if (instr->type != nir_instr_type_phi)
3604 return nir_before_instr(instr);
3605 }
3606 return nir_after_block(block);
3607 }
3608
3609 static inline nir_cursor
3610 nir_after_cf_node_and_phis(nir_cf_node *node)
3611 {
3612 if (node->type == nir_cf_node_block)
3613 return nir_after_block(nir_cf_node_as_block(node));
3614
3615 nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
3616
3617 return nir_after_phis(block);
3618 }
3619
3620 static inline nir_cursor
3621 nir_before_cf_list(struct exec_list *cf_list)
3622 {
3623 nir_cf_node *first_node = exec_node_data(nir_cf_node,
3624 exec_list_get_head(cf_list), node);
3625 return nir_before_cf_node(first_node);
3626 }
3627
3628 static inline nir_cursor
3629 nir_after_cf_list(struct exec_list *cf_list)
3630 {
3631 nir_cf_node *last_node = exec_node_data(nir_cf_node,
3632 exec_list_get_tail(cf_list), node);
3633 return nir_after_cf_node(last_node);
3634 }
3635
3636 /**
3637 * Insert a NIR instruction at the given cursor.
3638 *
3639 * Note: This does not update the cursor.
3640 */
3641 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
3642
3643 static inline void
3644 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
3645 {
3646 nir_instr_insert(nir_before_instr(instr), before);
3647 }
3648
3649 static inline void
3650 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
3651 {
3652 nir_instr_insert(nir_after_instr(instr), after);
3653 }
3654
3655 static inline void
3656 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
3657 {
3658 nir_instr_insert(nir_before_block(block), before);
3659 }
3660
3661 static inline void
3662 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
3663 {
3664 nir_instr_insert(nir_after_block(block), after);
3665 }
3666
3667 static inline void
3668 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
3669 {
3670 nir_instr_insert(nir_before_cf_node(node), before);
3671 }
3672
3673 static inline void
3674 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
3675 {
3676 nir_instr_insert(nir_after_cf_node(node), after);
3677 }
3678
3679 static inline void
3680 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
3681 {
3682 nir_instr_insert(nir_before_cf_list(list), before);
3683 }
3684
3685 static inline void
3686 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
3687 {
3688 nir_instr_insert(nir_after_cf_list(list), after);
3689 }
3690
3691 void nir_instr_remove_v(nir_instr *instr);
3692
3693 static inline nir_cursor
3694 nir_instr_remove(nir_instr *instr)
3695 {
3696 nir_cursor cursor;
3697 nir_instr *prev = nir_instr_prev(instr);
3698 if (prev) {
3699 cursor = nir_after_instr(prev);
3700 } else {
3701 cursor = nir_before_block(instr->block);
3702 }
3703 nir_instr_remove_v(instr);
3704 return cursor;
3705 }
3706
3707 /** @} */
3708
3709 nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
3710
3711 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
3712 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
3713 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
3714 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
3715 void *state);
3716 bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
3717 bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
3718 bool nir_foreach_phi_src_leaving_block(nir_block *instr,
3719 nir_foreach_src_cb cb,
3720 void *state);
3721
3722 nir_const_value *nir_src_as_const_value(nir_src src);
3723
3724 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
3725 static inline c_type * \
3726 nir_src_as_ ## name (nir_src src) \
3727 { \
3728 return src.is_ssa && src.ssa->parent_instr->type == type_enum \
3729 ? cast_macro(src.ssa->parent_instr) : NULL; \
3730 }
3731
3732 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
3733 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
3734 nir_instr_type_intrinsic, nir_instr_as_intrinsic)
3735 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
3736
3737 bool nir_src_is_dynamically_uniform(nir_src src);
3738 bool nir_srcs_equal(nir_src src1, nir_src src2);
3739 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
3740 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
3741 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
3742 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
3743 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
3744 nir_dest new_dest);
3745
3746 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
3747 unsigned num_components, unsigned bit_size,
3748 const char *name);
3749 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
3750 unsigned num_components, unsigned bit_size,
3751 const char *name);
3752 static inline void
3753 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
3754 const struct glsl_type *type,
3755 const char *name)
3756 {
3757 assert(glsl_type_is_vector_or_scalar(type));
3758 nir_ssa_dest_init(instr, dest, glsl_get_components(type),
3759 glsl_get_bit_size(type), name);
3760 }
3761 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
3762 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
3763 nir_instr *after_me);
3764
3765 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
3766
3767
3768 /** Returns the next block, disregarding structure
3769 *
3770 * The ordering is deterministic but has no guarantees beyond that. In
3771 * particular, it is not guaranteed to be dominance-preserving.
