nir/algebraic: add 16-bit versions of a few 32-bit patterns
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fneg', a)), ('fabs', a)),
113 (('fabs', ('u2f', a)), ('u2f', a)),
114 (('iabs', ('iabs', a)), ('iabs', a)),
115 (('iabs', ('ineg', a)), ('iabs', a)),
116 (('f2b', ('fneg', a)), ('f2b', a)),
117 (('i2b', ('ineg', a)), ('i2b', a)),
118 (('~fadd', a, 0.0), a),
119 (('iadd', a, 0), a),
120 (('usadd_4x8', a, 0), a),
121 (('usadd_4x8', a, ~0), ~0),
122 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
123 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
124 (('iand', ('ior', a, b), ('ior', a, c)), ('ior', a, ('iand', b, c))),
125 (('ior', ('iand', a, b), ('iand', a, c)), ('iand', a, ('ior', b, c))),
126 (('~fadd', ('fneg', a), a), 0.0),
127 (('iadd', ('ineg', a), a), 0),
128 (('iadd', ('ineg', a), ('iadd', a, b)), b),
129 (('iadd', a, ('iadd', ('ineg', a), b)), b),
130 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
131 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
132 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
133 (('~fmul', a, 0.0), 0.0),
134 (('imul', a, 0), 0),
135 (('umul_unorm_4x8', a, 0), 0),
136 (('umul_unorm_4x8', a, ~0), a),
137 (('~fmul', a, 1.0), a),
138 (('imul', a, 1), a),
139 (('fmul', a, -1.0), ('fneg', a)),
140 (('imul', a, -1), ('ineg', a)),
141 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
142 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
143 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
144 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
145 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
146 (('~ffma', 0.0, a, b), b),
147 (('~ffma', a, b, 0.0), ('fmul', a, b)),
148 (('ffma', 1.0, a, b), ('fadd', a, b)),
149 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
150 (('~flrp', a, b, 0.0), a),
151 (('~flrp', a, b, 1.0), b),
152 (('~flrp', a, a, b), a),
153 (('~flrp', 0.0, a, b), ('fmul', a, b)),
154
155 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
156 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
157 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
158 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
159
160 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
161 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
162
163 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
164 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
165
166 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
167
168 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
169 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
170 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
171 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
172 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
173 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
174 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
175 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
176 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
177 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
178 # These are the same as the previous three rules, but it depends on
179 # 1-fsat(x) <=> fsat(1-x). See below.
180 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
181 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
182
183 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
184 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
185 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
186 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
187 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
188
189 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
190 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
191
192 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
193
194 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
195 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
196 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
197 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
198
199 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
200 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
201
202 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
203 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
204
205 # Lower fdot to fsum when it is available
206 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
208 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
209 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
210
211 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
212 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
213 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
214 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
215
216 # 1 - ((1 - a) * (1 - b))
217 # 1 - (1 - a - b + a*b)
218 # 1 - 1 + a + b - a*b
219 # a + b - a*b
220 # a + b*(1 - a)
221 # b*(1 - a) + 1*a
222 # flrp(b, 1, a)
223 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
224 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
225
226 # (a * #b + #c) << #d
227 # ((a * #b) << #d) + (#c << #d)
228 # (a * (#b << #d)) + (#c << #d)
229 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
230 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
231
232 # (a * #b) << #c
233 # a * (#b << #c)
234 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
235 ]
236
237 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
238 # bits of the second source. These replacements must correctly handle the
239 # case where (b % bitsize) + (c % bitsize) >= bitsize.
240 for s in [8, 16, 32, 64]:
241 mask = (1 << s) - 1
242
243 ishl = "ishl@{}".format(s)
244 ishr = "ishr@{}".format(s)
245 ushr = "ushr@{}".format(s)
246
247 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
248
249 optimizations.extend([
250 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
251 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
252
253 # To get get -1 for large shifts of negative values, ishr must instead
254 # clamp the shift count to the maximum value.
255 ((ishr, (ishr, a, '#b'), '#c'),
256 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
257 ])
258
259 # Optimize a pattern of address calculation created by DXVK where the offset is
260 # divided by 4 and then multipled by 4. This can be turned into an iand and the
261 # additions before can be reassociated to CSE the iand instruction.
262 for log2 in range(1, 7): # powers of two from 2 to 64
263 v = 1 << log2
264 mask = 0xffffffff & ~(v - 1)
265 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
266
267 optimizations.extend([
268 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
269 (('ishl', ('ushr', a, log2), log2), ('iand', a, mask)),
270
271 # Reassociate for improved CSE
272 (('iand', ('iadd', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
273 ])
274
275 # To save space in the state tables, reduce to the set that is known to help.
