nir: define behavior of nir_op_bfm and nir_op_u/ibfe according to SM5 spec.
[mesa.git] / src / compiler / nir / nir_opcodes.py
1 #
2 # Copyright (C) 2014 Connor Abbott
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Connor Abbott (cwabbott0@gmail.com)
25
26 import re
27
28 # Class that represents all the information we have about the opcode
29 # NOTE: this must be kept in sync with nir_op_info
30
31 class Opcode(object):
32 """Class that represents all the information we have about the opcode
33 NOTE: this must be kept in sync with nir_op_info
34 """
35 def __init__(self, name, output_size, output_type, input_sizes,
36 input_types, is_conversion, algebraic_properties, const_expr):
37 """Parameters:
38
39 - name is the name of the opcode (prepend nir_op_ for the enum name)
40 - all types are strings that get nir_type_ prepended to them
41 - input_types is a list of types
42 - is_conversion is true if this opcode represents a type conversion
43 - algebraic_properties is a space-seperated string, where nir_op_is_ is
44 prepended before each entry
45 - const_expr is an expression or series of statements that computes the
46 constant value of the opcode given the constant values of its inputs.
47
48 Constant expressions are formed from the variables src0, src1, ...,
49 src(N-1), where N is the number of arguments. The output of the
50 expression should be stored in the dst variable. Per-component input
51 and output variables will be scalars and non-per-component input and
52 output variables will be a struct with fields named x, y, z, and w
53 all of the correct type. Input and output variables can be assumed
54 to already be of the correct type and need no conversion. In
55 particular, the conversion from the C bool type to/from NIR_TRUE and
56 NIR_FALSE happens automatically.
57
58 For per-component instructions, the entire expression will be
59 executed once for each component. For non-per-component
60 instructions, the expression is expected to store the correct values
61 in dst.x, dst.y, etc. If "dst" does not exist anywhere in the
62 constant expression, an assignment to dst will happen automatically
63 and the result will be equivalent to "dst = <expression>" for
64 per-component instructions and "dst.x = dst.y = ... = <expression>"
65 for non-per-component instructions.
66 """
67 assert isinstance(name, str)
68 assert isinstance(output_size, int)
69 assert isinstance(output_type, str)
70 assert isinstance(input_sizes, list)
71 assert isinstance(input_sizes[0], int)
72 assert isinstance(input_types, list)
73 assert isinstance(input_types[0], str)
74 assert isinstance(is_conversion, bool)
75 assert isinstance(algebraic_properties, str)
76 assert isinstance(const_expr, str)
77 assert len(input_sizes) == len(input_types)
78 assert 0 <= output_size <= 4
79 for size in input_sizes:
80 assert 0 <= size <= 4
81 if output_size != 0:
82 assert size != 0
83 self.name = name
84 self.num_inputs = len(input_sizes)
85 self.output_size = output_size
86 self.output_type = output_type
87 self.input_sizes = input_sizes
88 self.input_types = input_types
89 self.is_conversion = is_conversion
90 self.algebraic_properties = algebraic_properties
91 self.const_expr = const_expr
92
93 # helper variables for strings
94 tfloat = "float"
95 tint = "int"
96 tbool = "bool"
97 tbool1 = "bool1"
98 tbool32 = "bool32"
99 tuint = "uint"
100 tuint16 = "uint16"
101 tfloat32 = "float32"
102 tint32 = "int32"
103 tuint32 = "uint32"
104 tint64 = "int64"
105 tuint64 = "uint64"
106 tfloat64 = "float64"
107
108 _TYPE_SPLIT_RE = re.compile(r'(?P<type>int|uint|float|bool)(?P<bits>\d+)?')
109
110 def type_has_size(type_):
111 m = _TYPE_SPLIT_RE.match(type_)
112 assert m is not None, 'Invalid NIR type string: "{}"'.format(type_)
113 return m.group('bits') is not None
114
115 def type_size(type_):
116 m = _TYPE_SPLIT_RE.match(type_)
117 assert m is not None, 'Invalid NIR type string: "{}"'.format(type_)
118 assert m.group('bits') is not None, \
119 'NIR type string has no bit size: "{}"'.format(type_)
120 return int(m.group('bits'))
121
122 def type_sizes(type_):
123 if type_has_size(type_):
124 return [type_size(type_)]
125 elif type_ == 'bool':
126 return [1, 32]
127 elif type_ == 'float':
128 return [16, 32, 64]
129 else:
130 return [1, 8, 16, 32, 64]
131
132 def type_base_type(type_):
133 m = _TYPE_SPLIT_RE.match(type_)
134 assert m is not None, 'Invalid NIR type string: "{}"'.format(type_)
135 return m.group('type')
136
137 # Operation where the first two sources are commutative.
138 #
139 # For 2-source operations, this just mathematical commutativity. Some
140 # 3-source operations, like ffma, are only commutative in the first two
141 # sources.
