nir: get ffma support from NIR options for nir_lower_flrp
[mesa.git] / src / compiler / nir / nir_lower_flrp.c
1 /*
2 * Copyright © 2018 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23 #include <math.h>
24 #include "nir.h"
25 #include "nir_builder.h"
26 #include "util/u_vector.h"
27
28 /**
29 * Lower flrp instructions.
30 *
31 * Unlike the lowerings that are possible in nir_opt_algrbraic, this pass can
32 * examine more global information to determine a possibly more efficient
33 * lowering for each flrp.
34 */
35
36 static void
37 append_flrp_to_dead_list(struct u_vector *dead_flrp, struct nir_alu_instr *alu)
38 {
39 struct nir_alu_instr **tail = u_vector_add(dead_flrp);
40 *tail = alu;
41 }
42
43 /**
44 * Replace flrp(a, b, c) with ffma(b, c, ffma(-a, c, a)).
45 */
46 static void
47 replace_with_strict_ffma(struct nir_builder *bld, struct u_vector *dead_flrp,
48 struct nir_alu_instr *alu)
49 {
50 nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
51 nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
52 nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
53
54 nir_ssa_def *const neg_a = nir_fneg(bld, a);
55 nir_instr_as_alu(neg_a->parent_instr)->exact = alu->exact;
56
57 nir_ssa_def *const inner_ffma = nir_ffma(bld, neg_a, c, a);
58 nir_instr_as_alu(inner_ffma->parent_instr)->exact = alu->exact;
59
60 nir_ssa_def *const outer_ffma = nir_ffma(bld, b, c, inner_ffma);
61 nir_instr_as_alu(outer_ffma->parent_instr)->exact = alu->exact;
62
63 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(outer_ffma));
64
65 /* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
66 * based on other uses of the sources. Removing the flrp may cause the
67 * last flrp in a sequence to make a different, incorrect choice.
68 */
69 append_flrp_to_dead_list(dead_flrp, alu);
70 }
71
72 /**
73 * Replace flrp(a, b, c) with ffma(a, (1 - c), bc)
74 */
75 static void
76 replace_with_single_ffma(struct nir_builder *bld, struct u_vector *dead_flrp,
77 struct nir_alu_instr *alu)
78 {
79 nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
80 nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
81 nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
82
83 nir_ssa_def *const neg_c = nir_fneg(bld, c);
84 nir_instr_as_alu(neg_c->parent_instr)->exact = alu->exact;
85
86 nir_ssa_def *const one_minus_c =
87 nir_fadd(bld, nir_imm_floatN_t(bld, 1.0f, c->bit_size), neg_c);
88 nir_instr_as_alu(one_minus_c->parent_instr)->exact = alu->exact;
89
90 nir_ssa_def *const b_times_c = nir_fmul(bld, b, c);
91 nir_instr_as_alu(b_times_c->parent_instr)->exact = alu->exact;
92
93 nir_ssa_def *const final_ffma = nir_ffma(bld, a, one_minus_c, b_times_c);
94 nir_instr_as_alu(final_ffma->parent_instr)->exact = alu->exact;
95
96 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(final_ffma));
97
98 /* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
99 * based on other uses of the sources. Removing the flrp may cause the
100 * last flrp in a sequence to make a different, incorrect choice.
101 */
102 append_flrp_to_dead_list(dead_flrp, alu);
103 }
104
105 /**
106 * Replace flrp(a, b, c) with a(1-c) + bc.
107 */
108 static void
109 replace_with_strict(struct nir_builder *bld, struct u_vector *dead_flrp,
110 struct nir_alu_instr *alu)
111 {
112 nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
113 nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
114 nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
115
116 nir_ssa_def *const neg_c = nir_fneg(bld, c);
117 nir_instr_as_alu(neg_c->parent_instr)->exact = alu->exact;
118
119 nir_ssa_def *const one_minus_c =
120 nir_fadd(bld, nir_imm_floatN_t(bld, 1.0f, c->bit_size), neg_c);
121 nir_instr_as_alu(one_minus_c->parent_instr)->exact = alu->exact;
122
123 nir_ssa_def *const first_product = nir_fmul(bld, a, one_minus_c);
124 nir_instr_as_alu(first_product->parent_instr)->exact = alu->exact;
125
126 nir_ssa_def *const second_product = nir_fmul(bld, b, c);
127 nir_instr_as_alu(second_product->parent_instr)->exact = alu->exact;
128
129 nir_ssa_def *const sum = nir_fadd(bld, first_product, second_product);
130 nir_instr_as_alu(sum->parent_instr)->exact = alu->exact;
131
132 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
133
134 /* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
135 * based on other uses of the sources. Removing the flrp may cause the
136 * last flrp in a sequence to make a different, incorrect choice.
