nir: support lowering clipdist to arrays
[mesa.git] / src / compiler / nir / nir_liveness.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 */
26
27 #include "nir.h"
28 #include "nir_worklist.h"
29 #include "nir_vla.h"
30
31 /*
32 * Basic liveness analysis. This works only in SSA form.
33 *
34 * This liveness pass treats phi nodes as being melded to the space between
35 * blocks so that the destinations of a phi are in the livein of the block
36 * in which it resides and the sources are in the liveout of the
37 * corresponding block. By formulating the liveness information in this
38 * way, we ensure that the definition of any variable dominates its entire
39 * live range. This is true because the only way that the definition of an
40 * SSA value may not dominate a use is if the use is in a phi node and the
41 * uses in phi no are in the live-out of the corresponding predecessor
42 * block but not in the live-in of the block containing the phi node.
43 */
44
45 struct live_ssa_defs_state {
46 unsigned num_ssa_defs;
47 unsigned bitset_words;
48
49 /* Used in propagate_across_edge() */
50 BITSET_WORD *tmp_live;
51
52 nir_block_worklist worklist;
53 };
54
55 static bool
56 index_ssa_def(nir_ssa_def *def, void *void_state)
57 {
58 struct live_ssa_defs_state *state = void_state;
59
60 if (def->parent_instr->type == nir_instr_type_ssa_undef)
61 def->live_index = 0;
62 else
63 def->live_index = state->num_ssa_defs++;
64
65 return true;
66 }
67
68 /* Initialize the liveness data to zero and add the given block to the
69 * worklist.
70 */
71 static bool
72 init_liveness_block(nir_block *block,
73 struct live_ssa_defs_state *state)
74 {
75 block->live_in = reralloc(block, block->live_in, BITSET_WORD,
76 state->bitset_words);
77 memset(block->live_in, 0, state->bitset_words * sizeof(BITSET_WORD));
78
79 block->live_out = reralloc(block, block->live_out, BITSET_WORD,
80 state->bitset_words);
81 memset(block->live_out, 0, state->bitset_words * sizeof(BITSET_WORD));
82
83 nir_block_worklist_push_head(&state->worklist, block);
84
85 return true;
86 }
87
88 static bool
89 set_src_live(nir_src *src, void *void_live)
90 {
91 BITSET_WORD *live = void_live;
92
93 if (!src->is_ssa)
94 return true;
95
96 if (src->ssa->live_index == 0)
97 return true; /* undefined variables are never live */
98
99 BITSET_SET(live, src->ssa->live_index);
100
101 return true;
102 }
103
104 static bool
105 set_ssa_def_dead(nir_ssa_def *def, void *void_live)
106 {
107 BITSET_WORD *live = void_live;
108
109 BITSET_CLEAR(live, def->live_index);
110
111 return true;
112 }
113
114 /** Propagates the live in of succ across the edge to the live out of pred
115 *
116 * Phi nodes exist "between" blocks and all the phi nodes at the start of a
117 * block act "in parallel". When we propagate from the live_in of one
118 * block to the live out of the other, we have to kill any writes from phis
119 * and make live any sources.
120 *
121 * Returns true if updating live out of pred added anything
122 */
123 static bool
124 propagate_across_edge(nir_block *pred, nir_block *succ,
125 struct live_ssa_defs_state *state)
126 {
127 BITSET_WORD *live = state->tmp_live;
128 memcpy(live, succ->live_in, state->bitset_words * sizeof *live);
129
130 nir_foreach_instr(instr, succ) {
131 if (instr->type != nir_instr_type_phi)
132 break;
133 nir_phi_instr *phi = nir_instr_as_phi(instr);
134
135 assert(phi->dest.is_ssa);
136 set_ssa_def_dead(&phi->dest.ssa, live);
137 }
138
139 nir_foreach_instr(instr, succ) {
140 if (instr->type != nir_instr_type_phi)
141 break;
142 nir_phi_instr *phi = nir_instr_as_phi(instr);
143
144 nir_foreach_phi_src(src, phi) {
145 if (src->pred == pred) {
146 set_src_live(&src->src, live);
147 break;
148 }
149 }
150 }
151
152 BITSET_WORD progress = 0;
153 for (unsigned i = 0; i < state->bitset_words; ++i) {
154 progress |= live[i] & ~pred->live_out[i];
155 pred->live_out[i] |= live[i];
156 }
157 return progress != 0;
158 }
159
160 void
161 nir_live_ssa_defs_impl(nir_function_impl *impl)
162 {
163 struct live_ssa_defs_state state;
164
165 /* We start at 1 because we reserve the index value of 0 for ssa_undef
166 * instructions. Those are never live, so their liveness information
167 * can be compacted into a single bit.
