nir: Remove old-school deref chain support
[mesa.git] / src / compiler / nir / nir_intrinsics.py
1 #
2 # Copyright (C) 2018 Red Hat
3 # Copyright (C) 2014 Intel Corporation
4 #
5 # Permission is hereby granted, free of charge, to any person obtaining a
6 # copy of this software and associated documentation files (the "Software"),
7 # to deal in the Software without restriction, including without limitation
8 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 # and/or sell copies of the Software, and to permit persons to whom the
10 # Software is furnished to do so, subject to the following conditions:
11 #
12 # The above copyright notice and this permission notice (including the next
13 # paragraph) shall be included in all copies or substantial portions of the
14 # Software.
15 #
16 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 # IN THE SOFTWARE.
23 #
24
25 # This file defines all the available intrinsics in one place.
26 #
27 # The Intrinsic class corresponds one-to-one with nir_intrinsic_info
28 # structure.
29
30 class Intrinsic(object):
31 """Class that represents all the information about an intrinsic opcode.
32 NOTE: this must be kept in sync with nir_intrinsic_info.
33 """
34 def __init__(self, name, src_components, dest_components,
35 indices, flags, sysval):
36 """Parameters:
37
38 - name: the intrinsic name
39 - src_components: list of the number of components per src, 0 means
40 vectorized instruction with number of components given in the
41 num_components field in nir_intrinsic_instr.
42 - dest_components: number of destination components, -1 means no
43 dest, 0 means number of components given in num_components field
44 in nir_intrinsic_instr.
45 - indices: list of constant indicies
46 - flags: list of semantic flags
47 - sysval: is this a system-value intrinsic
48 """
49 assert isinstance(name, str)
50 assert isinstance(src_components, list)
51 if src_components:
52 assert isinstance(src_components[0], int)
53 assert isinstance(dest_components, int)
54 assert isinstance(indices, list)
55 if indices:
56 assert isinstance(indices[0], str)
57 assert isinstance(flags, list)
58 if flags:
59 assert isinstance(flags[0], str)
60 assert isinstance(sysval, bool)
61
62 self.name = name
63 self.num_srcs = len(src_components)
64 self.src_components = src_components
65 self.has_dest = (dest_components >= 0)
66 self.dest_components = dest_components
67 self.num_indices = len(indices)
68 self.indices = indices
69 self.flags = flags
70 self.sysval = sysval
71
72 #
73 # Possible indices:
74 #
75
76 # A constant 'base' value that is added to an offset src:
77 BASE = "NIR_INTRINSIC_BASE"
78 # For store instructions, a writemask:
79 WRMASK = "NIR_INTRINSIC_WRMASK"
80 # The stream-id for GS emit_vertex/end_primitive intrinsics:
81 STREAM_ID = "NIR_INTRINSIC_STREAM_ID"
82 # The clip-plane id for load_user_clip_plane intrinsics:
83 UCP_ID = "NIR_INTRINSIC_UCP_ID"
84 # The amount of data, starting from BASE, that this instruction
85 # may access. This is used to provide bounds if the offset is
86 # not constant.