142 _2src_commutative = "2src_commutative "
143 associative = "associative "
144
145 # global dictionary of opcodes
146 opcodes = {}
147
148 def opcode(name, output_size, output_type, input_sizes, input_types,
149 is_conversion, algebraic_properties, const_expr):
150 assert name not in opcodes
151 opcodes[name] = Opcode(name, output_size, output_type, input_sizes,
152 input_types, is_conversion, algebraic_properties,
153 const_expr)
154
155 def unop_convert(name, out_type, in_type, const_expr):
156 opcode(name, 0, out_type, [0], [in_type], False, "", const_expr)
157
158 def unop(name, ty, const_expr):
159 opcode(name, 0, ty, [0], [ty], False, "", const_expr)
160
161 def unop_horiz(name, output_size, output_type, input_size, input_type,
162 const_expr):
163 opcode(name, output_size, output_type, [input_size], [input_type],
164 False, "", const_expr)
165
166 def unop_reduce(name, output_size, output_type, input_type, prereduce_expr,
167 reduce_expr, final_expr):
168 def prereduce(src):
169 return "(" + prereduce_expr.format(src=src) + ")"
170 def final(src):
171 return final_expr.format(src="(" + src + ")")
172 def reduce_(src0, src1):
173 return reduce_expr.format(src0=src0, src1=src1)
174 src0 = prereduce("src0.x")
175 src1 = prereduce("src0.y")
176 src2 = prereduce("src0.z")
177 src3 = prereduce("src0.w")
178 unop_horiz(name + "2", output_size, output_type, 2, input_type,
179 final(reduce_(src0, src1)))
180 unop_horiz(name + "3", output_size, output_type, 3, input_type,
181 final(reduce_(reduce_(src0, src1), src2)))
182 unop_horiz(name + "4", output_size, output_type, 4, input_type,
183 final(reduce_(reduce_(src0, src1), reduce_(src2, src3))))
184
185 def unop_numeric_convert(name, out_type, in_type, const_expr):
186 opcode(name, 0, out_type, [0], [in_type], True, "", const_expr)
187
188 unop("mov", tuint, "src0")
189
190 unop("ineg", tint, "-src0")
191 unop("fneg", tfloat, "-src0")
192 unop("inot", tint, "~src0") # invert every bit of the integer
193 unop("fnot", tfloat, ("bit_size == 64 ? ((src0 == 0.0) ? 1.0 : 0.0f) : " +
194 "((src0 == 0.0f) ? 1.0f : 0.0f)"))
195 unop("fsign", tfloat, ("bit_size == 64 ? " +
196 "((src0 == 0.0) ? 0.0 : ((src0 > 0.0) ? 1.0 : -1.0)) : " +
197 "((src0 == 0.0f) ? 0.0f : ((src0 > 0.0f) ? 1.0f : -1.0f))"))
198 unop("isign", tint, "(src0 == 0) ? 0 : ((src0 > 0) ? 1 : -1)")
199 unop("iabs", tint, "(src0 < 0) ? -src0 : src0")
200 unop("fabs", tfloat, "fabs(src0)")
201 unop("fsat", tfloat, ("bit_size == 64 ? " +
202 "((src0 > 1.0) ? 1.0 : ((src0 <= 0.0) ? 0.0 : src0)) : " +
203 "((src0 > 1.0f) ? 1.0f : ((src0 <= 0.0f) ? 0.0f : src0))"))
204 unop("frcp", tfloat, "bit_size == 64 ? 1.0 / src0 : 1.0f / src0")
205 unop("frsq", tfloat, "bit_size == 64 ? 1.0 / sqrt(src0) : 1.0f / sqrtf(src0)")
206 unop("fsqrt", tfloat, "bit_size == 64 ? sqrt(src0) : sqrtf(src0)")
207 unop("fexp2", tfloat, "exp2f(src0)")
208 unop("flog2", tfloat, "log2f(src0)")
209
210 # Generate all of the numeric conversion opcodes
211 for src_t in [tint, tuint, tfloat, tbool]:
212 if src_t == tbool:
213 dst_types = [tfloat, tint]
214 elif src_t == tint:
215 dst_types = [tfloat, tint, tbool]
216 elif src_t == tuint:
217 dst_types = [tfloat, tuint]
218 elif src_t == tfloat:
219 dst_types = [tint, tuint, tfloat, tbool]
220
221 for dst_t in dst_types:
222 for bit_size in type_sizes(dst_t):
223 if bit_size == 16 and dst_t == tfloat and src_t == tfloat:
224 rnd_modes = ['_rtne', '_rtz', '']
225 for rnd_mode in rnd_modes:
226 unop_numeric_convert("{0}2{1}{2}{3}".format(src_t[0], dst_t[0],
227 bit_size, rnd_mode),
228 dst_t + str(bit_size), src_t, "src0")
229 else:
230 conv_expr = "src0 != 0" if dst_t == tbool else "src0"
231 unop_numeric_convert("{0}2{1}{2}".format(src_t[0], dst_t[0], bit_size),
232 dst_t + str(bit_size), src_t, conv_expr)
233
234
235 # Unary floating-point rounding operations.
236
237
238 unop("ftrunc", tfloat, "bit_size == 64 ? trunc(src0) : truncf(src0)")
239 unop("fceil", tfloat, "bit_size == 64 ? ceil(src0) : ceilf(src0)")
240 unop("ffloor", tfloat, "bit_size == 64 ? floor(src0) : floorf(src0)")
241 unop("ffract", tfloat, "src0 - (bit_size == 64 ? floor(src0) : floorf(src0))")
242 unop("fround_even", tfloat, "bit_size == 64 ? _mesa_roundeven(src0) : _mesa_roundevenf(src0)")
243
244 unop("fquantize2f16", tfloat, "(fabs(src0) < ldexpf(1.0, -14)) ? copysignf(0.0f, src0) : _mesa_half_to_float(_mesa_float_to_half(src0))")
245
246 # Trigonometric operations.
247
248
249 unop("fsin", tfloat, "bit_size == 64 ? sin(src0) : sinf(src0)")
250 unop("fcos", tfloat, "bit_size == 64 ? cos(src0) : cosf(src0)")
251
252 # dfrexp
253 unop_convert("frexp_exp", tint32, tfloat, "frexp(src0, &dst);")
254 unop_convert("frexp_sig", tfloat, tfloat, "int n; dst = frexp(src0, &n);")
255
256 # Partial derivatives.
257
258
259 unop("fddx", tfloat, "0.0") # the derivative of a constant is 0.
260 unop("fddy", tfloat, "0.0")
261 unop("fddx_fine", tfloat, "0.0")
262 unop("fddy_fine", tfloat, "0.0")
263 unop("fddx_coarse", tfloat, "0.0")
264 unop("fddy_coarse", tfloat, "0.0")
265
266
267 # Floating point pack and unpack operations.