3772 */
3773 nir_block *nir_block_unstructured_next(nir_block *block);
3774 nir_block *nir_unstructured_start_block(nir_function_impl *impl);
3775
3776 #define nir_foreach_block_unstructured(block, impl) \
3777 for (nir_block *block = nir_unstructured_start_block(impl); block != NULL; \
3778 block = nir_block_unstructured_next(block))
3779
3780 #define nir_foreach_block_unstructured_safe(block, impl) \
3781 for (nir_block *block = nir_unstructured_start_block(impl), \
3782 *next = nir_block_unstructured_next(block); \
3783 block != NULL; \
3784 block = next, next = nir_block_unstructured_next(block))
3785
3786 /*
3787 * finds the next basic block in source-code order, returns NULL if there is
3788 * none
3789 */
3790
3791 nir_block *nir_block_cf_tree_next(nir_block *block);
3792
3793 /* Performs the opposite of nir_block_cf_tree_next() */
3794
3795 nir_block *nir_block_cf_tree_prev(nir_block *block);
3796
3797 /* Gets the first block in a CF node in source-code order */
3798
3799 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
3800
3801 /* Gets the last block in a CF node in source-code order */
3802
3803 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
3804
3805 /* Gets the next block after a CF node in source-code order */
3806
3807 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
3808
3809 /* Macros for loops that visit blocks in source-code order */
3810
3811 #define nir_foreach_block(block, impl) \
3812 for (nir_block *block = nir_start_block(impl); block != NULL; \
3813 block = nir_block_cf_tree_next(block))
3814
3815 #define nir_foreach_block_safe(block, impl) \
3816 for (nir_block *block = nir_start_block(impl), \
3817 *next = nir_block_cf_tree_next(block); \
3818 block != NULL; \
3819 block = next, next = nir_block_cf_tree_next(block))
3820
3821 #define nir_foreach_block_reverse(block, impl) \
3822 for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
3823 block = nir_block_cf_tree_prev(block))
3824
3825 #define nir_foreach_block_reverse_safe(block, impl) \
3826 for (nir_block *block = nir_impl_last_block(impl), \
3827 *prev = nir_block_cf_tree_prev(block); \
3828 block != NULL; \
3829 block = prev, prev = nir_block_cf_tree_prev(block))
3830
3831 #define nir_foreach_block_in_cf_node(block, node) \
3832 for (nir_block *block = nir_cf_node_cf_tree_first(node); \
3833 block != nir_cf_node_cf_tree_next(node); \
3834 block = nir_block_cf_tree_next(block))
3835
3836 /* If the following CF node is an if, this function returns that if.
3837 * Otherwise, it returns NULL.
3838 */
3839 nir_if *nir_block_get_following_if(nir_block *block);
3840
3841 nir_loop *nir_block_get_following_loop(nir_block *block);
3842
3843 void nir_index_local_regs(nir_function_impl *impl);
3844 void nir_index_ssa_defs(nir_function_impl *impl);
3845 unsigned nir_index_instrs(nir_function_impl *impl);
3846
3847 void nir_index_blocks(nir_function_impl *impl);
3848
3849 unsigned nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes);
3850 unsigned nir_function_impl_index_vars(nir_function_impl *impl);
3851
3852 void nir_print_shader(nir_shader *shader, FILE *fp);
3853 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
3854 void nir_print_instr(const nir_instr *instr, FILE *fp);
3855 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
3856
3857 /** Shallow clone of a single ALU instruction. */
3858 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
3859
3860 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
3861 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
3862 const nir_function_impl *fi);
3863 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
3864 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
3865
3866 void nir_shader_replace(nir_shader *dest, nir_shader *src);
3867
3868 void nir_shader_serialize_deserialize(nir_shader *s);
3869
3870 #ifndef NDEBUG
3871 void nir_validate_shader(nir_shader *shader, const char *when);
3872 void nir_metadata_set_validation_flag(nir_shader *shader);
3873 void nir_metadata_check_validation_flag(nir_shader *shader);
3874
3875 static inline bool
3876 should_skip_nir(const char *name)
3877 {
3878 static const char *list = NULL;
3879 if (!list) {
3880 /* Comma separated list of names to skip. */
3881 list = getenv("NIR_SKIP");
3882 if (!list)
3883 list = "";
3884 }
3885
3886 if (!list[0])
3887 return false;
3888
3889 return comma_separated_list_contains(list, name);
3890 }
3891
3892 static inline bool
3893 should_clone_nir(void)
3894 {
3895 static int should_clone = -1;
3896 if (should_clone < 0)
3897 should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
3898
3899 return should_clone;
3900 }
3901
3902 static inline bool
3903 should_serialize_deserialize_nir(void)
3904 {
3905 static int test_serialize = -1;
3906 if (test_serialize < 0)
3907 test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
3908
3909 return test_serialize;
3910 }
3911
3912 static inline bool
3913 should_print_nir(void)
3914 {
3915 static int should_print = -1;
3916 if (should_print < 0)
3917 should_print = env_var_as_boolean("NIR_PRINT", false);
3918
3919 return should_print;
3920 }
3921 #else
3922 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
3923 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
3924 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
3925 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
3926 static inline bool should_clone_nir(void) { return false; }
3927 static inline bool should_serialize_deserialize_nir(void) { return false; }
3928 static inline bool should_print_nir(void) { return false; }
3929 #endif /* NDEBUG */
3930
3931 #define _PASS(pass, nir, do_pass) do { \
3932 if (should_skip_nir(#pass)) { \
3933 printf("skipping %s\n", #pass); \
3934 break; \
3935 } \
3936 do_pass \
3937 nir_validate_shader(nir, "after " #pass); \
3938 if (should_clone_nir()) { \
3939 nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
3940 nir_shader_replace(nir, clone); \
3941 } \
3942 if (should_serialize_deserialize_nir()) { \
3943 nir_shader_serialize_deserialize(nir); \
3944 } \
3945 } while (0)
3946
3947 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, \
3948 nir_metadata_set_validation_flag(nir); \
3949 if (should_print_nir()) \
3950 printf("%s\n", #pass); \
3951 if (pass(nir, ##__VA_ARGS__)) { \
3952 progress = true; \
3953 if (should_print_nir()) \
3954 nir_print_shader(nir, stdout); \
3955 nir_metadata_check_validation_flag(nir); \
3956 } \
3957 )
3958
3959 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, \
3960 if (should_print_nir()) \
3961 printf("%s\n", #pass); \
3962 pass(nir, ##__VA_ARGS__); \
3963 if (should_print_nir()) \
3964 nir_print_shader(nir, stdout); \
3965 )
3966
3967 #define NIR_SKIP(name) should_skip_nir(#name)
3968
3969 /** An instruction filtering callback
3970 *
3971 * Returns true if the instruction should be processed and false otherwise.