87 RANGE = "NIR_INTRINSIC_RANGE"
88 # The vulkan descriptor set binding for vulkan_resource_index
89 # intrinsic
90 DESC_SET = "NIR_INTRINSIC_DESC_SET"
91 # The vulkan descriptor set binding for vulkan_resource_index
92 # intrinsic
93 BINDING = "NIR_INTRINSIC_BINDING"
94 # Component offset
95 COMPONENT = "NIR_INTRINSIC_COMPONENT"
96 # Interpolation mode (only meaningful for FS inputs)
97 INTERP_MODE = "NIR_INTRINSIC_INTERP_MODE"
98 # A binary nir_op to use when performing a reduction or scan operation
99 REDUCTION_OP = "NIR_INTRINSIC_REDUCTION_OP"
100 # Cluster size for reduction operations
101 CLUSTER_SIZE = "NIR_INTRINSIC_CLUSTER_SIZE"
102 # Parameter index for a load_param intrinsic
103 PARAM_IDX = "NIR_INTRINSIC_PARAM_IDX"
104
105 #
106 # Possible flags:
107 #
108
109 CAN_ELIMINATE = "NIR_INTRINSIC_CAN_ELIMINATE"
110 CAN_REORDER = "NIR_INTRINSIC_CAN_REORDER"
111
112 INTR_OPCODES = {}
113
114 def intrinsic(name, src_comp=[], dest_comp=-1, indices=[],
115 flags=[], sysval=False):
116 assert name not in INTR_OPCODES
117 INTR_OPCODES[name] = Intrinsic(name, src_comp, dest_comp,
118 indices, flags, sysval)
119
120 intrinsic("nop", flags=[CAN_ELIMINATE])
121
122 intrinsic("load_param", dest_comp=0, indices=[PARAM_IDX], flags=[CAN_ELIMINATE])
123
124 intrinsic("load_deref", dest_comp=0, src_comp=[1], flags=[CAN_ELIMINATE])
125 intrinsic("store_deref", src_comp=[1, 0], indices=[WRMASK])
126 intrinsic("copy_deref", src_comp=[1, 1])
127
128 # Interpolation of input. The interp_deref_at* intrinsics are similar to the
129 # load_var intrinsic acting on a shader input except that they interpolate the
130 # input differently. The at_sample and at_offset intrinsics take an
131 # additional source that is an integer sample id or a vec2 position offset
132 # respectively.
133
134 intrinsic("interp_deref_at_centroid", dest_comp=0, src_comp=[1],
135 flags=[ CAN_ELIMINATE, CAN_REORDER])
136 intrinsic("interp_deref_at_sample", src_comp=[1, 1], dest_comp=0,
137 flags=[CAN_ELIMINATE, CAN_REORDER])
138 intrinsic("interp_deref_at_offset", src_comp=[1, 2], dest_comp=0,
139 flags=[CAN_ELIMINATE, CAN_REORDER])
140
141 # Ask the driver for the size of a given buffer. It takes the buffer index
142 # as source.
143 intrinsic("get_buffer_size", src_comp=[1], dest_comp=1,
144 flags=[CAN_ELIMINATE, CAN_REORDER])
145
146 # a barrier is an intrinsic with no inputs/outputs but which can't be moved
147 # around/optimized in general
148 def barrier(name):
149 intrinsic(name)
150
151 barrier("barrier")
152 barrier("discard")
153
154 # Memory barrier with semantics analogous to the memoryBarrier() GLSL
155 # intrinsic.
156 barrier("memory_barrier")
157
158 # Shader clock intrinsic with semantics analogous to the clock2x32ARB()
159 # GLSL intrinsic.
160 # The latter can be used as code motion barrier, which is currently not
161 # feasible with NIR.
162 intrinsic("shader_clock", dest_comp=2, flags=[CAN_ELIMINATE])
163
164 # Shader ballot intrinsics with semantics analogous to the
165 #
166 # ballotARB()
167 # readInvocationARB()
168 # readFirstInvocationARB()
169 #
170 # GLSL functions from ARB_shader_ballot.
171 intrinsic("ballot", src_comp=[1], dest_comp=0, flags=[CAN_ELIMINATE])
172 intrinsic("read_invocation", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
173 intrinsic("read_first_invocation", src_comp=[0], dest_comp=0, flags=[CAN_ELIMINATE])
174
175 # Additional SPIR-V ballot intrinsics
176 #
177 # These correspond to the SPIR-V opcodes
178 #
179 # OpGroupUniformElect
180 # OpSubgroupFirstInvocationKHR
181 intrinsic("elect", dest_comp=1, flags=[CAN_ELIMINATE])
182 intrinsic("first_invocation", dest_comp=1, flags=[CAN_ELIMINATE])
183
184 # Memory barrier with semantics analogous to the compute shader
185 # groupMemoryBarrier(), memoryBarrierAtomicCounter(), memoryBarrierBuffer(),
186 # memoryBarrierImage() and memoryBarrierShared() GLSL intrinsics.
187 barrier("group_memory_barrier")
188 barrier("memory_barrier_atomic_counter")
189 barrier("memory_barrier_buffer")
190 barrier("memory_barrier_image")
191 barrier("memory_barrier_shared")
192 barrier("begin_invocation_interlock")
193 barrier("end_invocation_interlock")
194
195 # A conditional discard, with a single boolean source.