276 # Previously, this was range(1, 32). In addition, a couple rules inside the
277 # loop are commented out. Revisit someday, probably after mesa/#2635 has some
278 # resolution.
279 for i in [1, 2, 16, 24]:
280 lo_mask = 0xffffffff >> i
281 hi_mask = (0xffffffff << i) & 0xffffffff
282
283 optimizations.extend([
284 # This pattern seems to only help in the soft-fp64 code.
285 (('ishl@32', ('iand', 'a@32', lo_mask), i), ('ishl', a, i)),
286 # (('ushr@32', ('iand', 'a@32', hi_mask), i), ('ushr', a, i)),
287 # (('ishr@32', ('iand', 'a@32', hi_mask), i), ('ishr', a, i)),
288
289 (('iand', ('ishl', 'a@32', i), hi_mask), ('ishl', a, i)),
290 (('iand', ('ushr', 'a@32', i), lo_mask), ('ushr', a, i)),
291 # (('iand', ('ishr', 'a@32', i), lo_mask), ('ushr', a, i)), # Yes, ushr is correct
292 ])
293
294 optimizations.extend([
295 # This is common for address calculations. Reassociating may enable the
296 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
297 # instruction or a constant offset field for in load / store instructions.
298 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
299
300 # Comparison simplifications
301 (('~inot', ('flt', a, b)), ('fge', a, b)),
302 (('~inot', ('fge', a, b)), ('flt', a, b)),
303 (('inot', ('feq', a, b)), ('fneu', a, b)),
304 (('inot', ('fneu', a, b)), ('feq', a, b)),
305 (('inot', ('ilt', a, b)), ('ige', a, b)),
306 (('inot', ('ult', a, b)), ('uge', a, b)),
307 (('inot', ('ige', a, b)), ('ilt', a, b)),
308 (('inot', ('uge', a, b)), ('ult', a, b)),
309 (('inot', ('ieq', a, b)), ('ine', a, b)),
310 (('inot', ('ine', a, b)), ('ieq', a, b)),
311
312 (('iand', ('feq', a, b), ('fneu', a, b)), False),
313 (('iand', ('flt', a, b), ('flt', b, a)), False),
314 (('iand', ('ieq', a, b), ('ine', a, b)), False),
315 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
316 (('iand', ('ult', a, b), ('ult', b, a)), False),
317
318 # This helps some shaders because, after some optimizations, they end up
319 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
320 # matching would be handled by CSE.
321 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
322 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
323 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
324 (('fneu', ('fneg', a), ('fneg', b)), ('fneu', b, a)),
325 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
326 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
327 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
328 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
329 (('fneu', ('fneg', a), -1.0), ('fneu', 1.0, a)),
330 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
331
332 # flt(fsat(a), b > 0 && b < 1) is inexact if a is NaN (fsat(NaN) is 0)
333 # because it returns True while flt(a, b) always returns False.
334 (('~flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
335 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
336 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
337 # fge(b > 0 && b < 1, fsat(a)) is inexact if a is NaN (fsat(NaN) is 0)
338 # because it returns True while fge(b, a) always returns False.
339 (('~fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
340 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
341 (('fneu', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fneu', a, b)),
342
343 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
344 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
345 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
346 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
347
348 # 0.0 >= b2f(a)
349 # b2f(a) <= 0.0
350 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
351 # inot(a)
352 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
353
354 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
355
356 (('fneu', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
357 (('fneu', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
358 (('fneu', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
359 (('fneu', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
360 (('fneu', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
361 (('fneu', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
362 (('fneu', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
363 (('fneu', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
364 (('fneu', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
365 (('fneu', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
366 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
367 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
368 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
369 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
370 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
371 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
372 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
373 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
374 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
375 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
376
377 # -(b2f(a) + b2f(b)) < 0
378 # 0 < b2f(a) + b2f(b)
379 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
380 # a || b
381 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
382 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
383
384 # -(b2f(a) + b2f(b)) >= 0
385 # 0 >= b2f(a) + b2f(b)
386 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
387 # !(a || b)
388 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
389 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
390
391 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
392 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
393
394 # Some optimizations (below) convert things like (a < b || c < b) into
395 # (min(a, c) < b). However, this interfers with the previous optimizations
396 # that try to remove comparisons with negated sums of b2f. This just
397 # breaks that apart.
398 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
399 ('ior', ('flt', c, 0.0), ('ior', a, b))),
400
401 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
402 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
403 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
404 (('~fneu', ('fadd', a, b), a), ('fneu', b, 0.0)),
405 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
406 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
407 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
408 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
409 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
410 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
411 (('~fneu', ('fadd(is_used_once)', a, '#b'), '#c'), ('fneu', a, ('fadd', c, ('fneg', b)))),
412 (('~fneu', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fneu', ('fneg', ('fadd', c, b)), a)),
413
414 # Cannot remove the addition from ilt or ige due to overflow.