137 */
138 append_flrp_to_dead_list(dead_flrp, alu);
139 }
140
141 /**
142 * Replace flrp(a, b, c) with a + c(b-a).
143 */
144 static void
145 replace_with_fast(struct nir_builder *bld, struct u_vector *dead_flrp,
146 struct nir_alu_instr *alu)
147 {
148 nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
149 nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
150 nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
151
152 nir_ssa_def *const neg_a = nir_fneg(bld, a);
153 nir_instr_as_alu(neg_a->parent_instr)->exact = alu->exact;
154
155 nir_ssa_def *const b_minus_a = nir_fadd(bld, b, neg_a);
156 nir_instr_as_alu(b_minus_a->parent_instr)->exact = alu->exact;
157
158 nir_ssa_def *const product = nir_fmul(bld, c, b_minus_a);
159 nir_instr_as_alu(product->parent_instr)->exact = alu->exact;
160
161 nir_ssa_def *const sum = nir_fadd(bld, a, product);
162 nir_instr_as_alu(sum->parent_instr)->exact = alu->exact;
163
164 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
165
166 /* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
167 * based on other uses of the sources. Removing the flrp may cause the
168 * last flrp in a sequence to make a different, incorrect choice.
169 */
170 append_flrp_to_dead_list(dead_flrp, alu);
171 }
172
173 /**
174 * Replace flrp(a, b, c) with (b*c ± c) + a => b*c + (a ± c)
175 *
176 * \note: This only works if a = ±1.
177 */
178 static void
179 replace_with_expanded_ffma_and_add(struct nir_builder *bld,
180 struct u_vector *dead_flrp,
181 struct nir_alu_instr *alu, bool subtract_c)
182 {
183 nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
184 nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
185 nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
186
187 nir_ssa_def *const b_times_c = nir_fmul(bld, b, c);
188 nir_instr_as_alu(b_times_c->parent_instr)->exact = alu->exact;
189
190 nir_ssa_def *inner_sum;
191
192 if (subtract_c) {
193 nir_ssa_def *const neg_c = nir_fneg(bld, c);
194 nir_instr_as_alu(neg_c->parent_instr)->exact = alu->exact;
195
196 inner_sum = nir_fadd(bld, a, neg_c);
197 } else {
198 inner_sum = nir_fadd(bld, a, c);
199 }
200
201 nir_instr_as_alu(inner_sum->parent_instr)->exact = alu->exact;
202
203 nir_ssa_def *const outer_sum = nir_fadd(bld, inner_sum, b_times_c);
204 nir_instr_as_alu(outer_sum->parent_instr)->exact = alu->exact;
205
206 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(outer_sum));
207
208 /* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
209 * based on other uses of the sources. Removing the flrp may cause the
210 * last flrp in a sequence to make a different, incorrect choice.
211 */
212 append_flrp_to_dead_list(dead_flrp, alu);
213 }
214
215 /**
216 * Determines whether a swizzled source is constant w/ all components the same.
217 *
218 * The value of the constant is stored in \c result.
219 *
220 * \return
221 * True if all components of the swizzled source are the same constant.
222 * Otherwise false is returned.
223 */
224 static bool
225 all_same_constant(const nir_alu_instr *instr, unsigned src, double *result)
226 {
227 nir_const_value *val = nir_src_as_const_value(instr->src[src].src);
228
229 if (!val)
230 return false;
231
232 const uint8_t *const swizzle = instr->src[src].swizzle;
233 const unsigned num_components = nir_dest_num_components(instr->dest.dest);
234
235 if (instr->dest.dest.ssa.bit_size == 32) {
236 const float first = val[swizzle[0]].f32;
237
238 for (unsigned i = 1; i < num_components; i++) {
239 if (val[swizzle[i]].f32 != first)
240 return false;
241 }
242
243 *result = first;
244 } else {
245 const double first = val[swizzle[0]].f64;
246
247 for (unsigned i = 1; i < num_components; i++) {
248 if (val[swizzle[i]].f64 != first)
249 return false;
250 }
251
252 *result = first;
253 }
254
255 return true;
256 }
257
258 static bool
259 sources_are_constants_with_similar_magnitudes(const nir_alu_instr *instr)
260 {
261 nir_const_value *val0 = nir_src_as_const_value(instr->src[0].src);
262 nir_const_value *val1 = nir_src_as_const_value(instr->src[1].src);
263
264 if (val0 == NULL || val1 == NULL)
265 return false;
266
267 const uint8_t *const swizzle0 = instr->src[0].swizzle;
268 const uint8_t *const swizzle1 = instr->src[1].swizzle;
269 const unsigned num_components = nir_dest_num_components(instr->dest.dest);
270
271 if (instr->dest.dest.ssa.bit_size == 32) {
272 for (unsigned i = 0; i < num_components; i++) {
273 int exp0;
274 int exp1;
275
276 frexpf(val0[swizzle0[i]].f32, &exp0);
277 frexpf(val1[swizzle1[i]].f32, &exp1);
278
279 /* If the difference between exponents is >= 24, then A+B will always
280 * have the value whichever between A and B has the largest absolute
281 * value. So, [0, 23] is the valid range. The smaller the limit
282 * value, the more precision will be maintained at a potential
283 * performance cost. Somewhat arbitrarilly split the range in half.