3972 */
3973 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3974
3975 /** A simple instruction lowering callback
3976 *
3977 * Many instruction lowering passes can be written as a simple function which
3978 * takes an instruction as its input and returns a sequence of instructions
3979 * that implement the consumed instruction. This function type represents
3980 * such a lowering function. When called, a function with this prototype
3981 * should either return NULL indicating that no lowering needs to be done or
3982 * emit a sequence of instructions using the provided builder (whose cursor
3983 * will already be placed after the instruction to be lowered) and return the
3984 * resulting nir_ssa_def.
3985 */
3986 typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
3987 nir_instr *, void *);
3988
3989 /**
3990 * Special return value for nir_lower_instr_cb when some progress occurred
3991 * (like changing an input to the instr) that didn't result in a replacement
3992 * SSA def being generated.
3993 */
3994 #define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
3995
3996 /** Iterate over all the instructions in a nir_function_impl and lower them
3997 * using the provided callbacks
3998 *
3999 * This function implements the guts of a standard lowering pass for you. It
4000 * iterates over all of the instructions in a nir_function_impl and calls the
4001 * filter callback on each one. If the filter callback returns true, it then
4002 * calls the lowering call back on the instruction. (Splitting it this way
4003 * allows us to avoid some save/restore work for instructions we know won't be
4004 * lowered.) If the instruction is dead after the lowering is complete, it
4005 * will be removed. If new instructions are added, the lowering callback will
4006 * also be called on them in case multiple lowerings are required.
4007 *
4008 * The metadata for the nir_function_impl will also be updated. If any blocks
4009 * are added (they cannot be removed), dominance and block indices will be
4010 * invalidated.
4011 */
4012 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
4013 nir_instr_filter_cb filter,
4014 nir_lower_instr_cb lower,
4015 void *cb_data);
4016 bool nir_shader_lower_instructions(nir_shader *shader,
4017 nir_instr_filter_cb filter,
4018 nir_lower_instr_cb lower,
4019 void *cb_data);
4020
4021 void nir_calc_dominance_impl(nir_function_impl *impl);
4022 void nir_calc_dominance(nir_shader *shader);
4023
4024 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
4025 bool nir_block_dominates(nir_block *parent, nir_block *child);
4026 bool nir_block_is_unreachable(nir_block *block);
4027
4028 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
4029 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
4030
4031 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
4032 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
4033
4034 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
4035 void nir_dump_cfg(nir_shader *shader, FILE *fp);
4036
4037 int nir_gs_count_vertices(const nir_shader *shader);
4038
4039 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
4040 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
4041 bool nir_split_var_copies(nir_shader *shader);
4042 bool nir_split_per_member_structs(nir_shader *shader);
4043 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
4044
4045 bool nir_lower_returns_impl(nir_function_impl *impl);
4046 bool nir_lower_returns(nir_shader *shader);
4047
4048 void nir_inline_function_impl(struct nir_builder *b,
4049 const nir_function_impl *impl,
4050 nir_ssa_def **params,
4051 struct hash_table *shader_var_remap);
4052 bool nir_inline_functions(nir_shader *shader);
4053
4054 bool nir_propagate_invariant(nir_shader *shader);
4055
4056 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
4057 void nir_lower_deref_copy_instr(struct nir_builder *b,
4058 nir_intrinsic_instr *copy);
4059 bool nir_lower_var_copies(nir_shader *shader);
4060
4061 void nir_fixup_deref_modes(nir_shader *shader);
4062
4063 bool nir_lower_global_vars_to_local(nir_shader *shader);
4064
4065 typedef enum {
4066 nir_lower_direct_array_deref_of_vec_load = (1 << 0),
4067 nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
4068 nir_lower_direct_array_deref_of_vec_store = (1 << 2),
4069 nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
4070 } nir_lower_array_deref_of_vec_options;
4071
4072 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
4073 nir_lower_array_deref_of_vec_options options);
4074
4075 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes);
4076
4077 bool nir_lower_locals_to_regs(nir_shader *shader);
4078
4079 void nir_lower_io_to_temporaries(nir_shader *shader,
4080 nir_function_impl *entrypoint,
4081 bool outputs, bool inputs);
4082
4083 bool nir_lower_vars_to_scratch(nir_shader *shader,
4084 nir_variable_mode modes,
4085 int size_threshold,
4086 glsl_type_size_align_func size_align);
4087
4088 void nir_lower_clip_halfz(nir_shader *shader);
4089
4090 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
4091
4092 void nir_gather_ssa_types(nir_function_impl *impl,
4093 BITSET_WORD *float_types,
4094 BITSET_WORD *int_types);
4095
4096 void nir_assign_var_locations(nir_shader *shader, nir_variable_mode mode,
4097 unsigned *size,
4098 int (*type_size)(const struct glsl_type *, bool));
4099
4100 /* Some helpers to do very simple linking */
4101 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
4102 bool nir_remove_unused_io_vars(nir_shader *shader, nir_variable_mode mode,
4103 uint64_t *used_by_other_stage,
4104 uint64_t *used_by_other_stage_patches);
4105 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
4106 bool default_to_smooth_interp);
4107 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
4108 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
4109
4110 bool nir_lower_amul(nir_shader *shader,
4111 int (*type_size)(const struct glsl_type *, bool));
4112
4113 bool nir_lower_ubo_vec4(nir_shader *shader);
4114
4115 void nir_assign_io_var_locations(nir_shader *shader,
4116 nir_variable_mode mode,
4117 unsigned *size,
4118 gl_shader_stage stage);
4119
4120 typedef struct {
4121 uint8_t num_linked_io_vars;
4122 uint8_t num_linked_patch_io_vars;
4123 } nir_linked_io_var_info;
4124
4125 nir_linked_io_var_info
4126 nir_assign_linked_io_var_locations(nir_shader *producer,
4127 nir_shader *consumer);
4128
4129 typedef enum {
4130 /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
4131 * to 32-bit operations. This is only valid for nir_var_shader_in/out
4132 * modes.