196 intrinsic("discard_if", src_comp=[1])
197
198 # ARB_shader_group_vote intrinsics
199 intrinsic("vote_any", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE])
200 intrinsic("vote_all", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE])
201 intrinsic("vote_feq", src_comp=[0], dest_comp=1, flags=[CAN_ELIMINATE])
202 intrinsic("vote_ieq", src_comp=[0], dest_comp=1, flags=[CAN_ELIMINATE])
203
204 # Ballot ALU operations from SPIR-V.
205 #
206 # These operations work like their ALU counterparts except that the operate
207 # on a uvec4 which is treated as a 128bit integer. Also, they are, in
208 # general, free to ignore any bits which are above the subgroup size.
209 intrinsic("ballot_bitfield_extract", src_comp=[4, 1], dest_comp=1, flags=[CAN_ELIMINATE])
210 intrinsic("ballot_bit_count_reduce", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
211 intrinsic("ballot_bit_count_inclusive", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
212 intrinsic("ballot_bit_count_exclusive", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
213 intrinsic("ballot_find_lsb", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
214 intrinsic("ballot_find_msb", src_comp=[4], dest_comp=1, flags=[CAN_ELIMINATE])
215
216 # Shuffle operations from SPIR-V.
217 intrinsic("shuffle", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
218 intrinsic("shuffle_xor", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
219 intrinsic("shuffle_up", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
220 intrinsic("shuffle_down", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
221
222 # Quad operations from SPIR-V.
223 intrinsic("quad_broadcast", src_comp=[0, 1], dest_comp=0, flags=[CAN_ELIMINATE])
224 intrinsic("quad_swap_horizontal", src_comp=[0], dest_comp=0, flags=[CAN_ELIMINATE])
225 intrinsic("quad_swap_vertical", src_comp=[0], dest_comp=0, flags=[CAN_ELIMINATE])
226 intrinsic("quad_swap_diagonal", src_comp=[0], dest_comp=0, flags=[CAN_ELIMINATE])
227
228 intrinsic("reduce", src_comp=[0], dest_comp=0, indices=[REDUCTION_OP, CLUSTER_SIZE],
229 flags=[CAN_ELIMINATE])
230 intrinsic("inclusive_scan", src_comp=[0], dest_comp=0, indices=[REDUCTION_OP],
231 flags=[CAN_ELIMINATE])
232 intrinsic("exclusive_scan", src_comp=[0], dest_comp=0, indices=[REDUCTION_OP],
233 flags=[CAN_ELIMINATE])
234
235 # Basic Geometry Shader intrinsics.
236 #
237 # emit_vertex implements GLSL's EmitStreamVertex() built-in. It takes a single
238 # index, which is the stream ID to write to.
239 #
240 # end_primitive implements GLSL's EndPrimitive() built-in.
241 intrinsic("emit_vertex", indices=[STREAM_ID])
242 intrinsic("end_primitive", indices=[STREAM_ID])
243
244 # Geometry Shader intrinsics with a vertex count.
245 #
246 # Alternatively, drivers may implement these intrinsics, and use
247 # nir_lower_gs_intrinsics() to convert from the basic intrinsics.
248 #
249 # These maintain a count of the number of vertices emitted, as an additional
250 # unsigned integer source.
251 intrinsic("emit_vertex_with_counter", src_comp=[1], indices=[STREAM_ID])
252 intrinsic("end_primitive_with_counter", src_comp=[1], indices=[STREAM_ID])
253 intrinsic("set_vertex_count", src_comp=[1])
254
255 # Atomic counters
256 #
257 # The *_var variants take an atomic_uint nir_variable, while the other,
258 # lowered, variants take a constant buffer index and register offset.