284 */
285 if (abs(exp0 - exp1) > (23 / 2))
286 return false;
287 }
288 } else {
289 for (unsigned i = 0; i < num_components; i++) {
290 int exp0;
291 int exp1;
292
293 frexp(val0[swizzle0[i]].f64, &exp0);
294 frexp(val1[swizzle1[i]].f64, &exp1);
295
296 /* If the difference between exponents is >= 53, then A+B will always
297 * have the value whichever between A and B has the largest absolute
298 * value. So, [0, 52] is the valid range. The smaller the limit
299 * value, the more precision will be maintained at a potential
300 * performance cost. Somewhat arbitrarilly split the range in half.
301 */
302 if (abs(exp0 - exp1) > (52 / 2))
303 return false;
304 }
305 }
306
307 return true;
308 }
309
310 /**
311 * Counts of similar types of nir_op_flrp instructions
312 *
313 * If a similar instruction fits into more than one category, it will only be
314 * counted once. The assumption is that no other instruction will have all
315 * sources the same, or CSE would have removed one of the instructions.
316 */
317 struct similar_flrp_stats {
318 unsigned src2;
319 unsigned src0_and_src2;
320 unsigned src1_and_src2;
321 };
322
323 /**
324 * Collection counts of similar FLRP instructions.
325 *
326 * This function only cares about similar instructions that have src2 in
327 * common.
328 */
329 static void
330 get_similar_flrp_stats(nir_alu_instr *alu, struct similar_flrp_stats *st)
331 {
332 memset(st, 0, sizeof(*st));
333
334 nir_foreach_use(other_use, alu->src[2].src.ssa) {
335 /* Is the use also a flrp? */
336 nir_instr *const other_instr = other_use->parent_instr;
337 if (other_instr->type != nir_instr_type_alu)
338 continue;
339
340 /* Eh-hem... don't match the instruction with itself. */
341 if (other_instr == &alu->instr)
342 continue;
343
344 nir_alu_instr *const other_alu = nir_instr_as_alu(other_instr);
345 if (other_alu->op != nir_op_flrp)
346 continue;
347
348 /* Does the other flrp use source 2 from the first flrp as its source 2
349 * as well?
350 */
351 if (!nir_alu_srcs_equal(alu, other_alu, 2, 2))
352 continue;
353
354 if (nir_alu_srcs_equal(alu, other_alu, 0, 0))
355 st->src0_and_src2++;
356 else if (nir_alu_srcs_equal(alu, other_alu, 1, 1))
357 st->src1_and_src2++;
358 else
359 st->src2++;
360 }
361 }
362
363 static void
364 convert_flrp_instruction(nir_builder *bld,
365 struct u_vector *dead_flrp,
366 nir_alu_instr *alu,
367 bool always_precise)
368 {
369 bool have_ffma = !bld->shader->options->lower_ffma;
370
371 bld->cursor = nir_before_instr(&alu->instr);
372
373 /* There are two methods to implement flrp(x, y, t). The strictly correct
374 * implementation according to the GLSL spec is:
375 *
376 * x(1 - t) + yt
377 *
378 * This can also be implemented using two chained FMAs
379 *
380 * fma(y, t, fma(-x, t, x))
381 *
382 * This method, using either formulation, has better precision when the
383 * difference between x and y is very large. It guarantess that flrp(x, y,
384 * 1) = y. For example, flrp(1e38, 1.0, 1.0) is 1.0. This is correct.