4133 */
4134 nir_lower_io_lower_64bit_to_32 = (1 << 0),
4135
4136 /* If set, this forces all non-flat fragment shader inputs to be
4137 * interpolated as if with the "sample" qualifier. This requires
4138 * nir_shader_compiler_options::use_interpolated_input_intrinsics.
4139 */
4140 nir_lower_io_force_sample_interpolation = (1 << 1),
4141 } nir_lower_io_options;
4142 bool nir_lower_io(nir_shader *shader,
4143 nir_variable_mode modes,
4144 int (*type_size)(const struct glsl_type *, bool),
4145 nir_lower_io_options);
4146
4147 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode mode);
4148
4149 bool
4150 nir_lower_vars_to_explicit_types(nir_shader *shader,
4151 nir_variable_mode modes,
4152 glsl_type_size_align_func type_info);
4153
4154 typedef enum {
4155 /**
4156 * An address format which is a simple 32-bit global GPU address.
4157 */
4158 nir_address_format_32bit_global,
4159
4160 /**
4161 * An address format which is a simple 64-bit global GPU address.
4162 */
4163 nir_address_format_64bit_global,
4164
4165 /**
4166 * An address format which is a bounds-checked 64-bit global GPU address.
4167 *
4168 * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
4169 * address stored with the low bits in .x and high bits in .y, .z is a
4170 * size, and .w is an offset. When the final I/O operation is lowered, .w
4171 * is checked against .z and the operation is predicated on the result.
4172 */
4173 nir_address_format_64bit_bounded_global,
4174
4175 /**
4176 * An address format which is comprised of a vec2 where the first
4177 * component is a buffer index and the second is an offset.
4178 */
4179 nir_address_format_32bit_index_offset,
4180
4181 /**
4182 * An address format which is a 64-bit value, where the high 32 bits
4183 * are a buffer index, and the low 32 bits are an offset.
4184 */
4185 nir_address_format_32bit_index_offset_pack64,
4186
4187 /**
4188 * An address format which is comprised of a vec3 where the first two
4189 * components specify the buffer and the third is an offset.
4190 */
4191 nir_address_format_vec2_index_32bit_offset,
4192
4193 /**
4194 * An address format which is a simple 32-bit offset.
4195 */
4196 nir_address_format_32bit_offset,
4197
4198 /**
4199 * An address format which is a simple 32-bit offset cast to 64-bit.
4200 */
4201 nir_address_format_32bit_offset_as_64bit,
4202
4203 /**
4204 * An address format representing a purely logical addressing model. In
4205 * this model, all deref chains must be complete from the dereference
4206 * operation to the variable. Cast derefs are not allowed. These
4207 * addresses will be 32-bit scalars but the format is immaterial because
4208 * you can always chase the chain.