415 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
416 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
417
418 # fmin(-b2f(a), b) >= 0.0
419 # -b2f(a) >= 0.0 && b >= 0.0
420 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
421 # b2f(a) == 0.0 && b >= 0.0
422 # a == False && b >= 0.0
423 # !a && b >= 0.0
424 #
425 # The fge in the second replacement is not a typo. I leave the proof that
426 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
427 # reader.
428 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
429 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
430
431 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
432 (('~fneu', ('b2f', 'a@1'), 0.0), a),
433 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
434 (('ine', ('b2i', 'a@1'), 0), a),
435
436 (('fneu', ('u2f', a), 0.0), ('ine', a, 0)),
437 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
438 (('fge', ('u2f', a), 0.0), True),
439 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
440 (('flt', ('u2f', a), 0.0), False),
441 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
442 (('fneu', ('i2f', a), 0.0), ('ine', a, 0)),
443 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
444 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
445 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
446 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
447 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
448
449 # 0.0 < fabs(a)
450 # fabs(a) > 0.0
451 # fabs(a) != 0.0 because fabs(a) must be >= 0
452 # a != 0.0
453 (('~flt', 0.0, ('fabs', a)), ('fneu', a, 0.0)),
454
455 # -fabs(a) < 0.0
456 # fabs(a) > 0.0
457 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fneu', a, 0.0)),
458
459 # 0.0 >= fabs(a)
460 # 0.0 == fabs(a) because fabs(a) must be >= 0
461 # 0.0 == a
462 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
463
464 # -fabs(a) >= 0.0
465 # 0.0 >= fabs(a)
466 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
467
468 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
469 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
470
471 # (a < 0.0) || (a > 1.0)
472 # !(!(a < 0.0) && !(a > 1.0))
473 # !((a >= 0.0) && (a <= 1.0))
474 # !(a == fsat(a))
475 # a != fsat(a)
476 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fneu', a, ('fsat', a)), '!options->lower_fsat'),
477
478 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
479 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
480 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
481 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
482
483 # fmin(b2f(a), b)
484 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
485 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
486 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
487 #
488 # Since b is a constant, constant folding will eliminate the fmin and the
489 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
490 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
491
492 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
493
494 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
495 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
496 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
497 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
498 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
499 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
500 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
501 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
502 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
503 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
504 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
505 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
506 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
507 (('bcsel', a, True, b), ('ior', a, b)),
508 (('bcsel', a, a, b), ('ior', a, b)),
509 (('bcsel', a, b, False), ('iand', a, b)),
510 (('bcsel', a, b, a), ('iand', a, b)),
511 (('~fmin', a, a), a),
512 (('~fmax', a, a), a),
513 (('imin', a, a), a),
514 (('imax', a, a), a),
515 (('umin', a, a), a),
516 (('umax', a, a), a),
517 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
518 (('umax', ('umax', a, b), b), ('umax', a, b)),
519 (('imax', ('imax', a, b), b), ('imax', a, b)),
520 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
521 (('umin', ('umin', a, b), b), ('umin', a, b)),
522 (('imin', ('imin', a, b), b), ('imin', a, b)),
523 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
524
525 # Simplify logic to detect sign of an integer.
526 (('ieq', ('iand', 'a@32', 0x80000000), 0x00000000), ('ige', a, 0)),
527 (('ine', ('iand', 'a@32', 0x80000000), 0x80000000), ('ige', a, 0)),
528 (('ine', ('iand', 'a@32', 0x80000000), 0x00000000), ('ilt', a, 0)),
529 (('ieq', ('iand', 'a@32', 0x80000000), 0x80000000), ('ilt', a, 0)),
530 (('ine', ('ushr', 'a@32', 31), 0), ('ilt', a, 0)),
531 (('ieq', ('ushr', 'a@32', 31), 0), ('ige', a, 0)),
532 (('ieq', ('ushr', 'a@32', 31), 1), ('ilt', a, 0)),
533 (('ine', ('ushr', 'a@32', 31), 1), ('ige', a, 0)),
534 (('ine', ('ishr', 'a@32', 31), 0), ('ilt', a, 0)),
535 (('ieq', ('ishr', 'a@32', 31), 0), ('ige', a, 0)),
536 (('ieq', ('ishr', 'a@32', 31), -1), ('ilt', a, 0)),
537 (('ine', ('ishr', 'a@32', 31), -1), ('ige', a, 0)),
538
539 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
540 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
541 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
542 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
543 (('~fmin', a, ('fabs', a)), a),
544 (('imin', a, ('iabs', a)), a),
545 (('~fmax', a, ('fneg', ('fabs', a))), a),
546 (('imax', a, ('ineg', ('iabs', a))), a),
547 (('fmax', a, ('fabs', a)), ('fabs', a)),
548 (('imax', a, ('iabs', a)), ('iabs', a)),
549 (('fmax', a, ('fneg', a)), ('fabs', a)),
550 (('imax', a, ('ineg', a)), ('iabs', a), '!options->lower_iabs'),
551 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
552 (('fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
553 # fmax(fmin(a, 1.0), 0.0) is inexact because it returns 1.0 on NaN, while
554 # fsat(a) returns 0.0.
