nir: Add a lowering pass to split 64bit phis
[mesa.git] / src / compiler / nir / nir_format_convert.h
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir_builder.h"
25
26 #include "util/format_rgb9e5.h"
27
28 static inline nir_ssa_def *
29 nir_shift(nir_builder *b, nir_ssa_def *value, int left_shift)
30 {
31 if (left_shift > 0)
32 return nir_ishl(b, value, nir_imm_int(b, left_shift));
33 else if (left_shift < 0)
34 return nir_ushr(b, value, nir_imm_int(b, -left_shift));
35 else
36 return value;
37 }
38
39 static inline nir_ssa_def *
40 nir_mask_shift(struct nir_builder *b, nir_ssa_def *src,
41 uint32_t mask, int left_shift)
42 {
43 return nir_shift(b, nir_iand(b, src, nir_imm_int(b, mask)), left_shift);
44 }
45
46 static inline nir_ssa_def *
47 nir_mask_shift_or(struct nir_builder *b, nir_ssa_def *dst, nir_ssa_def *src,
48 uint32_t src_mask, int src_left_shift)
49 {
50 return nir_ior(b, nir_mask_shift(b, src, src_mask, src_left_shift), dst);
51 }
52
53 static inline nir_ssa_def *
54 nir_format_mask_uvec(nir_builder *b, nir_ssa_def *src, const unsigned *bits)
55 {
56 nir_const_value mask[NIR_MAX_VEC_COMPONENTS];
57 memset(mask, 0, sizeof(mask));
58 for (unsigned i = 0; i < src->num_components; i++) {
59 assert(bits[i] < 32);
60 mask[i].u32 = (1u << bits[i]) - 1;
61 }
62 return nir_iand(b, src, nir_build_imm(b, src->num_components, 32, mask));
63 }
64
65 static inline nir_ssa_def *
66 nir_format_sign_extend_ivec(nir_builder *b, nir_ssa_def *src,
67 const unsigned *bits)
68 {
69 assert(src->num_components <= 4);
70 nir_ssa_def *comps[4];
71 for (unsigned i = 0; i < src->num_components; i++) {
72 nir_ssa_def *shift = nir_imm_int(b, src->bit_size - bits[i]);
73 comps[i] = nir_ishr(b, nir_ishl(b, nir_channel(b, src, i), shift), shift);
74 }
75 return nir_vec(b, comps, src->num_components);
76 }
77
78
79 static inline nir_ssa_def *
80 nir_format_unpack_int(nir_builder *b, nir_ssa_def *packed,
81 const unsigned *bits, unsigned num_components,
82 bool sign_extend)
83 {
84 assert(num_components >= 1 && num_components <= 4);
85 const unsigned bit_size = packed->bit_size;
86 nir_ssa_def *comps[4];
87
88 if (bits[0] >= bit_size) {
89 assert(bits[0] == bit_size);
90 assert(num_components == 1);
91 return packed;
92 }
93
94 unsigned next_chan = 0;
95 unsigned offset = 0;
96 for (unsigned i = 0; i < num_components; i++) {
97 assert(bits[i] < bit_size);
98 assert(offset + bits[i] <= bit_size);
99 nir_ssa_def *chan = nir_channel(b, packed, next_chan);
100 nir_ssa_def *lshift = nir_imm_int(b, bit_size - (offset + bits[i]));
101 nir_ssa_def *rshift = nir_imm_int(b, bit_size - bits[i]);
102 if (sign_extend)
103 comps[i] = nir_ishr(b, nir_ishl(b, chan, lshift), rshift);
104 else
105 comps[i] = nir_ushr(b, nir_ishl(b, chan, lshift), rshift);
106 offset += bits[i];
107 if (offset >= bit_size) {
108 next_chan++;
109 offset -= bit_size;
110 }
111 }
112
113 return nir_vec(b, comps, num_components);
114 }
115
116 static inline nir_ssa_def *
117 nir_format_unpack_uint(nir_builder *b, nir_ssa_def *packed,
118 const unsigned *bits, unsigned num_components)
119 {
120 return nir_format_unpack_int(b, packed, bits, num_components, false);
121 }
122
123 static inline nir_ssa_def *
124 nir_format_unpack_sint(nir_builder *b, nir_ssa_def *packed,
125 const unsigned *bits, unsigned num_components)
126 {
127 return nir_format_unpack_int(b, packed, bits, num_components, true);
128 }
129
130 static inline nir_ssa_def *
131 nir_format_pack_uint_unmasked(nir_builder *b, nir_ssa_def *color,
132 const unsigned *bits, unsigned num_components)
133 {
134 assert(num_components >= 1 && num_components <= 4);
135 nir_ssa_def *packed = nir_imm_int(b, 0);
136 unsigned offset = 0;
137 for (unsigned i = 0; i < num_components; i++) {
138 packed = nir_ior(b, packed, nir_shift(b, nir_channel(b, color, i),