4209 */
4210 nir_address_format_logical,
4211 } nir_address_format;
4212
4213 static inline unsigned
4214 nir_address_format_bit_size(nir_address_format addr_format)
4215 {
4216 switch (addr_format) {
4217 case nir_address_format_32bit_global: return 32;
4218 case nir_address_format_64bit_global: return 64;
4219 case nir_address_format_64bit_bounded_global: return 32;
4220 case nir_address_format_32bit_index_offset: return 32;
4221 case nir_address_format_32bit_index_offset_pack64: return 64;
4222 case nir_address_format_vec2_index_32bit_offset: return 32;
4223 case nir_address_format_32bit_offset: return 32;
4224 case nir_address_format_32bit_offset_as_64bit: return 64;
4225 case nir_address_format_logical: return 32;
4226 }
4227 unreachable("Invalid address format");
4228 }
4229
4230 static inline unsigned
4231 nir_address_format_num_components(nir_address_format addr_format)
4232 {
4233 switch (addr_format) {
4234 case nir_address_format_32bit_global: return 1;
4235 case nir_address_format_64bit_global: return 1;
4236 case nir_address_format_64bit_bounded_global: return 4;
4237 case nir_address_format_32bit_index_offset: return 2;
4238 case nir_address_format_32bit_index_offset_pack64: return 1;
4239 case nir_address_format_vec2_index_32bit_offset: return 3;
4240 case nir_address_format_32bit_offset: return 1;
4241 case nir_address_format_32bit_offset_as_64bit: return 1;
4242 case nir_address_format_logical: return 1;
4243 }
4244 unreachable("Invalid address format");
4245 }
4246
4247 static inline const struct glsl_type *
4248 nir_address_format_to_glsl_type(nir_address_format addr_format)
4249 {
4250 unsigned bit_size = nir_address_format_bit_size(addr_format);
4251 assert(bit_size == 32 || bit_size == 64);
4252 return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
4253 nir_address_format_num_components(addr_format));
4254 }
4255
4256 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
4257
4258 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
4259 nir_address_format addr_format);
4260
4261 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
4262 nir_address_format addr_format);
4263
4264 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
4265 nir_deref_instr *deref,
4266 nir_ssa_def *base_addr,
4267 nir_address_format addr_format);
4268 void nir_lower_explicit_io_instr(struct nir_builder *b,
4269 nir_intrinsic_instr *io_instr,
4270 nir_ssa_def *addr,
4271 nir_address_format addr_format);
4272
4273 bool nir_lower_explicit_io(nir_shader *shader,
4274 nir_variable_mode modes,
4275 nir_address_format);
4276
4277 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
4278 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
4279
4280 bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
4281
4282 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
4283 bool nir_lower_regs_to_ssa(nir_shader *shader);
4284 bool nir_lower_vars_to_ssa(nir_shader *shader);
4285
4286 bool nir_remove_dead_derefs(nir_shader *shader);
4287 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
4288 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes,
4289 bool (*can_remove_var)(nir_variable *var));
4290 bool nir_lower_variable_initializers(nir_shader *shader,
4291 nir_variable_mode modes);
4292
4293 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
4294 bool nir_lower_vec_to_movs(nir_shader *shader);
4295 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
4296 bool alpha_to_one,
4297 const gl_state_index16 *alpha_ref_state_tokens);
4298 bool nir_lower_alu(nir_shader *shader);
4299
4300 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
4301 bool always_precise, bool have_ffma);
4302
4303 bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
4304 bool nir_lower_bool_to_bitsize(nir_shader *shader);
4305 bool nir_lower_bool_to_float(nir_shader *shader);
4306 bool nir_lower_bool_to_int32(nir_shader *shader);
4307 bool nir_lower_int_to_float(nir_shader *shader);
4308 bool nir_lower_load_const_to_scalar(nir_shader *shader);
4309 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
4310 bool nir_lower_phis_to_scalar(nir_shader *shader);
4311 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
4312 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
4313 bool outputs_only);
4314 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
4315 void nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
4316 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
4317
4318 bool nir_lower_fragcolor(nir_shader *shader);
4319 bool nir_lower_fragcoord_wtrans(nir_shader *shader);
4320 void nir_lower_viewport_transform(nir_shader *shader);
4321 bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
4322
4323 typedef struct nir_lower_subgroups_options {
4324 uint8_t subgroup_size;
4325 uint8_t ballot_bit_size;
4326 bool lower_to_scalar:1;
4327 bool lower_vote_trivial:1;
4328 bool lower_vote_eq_to_ballot:1;
4329 bool lower_subgroup_masks:1;
4330 bool lower_shuffle:1;
4331 bool lower_shuffle_to_32bit:1;
4332 bool lower_shuffle_to_swizzle_amd:1;
4333 bool lower_quad:1;
4334 bool lower_quad_broadcast_dynamic:1;
4335 bool lower_quad_broadcast_dynamic_to_const:1;
4336 } nir_lower_subgroups_options;
4337
4338 bool nir_lower_subgroups(nir_shader *shader,
4339 const nir_lower_subgroups_options *options);
4340
4341 bool nir_lower_system_values(nir_shader *shader);
4342
4343 typedef struct nir_lower_compute_system_values_options {
4344 bool has_base_global_invocation_id:1;
4345 bool has_base_work_group_id:1;
4346 } nir_lower_compute_system_values_options;
4347
4348 bool nir_lower_compute_system_values(nir_shader *shader,
4349 const nir_lower_compute_system_values_options *options);
4350
4351 enum PACKED nir_lower_tex_packing {
4352 nir_lower_tex_packing_none = 0,
4353 /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
4354 * or unsigned ints based on the sampler type
4355 */
4356 nir_lower_tex_packing_16,
4357 /* The sampler returns 1 32-bit word of 4x8 unorm */
4358 nir_lower_tex_packing_8,
4359 };
4360
4361 typedef struct nir_lower_tex_options {
4362 /**
4363 * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
4364 * sampler types a texture projector is lowered.
4365 */
4366 unsigned lower_txp;
4367
4368 /**
4369 * If true, lower away nir_tex_src_offset for all texelfetch instructions.
4370 */
4371 bool lower_txf_offset;
4372
4373 /**
4374 * If true, lower away nir_tex_src_offset for all rect textures.
4375 */
4376 bool lower_rect_offset;
4377
4378 /**
4379 * If true, lower rect textures to 2D, using txs to fetch the
4380 * texture dimensions and dividing the texture coords by the
4381 * texture dims to normalize.
4382 */
4383 bool lower_rect;
4384
4385 /**
4386 * If true, convert yuv to rgb.
4387 */
4388 unsigned lower_y_uv_external;
4389 unsigned lower_y_u_v_external;
4390 unsigned lower_yx_xuxv_external;
4391 unsigned lower_xy_uxvx_external;
4392 unsigned lower_ayuv_external;
4393 unsigned lower_xyuv_external;
4394 unsigned bt709_external;
4395 unsigned bt2020_external;
4396
4397 /**
4398 * To emulate certain texture wrap modes, this can be used
4399 * to saturate the specified tex coord to [0.0, 1.0]. The
4400 * bits are according to sampler #, ie. if, for example:
4401 *
4402 * (conf->saturate_s & (1 << n))
4403 *
4404 * is true, then the s coord for sampler n is saturated.