555 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
556 # fmin(fmax(a, -1.0), 0.0) is inexact because it returns -1.0 on NaN, while
557 # fneg(fsat(fneg(a))) returns -0.0 on NaN.
558 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
559 # fmax(fmin(a, 0.0), -1.0) is inexact because it returns 0.0 on NaN, while
560 # fneg(fsat(fneg(a))) returns -0.0 on NaN. This only matters if
561 # SignedZeroInfNanPreserve is set, but we don't currently have any way of
562 # representing this in the optimizations other than the usual ~.
563 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
564 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
565 (('fsat', ('b2f', a)), ('b2f', a)),
566 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
567 (('fsat', ('fsat', a)), ('fsat', a)),
568 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
569 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
570 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
571 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
572 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
573 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
574 # Both the left and right patterns are "b" when isnan(a), so this is exact.
575 (('fmax', ('fsat', a), '#b(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
576 # The left pattern is 0.0 when isnan(a) (because fmin(fsat(NaN), b) ->
577 # fmin(0.0, b)) while the right one is "b", so this optimization is inexact.
578 (('~fmin', ('fsat', a), '#b(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
579
580 # If a in [0,b] then b-a is also in [0,b]. Since b in [0,1], max(b-a, 0) =
581 # fsat(b-a).
582 #
583 # If a > b, then b-a < 0 and max(b-a, 0) = fsat(b-a) = 0
584 #
585 # This should be NaN safe since max(NaN, 0) = fsat(NaN) = 0.
586 (('fmax', ('fadd(is_used_once)', ('fneg', 'a(is_not_negative)'), '#b(is_zero_to_one)'), 0.0),
587 ('fsat', ('fadd', ('fneg', a), b)), '!options->lower_fsat'),
588
589 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
590 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
591 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
592 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
593 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
594 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
595 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
596 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
597 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
598 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
599 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
600 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
601 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
602 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
603 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
604 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
605 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
606
607 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
608 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
609 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
610 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
611 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
612 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
613 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
614 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
615 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
616 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
617 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
618 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
619 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
620 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
621 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
622 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
623
624 # These derive from the previous patterns with the application of b < 0 <=>
625 # 0 < -b. The transformation should be applied if either comparison is
626 # used once as this ensures that the number of comparisons will not
627 # increase. The sources to the ior and iand are not symmetric, so the
628 # rules have to be duplicated to get this behavior.
629 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
630 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
631 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
632 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
633 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
634 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
635 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
636 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
637
638 # Common pattern like 'if (i == 0 || i == 1 || ...)'
639 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
640 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
641 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
642
643 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
644 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
645 # so emit an open-coded version of that.
646 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
647 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
648
649 (('ior', a, ('ieq', a, False)), True),
650 (('ior', a, ('inot', a)), -1),
651
652 (('ine', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))), ('ine', a, b)),
653 (('b2i', ('ine', 'a@1', 'b@1')), ('b2i', ('ixor', a, b))),
654
655 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umax', a, b), 0)),
656 (('ior', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
657 (('iand', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
658 (('ior', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umax', a, b), 0)),
659
660 # This pattern occurs coutresy of __flt64_nonnan in the soft-fp64 code.
661 # The first part of the iand comes from the !__feq64_nonnan.
662 #
663 # The second pattern is a reformulation of the first based on the relation
664 # (a == 0 || y == 0) <=> umin(a, y) == 0, where b in the first equation
665 # happens to be y == 0.
666 (('iand', ('inot', ('iand', ('ior', ('ieq', a, 0), b), c)), ('ilt', a, 0)),
667 ('iand', ('inot', ('iand', b , c)), ('ilt', a, 0))),
668 (('iand', ('inot', ('iand', ('ieq', ('umin', a, b), 0), c)), ('ilt', a, 0)),
669 ('iand', ('inot', ('iand', ('ieq', b , 0), c)), ('ilt', a, 0))),
670
671 # These patterns can result when (a < b || a < c) => (a < min(b, c))
672 # transformations occur before constant propagation and loop-unrolling.