259
260 def atomic(name, flags=[]):
261 intrinsic(name + "_deref", src_comp=[1], dest_comp=1, flags=flags)
262 intrinsic(name, src_comp=[1], dest_comp=1, indices=[BASE], flags=flags)
263
264 def atomic2(name):
265 intrinsic(name + "_deref", src_comp=[1, 1], dest_comp=1)
266 intrinsic(name, src_comp=[1, 1], dest_comp=1, indices=[BASE])
267
268 def atomic3(name):
269 intrinsic(name + "_deref", src_comp=[1, 1, 1], dest_comp=1)
270 intrinsic(name, src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
271
272 atomic("atomic_counter_inc")
273 atomic("atomic_counter_dec")
274 atomic("atomic_counter_read", flags=[CAN_ELIMINATE])
275 atomic2("atomic_counter_add")
276 atomic2("atomic_counter_min")
277 atomic2("atomic_counter_max")
278 atomic2("atomic_counter_and")
279 atomic2("atomic_counter_or")
280 atomic2("atomic_counter_xor")
281 atomic2("atomic_counter_exchange")
282 atomic3("atomic_counter_comp_swap")
283
284 # Image load, store and atomic intrinsics.
285 #
286 # All image intrinsics take an image target passed as a nir_variable. The
287 # variable is passed in using a chain of nir_deref_instr with as the first
288 # source of the image intrinsic. Image variables contain a number of memory
289 # and layout qualifiers that influence the semantics of the intrinsic.
290 #
291 # All image intrinsics take a four-coordinate vector and a sample index as
292 # first two sources, determining the location within the image that will be
293 # accessed by the intrinsic. Components not applicable to the image target
294 # in use are undefined. Image store takes an additional four-component
295 # argument with the value to be written, and image atomic operations take
296 # either one or two additional scalar arguments with the same meaning as in
297 # the ARB_shader_image_load_store specification.
298 intrinsic("image_deref_load", src_comp=[1, 4, 1], dest_comp=4,
299 flags=[CAN_ELIMINATE])
300 intrinsic("image_deref_store", src_comp=[1, 4, 1, 4])
301 intrinsic("image_deref_atomic_add", src_comp=[1, 4, 1, 1], dest_comp=1)
302 intrinsic("image_deref_atomic_min", src_comp=[1, 4, 1, 1], dest_comp=1)
303 intrinsic("image_deref_atomic_max", src_comp=[1, 4, 1, 1], dest_comp=1)
304 intrinsic("image_deref_atomic_and", src_comp=[1, 4, 1, 1], dest_comp=1)
305 intrinsic("image_deref_atomic_or", src_comp=[1, 4, 1, 1], dest_comp=1)
306 intrinsic("image_deref_atomic_xor", src_comp=[1, 4, 1, 1], dest_comp=1)
307 intrinsic("image_deref_atomic_exchange", src_comp=[1, 4, 1, 1], dest_comp=1)
308 intrinsic("image_deref_atomic_comp_swap", src_comp=[1, 4, 1, 1, 1], dest_comp=1)
309 intrinsic("image_deref_size", src_comp=[1], dest_comp=0, flags=[CAN_ELIMINATE, CAN_REORDER])
310 intrinsic("image_deref_samples", src_comp=[1], dest_comp=1, flags=[CAN_ELIMINATE, CAN_REORDER])
311
312 # Vulkan descriptor set intrinsics
313 #
314 # The Vulkan API uses a different binding model from GL. In the Vulkan
315 # API, all external resources are represented by a tuple:
316 #
317 # (descriptor set, binding, array index)
318 #
319 # where the array index is the only thing allowed to be indirect. The
320 # vulkan_surface_index intrinsic takes the descriptor set and binding as
321 # its first two indices and the array index as its source. The third
322 # index is a nir_variable_mode in case that's useful to the backend.
323 #
324 # The intended usage is that the shader will call vulkan_surface_index to
325 # get an index and then pass that as the buffer index ubo/ssbo calls.
326 #
327 # The vulkan_resource_reindex intrinsic takes a resource index in src0
328 # (the result of a vulkan_resource_index or vulkan_resource_reindex) which
329 # corresponds to the tuple (set, binding, index) and computes an index
330 # corresponding to tuple (set, binding, idx + src1).
331 intrinsic("vulkan_resource_index", src_comp=[1], dest_comp=1,
332 indices=[DESC_SET, BINDING], flags=[CAN_ELIMINATE, CAN_REORDER])
333 intrinsic("vulkan_resource_reindex", src_comp=[1, 1], dest_comp=1,
334 flags=[CAN_ELIMINATE, CAN_REORDER])
335
336 # variable atomic intrinsics
337 #
338 # All of these variable atomic memory operations read a value from memory,
339 # compute a new value using one of the operations below, write the new value
340 # to memory, and return the original value read.