268
269 def pack_2x16(fmt):
270 unop_horiz("pack_" + fmt + "_2x16", 1, tuint32, 2, tfloat32, """
271 dst.x = (uint32_t) pack_fmt_1x16(src0.x);
272 dst.x |= ((uint32_t) pack_fmt_1x16(src0.y)) << 16;
273 """.replace("fmt", fmt))
274
275 def pack_4x8(fmt):
276 unop_horiz("pack_" + fmt + "_4x8", 1, tuint32, 4, tfloat32, """
277 dst.x = (uint32_t) pack_fmt_1x8(src0.x);
278 dst.x |= ((uint32_t) pack_fmt_1x8(src0.y)) << 8;
279 dst.x |= ((uint32_t) pack_fmt_1x8(src0.z)) << 16;
280 dst.x |= ((uint32_t) pack_fmt_1x8(src0.w)) << 24;
281 """.replace("fmt", fmt))
282
283 def unpack_2x16(fmt):
284 unop_horiz("unpack_" + fmt + "_2x16", 2, tfloat32, 1, tuint32, """
285 dst.x = unpack_fmt_1x16((uint16_t)(src0.x & 0xffff));
286 dst.y = unpack_fmt_1x16((uint16_t)(src0.x << 16));
287 """.replace("fmt", fmt))
288
289 def unpack_4x8(fmt):
290 unop_horiz("unpack_" + fmt + "_4x8", 4, tfloat32, 1, tuint32, """
291 dst.x = unpack_fmt_1x8((uint8_t)(src0.x & 0xff));
292 dst.y = unpack_fmt_1x8((uint8_t)((src0.x >> 8) & 0xff));
293 dst.z = unpack_fmt_1x8((uint8_t)((src0.x >> 16) & 0xff));
294 dst.w = unpack_fmt_1x8((uint8_t)(src0.x >> 24));
295 """.replace("fmt", fmt))
296
297
298 pack_2x16("snorm")
299 pack_4x8("snorm")
300 pack_2x16("unorm")
301 pack_4x8("unorm")
302 pack_2x16("half")
303 unpack_2x16("snorm")
304 unpack_4x8("snorm")
305 unpack_2x16("unorm")
306 unpack_4x8("unorm")
307 unpack_2x16("half")
308
309 unop_horiz("pack_uvec2_to_uint", 1, tuint32, 2, tuint32, """
310 dst.x = (src0.x & 0xffff) | (src0.y << 16);
311 """)
312
313 unop_horiz("pack_uvec4_to_uint", 1, tuint32, 4, tuint32, """
314 dst.x = (src0.x << 0) |
315 (src0.y << 8) |
316 (src0.z << 16) |
317 (src0.w << 24);
318 """)
319
320 unop_horiz("pack_32_2x16", 1, tuint32, 2, tuint16,
321 "dst.x = src0.x | ((uint32_t)src0.y << 16);")
322
323 unop_horiz("pack_64_2x32", 1, tuint64, 2, tuint32,
324 "dst.x = src0.x | ((uint64_t)src0.y << 32);")
325
326 unop_horiz("pack_64_4x16", 1, tuint64, 4, tuint16,
327 "dst.x = src0.x | ((uint64_t)src0.y << 16) | ((uint64_t)src0.z << 32) | ((uint64_t)src0.w << 48);")
328
329 unop_horiz("unpack_64_2x32", 2, tuint32, 1, tuint64,
330 "dst.x = src0.x; dst.y = src0.x >> 32;")
331
332 unop_horiz("unpack_64_4x16", 4, tuint16, 1, tuint64,
333 "dst.x = src0.x; dst.y = src0.x >> 16; dst.z = src0.x >> 32; dst.w = src0.w >> 48;")
334
335 unop_horiz("unpack_32_2x16", 2, tuint16, 1, tuint32,
336 "dst.x = src0.x; dst.y = src0.x >> 16;")
337
338 # Lowered floating point unpacking operations.
339
340
341 unop_convert("unpack_half_2x16_split_x", tfloat32, tuint32,
342 "unpack_half_1x16((uint16_t)(src0 & 0xffff))")
343 unop_convert("unpack_half_2x16_split_y", tfloat32, tuint32,
344 "unpack_half_1x16((uint16_t)(src0 >> 16))")
345
346 unop_convert("unpack_32_2x16_split_x", tuint16, tuint32, "src0")
347 unop_convert("unpack_32_2x16_split_y", tuint16, tuint32, "src0 >> 16")
348
349 unop_convert("unpack_64_2x32_split_x", tuint32, tuint64, "src0")
350 unop_convert("unpack_64_2x32_split_y", tuint32, tuint64, "src0 >> 32")
351
352 # Bit operations, part of ARB_gpu_shader5.
353
354
355 unop("bitfield_reverse", tuint32, """
356 /* we're not winning any awards for speed here, but that's ok */
357 dst = 0;
358 for (unsigned bit = 0; bit < 32; bit++)
359 dst |= ((src0 >> bit) & 1) << (31 - bit);
360 """)
361 unop_convert("bit_count", tuint32, tuint, """
362 dst = 0;
363 for (unsigned bit = 0; bit < bit_size; bit++) {
364 if ((src0 >> bit) & 1)
365 dst++;
366 }
367 """)
368
369 unop_convert("ufind_msb", tint32, tuint, """
370 dst = -1;
371 for (int bit = bit_size - 1; bit >= 0; bit--) {
372 if ((src0 >> bit) & 1) {
373 dst = bit;
374 break;
375 }
376 }
377 """)
378
379 unop("ifind_msb", tint32, """
380 dst = -1;
381 for (int bit = 31; bit >= 0; bit--) {
382 /* If src0 < 0, we're looking for the first 0 bit.
383 * if src0 >= 0, we're looking for the first 1 bit.