168 */
169 state.num_ssa_defs = 1;
170 nir_foreach_block(block, impl) {
171 nir_foreach_instr(instr, block)
172 nir_foreach_ssa_def(instr, index_ssa_def, &state);
173 }
174
175 nir_block_worklist_init(&state.worklist, impl->num_blocks, NULL);
176
177 /* We now know how many unique ssa definitions we have and we can go
178 * ahead and allocate live_in and live_out sets and add all of the
179 * blocks to the worklist.
180 */
181 state.bitset_words = BITSET_WORDS(state.num_ssa_defs);
182 state.tmp_live = rzalloc_array(impl, BITSET_WORD, state.bitset_words);
183 nir_foreach_block(block, impl) {
184 init_liveness_block(block, &state);
185 }
186
187
188 /* We're now ready to work through the worklist and update the liveness
189 * sets of each of the blocks. By the time we get to this point, every
190 * block in the function implementation has been pushed onto the
191 * worklist in reverse order. As long as we keep the worklist
192 * up-to-date as we go, everything will get covered.
193 */
194 while (!nir_block_worklist_is_empty(&state.worklist)) {
195 /* We pop them off in the reverse order we pushed them on. This way
196 * the first walk of the instructions is backwards so we only walk
197 * once in the case of no control flow.
198 */
199 nir_block *block = nir_block_worklist_pop_head(&state.worklist);
200
201 memcpy(block->live_in, block->live_out,
202 state.bitset_words * sizeof(BITSET_WORD));
203
204 nir_if *following_if = nir_block_get_following_if(block);
205 if (following_if)
206 set_src_live(&following_if->condition, block->live_in);
207
208 nir_foreach_instr_reverse(instr, block) {
209 /* Phi nodes are handled seperately so we want to skip them. Since
210 * we are going backwards and they are at the beginning, we can just
211 * break as soon as we see one.
212 */
213 if (instr->type == nir_instr_type_phi)
214 break;
215
216 nir_foreach_ssa_def(instr, set_ssa_def_dead, block->live_in);
217 nir_foreach_src(instr, set_src_live, block->live_in);
218 }
219
220 /* Walk over all of the predecessors of the current block updating
221 * their live in with the live out of this one. If anything has
222 * changed, add the predecessor to the work list so that we ensure
223 * that the new information is used.
224 */
225 set_foreach(block->predecessors, entry) {
226 nir_block *pred = (nir_block *)entry->key;
227 if (propagate_across_edge(pred, block, &state))
228 nir_block_worklist_push_tail(&state.worklist, pred);
229 }
230 }
231
232 ralloc_free(state.tmp_live);
233 nir_block_worklist_fini(&state.worklist);
234 }
235
236 static bool
237 src_does_not_use_def(nir_src *src, void *def)
238 {
239 return !src->is_ssa || src->ssa != (nir_ssa_def *)def;
240 }
241
242 static bool
243 search_for_use_after_instr(nir_instr *start, nir_ssa_def *def)
244 {
245 /* Only look for a use strictly after the given instruction */
246 struct exec_node *node = start->node.next;
247 while (!exec_node_is_tail_sentinel(node)) {
248 nir_instr *instr = exec_node_data(nir_instr, node, node);
249 if (!nir_foreach_src(instr, src_does_not_use_def, def))
250 return true;
251 node = node->next;
252 }
253 return false;
254 }
255
256 /* Returns true if def is live at instr assuming that def comes before
257 * instr in a pre DFS search of the dominance tree.
258 */
259 static bool
260 nir_ssa_def_is_live_at(nir_ssa_def *def, nir_instr *instr)
261 {
262 if (BITSET_TEST(instr->block->live_out, def->live_index)) {
263 /* Since def dominates instr, if def is in the liveout of the block,
264 * it's live at instr
265 */
266 return true;
267 } else {
268 if (BITSET_TEST(instr->block->live_in, def->live_index) ||
269 def->parent_instr->block == instr->block) {
270 /* In this case it is either live coming into instr's block or it
271 * is defined in the same block. In this case, we simply need to
272 * see if it is used after instr.
273 */
274 return search_for_use_after_instr(instr, def);
275 } else {
276 return false;
277 }
278 }
279 }
280
281 bool
282 nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b)
283 {
284 if (a->parent_instr == b->parent_instr) {
285 /* Two variables defined at the same time interfere assuming at
286 * least one isn't dead.
287 */
288 return true;
289 } else if (a->live_index == 0 || b->live_index == 0) {
290 /* If either variable is an ssa_undef, then there's no interference */
291 return false;
292 } else if (a->live_index < b->live_index) {
293 return nir_ssa_def_is_live_at(a, b->parent_instr);
294 } else {
295 return nir_ssa_def_is_live_at(b, a->parent_instr);
296 }
297 }