341 #
342 # All operations take 2 sources except CompSwap that takes 3. These sources
343 # represent:
344 #
345 # 0: A deref to the memory on which to perform the atomic
346 # 1: The data parameter to the atomic function (i.e. the value to add
347 # in shared_atomic_add, etc).
348 # 2: For CompSwap only: the second data parameter.
349 intrinsic("deref_atomic_add", src_comp=[1, 1], dest_comp=1)
350 intrinsic("deref_atomic_imin", src_comp=[1, 1], dest_comp=1)
351 intrinsic("deref_atomic_umin", src_comp=[1, 1], dest_comp=1)
352 intrinsic("deref_atomic_imax", src_comp=[1, 1], dest_comp=1)
353 intrinsic("deref_atomic_umax", src_comp=[1, 1], dest_comp=1)
354 intrinsic("deref_atomic_and", src_comp=[1, 1], dest_comp=1)
355 intrinsic("deref_atomic_or", src_comp=[1, 1], dest_comp=1)
356 intrinsic("deref_atomic_xor", src_comp=[1, 1], dest_comp=1)
357 intrinsic("deref_atomic_exchange", src_comp=[1, 1], dest_comp=1)
358 intrinsic("deref_atomic_comp_swap", src_comp=[1, 1, 1], dest_comp=1)
359
360 # SSBO atomic intrinsics
361 #
362 # All of the SSBO atomic memory operations read a value from memory,
363 # compute a new value using one of the operations below, write the new
364 # value to memory, and return the original value read.
365 #
366 # All operations take 3 sources except CompSwap that takes 4. These
367 # sources represent:
368 #
369 # 0: The SSBO buffer index.
370 # 1: The offset into the SSBO buffer of the variable that the atomic
371 # operation will operate on.
372 # 2: The data parameter to the atomic function (i.e. the value to add
373 # in ssbo_atomic_add, etc).
374 # 3: For CompSwap only: the second data parameter.
375 intrinsic("ssbo_atomic_add", src_comp=[1, 1, 1], dest_comp=1)
376 intrinsic("ssbo_atomic_imin", src_comp=[1, 1, 1], dest_comp=1)
377 intrinsic("ssbo_atomic_umin", src_comp=[1, 1, 1], dest_comp=1)
378 intrinsic("ssbo_atomic_imax", src_comp=[1, 1, 1], dest_comp=1)
379 intrinsic("ssbo_atomic_umax", src_comp=[1, 1, 1], dest_comp=1)
380 intrinsic("ssbo_atomic_and", src_comp=[1, 1, 1], dest_comp=1)
381 intrinsic("ssbo_atomic_or", src_comp=[1, 1, 1], dest_comp=1)
382 intrinsic("ssbo_atomic_xor", src_comp=[1, 1, 1], dest_comp=1)
383 intrinsic("ssbo_atomic_exchange", src_comp=[1, 1, 1], dest_comp=1)
384 intrinsic("ssbo_atomic_comp_swap", src_comp=[1, 1, 1, 1], dest_comp=1)
385
386 # CS shared variable atomic intrinsics
387 #
388 # All of the shared variable atomic memory operations read a value from
389 # memory, compute a new value using one of the operations below, write the
390 # new value to memory, and return the original value read.
391 #
392 # All operations take 2 sources except CompSwap that takes 3. These
393 # sources represent:
394 #
395 # 0: The offset into the shared variable storage region that the atomic
396 # operation will operate on.
397 # 1: The data parameter to the atomic function (i.e. the value to add
398 # in shared_atomic_add, etc).
399 # 2: For CompSwap only: the second data parameter.