384 */
385 if ((((src0 >> bit) & 1) && (src0 >= 0)) ||
386 (!((src0 >> bit) & 1) && (src0 < 0))) {
387 dst = bit;
388 break;
389 }
390 }
391 """)
392
393 unop_convert("find_lsb", tint32, tint, """
394 dst = -1;
395 for (unsigned bit = 0; bit < bit_size; bit++) {
396 if ((src0 >> bit) & 1) {
397 dst = bit;
398 break;
399 }
400 }
401 """)
402
403
404 for i in range(1, 5):
405 for j in range(1, 5):
406 unop_horiz("fnoise{0}_{1}".format(i, j), i, tfloat, j, tfloat, "0.0f")
407
408
409 # AMD_gcn_shader extended instructions
410 unop_horiz("cube_face_coord", 2, tfloat32, 3, tfloat32, """
411 dst.x = dst.y = 0.0;
412 float absX = fabs(src0.x);
413 float absY = fabs(src0.y);
414 float absZ = fabs(src0.z);
415
416 float ma = 0.0;
417 if (absX >= absY && absX >= absZ) { ma = 2 * src0.x; }
418 if (absY >= absX && absY >= absZ) { ma = 2 * src0.y; }
419 if (absZ >= absX && absZ >= absY) { ma = 2 * src0.z; }
420
421 if (src0.x >= 0 && absX >= absY && absX >= absZ) { dst.x = -src0.z; dst.y = -src0.y; }
422 if (src0.x < 0 && absX >= absY && absX >= absZ) { dst.x = src0.z; dst.y = -src0.y; }
423 if (src0.y >= 0 && absY >= absX && absY >= absZ) { dst.x = src0.x; dst.y = src0.z; }
424 if (src0.y < 0 && absY >= absX && absY >= absZ) { dst.x = src0.x; dst.y = -src0.z; }
425 if (src0.z >= 0 && absZ >= absX && absZ >= absY) { dst.x = src0.x; dst.y = -src0.y; }
426 if (src0.z < 0 && absZ >= absX && absZ >= absY) { dst.x = -src0.x; dst.y = -src0.y; }
427
428 dst.x = dst.x / ma + 0.5;
429 dst.y = dst.y / ma + 0.5;
430 """)
431
432 unop_horiz("cube_face_index", 1, tfloat32, 3, tfloat32, """
433 float absX = fabs(src0.x);
434 float absY = fabs(src0.y);
435 float absZ = fabs(src0.z);
436 if (src0.x >= 0 && absX >= absY && absX >= absZ) dst.x = 0;
437 if (src0.x < 0 && absX >= absY && absX >= absZ) dst.x = 1;
438 if (src0.y >= 0 && absY >= absX && absY >= absZ) dst.x = 2;
439 if (src0.y < 0 && absY >= absX && absY >= absZ) dst.x = 3;
440 if (src0.z >= 0 && absZ >= absX && absZ >= absY) dst.x = 4;
441 if (src0.z < 0 && absZ >= absX && absZ >= absY) dst.x = 5;
442 """)
443
444
445 def binop_convert(name, out_type, in_type, alg_props, const_expr):
446 opcode(name, 0, out_type, [0, 0], [in_type, in_type],
447 False, alg_props, const_expr)
448
449 def binop(name, ty, alg_props, const_expr):
450 binop_convert(name, ty, ty, alg_props, const_expr)
451
452 def binop_compare(name, ty, alg_props, const_expr):
453 binop_convert(name, tbool1, ty, alg_props, const_expr)
454
455 def binop_compare32(name, ty, alg_props, const_expr):
456 binop_convert(name, tbool32, ty, alg_props, const_expr)
457
458 def binop_horiz(name, out_size, out_type, src1_size, src1_type, src2_size,
459 src2_type, const_expr):
460 opcode(name, out_size, out_type, [src1_size, src2_size], [src1_type, src2_type],
461 False, "", const_expr)
462
463 def binop_reduce(name, output_size, output_type, src_type, prereduce_expr,
464 reduce_expr, final_expr):
465 def final(src):
466 return final_expr.format(src= "(" + src + ")")
467 def reduce_(src0, src1):
468 return reduce_expr.format(src0=src0, src1=src1)
469 def prereduce(src0, src1):
470 return "(" + prereduce_expr.format(src0=src0, src1=src1) + ")"
471 src0 = prereduce("src0.x", "src1.x")
472 src1 = prereduce("src0.y", "src1.y")
473 src2 = prereduce("src0.z", "src1.z")
474 src3 = prereduce("src0.w", "src1.w")
475 opcode(name + "2", output_size, output_type,
476 [2, 2], [src_type, src_type], False, _2src_commutative,
477 final(reduce_(src0, src1)))
478 opcode(name + "3", output_size, output_type,
479 [3, 3], [src_type, src_type], False, _2src_commutative,
480 final(reduce_(reduce_(src0, src1), src2)))
481 opcode(name + "4", output_size, output_type,
482 [4, 4], [src_type, src_type], False, _2src_commutative,
483 final(reduce_(reduce_(src0, src1), reduce_(src2, src3))))
484
485 binop("fadd", tfloat, _2src_commutative + associative, "src0 + src1")
486 binop("iadd", tint, _2src_commutative + associative, "src0 + src1")
487 binop("iadd_sat", tint, _2src_commutative, """
488 src1 > 0 ?
489 (src0 + src1 < src0 ? (1ull << (bit_size - 1)) - 1 : src0 + src1) :
490 (src0 < src0 + src1 ? (1ull << (bit_size - 1)) : src0 + src1)
491 """)
492 binop("uadd_sat", tuint, _2src_commutative,
493 "(src0 + src1) < src0 ? MAX_UINT_FOR_SIZE(sizeof(src0) * 8) : (src0 + src1)")
494 binop("isub_sat", tint, "", """
495 src1 < 0 ?