4405 *
4406 * Note that clamping must happen *after* projector lowering
4407 * so any projected texture sample instruction with a clamped
4408 * coordinate gets automatically lowered, regardless of the
4409 * 'lower_txp' setting.
4410 */
4411 unsigned saturate_s;
4412 unsigned saturate_t;
4413 unsigned saturate_r;
4414
4415 /* Bitmask of textures that need swizzling.
4416 *
4417 * If (swizzle_result & (1 << texture_index)), then the swizzle in
4418 * swizzles[texture_index] is applied to the result of the texturing
4419 * operation.
4420 */
4421 unsigned swizzle_result;
4422
4423 /* A swizzle for each texture. Values 0-3 represent x, y, z, or w swizzles
4424 * while 4 and 5 represent 0 and 1 respectively.
4425 */
4426 uint8_t swizzles[32][4];
4427
4428 /* Can be used to scale sampled values in range required by the format. */
4429 float scale_factors[32];
4430
4431 /**
4432 * Bitmap of textures that need srgb to linear conversion. If
4433 * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
4434 * of the texture are lowered to linear.
4435 */
4436 unsigned lower_srgb;
4437
4438 /**
4439 * If true, lower nir_texop_tex on shaders that doesn't support implicit
4440 * LODs to nir_texop_txl.
4441 */
4442 bool lower_tex_without_implicit_lod;
4443
4444 /**
4445 * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
4446 */
4447 bool lower_txd_cube_map;
4448
4449 /**
4450 * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
4451 */
4452 bool lower_txd_3d;
4453
4454 /**
4455 * If true, lower nir_texop_txd on shadow samplers (except cube maps)
4456 * with nir_texop_txl. Notice that cube map shadow samplers are lowered
4457 * with lower_txd_cube_map.
4458 */
4459 bool lower_txd_shadow;
4460
4461 /**
4462 * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
4463 * Implies lower_txd_cube_map and lower_txd_shadow.
4464 */
4465 bool lower_txd;
4466
4467 /**
4468 * If true, lower nir_texop_txb that try to use shadow compare and min_lod
4469 * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
4470 */
4471 bool lower_txb_shadow_clamp;
4472
4473 /**
4474 * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
4475 * with nir_texop_txl. This includes cube maps.
4476 */
4477 bool lower_txd_shadow_clamp;
4478
4479 /**
4480 * If true, lower nir_texop_txd on when it uses both offset and min_lod
4481 * with nir_texop_txl. This includes cube maps.
4482 */
4483 bool lower_txd_offset_clamp;
4484
4485 /**
4486 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
4487 * sampler is bindless.
4488 */
4489 bool lower_txd_clamp_bindless_sampler;
4490
4491 /**
4492 * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
4493 * sampler index is not statically determinable to be less than 16.
4494 */
4495 bool lower_txd_clamp_if_sampler_index_not_lt_16;
4496
4497 /**
4498 * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
4499 * 0-lod followed by a nir_ishr.
4500 */
4501 bool lower_txs_lod;
4502
4503 /**
4504 * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
4505 * mixed-up tg4 locations.
4506 */
4507 bool lower_tg4_broadcom_swizzle;
4508
4509 /**
4510 * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
4511 */
4512 bool lower_tg4_offsets;
4513
4514 enum nir_lower_tex_packing lower_tex_packing[32];
4515 } nir_lower_tex_options;
4516
4517 bool nir_lower_tex(nir_shader *shader,
4518 const nir_lower_tex_options *options);
4519
4520 enum nir_lower_non_uniform_access_type {
4521 nir_lower_non_uniform_ubo_access = (1 << 0),
4522 nir_lower_non_uniform_ssbo_access = (1 << 1),
4523 nir_lower_non_uniform_texture_access = (1 << 2),
4524 nir_lower_non_uniform_image_access = (1 << 3),
4525 };
4526
4527 bool nir_lower_non_uniform_access(nir_shader *shader,
4528 enum nir_lower_non_uniform_access_type);
4529
4530 enum nir_lower_idiv_path {
4531 /* This path is based on NV50LegalizeSSA::handleDIV(). It is the faster of
4532 * the two but it is not exact in some cases (for example, 1091317713u /
4533 * 1034u gives 5209173 instead of 1055432) */
4534 nir_lower_idiv_fast,
4535 /* This path is based on AMDGPUTargetLowering::LowerUDIVREM() and
4536 * AMDGPUTargetLowering::LowerSDIVREM(). It requires more instructions than
4537 * the nv50 path and many of them are integer multiplications, so it is
4538 * probably slower. It should always return the correct result, though. */
4539 nir_lower_idiv_precise,
4540 };
4541
4542 bool nir_lower_idiv(nir_shader *shader, enum nir_lower_idiv_path path);
4543
4544 typedef struct nir_input_attachment_options {
4545 bool use_fragcoord_sysval;
4546 bool use_layer_id_sysval;
4547 bool use_view_id_for_layer;
4548 } nir_input_attachment_options;
4549
4550 bool nir_lower_input_attachments(nir_shader *shader,
4551 const nir_input_attachment_options *options);
4552
4553 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
4554 bool use_vars,
4555 bool use_clipdist_array,