673 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
674 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
675 (('~fge', a, ('fmin', b, a)), True),
676 (('~fge', ('fmax', a, b), a), True),
677 (('~flt', a, ('fmin', b, a)), False),
678 (('~flt', ('fmax', a, b), a), False),
679 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
680 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
681
682 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
683 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
684 (('ige', a, ('imin', b, a)), True),
685 (('ige', ('imax', a, b), a), True),
686 (('ult', a, ('umax', b, a)), ('ult', a, b)),
687 (('ult', ('umin', a, b), a), ('ult', b, a)),
688 (('uge', a, ('umin', b, a)), True),
689 (('uge', ('umax', a, b), a), True),
690 (('ilt', a, ('imin', b, a)), False),
691 (('ilt', ('imax', a, b), a), False),
692 (('ige', a, ('imax', b, a)), ('ige', a, b)),
693 (('ige', ('imin', a, b), a), ('ige', b, a)),
694 (('ult', a, ('umin', b, a)), False),
695 (('ult', ('umax', a, b), a), False),
696 (('uge', a, ('umax', b, a)), ('uge', a, b)),
697 (('uge', ('umin', a, b), a), ('uge', b, a)),
698 (('ult', a, ('iand', b, a)), False),
699 (('ult', ('ior', a, b), a), False),
700 (('uge', a, ('iand', b, a)), True),
701 (('uge', ('ior', a, b), a), True),
702
703 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
704 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
705 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
706 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
707 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
708 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
709 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
710 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
711 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
712 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
713 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
714 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
715 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
716 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
717 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
718 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
719
720 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
721 # negative.
722 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
723 ('iabs', ('ishr', a, b))),
724 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
725
726 (('fabs', ('slt', a, b)), ('slt', a, b)),
727 (('fabs', ('sge', a, b)), ('sge', a, b)),
728 (('fabs', ('seq', a, b)), ('seq', a, b)),
729 (('fabs', ('sne', a, b)), ('sne', a, b)),
730 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
731 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
732 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
733 (('sne', a, b), ('b2f', ('fneu', a, b)), 'options->lower_scmp'),
734 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
735 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
736 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
737 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
738 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
739 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
740 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
741 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
742 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
743 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
744 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
745 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
746 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
747 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
748 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
749 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
750 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
751 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
752 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
753 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
754 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
755 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
756
757 (('ball_iequal2', a, b), ('iand', ('ieq', 'a.x', 'b.x'), ('ieq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
758 (('ball_iequal3', a, b), ('iand', ('iand', ('ieq', 'a.x', 'b.x'), ('ieq', 'a.y', 'b.y')), ('ieq', 'a.z', 'b.z')), 'options->lower_vector_cmp'),
759 (('ball_iequal4', a, b), ('iand', ('iand', ('ieq', 'a.x', 'b.x'), ('ieq', 'a.y', 'b.y')), ('iand', ('ieq', 'a.z', 'b.z'), ('ieq', 'a.w', 'b.w'))), 'options->lower_vector_cmp'),
760
761 (('bany_inequal2', a, b), ('ior', ('ine', 'a.x', 'b.x'), ('ine', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
762 (('bany_inequal3', a, b), ('ior', ('ior', ('ine', 'a.x', 'b.x'), ('ine', 'a.y', 'b.y')), ('ine', 'a.z', 'b.z')), 'options->lower_vector_cmp'),
763 (('bany_inequal4', a, b), ('ior', ('ior', ('ine', 'a.x', 'b.x'), ('ine', 'a.y', 'b.y')), ('ior', ('ine', 'a.z', 'b.z'), ('ine', 'a.w', 'b.w'))), 'options->lower_vector_cmp'),
764
765 (('ball_fequal2', a, b), ('iand', ('feq', 'a.x', 'b.x'), ('feq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
766 (('ball_fequal3', a, b), ('iand', ('iand', ('feq', 'a.x', 'b.x'), ('feq', 'a.y', 'b.y')), ('feq', 'a.z', 'b.z')), 'options->lower_vector_cmp'),
767 (('ball_fequal4', a, b), ('iand', ('iand', ('feq', 'a.x', 'b.x'), ('feq', 'a.y', 'b.y')), ('iand', ('feq', 'a.z', 'b.z'), ('feq', 'a.w', 'b.w'))), 'options->lower_vector_cmp'),
768
769 (('bany_fnequal2', a, b), ('ior', ('fneu', 'a.x', 'b.x'), ('fneu', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
770 (('bany_fnequal3', a, b), ('ior', ('ior', ('fneu', 'a.x', 'b.x'), ('fneu', 'a.y', 'b.y')), ('fneu', 'a.z', 'b.z')), 'options->lower_vector_cmp'),
771 (('bany_fnequal4', a, b), ('ior', ('ior', ('fneu', 'a.x', 'b.x'), ('fneu', 'a.y', 'b.y')), ('ior', ('fneu', 'a.z', 'b.z'), ('fneu', 'a.w', 'b.w'))), 'options->lower_vector_cmp'),
772
773 (('fneu', ('fneg', a), a), ('fneu', a, 0.0)),
774 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
775 # Emulating booleans
776 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
777 (('iand', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
778 (('ior', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('ior', a, b))),
779 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
780 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
781 (('iand', 'a@bool16', 1.0), ('b2f', a)),
782 (('iand', 'a@bool32', 1.0), ('b2f', a)),
783 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
784 (('ineg', ('b2i32', 'a@32')), a),
785 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
786 # Comparison with the same args. Note that these are not done for
787 # the float versions because NaN always returns false on float
788 # inequalities.