496 (src0 - src1 < src0 ? (1ull << (bit_size - 1)) - 1 : src0 - src1) :
497 (src0 < src0 - src1 ? (1ull << (bit_size - 1)) : src0 - src1)
498 """)
499 binop("usub_sat", tuint, "", "src0 < src1 ? 0 : src0 - src1")
500
501 binop("fsub", tfloat, "", "src0 - src1")
502 binop("isub", tint, "", "src0 - src1")
503
504 binop("fmul", tfloat, _2src_commutative + associative, "src0 * src1")
505 # low 32-bits of signed/unsigned integer multiply
506 binop("imul", tint, _2src_commutative + associative, "src0 * src1")
507
508 # Generate 64 bit result from 2 32 bits quantity
509 binop_convert("imul_2x32_64", tint64, tint32, _2src_commutative,
510 "(int64_t)src0 * (int64_t)src1")
511 binop_convert("umul_2x32_64", tuint64, tuint32, _2src_commutative,
512 "(uint64_t)src0 * (uint64_t)src1")
513
514 # high 32-bits of signed integer multiply
515 binop("imul_high", tint, _2src_commutative, """
516 if (bit_size == 64) {
517 /* We need to do a full 128-bit x 128-bit multiply in order for the sign
518 * extension to work properly. The casts are kind-of annoying but needed
519 * to prevent compiler warnings.
520 */
521 uint32_t src0_u32[4] = {
522 src0,
523 (int64_t)src0 >> 32,
524 (int64_t)src0 >> 63,
525 (int64_t)src0 >> 63,
526 };
527 uint32_t src1_u32[4] = {
528 src1,
529 (int64_t)src1 >> 32,
530 (int64_t)src1 >> 63,
531 (int64_t)src1 >> 63,
532 };
533 uint32_t prod_u32[4];
534 ubm_mul_u32arr(prod_u32, src0_u32, src1_u32);
535 dst = (uint64_t)prod_u32[2] | ((uint64_t)prod_u32[3] << 32);
536 } else {
537 dst = ((int64_t)src0 * (int64_t)src1) >> bit_size;
538 }
539 """)
540
541 # high 32-bits of unsigned integer multiply
542 binop("umul_high", tuint, _2src_commutative, """
543 if (bit_size == 64) {
544 /* The casts are kind-of annoying but needed to prevent compiler warnings. */
545 uint32_t src0_u32[2] = { src0, (uint64_t)src0 >> 32 };
546 uint32_t src1_u32[2] = { src1, (uint64_t)src1 >> 32 };
547 uint32_t prod_u32[4];
548 ubm_mul_u32arr(prod_u32, src0_u32, src1_u32);
549 dst = (uint64_t)prod_u32[2] | ((uint64_t)prod_u32[3] << 32);
550 } else {
551 dst = ((uint64_t)src0 * (uint64_t)src1) >> bit_size;
552 }
553 """)
554
555 # low 32-bits of unsigned integer multiply
556 binop("umul_low", tuint32, _2src_commutative, """
557 uint64_t mask = (1 << (bit_size / 2)) - 1;
558 dst = ((uint64_t)src0 & mask) * ((uint64_t)src1 & mask);
559 """)
560
561
562 binop("fdiv", tfloat, "", "src0 / src1")
563 binop("idiv", tint, "", "src1 == 0 ? 0 : (src0 / src1)")
564 binop("udiv", tuint, "", "src1 == 0 ? 0 : (src0 / src1)")
565
566 # returns a boolean representing the carry resulting from the addition of
567 # the two unsigned arguments.
568
569 binop_convert("uadd_carry", tuint, tuint, _2src_commutative, "src0 + src1 < src0")
570
571 # returns a boolean representing the borrow resulting from the subtraction
572 # of the two unsigned arguments.
573
574 binop_convert("usub_borrow", tuint, tuint, "", "src0 < src1")
575
576 # hadd: (a + b) >> 1 (without overflow)
577 # x + y = x - (x & ~y) + (x & ~y) + y - (~x & y) + (~x & y)
578 # = (x & y) + (x & ~y) + (x & y) + (~x & y)
579 # = 2 * (x & y) + (x & ~y) + (~x & y)
580 # = ((x & y) << 1) + (x ^ y)
581 #
582 # Since we know that the bottom bit of (x & y) << 1 is zero,
583 #
584 # (x + y) >> 1 = (((x & y) << 1) + (x ^ y)) >> 1
585 # = (x & y) + ((x ^ y) >> 1)
586 binop("ihadd", tint, _2src_commutative, "(src0 & src1) + ((src0 ^ src1) >> 1)")
587 binop("uhadd", tuint, _2src_commutative, "(src0 & src1) + ((src0 ^ src1) >> 1)")
588
589 # rhadd: (a + b + 1) >> 1 (without overflow)
590 # x + y + 1 = x + (~x & y) - (~x & y) + y + (x & ~y) - (x & ~y) + 1
591 # = (x | y) - (~x & y) + (x | y) - (x & ~y) + 1
592 # = 2 * (x | y) - ((~x & y) + (x & ~y)) + 1
593 # = ((x | y) << 1) - (x ^ y) + 1
594 #
595 # Since we know that the bottom bit of (x & y) << 1 is zero,
596 #
597 # (x + y + 1) >> 1 = (x | y) + (-(x ^ y) + 1) >> 1)
598 # = (x | y) - ((x ^ y) >> 1)
599 binop("irhadd", tint, _2src_commutative, "(src0 | src1) + ((src0 ^ src1) >> 1)")
600 binop("urhadd", tuint, _2src_commutative, "(src0 | src1) + ((src0 ^ src1) >> 1)")
601
602 binop("umod", tuint, "", "src1 == 0 ? 0 : src0 % src1")
603
604 # For signed integers, there are several different possible definitions of
605 # "modulus" or "remainder". We follow the conventions used by LLVM and
606 # SPIR-V. The irem opcode implements the standard C/C++ signed "%"
607 # operation while the imod opcode implements the more mathematical
608 # "modulus" operation. For details on the difference, see
609 #
610 # http://mathforum.org/library/drmath/view/52343.html
611
612 binop("irem", tint, "", "src1 == 0 ? 0 : src0 % src1")
613 binop("imod", tint, "",
614 "src1 == 0 ? 0 : ((src0 % src1 == 0 || (src0 >= 0) == (src1 >= 0)) ?"