400 intrinsic("shared_atomic_add", src_comp=[1, 1], dest_comp=1, indices=[BASE])
401 intrinsic("shared_atomic_imin", src_comp=[1, 1], dest_comp=1, indices=[BASE])
402 intrinsic("shared_atomic_umin", src_comp=[1, 1], dest_comp=1, indices=[BASE])
403 intrinsic("shared_atomic_imax", src_comp=[1, 1], dest_comp=1, indices=[BASE])
404 intrinsic("shared_atomic_umax", src_comp=[1, 1], dest_comp=1, indices=[BASE])
405 intrinsic("shared_atomic_and", src_comp=[1, 1], dest_comp=1, indices=[BASE])
406 intrinsic("shared_atomic_or", src_comp=[1, 1], dest_comp=1, indices=[BASE])
407 intrinsic("shared_atomic_xor", src_comp=[1, 1], dest_comp=1, indices=[BASE])
408 intrinsic("shared_atomic_exchange", src_comp=[1, 1], dest_comp=1, indices=[BASE])
409 intrinsic("shared_atomic_comp_swap", src_comp=[1, 1, 1], dest_comp=1, indices=[BASE])
410
411 def system_value(name, dest_comp, indices=[]):
412 intrinsic("load_" + name, [], dest_comp, indices,
413 flags=[CAN_ELIMINATE, CAN_REORDER], sysval=True)
414
415 system_value("frag_coord", 4)
416 system_value("front_face", 1)
417 system_value("vertex_id", 1)
418 system_value("vertex_id_zero_base", 1)
419 system_value("first_vertex", 1)
420 system_value("is_indexed_draw", 1)
421 system_value("base_vertex", 1)
422 system_value("instance_id", 1)
423 system_value("base_instance", 1)
424 system_value("draw_id", 1)
425 system_value("sample_id", 1)
426 system_value("sample_pos", 2)
427 system_value("sample_mask_in", 1)
428 system_value("primitive_id", 1)
429 system_value("invocation_id", 1)
430 system_value("tess_coord", 3)
431 system_value("tess_level_outer", 4)
432 system_value("tess_level_inner", 2)
433 system_value("patch_vertices_in", 1)
434 system_value("local_invocation_id", 3)
435 system_value("local_invocation_index", 1)
436 system_value("work_group_id", 3)
437 system_value("user_clip_plane", 4, indices=[UCP_ID])
438 system_value("num_work_groups", 3)
439 system_value("helper_invocation", 1)
440 system_value("alpha_ref_float", 1)
441 system_value("layer_id", 1)
442 system_value("view_index", 1)
443 system_value("subgroup_size", 1)
444 system_value("subgroup_invocation", 1)
445 system_value("subgroup_eq_mask", 0)
446 system_value("subgroup_ge_mask", 0)
447 system_value("subgroup_gt_mask", 0)
448 system_value("subgroup_le_mask", 0)
449 system_value("subgroup_lt_mask", 0)
450 system_value("num_subgroups", 1)
451 system_value("subgroup_id", 1)
452 system_value("local_group_size", 3)
453 system_value("global_invocation_id", 3)
454
455 # Blend constant color values. Float values are clamped.#
456 system_value("blend_const_color_r_float", 1)
457 system_value("blend_const_color_g_float", 1)
458 system_value("blend_const_color_b_float", 1)
459 system_value("blend_const_color_a_float", 1)
460 system_value("blend_const_color_rgba8888_unorm", 1)
461 system_value("blend_const_color_aaaa8888_unorm", 1)
462
463 # Barycentric coordinate intrinsics.
464 #
465 # These set up the barycentric coordinates for a particular interpolation.
466 # The first three are for the simple cases: pixel, centroid, or per-sample
467 # (at gl_SampleID). The next two handle interpolating at a specified
468 # sample location, or interpolating with a vec2 offset,
469 #
470 # The interp_mode index should be either the INTERP_MODE_SMOOTH or
471 # INTERP_MODE_NOPERSPECTIVE enum values.
472 #
473 # The vec2 value produced by these intrinsics is intended for use as the
474 # barycoord source of a load_interpolated_input intrinsic.