139 offset));
140 offset += bits[i];
141 }
142 assert(offset <= packed->bit_size);
143
144 return packed;
145 }
146
147 static inline nir_ssa_def *
148 nir_format_pack_uint(nir_builder *b, nir_ssa_def *color,
149 const unsigned *bits, unsigned num_components)
150 {
151 return nir_format_pack_uint_unmasked(b, nir_format_mask_uvec(b, color, bits),
152 bits, num_components);
153 }
154
155 static inline nir_ssa_def *
156 nir_format_bitcast_uvec_unmasked(nir_builder *b, nir_ssa_def *src,
157 unsigned src_bits, unsigned dst_bits)
158 {
159 assert(src->bit_size >= src_bits && src->bit_size >= dst_bits);
160 assert(src_bits == 8 || src_bits == 16 || src_bits == 32);
161 assert(dst_bits == 8 || dst_bits == 16 || dst_bits == 32);
162
163 if (src_bits == dst_bits)
164 return src;
165
166 const unsigned dst_components =
167 DIV_ROUND_UP(src->num_components * src_bits, dst_bits);
168 assert(dst_components <= 4);
169
170 nir_ssa_def *dst_chan[4] = {0};
171 if (dst_bits > src_bits) {
172 unsigned shift = 0;
173 unsigned dst_idx = 0;
174 for (unsigned i = 0; i < src->num_components; i++) {
175 nir_ssa_def *shifted = nir_ishl(b, nir_channel(b, src, i),
176 nir_imm_int(b, shift));
177 if (shift == 0) {
178 dst_chan[dst_idx] = shifted;
179 } else {
180 dst_chan[dst_idx] = nir_ior(b, dst_chan[dst_idx], shifted);
181 }
182
183 shift += src_bits;
184 if (shift >= dst_bits) {
185 dst_idx++;
186 shift = 0;
187 }
188 }
189 } else {
190 nir_ssa_def *mask = nir_imm_int(b, ~0u >> (32 - dst_bits));
191
192 unsigned src_idx = 0;
193 unsigned shift = 0;
194 for (unsigned i = 0; i < dst_components; i++) {
195 dst_chan[i] = nir_iand(b, nir_ushr_imm(b, nir_channel(b, src, src_idx),
196 shift),
197 mask);
198 shift += dst_bits;
199 if (shift >= src_bits) {
200 src_idx++;
201 shift = 0;
202 }
203 }
204 }
205
206 return nir_vec(b, dst_chan, dst_components);
207 }
208
209 static inline nir_ssa_def *
210 _nir_format_norm_factor(nir_builder *b, const unsigned *bits,
211 unsigned num_components,
212 bool is_signed)
213 {
214 nir_const_value factor[NIR_MAX_VEC_COMPONENTS];
215 memset(factor, 0, sizeof(factor));
216 for (unsigned i = 0; i < num_components; i++) {
217 assert(bits[i] <= 32);
218 factor[i].f32 = (1ull << (bits[i] - is_signed)) - 1;
219 }
220 return nir_build_imm(b, num_components, 32, factor);
221 }
222
223 static inline nir_ssa_def *
224 nir_format_unorm_to_float(nir_builder *b, nir_ssa_def *u, const unsigned *bits)
225 {
226 nir_ssa_def *factor =
227 _nir_format_norm_factor(b, bits, u->num_components, false);
228
229 return nir_fdiv(b, nir_u2f32(b, u), factor);
230 }
231
232 static inline nir_ssa_def *
233 nir_format_snorm_to_float(nir_builder *b, nir_ssa_def *s, const unsigned *bits)
234 {
235 nir_ssa_def *factor =
236 _nir_format_norm_factor(b, bits, s->num_components, true);
237
238 return nir_fmax(b, nir_fdiv(b, nir_i2f32(b, s), factor),
239 nir_imm_float(b, -1.0f));
240 }
241
242 static inline nir_ssa_def *
243 nir_format_float_to_unorm(nir_builder *b, nir_ssa_def *f, const unsigned *bits)
244 {
245 nir_ssa_def *factor =
246 _nir_format_norm_factor(b, bits, f->num_components, false);
247
248 /* Clamp to the range [0, 1] */
249 f = nir_fsat(b, f);
250
251 return nir_f2u32(b, nir_fround_even(b, nir_fmul(b, f, factor)));
252 }
253
254 static inline nir_ssa_def *
255 nir_format_float_to_snorm(nir_builder *b, nir_ssa_def *f, const unsigned *bits)
256 {
257 nir_ssa_def *factor =
258 _nir_format_norm_factor(b, bits, f->num_components, true);
259
260 /* Clamp to the range [-1, 1] */
261 f = nir_fmin(b, nir_fmax(b, f, nir_imm_float(b, -1)), nir_imm_float(b, 1));
262
263 return nir_f2i32(b, nir_fround_even(b, nir_fmul(b, f, factor)));
264 }
265
266 /* Converts a vector of floats to a vector of half-floats packed in the low 16
267 * bits.