4556 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4557 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
4558 bool use_clipdist_array,
4559 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4560 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
4561 bool use_clipdist_array);
4562 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
4563 bool nir_lower_clip_disable(nir_shader *shader, unsigned clip_plane_enable);
4564
4565 void nir_lower_point_size_mov(nir_shader *shader,
4566 const gl_state_index16 *pointsize_state_tokens);
4567
4568 bool nir_lower_frexp(nir_shader *nir);
4569
4570 void nir_lower_two_sided_color(nir_shader *shader, bool face_sysval);
4571
4572 bool nir_lower_clamp_color_outputs(nir_shader *shader);
4573
4574 bool nir_lower_flatshade(nir_shader *shader);
4575
4576 void nir_lower_passthrough_edgeflags(nir_shader *shader);
4577 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
4578 const gl_state_index16 *uniform_state_tokens);
4579
4580 typedef struct nir_lower_wpos_ytransform_options {
4581 gl_state_index16 state_tokens[STATE_LENGTH];
4582 bool fs_coord_origin_upper_left :1;
4583 bool fs_coord_origin_lower_left :1;
4584 bool fs_coord_pixel_center_integer :1;
4585 bool fs_coord_pixel_center_half_integer :1;
4586 } nir_lower_wpos_ytransform_options;
4587
4588 bool nir_lower_wpos_ytransform(nir_shader *shader,
4589 const nir_lower_wpos_ytransform_options *options);
4590 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
4591
4592 bool nir_lower_wrmasks(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
4593
4594 bool nir_lower_fb_read(nir_shader *shader);
4595
4596 typedef struct nir_lower_drawpixels_options {
4597 gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
4598 gl_state_index16 scale_state_tokens[STATE_LENGTH];
4599 gl_state_index16 bias_state_tokens[STATE_LENGTH];
4600 unsigned drawpix_sampler;
4601 unsigned pixelmap_sampler;
4602 bool pixel_maps :1;
4603 bool scale_and_bias :1;
4604 } nir_lower_drawpixels_options;
4605
4606 void nir_lower_drawpixels(nir_shader *shader,
4607 const nir_lower_drawpixels_options *options);
4608
4609 typedef struct nir_lower_bitmap_options {
4610 unsigned sampler;
4611 bool swizzle_xxxx;
4612 } nir_lower_bitmap_options;
4613
4614 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
4615
4616 bool nir_lower_atomics_to_ssbo(nir_shader *shader);
4617
4618 typedef enum {
4619 nir_lower_int_source_mods = 1 << 0,
4620 nir_lower_float_source_mods = 1 << 1,
4621 nir_lower_triop_abs = 1 << 2,
4622 nir_lower_all_source_mods = (1 << 3) - 1
4623 } nir_lower_to_source_mods_flags;
4624
4625
4626 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
4627
4628 bool nir_lower_gs_intrinsics(nir_shader *shader, bool per_stream);
4629
4630 typedef unsigned (*nir_lower_bit_size_callback)(const nir_alu_instr *, void *);
4631
4632 bool nir_lower_bit_size(nir_shader *shader,
4633 nir_lower_bit_size_callback callback,
4634 void *callback_data);
4635 bool nir_lower_64bit_phis(nir_shader *shader);
4636
4637 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
4638 bool nir_lower_int64(nir_shader *shader);
4639
4640 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
4641 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
4642 nir_lower_doubles_options options);
4643 bool nir_lower_pack(nir_shader *shader);
4644
4645 void nir_lower_mediump_outputs(nir_shader *nir);
4646
4647 bool nir_lower_point_size(nir_shader *shader, float min, float max);
4648
4649 typedef enum {
4650 nir_lower_interpolation_at_sample = (1 << 1),
4651 nir_lower_interpolation_at_offset = (1 << 2),
4652 nir_lower_interpolation_centroid = (1 << 3),
4653 nir_lower_interpolation_pixel = (1 << 4),
4654 nir_lower_interpolation_sample = (1 << 5),
4655 } nir_lower_interpolation_options;
4656
4657 bool nir_lower_interpolation(nir_shader *shader,
4658 nir_lower_interpolation_options options);
4659
4660 bool nir_lower_discard_to_demote(nir_shader *shader);
4661
4662 bool nir_lower_memory_model(nir_shader *shader);
4663
4664 bool nir_lower_goto_ifs(nir_shader *shader);
4665
4666 bool nir_normalize_cubemap_coords(nir_shader *shader);
4667
4668 void nir_live_ssa_defs_impl(nir_function_impl *impl);
4669
4670 void nir_loop_analyze_impl(nir_function_impl *impl,
4671 nir_variable_mode indirect_mask);
4672
4673 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
4674
4675 bool nir_repair_ssa_impl(nir_function_impl *impl);
4676 bool nir_repair_ssa(nir_shader *shader);
4677
4678 void nir_convert_loop_to_lcssa(nir_loop *loop);
4679 bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
4680 void nir_divergence_analysis(nir_shader *shader, nir_divergence_options options);
4681
4682 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
4683 * registers. If false, convert all values (even those not involved in a phi
4684 * node) to registers.