615 " src0 % src1 : src0 % src1 + src1)")
616 binop("fmod", tfloat, "", "src0 - src1 * floorf(src0 / src1)")
617 binop("frem", tfloat, "", "src0 - src1 * truncf(src0 / src1)")
618
619 #
620 # Comparisons
621 #
622
623
624 # these integer-aware comparisons return a boolean (0 or ~0)
625
626 binop_compare("flt", tfloat, "", "src0 < src1")
627 binop_compare("fge", tfloat, "", "src0 >= src1")
628 binop_compare("feq", tfloat, _2src_commutative, "src0 == src1")
629 binop_compare("fne", tfloat, _2src_commutative, "src0 != src1")
630 binop_compare("ilt", tint, "", "src0 < src1")
631 binop_compare("ige", tint, "", "src0 >= src1")
632 binop_compare("ieq", tint, _2src_commutative, "src0 == src1")
633 binop_compare("ine", tint, _2src_commutative, "src0 != src1")
634 binop_compare("ult", tuint, "", "src0 < src1")
635 binop_compare("uge", tuint, "", "src0 >= src1")
636 binop_compare32("flt32", tfloat, "", "src0 < src1")
637 binop_compare32("fge32", tfloat, "", "src0 >= src1")
638 binop_compare32("feq32", tfloat, _2src_commutative, "src0 == src1")
639 binop_compare32("fne32", tfloat, _2src_commutative, "src0 != src1")
640 binop_compare32("ilt32", tint, "", "src0 < src1")
641 binop_compare32("ige32", tint, "", "src0 >= src1")
642 binop_compare32("ieq32", tint, _2src_commutative, "src0 == src1")
643 binop_compare32("ine32", tint, _2src_commutative, "src0 != src1")
644 binop_compare32("ult32", tuint, "", "src0 < src1")
645 binop_compare32("uge32", tuint, "", "src0 >= src1")
646
647 # integer-aware GLSL-style comparisons that compare floats and ints
648
649 binop_reduce("ball_fequal", 1, tbool1, tfloat, "{src0} == {src1}",
650 "{src0} && {src1}", "{src}")
651 binop_reduce("bany_fnequal", 1, tbool1, tfloat, "{src0} != {src1}",
652 "{src0} || {src1}", "{src}")
653 binop_reduce("ball_iequal", 1, tbool1, tint, "{src0} == {src1}",
654 "{src0} && {src1}", "{src}")
655 binop_reduce("bany_inequal", 1, tbool1, tint, "{src0} != {src1}",
656 "{src0} || {src1}", "{src}")
657
658 binop_reduce("b32all_fequal", 1, tbool32, tfloat, "{src0} == {src1}",
659 "{src0} && {src1}", "{src}")
660 binop_reduce("b32any_fnequal", 1, tbool32, tfloat, "{src0} != {src1}",
661 "{src0} || {src1}", "{src}")
662 binop_reduce("b32all_iequal", 1, tbool32, tint, "{src0} == {src1}",
663 "{src0} && {src1}", "{src}")
664 binop_reduce("b32any_inequal", 1, tbool32, tint, "{src0} != {src1}",
665 "{src0} || {src1}", "{src}")
666
667 # non-integer-aware GLSL-style comparisons that return 0.0 or 1.0
668
669 binop_reduce("fall_equal", 1, tfloat32, tfloat32, "{src0} == {src1}",
670 "{src0} && {src1}", "{src} ? 1.0f : 0.0f")
671 binop_reduce("fany_nequal", 1, tfloat32, tfloat32, "{src0} != {src1}",
672 "{src0} || {src1}", "{src} ? 1.0f : 0.0f")
673
674 # These comparisons for integer-less hardware return 1.0 and 0.0 for true
675 # and false respectively
676
677 binop("slt", tfloat32, "", "(src0 < src1) ? 1.0f : 0.0f") # Set on Less Than
678 binop("sge", tfloat, "", "(src0 >= src1) ? 1.0f : 0.0f") # Set on Greater or Equal
679 binop("seq", tfloat32, _2src_commutative, "(src0 == src1) ? 1.0f : 0.0f") # Set on Equal
680 binop("sne", tfloat32, _2src_commutative, "(src0 != src1) ? 1.0f : 0.0f") # Set on Not Equal
681
682 # SPIRV shifts are undefined for shift-operands >= bitsize,
683 # but SM5 shifts are defined to use the least significant bits, only
684 # The NIR definition is according to the SM5 specification.
685 opcode("ishl", 0, tint, [0, 0], [tint, tuint32], False, "",
686 "src0 << (src1 & (sizeof(src0) * 8 - 1))")
687 opcode("ishr", 0, tint, [0, 0], [tint, tuint32], False, "",
688 "src0 >> (src1 & (sizeof(src0) * 8 - 1))")
689 opcode("ushr", 0, tuint, [0, 0], [tuint, tuint32], False, "",
690 "src0 >> (src1 & (sizeof(src0) * 8 - 1))")
691
692 # bitwise logic operators
693 #
694 # These are also used as boolean and, or, xor for hardware supporting
695 # integers.