268 */
269 static inline nir_ssa_def *
270 nir_format_float_to_half(nir_builder *b, nir_ssa_def *f)
271 {
272 nir_ssa_def *zero = nir_imm_float(b, 0);
273 nir_ssa_def *f16comps[4];
274 for (unsigned i = 0; i < f->num_components; i++)
275 f16comps[i] = nir_pack_half_2x16_split(b, nir_channel(b, f, i), zero);
276 return nir_vec(b, f16comps, f->num_components);
277 }
278
279 static inline nir_ssa_def *
280 nir_format_linear_to_srgb(nir_builder *b, nir_ssa_def *c)
281 {
282 nir_ssa_def *linear = nir_fmul(b, c, nir_imm_float(b, 12.92f));
283 nir_ssa_def *curved =
284 nir_fsub(b, nir_fmul(b, nir_imm_float(b, 1.055f),
285 nir_fpow(b, c, nir_imm_float(b, 1.0 / 2.4))),
286 nir_imm_float(b, 0.055f));
287
288 return nir_fsat(b, nir_bcsel(b, nir_flt(b, c, nir_imm_float(b, 0.0031308f)),
289 linear, curved));
290 }
291
292 static inline nir_ssa_def *
293 nir_format_srgb_to_linear(nir_builder *b, nir_ssa_def *c)
294 {
295 nir_ssa_def *linear = nir_fdiv(b, c, nir_imm_float(b, 12.92f));
296 nir_ssa_def *curved =
297 nir_fpow(b, nir_fdiv(b, nir_fadd(b, c, nir_imm_float(b, 0.055f)),
298 nir_imm_float(b, 1.055f)),
299 nir_imm_float(b, 2.4f));
300
301 return nir_fsat(b, nir_bcsel(b, nir_fge(b, nir_imm_float(b, 0.04045f), c),
302 linear, curved));
303 }
304
305 /* Clamps a vector of uints so they don't extend beyond the given number of
306 * bits per channel.
307 */
308 static inline nir_ssa_def *
309 nir_format_clamp_uint(nir_builder *b, nir_ssa_def *f, const unsigned *bits)
310 {
311 if (bits[0] == 32)
312 return f;
313
314 nir_const_value max[NIR_MAX_VEC_COMPONENTS];
315 memset(max, 0, sizeof(max));
316 for (unsigned i = 0; i < f->num_components; i++) {
317 assert(bits[i] < 32);
318 max[i].u32 = (1 << bits[i]) - 1;
319 }
320 return nir_umin(b, f, nir_build_imm(b, f->num_components, 32, max));
321 }
322
323 /* Clamps a vector of sints so they don't extend beyond the given number of
324 * bits per channel.
325 */
326 static inline nir_ssa_def *
327 nir_format_clamp_sint(nir_builder *b, nir_ssa_def *f, const unsigned *bits)
328 {
329 if (bits[0] == 32)
330 return f;
331
332 nir_const_value min[NIR_MAX_VEC_COMPONENTS], max[NIR_MAX_VEC_COMPONENTS];
333 memset(min, 0, sizeof(min));
334 memset(max, 0, sizeof(max));
335 for (unsigned i = 0; i < f->num_components; i++) {
336 assert(bits[i] < 32);
337 max[i].i32 = (1 << (bits[i] - 1)) - 1;
338 min[i].i32 = -(1 << (bits[i] - 1));
339 }
340 f = nir_imin(b, f, nir_build_imm(b, f->num_components, 32, max));
341 f = nir_imax(b, f, nir_build_imm(b, f->num_components, 32, min));
342
343 return f;
344 }
345
346 static inline nir_ssa_def *
347 nir_format_unpack_11f11f10f(nir_builder *b, nir_ssa_def *packed)
348 {
349 nir_ssa_def *chans[3];
350 chans[0] = nir_mask_shift(b, packed, 0x000007ff, 4);
351 chans[1] = nir_mask_shift(b, packed, 0x003ff800, -7);
352 chans[2] = nir_mask_shift(b, packed, 0xffc00000, -17);
353
354 for (unsigned i = 0; i < 3; i++)
355 chans[i] = nir_unpack_half_2x16_split_x(b, chans[i]);
356
357 return nir_vec(b, chans, 3);
358 }
359
360 static inline nir_ssa_def *
361 nir_format_pack_11f11f10f(nir_builder *b, nir_ssa_def *color)
362 {
363 /* 10 and 11-bit floats are unsigned. Clamp to non-negative */
364 nir_ssa_def *clamped = nir_fmax(b, color, nir_imm_float(b, 0));
365
366 nir_ssa_def *undef = nir_ssa_undef(b, 1, color->bit_size);
367 nir_ssa_def *p1 = nir_pack_half_2x16_split(b, nir_channel(b, clamped, 0),
368 nir_channel(b, clamped, 1));
369 nir_ssa_def *p2 = nir_pack_half_2x16_split(b, nir_channel(b, clamped, 2),
370 undef);
371
372 /* A 10 or 11-bit float has the same exponent as a 16-bit float but with
373 * fewer mantissa bits and no sign bit. All we have to do is throw away
374 * the sign bit and the bottom mantissa bits and shift it into place.