385 *
386 * The other possible implementation is:
387 *
388 * x + t(y - x)
389 *
390 * This can also be formuated as an FMA:
391 *
392 * fma(y - x, t, x)
393 *
394 * For this implementation, flrp(1e38, 1.0, 1.0) is 0.0. Since 1.0 was
395 * expected, that's a pretty significant error.
396 *
397 * The choice made for lowering depends on a number of factors.
398 *
399 * - If the flrp is marked precise and FMA is supported:
400 *
401 * fma(y, t, fma(-x, t, x))
402 *
403 * This is strictly correct (maybe?), and the cost is two FMA
404 * instructions. It at least maintains the flrp(x, y, 1.0) == y
405 * condition.
406 *
407 * - If the flrp is marked precise and FMA is not supported:
408 *
409 * x(1 - t) + yt
410 *
411 * This is strictly correct, and the cost is 4 instructions. If FMA is
412 * supported, this may or may not be reduced to 3 instructions (a
413 * subtract, a multiply, and an FMA)... but in that case the other
414 * formulation should have been used.
415 */
416 if (alu->exact) {
417 if (have_ffma)
418 replace_with_strict_ffma(bld, dead_flrp, alu);
419 else
420 replace_with_strict(bld, dead_flrp, alu);
421
422 return;
423 }
424
425 /*
426 * - If x and y are both immediates and the relative magnitude of the
427 * values is similar (such that x-y does not lose too much precision):
428 *
429 * x + t(x - y)
430 *
431 * We rely on constant folding to eliminate x-y, and we rely on
432 * nir_opt_algebraic to possibly generate an FMA. The cost is either one
433 * FMA or two instructions.
434 */
435 if (sources_are_constants_with_similar_magnitudes(alu)) {
436 replace_with_fast(bld, dead_flrp, alu);
437 return;
438 }
439
440 /*
441 * - If x = 1:
442 *
443 * (yt + -t) + 1
444 *
445 * - If x = -1:
446 *
447 * (yt + t) - 1
448 *
449 * In both cases, x is used in place of ±1 for simplicity. Both forms
450 * lend to ffma generation on platforms that support ffma.
451 */
452 double src0_as_constant;
453 if (all_same_constant(alu, 0, &src0_as_constant)) {
454 if (src0_as_constant == 1.0) {
455 replace_with_expanded_ffma_and_add(bld, dead_flrp, alu,
456 true /* subtract t */);
457 return;
458 } else if (src0_as_constant == -1.0) {
459 replace_with_expanded_ffma_and_add(bld, dead_flrp, alu,
460 false /* add t */);
461 return;
462 }
463 }
464
465 /*
466 * - If y = ±1:
467 *
468 * x(1 - t) + yt
469 *
470 * In this case either the multiply in yt will be eliminated by
471 * nir_opt_algebraic. If FMA is supported, this results in fma(x, (1 -
472 * t), ±t) for two instructions. If FMA is not supported, then the cost
473 * is 3 instructions. We rely on nir_opt_algebraic to generate the FMA
474 * instructions as well.
475 *
476 * Another possible replacement is
477 *
478 * -xt + x ± t
479 *
480 * Some groupings of this may be better on some platforms in some
481 * circumstances, bit it is probably dependent on scheduling. Futher
482 * investigation may be required.
483 */
484 double src1_as_constant;
485 if ((all_same_constant(alu, 1, &src1_as_constant) &&
486 (src1_as_constant == -1.0 || src1_as_constant == 1.0))) {
487 replace_with_strict(bld, dead_flrp, alu);
488 return;
489 }
490
491 if (have_ffma) {
492 if (always_precise) {
493 replace_with_strict_ffma(bld, dead_flrp, alu);
494 return;
495 }
496
497 /*
498 * - If FMA is supported and other flrp(x, _, t) exists:
499 *
500 * fma(y, t, fma(-x, t, x))
501 *
502 * The hope is that the inner FMA calculation will be shared with the
503 * other lowered flrp. This results in two FMA instructions for the
504 * first flrp and one FMA instruction for each additional flrp. It
505 * also means that the live range for x might be complete after the
506 * inner ffma instead of after the last flrp.
507 */
508 struct similar_flrp_stats st;
509
510 get_similar_flrp_stats(alu, &st);
511 if (st.src0_and_src2 > 0) {
512 replace_with_strict_ffma(bld, dead_flrp, alu);
513 return;
514 }
515
516 /*
517 * - If FMA is supported and another flrp(_, y, t) exists:
518 *
519 * fma(x, (1 - t), yt)
520 *
521 * The hope is that the (1 - t) and the yt will be shared with the
522 * other lowered flrp. This results in 3 insructions for the first
523 * flrp and 1 for each additional flrp.