4685 */
4686 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
4687
4688 bool nir_lower_phis_to_regs_block(nir_block *block);
4689 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
4690 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
4691
4692 bool nir_lower_samplers(nir_shader *shader);
4693 bool nir_lower_ssbo(nir_shader *shader);
4694
4695 /* This is here for unit tests. */
4696 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
4697
4698 bool nir_opt_comparison_pre(nir_shader *shader);
4699
4700 bool nir_opt_access(nir_shader *shader);
4701 bool nir_opt_algebraic(nir_shader *shader);
4702 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
4703 bool nir_opt_algebraic_late(nir_shader *shader);
4704 bool nir_opt_algebraic_distribute_src_mods(nir_shader *shader);
4705 bool nir_opt_constant_folding(nir_shader *shader);
4706
4707 /* Try to combine a and b into a. Return true if combination was possible,
4708 * which will result in b being removed by the pass. Return false if
4709 * combination wasn't possible.
4710 */
4711 typedef bool (*nir_combine_memory_barrier_cb)(
4712 nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *data);
4713
4714 bool nir_opt_combine_memory_barriers(nir_shader *shader,
4715 nir_combine_memory_barrier_cb combine_cb,
4716 void *data);
4717
4718 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
4719
4720 bool nir_copy_prop(nir_shader *shader);
4721
4722 bool nir_opt_copy_prop_vars(nir_shader *shader);
4723
4724 bool nir_opt_cse(nir_shader *shader);
4725
4726 bool nir_opt_dce(nir_shader *shader);
4727
4728 bool nir_opt_dead_cf(nir_shader *shader);
4729
4730 bool nir_opt_dead_write_vars(nir_shader *shader);
4731
4732 bool nir_opt_deref_impl(nir_function_impl *impl);
4733 bool nir_opt_deref(nir_shader *shader);
4734
4735 bool nir_opt_find_array_copies(nir_shader *shader);
4736
4737 bool nir_opt_gcm(nir_shader *shader, bool value_number);
4738
4739 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
4740
4741 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
4742
4743 bool nir_opt_intrinsics(nir_shader *shader);
4744
4745 bool nir_opt_large_constants(nir_shader *shader,
4746 glsl_type_size_align_func size_align,
4747 unsigned threshold);
4748
4749 bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
4750
4751 typedef enum {
4752 nir_move_const_undef = (1 << 0),
4753 nir_move_load_ubo = (1 << 1),
4754 nir_move_load_input = (1 << 2),
4755 nir_move_comparisons = (1 << 3),
4756 nir_move_copies = (1 << 4),
4757 } nir_move_options;
4758
4759 bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
4760
4761 bool nir_opt_sink(nir_shader *shader, nir_move_options options);
4762
4763 bool nir_opt_move(nir_shader *shader, nir_move_options options);
4764
4765 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
4766 bool indirect_load_ok, bool expensive_alu_ok);
4767
4768 bool nir_opt_rematerialize_compares(nir_shader *shader);
4769
4770 bool nir_opt_remove_phis(nir_shader *shader);
4771 bool nir_opt_remove_phis_block(nir_block *block);
4772
4773 bool nir_opt_shrink_vectors(nir_shader *shader);
4774
4775 bool nir_opt_trivial_continues(nir_shader *shader);
4776
4777 bool nir_opt_undef(nir_shader *shader);
4778
4779 bool nir_opt_vectorize(nir_shader *shader);
4780
4781 bool nir_opt_conditional_discard(nir_shader *shader);
4782
4783 typedef bool (*nir_should_vectorize_mem_func)(unsigned align, unsigned bit_size,
4784 unsigned num_components, unsigned high_offset,
4785 nir_intrinsic_instr *low, nir_intrinsic_instr *high);
4786
4787 bool nir_opt_load_store_vectorize(nir_shader *shader, nir_variable_mode modes,
4788 nir_should_vectorize_mem_func callback,
4789 nir_variable_mode robust_modes);
4790
4791 void nir_sweep(nir_shader *shader);
4792
4793 void nir_remap_dual_slot_attributes(nir_shader *shader,
4794 uint64_t *dual_slot_inputs);
4795 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
4796
4797 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
4798 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
4799
4800 static inline bool
4801 nir_variable_is_in_ubo(const nir_variable *var)
4802 {
4803 return (var->data.mode == nir_var_mem_ubo &&
4804 var->interface_type != NULL);
4805 }
4806
4807 static inline bool
4808 nir_variable_is_in_ssbo(const nir_variable *var)
4809 {
4810 return (var->data.mode == nir_var_mem_ssbo &&
4811 var->interface_type != NULL);
4812 }
4813
4814 static inline bool
4815 nir_variable_is_in_block(const nir_variable *var)
4816 {
4817 return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
4818 }
4819
4820 typedef struct nir_unsigned_upper_bound_config {
4821 unsigned min_subgroup_size;
4822 unsigned max_subgroup_size;
4823 unsigned max_work_group_invocations;
4824 unsigned max_work_group_count[3];
4825 unsigned max_work_group_size[3];
4826
4827 uint32_t vertex_attrib_max[32];
4828 } nir_unsigned_upper_bound_config;
4829
4830 uint32_t
4831 nir_unsigned_upper_bound(nir_shader *shader, struct hash_table *range_ht,
4832 nir_ssa_scalar scalar,
4833 const nir_unsigned_upper_bound_config *config);
4834
4835 bool
4836 nir_addition_might_overflow(nir_shader *shader, struct hash_table *range_ht,
4837 nir_ssa_scalar ssa, unsigned const_val,
4838 const nir_unsigned_upper_bound_config *config);
4839
4840 #ifdef __cplusplus
4841 } /* extern "C" */
4842 #endif
4843
4844 #endif /* NIR_H */