475
476 def barycentric(name, src_comp=[]):
477 intrinsic("load_barycentric_" + name, src_comp=src_comp, dest_comp=2,
478 indices=[INTERP_MODE], flags=[CAN_ELIMINATE, CAN_REORDER])
479
480 # no sources. const_index[] = { interp_mode }
481 barycentric("pixel")
482 barycentric("centroid")
483 barycentric("sample")
484 # src[] = { sample_id }. const_index[] = { interp_mode }
485 barycentric("at_sample", [1])
486 # src[] = { offset.xy }. const_index[] = { interp_mode }
487 barycentric("at_offset", [2])
488
489 # Load operations pull data from some piece of GPU memory. All load
490 # operations operate in terms of offsets into some piece of theoretical
491 # memory. Loads from externally visible memory (UBO and SSBO) simply take a
492 # byte offset as a source. Loads from opaque memory (uniforms, inputs, etc.)
493 # take a base+offset pair where the base (const_index[0]) gives the location
494 # of the start of the variable being loaded and and the offset source is a
495 # offset into that variable.
496 #
497 # Uniform load operations have a second "range" index that specifies the
498 # range (starting at base) of the data from which we are loading. If
499 # const_index[1] == 0, then the range is unknown.
500 #
501 # Some load operations such as UBO/SSBO load and per_vertex loads take an
502 # additional source to specify which UBO/SSBO/vertex to load from.
503 #
504 # The exact address type depends on the lowering pass that generates the
505 # load/store intrinsics. Typically, this is vec4 units for things such as
506 # varying slots and float units for fragment shader inputs. UBO and SSBO
507 # offsets are always in bytes.
508
509 def load(name, num_srcs, indices=[], flags=[]):
510 intrinsic("load_" + name, [1] * num_srcs, dest_comp=0, indices=indices,
511 flags=flags)
512
513 # src[] = { offset }. const_index[] = { base, range }
514 load("uniform", 1, [BASE, RANGE], [CAN_ELIMINATE, CAN_REORDER])
515 # src[] = { buffer_index, offset }. No const_index
516 load("ubo", 2, flags=[CAN_ELIMINATE, CAN_REORDER])
517 # src[] = { offset }. const_index[] = { base, component }
518 load("input", 1, [BASE, COMPONENT], [CAN_ELIMINATE, CAN_REORDER])
519 # src[] = { vertex, offset }. const_index[] = { base, component }
520 load("per_vertex_input", 2, [BASE, COMPONENT], [CAN_ELIMINATE, CAN_REORDER])
521 # src[] = { barycoord, offset }. const_index[] = { base, component }
522 intrinsic("load_interpolated_input", src_comp=[2, 1], dest_comp=0,
523 indices=[BASE, COMPONENT], flags=[CAN_ELIMINATE, CAN_REORDER])
524
525 # src[] = { buffer_index, offset }. No const_index
526 load("ssbo", 2, flags=[CAN_ELIMINATE])
527 # src[] = { offset }. const_index[] = { base, component }
528 load("output", 1, [BASE, COMPONENT], flags=[CAN_ELIMINATE])
529 # src[] = { vertex, offset }. const_index[] = { base }
530 load("per_vertex_output", 2, [BASE, COMPONENT], [CAN_ELIMINATE])
531 # src[] = { offset }. const_index[] = { base }
532 load("shared", 1, [BASE], [CAN_ELIMINATE])
533 # src[] = { offset }. const_index[] = { base, range }
534 load("push_constant", 1, [BASE, RANGE], [CAN_ELIMINATE, CAN_REORDER])
535
536 # Stores work the same way as loads, except now the first source is the value
537 # to store and the second (and possibly third) source specify where to store
538 # the value. SSBO and shared memory stores also have a write mask as
539 # const_index[0].
540
541 def store(name, num_srcs, indices=[], flags=[]):
542 intrinsic("store_" + name, [0] + ([1] * (num_srcs - 1)), indices=indices, flags=flags)
543
544 # src[] = { value, offset }. const_index[] = { base, write_mask, component }
545 store("output", 2, [BASE, WRMASK, COMPONENT])
546 # src[] = { value, vertex, offset }.
547 # const_index[] = { base, write_mask, component }
548 store("per_vertex_output", 3, [BASE, WRMASK, COMPONENT])
549 # src[] = { value, block_index, offset }. const_index[] = { write_mask }
550 store("ssbo", 3, [WRMASK])
551 # src[] = { value, offset }. const_index[] = { base, write_mask }
552 store("shared", 2, [BASE, WRMASK])