789 (('ilt', a, a), False),
790 (('ige', a, a), True),
791 (('ieq', a, a), True),
792 (('ine', a, a), False),
793 (('ult', a, a), False),
794 (('uge', a, a), True),
795 # Logical and bit operations
796 (('iand', a, a), a),
797 (('iand', a, ~0), a),
798 (('iand', a, 0), 0),
799 (('ior', a, a), a),
800 (('ior', a, 0), a),
801 (('ior', a, True), True),
802 (('ixor', a, a), 0),
803 (('ixor', a, 0), a),
804 (('inot', ('inot', a)), a),
805 (('ior', ('iand', a, b), b), b),
806 (('ior', ('ior', a, b), b), ('ior', a, b)),
807 (('iand', ('ior', a, b), b), b),
808 (('iand', ('iand', a, b), b), ('iand', a, b)),
809 # DeMorgan's Laws
810 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
811 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
812 # Shift optimizations
813 (('ishl', 0, a), 0),
814 (('ishl', a, 0), a),
815 (('ishr', 0, a), 0),
816 (('ishr', a, 0), a),
817 (('ushr', 0, a), 0),
818 (('ushr', a, 0), a),
819 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
820 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
821 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
822 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
823 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
824 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
825 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
826 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
827 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
828 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
829 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
830 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
831 # Exponential/logarithmic identities
832 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
833 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
834 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
835 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
836 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
837 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
838 (('~fexp2', ('fmul', ('flog2', a), 0.5)), ('fsqrt', a)),
839 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
840 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
841 (('~fpow', a, 1.0), a),
842 (('~fpow', a, 2.0), ('fmul', a, a)),
843 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
844 (('~fpow', 2.0, a), ('fexp2', a)),
845 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
846 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
847 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
848 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
849 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
850 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
851 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
852 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
853 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
854 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
855 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
856 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
857 # Division and reciprocal
858 (('~fdiv', 1.0, a), ('frcp', a)),
859 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
860 (('~frcp', ('frcp', a)), a),
861 (('~frcp', ('fsqrt', a)), ('frsq', a)),
862 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
863 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
864 # Trig
865 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
866 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
867 # Boolean simplifications
868 (('i2b16(is_used_by_if)', a), ('ine16', a, 0)),
869 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
870 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
871 (('ieq', a, True), a),
872 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
873 (('ine', a, False), a),
874 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
875 (('bcsel', a, True, False), a),
876 (('bcsel', a, False, True), ('inot', a)),
877 (('bcsel', a, 1.0, 0.0), ('b2f', a)),
878 (('bcsel', a, 0.0, 1.0), ('b2f', ('inot', a))),
879 (('bcsel', a, -1.0, -0.0), ('fneg', ('b2f', a))),
880 (('bcsel', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
881 (('bcsel', True, b, c), b),
882 (('bcsel', False, b, c), c),
883 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
884
885 (('bcsel', a, b, b), b),
886 (('~fcsel', a, b, b), b),
887
888 # D3D Boolean emulation
889 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
890 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
891 (('bcsel', a, 1, 0), ('b2i', 'a@1')),
892 (('bcsel', a, 0, 1), ('b2i', ('inot', a))),
893 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
894 ('ineg', ('b2i', ('iand', a, b)))),
895 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
896 ('ineg', ('b2i', ('ior', a, b)))),
897 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
898 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
899 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
900 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
901 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
902 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
903
904 # SM5 32-bit shifts are defined to use the 5 least significant bits
905 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
906 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
907 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
908
909 # Conversions
910 (('i2b16', ('b2i', 'a@16')), a),
911 (('i2b32', ('b2i', 'a@32')), a),
912 (('f2i', ('ftrunc', a)), ('f2i', a)),
913 (('f2u', ('ftrunc', a)), ('f2u', a)),
914 (('i2b', ('ineg', a)), ('i2b', a)),
915 (('i2b', ('iabs', a)), ('i2b', a)),
916 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
917
918 # The C spec says, "If the value of the integral part cannot be represented
919 # by the integer type, the behavior is undefined." "Undefined" can mean
920 # "the conversion doesn't happen at all."