696
697
698 binop("iand", tuint, _2src_commutative + associative, "src0 & src1")
699 binop("ior", tuint, _2src_commutative + associative, "src0 | src1")
700 binop("ixor", tuint, _2src_commutative + associative, "src0 ^ src1")
701
702
703 # floating point logic operators
704 #
705 # These use (src != 0.0) for testing the truth of the input, and output 1.0
706 # for true and 0.0 for false
707
708 binop("fand", tfloat32, _2src_commutative,
709 "((src0 != 0.0f) && (src1 != 0.0f)) ? 1.0f : 0.0f")
710 binop("for", tfloat32, _2src_commutative,
711 "((src0 != 0.0f) || (src1 != 0.0f)) ? 1.0f : 0.0f")
712 binop("fxor", tfloat32, _2src_commutative,
713 "(src0 != 0.0f && src1 == 0.0f) || (src0 == 0.0f && src1 != 0.0f) ? 1.0f : 0.0f")
714
715 binop_reduce("fdot", 1, tfloat, tfloat, "{src0} * {src1}", "{src0} + {src1}",
716 "{src}")
717
718 binop_reduce("fdot_replicated", 4, tfloat, tfloat,
719 "{src0} * {src1}", "{src0} + {src1}", "{src}")
720
721 opcode("fdph", 1, tfloat, [3, 4], [tfloat, tfloat], False, "",
722 "src0.x * src1.x + src0.y * src1.y + src0.z * src1.z + src1.w")
723 opcode("fdph_replicated", 4, tfloat, [3, 4], [tfloat, tfloat], False, "",
724 "src0.x * src1.x + src0.y * src1.y + src0.z * src1.z + src1.w")
725
726 binop("fmin", tfloat, "", "fminf(src0, src1)")
727 binop("imin", tint, _2src_commutative + associative, "src1 > src0 ? src0 : src1")
728 binop("umin", tuint, _2src_commutative + associative, "src1 > src0 ? src0 : src1")
729 binop("fmax", tfloat, "", "fmaxf(src0, src1)")
730 binop("imax", tint, _2src_commutative + associative, "src1 > src0 ? src1 : src0")
731 binop("umax", tuint, _2src_commutative + associative, "src1 > src0 ? src1 : src0")
732
733 # Saturated vector add for 4 8bit ints.
734 binop("usadd_4x8", tint32, _2src_commutative + associative, """
735 dst = 0;
736 for (int i = 0; i < 32; i += 8) {
737 dst |= MIN2(((src0 >> i) & 0xff) + ((src1 >> i) & 0xff), 0xff) << i;
738 }
739 """)
740
741 # Saturated vector subtract for 4 8bit ints.
742 binop("ussub_4x8", tint32, "", """
743 dst = 0;
744 for (int i = 0; i < 32; i += 8) {
745 int src0_chan = (src0 >> i) & 0xff;
746 int src1_chan = (src1 >> i) & 0xff;
747 if (src0_chan > src1_chan)
748 dst |= (src0_chan - src1_chan) << i;
749 }
750 """)
751
752 # vector min for 4 8bit ints.
753 binop("umin_4x8", tint32, _2src_commutative + associative, """
754 dst = 0;
755 for (int i = 0; i < 32; i += 8) {
756 dst |= MIN2((src0 >> i) & 0xff, (src1 >> i) & 0xff) << i;
757 }
758 """)
759
760 # vector max for 4 8bit ints.
761 binop("umax_4x8", tint32, _2src_commutative + associative, """
762 dst = 0;
763 for (int i = 0; i < 32; i += 8) {
764 dst |= MAX2((src0 >> i) & 0xff, (src1 >> i) & 0xff) << i;
765 }
766 """)
767
768 # unorm multiply: (a * b) / 255.
769 binop("umul_unorm_4x8", tint32, _2src_commutative + associative, """
770 dst = 0;
771 for (int i = 0; i < 32; i += 8) {
772 int src0_chan = (src0 >> i) & 0xff;
773 int src1_chan = (src1 >> i) & 0xff;
774 dst |= ((src0_chan * src1_chan) / 255) << i;
775 }
776 """)
777
778 binop("fpow", tfloat, "", "bit_size == 64 ? powf(src0, src1) : pow(src0, src1)")
779
780 binop_horiz("pack_half_2x16_split", 1, tuint32, 1, tfloat32, 1, tfloat32,
781 "pack_half_1x16(src0.x) | (pack_half_1x16(src1.x) << 16)")
782
783 binop_convert("pack_64_2x32_split", tuint64, tuint32, "",
784 "src0 | ((uint64_t)src1 << 32)")
785
786 binop_convert("pack_32_2x16_split", tuint32, tuint16, "",
787 "src0 | ((uint32_t)src1 << 16)")
788
789 # bfm implements the behavior of the first operation of the SM5 "bfi" assembly
790 # and that of the "bfi1" i965 instruction. That is, the bits and offset values
791 # are from the low five bits of src0 and src1, respectively.
792 binop_convert("bfm", tuint32, tint32, "", """
793 int bits = src0 & 0x1F;
794 int offset = src1 & 0x1F;
795 dst = ((1u << bits) - 1) << offset;
796 """)
797
798 opcode("ldexp", 0, tfloat, [0, 0], [tfloat, tint32], False, "", """
799 dst = (bit_size == 64) ? ldexp(src0, src1) : ldexpf(src0, src1);
800 /* flush denormals to zero. */
801 if (!isnormal(dst))
802 dst = copysignf(0.0f, src0);
803 """)
804
805 # Combines the first component of each input to make a 2-component vector.
806
807 binop_horiz("vec2", 2, tuint, 1, tuint, 1, tuint, """
808 dst.x = src0.x;
809 dst.y = src1.x;
810 """)
811
812 # Byte extraction
813 binop("extract_u8", tuint, "", "(uint8_t)(src0 >> (src1 * 8))")
814 binop("extract_i8", tint, "", "(int8_t)(src0 >> (src1 * 8))")
815
816 # Word extraction
817 binop("extract_u16", tuint, "", "(uint16_t)(src0 >> (src1 * 16))")
818 binop("extract_i16", tint, "", "(int16_t)(src0 >> (src1 * 16))")
819
820
821 def triop(name, ty, alg_props, const_expr):
822 opcode(name, 0, ty, [0, 0, 0], [ty, ty, ty], False, alg_props, const_expr)
823 def triop_horiz(name, output_size, src1_size, src2_size, src3_size, const_expr):
824 opcode(name, output_size, tuint,
825 [src1_size, src2_size, src3_size],
826 [tuint, tuint, tuint], False, "", const_expr)
827
828 triop("ffma", tfloat, _2src_commutative, "src0 * src1 + src2")
829
830 triop("flrp", tfloat, "", "src0 * (1 - src2) + src1 * src2")
831
832 # Conditional Select
833 #
834 # A vector conditional select instruction (like ?:, but operating per-
835 # component on vectors). There are two versions, one for floating point
836 # bools (0.0 vs 1.0) and one for integer bools (0 vs ~0).