524 */
525 if (st.src1_and_src2 > 0) {
526 replace_with_single_ffma(bld, dead_flrp, alu);
527 return;
528 }
529 } else {
530 if (always_precise) {
531 replace_with_strict(bld, dead_flrp, alu);
532 return;
533 }
534
535 /*
536 * - If FMA is not supported and another flrp(x, _, t) exists:
537 *
538 * x(1 - t) + yt
539 *
540 * The hope is that the x(1 - t) will be shared with the other lowered
541 * flrp. This results in 4 insructions for the first flrp and 2 for
542 * each additional flrp.
543 *
544 * - If FMA is not supported and another flrp(_, y, t) exists:
545 *
546 * x(1 - t) + yt
547 *
548 * The hope is that the (1 - t) and the yt will be shared with the
549 * other lowered flrp. This results in 4 insructions for the first
550 * flrp and 2 for each additional flrp.
551 */
552 struct similar_flrp_stats st;
553
554 get_similar_flrp_stats(alu, &st);
555 if (st.src0_and_src2 > 0 || st.src1_and_src2 > 0) {
556 replace_with_strict(bld, dead_flrp, alu);
557 return;
558 }
559 }
560
561 /*
562 * - If t is constant:
563 *
564 * x(1 - t) + yt
565 *
566 * The cost is three instructions without FMA or two instructions with
567 * FMA. This is the same cost as the imprecise lowering, but it gives
568 * the instruction scheduler a little more freedom.
569 *
570 * There is no need to handle t = 0.5 specially. nir_opt_algebraic
571 * already has optimizations to convert 0.5x + 0.5y to 0.5(x + y).
572 */
573 if (alu->src[2].src.ssa->parent_instr->type == nir_instr_type_load_const) {
574 replace_with_strict(bld, dead_flrp, alu);
575 return;
576 }
577
578 /*
579 * - Otherwise
580 *
581 * x + t(x - y)
582 */
583 replace_with_fast(bld, dead_flrp, alu);
584 }
585
586 static void
587 lower_flrp_impl(nir_function_impl *impl,
588 struct u_vector *dead_flrp,
589 unsigned lowering_mask,
590 bool always_precise)
591 {
592 nir_builder b;
593 nir_builder_init(&b, impl);
594
595 nir_foreach_block(block, impl) {
596 nir_foreach_instr_safe(instr, block) {
597 if (instr->type == nir_instr_type_alu) {
598 nir_alu_instr *const alu = nir_instr_as_alu(instr);
599
600 if (alu->op == nir_op_flrp &&
601 (alu->dest.dest.ssa.bit_size & lowering_mask)) {
602 convert_flrp_instruction(&b, dead_flrp, alu, always_precise);
603 }
604 }
605 }
606 }
607
608 nir_metadata_preserve(impl, nir_metadata_block_index |
609 nir_metadata_dominance);
610 }
611
612 /**
613 * \param lowering_mask - Bitwise-or of the bit sizes that need to be lowered
614 * (e.g., 16 | 64 if only 16-bit and 64-bit flrp need
615 * lowering).
616 * \param always_precise - Always require precise lowering for flrp. This
617 * will always lower flrp to (a * (1 - c)) + (b * c).
618 * \param have_ffma - Set to true if the GPU has an FFMA instruction that
619 * should be used.
620 */
621 bool
622 nir_lower_flrp(nir_shader *shader,
623 unsigned lowering_mask,
624 bool always_precise)
625 {
626 struct u_vector dead_flrp;
627
628 if (!u_vector_init(&dead_flrp, sizeof(struct nir_alu_instr *), 64))
629 return false;
630
631 nir_foreach_function(function, shader) {
632 if (function->impl) {
633 lower_flrp_impl(function->impl, &dead_flrp, lowering_mask,
634 always_precise);
635 }
636 }
637
638 /* Progress was made if the dead list is not empty. Remove all the
639 * instructions from the dead list.
640 */
641 const bool progress = u_vector_length(&dead_flrp) != 0;
642
643 struct nir_alu_instr **instr;
644 u_vector_foreach(instr, &dead_flrp)
645 nir_instr_remove(&(*instr)->instr);
646
647 u_vector_finish(&dead_flrp);
648
649 return progress;
650 }