921 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
922
923 # Ironically, mark these as imprecise because removing the conversions may
924 # preserve more precision than doing the conversions (e.g.,
925 # uint(float(0x81818181u)) == 0x81818200).
926 (('~f2i32', ('i2f', 'a@32')), a),
927 (('~f2i32', ('u2f', 'a@32')), a),
928 (('~f2u32', ('i2f', 'a@32')), a),
929 (('~f2u32', ('u2f', 'a@32')), a),
930
931 # Conversions from 16 bits to 32 bits and back can always be removed
932 (('f2f16', ('f2f32', 'a@16')), a),
933 (('f2fmp', ('f2f32', 'a@16')), a),
934 (('i2i16', ('i2i32', 'a@16')), a),
935 (('i2imp', ('i2i32', 'a@16')), a),
936 (('u2u16', ('u2u32', 'a@16')), a),
937 (('u2ump', ('u2u32', 'a@16')), a),
938 (('f2f16', ('b2f32', 'a@1')), ('b2f16', a)),
939 (('f2fmp', ('b2f32', 'a@1')), ('b2f16', a)),
940 (('i2i16', ('b2i32', 'a@1')), ('b2i16', a)),
941 (('i2imp', ('b2i32', 'a@1')), ('b2i16', a)),
942 (('u2u16', ('b2i32', 'a@1')), ('b2i16', a)),
943 (('u2ump', ('b2i32', 'a@1')), ('b2i16', a)),
944 # Conversions to 16 bits would be lossy so they should only be removed if
945 # the instruction was generated by the precision lowering pass.
946 (('f2f32', ('f2fmp', 'a@32')), a),
947 (('i2i32', ('i2imp', 'a@32')), a),
948 (('u2u32', ('u2ump', 'a@32')), a),
949
950 (('ffloor', 'a(is_integral)'), a),
951 (('fceil', 'a(is_integral)'), a),
952 (('ftrunc', 'a(is_integral)'), a),
953 # fract(x) = x - floor(x), so fract(NaN) = NaN
954 (('~ffract', 'a(is_integral)'), 0.0),
955 (('fabs', 'a(is_not_negative)'), a),
956 (('iabs', 'a(is_not_negative)'), a),
957 (('fsat', 'a(is_not_positive)'), 0.0),
958
959 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
960 # says:
961 #
962 # It is undefined to convert a negative floating-point value to an
963 # uint.
964 #
965 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
966 # some optimizations in the i965 backend to proceed.
967 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
968 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
969 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
970 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
971
972 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
973
974 # The result of the multiply must be in [-1, 0], so the result of the ffma
975 # must be in [0, 1].
976 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
977 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
978 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
979 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
980
981 (('fneu', 'a(is_not_zero)', 0.0), True),
982 (('feq', 'a(is_not_zero)', 0.0), False),
983
984 # In this chart, + means value > 0 and - means value < 0.
985 #
986 # + >= + -> unknown 0 >= + -> false - >= + -> false
987 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
988 # + >= - -> true 0 >= - -> true - >= - -> unknown
989 #
990 # Using grouping conceptually similar to a Karnaugh map...
991 #
992 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
993 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
994 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
995 #
996 # The flt / ilt cases just invert the expected result.
997 #
998 # The results expecting true, must be marked imprecise. The results
999 # expecting false are fine because NaN compared >= or < anything is false.
1000
1001 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
1002 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
1003 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
1004
1005 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
1006 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
1007 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
1008
1009 (('ine', 'a(is_not_zero)', 0), True),
1010 (('ieq', 'a(is_not_zero)', 0), False),
1011
1012 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
1013 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
1014 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
1015
1016 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
1017 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
1018 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
1019
1020 (('ult', 0, 'a(is_gt_zero)'), True),
1021 (('ult', a, 0), False),
1022
1023 # Packing and then unpacking does nothing
1024 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
1025 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
1026 (('unpack_64_2x32', ('pack_64_2x32_split', a, b)), ('vec2', a, b)),
1027 (('unpack_64_2x32', ('pack_64_2x32', a)), a),
1028 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
1029 ('unpack_64_2x32_split_y', a)), a),
1030 (('pack_64_2x32', ('vec2', ('unpack_64_2x32_split_x', a),
1031 ('unpack_64_2x32_split_y', a))), a),
1032 (('pack_64_2x32', ('unpack_64_2x32', a)), a),
1033
1034 # Comparing two halves of an unpack separately. While this optimization
1035 # should be correct for non-constant values, it's less obvious that it's
1036 # useful in that case. For constant values, the pack will fold and we're
1037 # guaranteed to reduce the whole tree to one instruction.