837
838
839 triop("fcsel", tfloat32, "", "(src0 != 0.0f) ? src1 : src2")
840
841 # 3 way min/max/med
842 triop("fmin3", tfloat, "", "fminf(src0, fminf(src1, src2))")
843 triop("imin3", tint, "", "MIN2(src0, MIN2(src1, src2))")
844 triop("umin3", tuint, "", "MIN2(src0, MIN2(src1, src2))")
845
846 triop("fmax3", tfloat, "", "fmaxf(src0, fmaxf(src1, src2))")
847 triop("imax3", tint, "", "MAX2(src0, MAX2(src1, src2))")
848 triop("umax3", tuint, "", "MAX2(src0, MAX2(src1, src2))")
849
850 triop("fmed3", tfloat, "", "fmaxf(fminf(fmaxf(src0, src1), src2), fminf(src0, src1))")
851 triop("imed3", tint, "", "MAX2(MIN2(MAX2(src0, src1), src2), MIN2(src0, src1))")
852 triop("umed3", tuint, "", "MAX2(MIN2(MAX2(src0, src1), src2), MIN2(src0, src1))")
853
854 opcode("bcsel", 0, tuint, [0, 0, 0],
855 [tbool1, tuint, tuint], False, "", "src0 ? src1 : src2")
856 opcode("b32csel", 0, tuint, [0, 0, 0],
857 [tbool32, tuint, tuint], False, "", "src0 ? src1 : src2")
858
859 # SM5 bfi assembly
860 triop("bfi", tuint32, "", """
861 unsigned mask = src0, insert = src1, base = src2;
862 if (mask == 0) {
863 dst = base;
864 } else {
865 unsigned tmp = mask;
866 while (!(tmp & 1)) {
867 tmp >>= 1;
868 insert <<= 1;
869 }
870 dst = (base & ~mask) | (insert & mask);
871 }
872 """)
873
874 # SM5 ubfe/ibfe assembly: only the 5 least significant bits of offset and bits are used.
875 opcode("ubfe", 0, tuint32,
876 [0, 0, 0], [tuint32, tuint32, tuint32], False, "", """
877 unsigned base = src0;
878 unsigned offset = src1 & 0x1F;
879 unsigned bits = src2 & 0x1F;
880 if (bits == 0) {
881 dst = 0;
882 } else if (offset + bits < 32) {
883 dst = (base << (32 - bits - offset)) >> (32 - bits);
884 } else {
885 dst = base >> offset;
886 }
887 """)
888 opcode("ibfe", 0, tint32,
889 [0, 0, 0], [tint32, tuint32, tuint32], False, "", """
890 int base = src0;
891 unsigned offset = src1 & 0x1F;
892 unsigned bits = src2 & 0x1F;
893 if (bits == 0) {
894 dst = 0;
895 } else if (offset + bits < 32) {
896 dst = (base << (32 - bits - offset)) >> (32 - bits);
897 } else {
898 dst = base >> offset;
899 }
900 """)
901
902 # GLSL bitfieldExtract()
903 opcode("ubitfield_extract", 0, tuint32,
904 [0, 0, 0], [tuint32, tint32, tint32], False, "", """
905 unsigned base = src0;
906 int offset = src1, bits = src2;
907 if (bits == 0) {
908 dst = 0;
909 } else if (bits < 0 || offset < 0 || offset + bits > 32) {
910 dst = 0; /* undefined per the spec */
911 } else {
912 dst = (base >> offset) & ((1ull << bits) - 1);
913 }
914 """)
915 opcode("ibitfield_extract", 0, tint32,
916 [0, 0, 0], [tint32, tint32, tint32], False, "", """
917 int base = src0;
918 int offset = src1, bits = src2;
919 if (bits == 0) {
920 dst = 0;
921 } else if (offset < 0 || bits < 0 || offset + bits > 32) {
922 dst = 0;
923 } else {
924 dst = (base << (32 - offset - bits)) >> offset; /* use sign-extending shift */
925 }
926 """)
927
928 # Combines the first component of each input to make a 3-component vector.
929
930 triop_horiz("vec3", 3, 1, 1, 1, """
931 dst.x = src0.x;
932 dst.y = src1.x;
933 dst.z = src2.x;
934 """)
935
936 def quadop_horiz(name, output_size, src1_size, src2_size, src3_size,
937 src4_size, const_expr):
938 opcode(name, output_size, tuint,
939 [src1_size, src2_size, src3_size, src4_size],
940 [tuint, tuint, tuint, tuint],
941 False, "", const_expr)
942
943 opcode("bitfield_insert", 0, tuint32, [0, 0, 0, 0],
944 [tuint32, tuint32, tint32, tint32], False, "", """
945 unsigned base = src0, insert = src1;
946 int offset = src2, bits = src3;
947 if (bits == 0) {
948 dst = base;
949 } else if (offset < 0 || bits < 0 || bits + offset > 32) {
950 dst = 0;
951 } else {
952 unsigned mask = ((1ull << bits) - 1) << offset;
953 dst = (base & ~mask) | ((insert << offset) & mask);
954 }
955 """)
956
957 quadop_horiz("vec4", 4, 1, 1, 1, 1, """
958 dst.x = src0.x;
959 dst.y = src1.x;
960 dst.z = src2.x;
961 dst.w = src3.x;
962 """)
963
964 # ir3-specific instruction that maps directly to mul-add shift high mix,
965 # (IMADSH_MIX16 i.e. ah * bl << 16 + c). It is used for lowering integer
966 # multiplication (imul) on Freedreno backend..
967 opcode("imadsh_mix16", 1, tint32,
968 [1, 1, 1], [tint32, tint32, tint32], False, "", """
969 dst.x = ((((src0.x & 0xffff0000) >> 16) * (src1.x & 0x0000ffff)) << 16) + src2.x;
970 """)