375 */
376 nir_ssa_def *packed = nir_imm_int(b, 0);
377 packed = nir_mask_shift_or(b, packed, p1, 0x00007ff0, -4);
378 packed = nir_mask_shift_or(b, packed, p1, 0x7ff00000, -9);
379 packed = nir_mask_shift_or(b, packed, p2, 0x00007fe0, 17);
380
381 return packed;
382 }
383
384 static inline nir_ssa_def *
385 nir_format_pack_r9g9b9e5(nir_builder *b, nir_ssa_def *color)
386 {
387 /* See also float3_to_rgb9e5 */
388
389 /* First, we need to clamp it to range. */
390 nir_ssa_def *clamped = nir_fmin(b, color, nir_imm_float(b, MAX_RGB9E5));
391
392 /* Get rid of negatives and NaN */
393 clamped = nir_bcsel(b, nir_ult(b, nir_imm_int(b, 0x7f800000), color),
394 nir_imm_float(b, 0), clamped);
395
396 /* maxrgb.u = MAX3(rc.u, gc.u, bc.u); */
397 nir_ssa_def *maxu = nir_umax(b, nir_channel(b, clamped, 0),
398 nir_umax(b, nir_channel(b, clamped, 1),
399 nir_channel(b, clamped, 2)));
400
401 /* maxrgb.u += maxrgb.u & (1 << (23-9)); */
402 maxu = nir_iadd(b, maxu, nir_iand(b, maxu, nir_imm_int(b, 1 << 14)));
403
404 /* exp_shared = MAX2((maxrgb.u >> 23), -RGB9E5_EXP_BIAS - 1 + 127) +
405 * 1 + RGB9E5_EXP_BIAS - 127;
406 */
407 nir_ssa_def *exp_shared =
408 nir_iadd(b, nir_umax(b, nir_ushr_imm(b, maxu, 23),
409 nir_imm_int(b, -RGB9E5_EXP_BIAS - 1 + 127)),
410 nir_imm_int(b, 1 + RGB9E5_EXP_BIAS - 127));
411
412 /* revdenom_biasedexp = 127 - (exp_shared - RGB9E5_EXP_BIAS -
413 * RGB9E5_MANTISSA_BITS) + 1;
414 */
415 nir_ssa_def *revdenom_biasedexp =
416 nir_isub(b, nir_imm_int(b, 127 + RGB9E5_EXP_BIAS +
417 RGB9E5_MANTISSA_BITS + 1),
418 exp_shared);
419
420 /* revdenom.u = revdenom_biasedexp << 23; */
421 nir_ssa_def *revdenom =
422 nir_ishl(b, revdenom_biasedexp, nir_imm_int(b, 23));
423
424 /* rm = (int) (rc.f * revdenom.f);
425 * gm = (int) (gc.f * revdenom.f);
426 * bm = (int) (bc.f * revdenom.f);
427 */
428 nir_ssa_def *mantissa =
429 nir_f2i32(b, nir_fmul(b, clamped, revdenom));
430
431 /* rm = (rm & 1) + (rm >> 1);
432 * gm = (gm & 1) + (gm >> 1);
433 * bm = (bm & 1) + (bm >> 1);
434 */
435 mantissa = nir_iadd(b, nir_iand_imm(b, mantissa, 1),
436 nir_ushr_imm(b, mantissa, 1));
437
438 nir_ssa_def *packed = nir_channel(b, mantissa, 0);
439 packed = nir_mask_shift_or(b, packed, nir_channel(b, mantissa, 1), ~0, 9);
440 packed = nir_mask_shift_or(b, packed, nir_channel(b, mantissa, 2), ~0, 18);
441 packed = nir_mask_shift_or(b, packed, exp_shared, ~0, 27);
442
443 return packed;
444 }