1038 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
1039 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
1040 ('ieq', a, ('pack_32_2x16_split', b, c))),
1041
1042 # Byte extraction
1043 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
1044 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
1045 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
1046 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
1047 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
1048 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
1049 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1050
1051 (('ubfe', a, 0, 8), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1052 (('ubfe', a, 8, 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
1053 (('ubfe', a, 16, 8), ('extract_u8', a, 2), '!options->lower_extract_byte'),
1054 (('ubfe', a, 24, 8), ('extract_u8', a, 3), '!options->lower_extract_byte'),
1055 (('ibfe', a, 0, 8), ('extract_i8', a, 0), '!options->lower_extract_byte'),
1056 (('ibfe', a, 8, 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
1057 (('ibfe', a, 16, 8), ('extract_i8', a, 2), '!options->lower_extract_byte'),
1058 (('ibfe', a, 24, 8), ('extract_i8', a, 3), '!options->lower_extract_byte'),
1059
1060 # Word extraction
1061 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1062 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1063 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1064 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1065 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
1066
1067 (('ubfe', a, 0, 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1068 (('ubfe', a, 16, 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1069 (('ibfe', a, 0, 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1070 (('ibfe', a, 16, 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1071
1072 # Lower pack/unpack
1073 (('pack_64_2x32_split', a, b), ('ior', ('u2u64', a), ('ishl', ('u2u64', b), 32)), 'options->lower_pack_64_2x32_split'),
1074 (('pack_32_2x16_split', a, b), ('ior', ('u2u32', a), ('ishl', ('u2u32', b), 16)), 'options->lower_pack_32_2x16_split'),
1075 (('unpack_64_2x32_split_x', a), ('u2u32', a), 'options->lower_unpack_64_2x32_split'),
1076 (('unpack_64_2x32_split_y', a), ('u2u32', ('ushr', a, 32)), 'options->lower_unpack_64_2x32_split'),
1077 (('unpack_32_2x16_split_x', a), ('u2u16', a), 'options->lower_unpack_32_2x16_split'),
1078 (('unpack_32_2x16_split_y', a), ('u2u16', ('ushr', a, 16)), 'options->lower_unpack_32_2x16_split'),
1079
1080 # Useless masking before unpacking
1081 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
1082 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
1083 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
1084 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
1085 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
1086 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
1087
1088 (('unpack_half_2x16_split_x', ('extract_u16', a, 0)), ('unpack_half_2x16_split_x', a)),
1089 (('unpack_half_2x16_split_x', ('extract_u16', a, 1)), ('unpack_half_2x16_split_y', a)),
1090 (('unpack_32_2x16_split_x', ('extract_u16', a, 0)), ('unpack_32_2x16_split_x', a)),
1091 (('unpack_32_2x16_split_x', ('extract_u16', a, 1)), ('unpack_32_2x16_split_y', a)),
1092
1093 # Optimize half packing
1094 (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))),
1095 (('ushr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))),
1096
1097 (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1098 ('pack_half_2x16', ('vec2', a, b))),
1099 (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1100 ('pack_half_2x16', ('vec2', a, b))),
1101
1102 (('ishl', ('pack_half_2x16_split', a, 0), 16), ('pack_half_2x16_split', 0, a)),
1103 (('ushr', ('pack_half_2x16_split', 0, a), 16), ('pack_half_2x16_split', a, 0)),
1104 (('extract_u16', ('pack_half_2x16_split', 0, a), 1), ('pack_half_2x16_split', a, 0)),
1105
1106 (('iadd', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1107 (('ior', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1108 ])
1109
1110 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
1111 # patterns like those below.
1112 for op in ('ushr', 'ishr'):
1113 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
1114 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
1115 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
1116
1117 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
1118
1119 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
1120 # patterns like those below.
1121 for op in ('extract_u8', 'extract_i8'):
1122 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
1123 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
1124 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
1125
1126 optimizations.extend([
1127 # Subtracts
1128 (('ussub_4x8', a, 0), a),
1129 (('ussub_4x8', a, ~0), 0),
1130 # Lower all Subtractions first - they can get recombined later
1131 (('fsub', a, b), ('fadd', a, ('fneg', b))),
1132 (('isub', a, b), ('iadd', a, ('ineg', b))),
1133 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1134 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
1135 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1136
1137 # Propagate negation up multiplication chains
1138 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
1139 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
1140
1141 # Propagate constants up multiplication chains
1142 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
1143 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
1144 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
1145 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
1146
1147 # Reassociate constants in add/mul chains so they can be folded together.
1148 # For now, we mostly only handle cases where the constants are separated by
1149 # a single non-constant. We could do better eventually.
1150 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
1151 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
1152 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
1153 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
1154 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
1155 (('iand', '#a', ('iand', 'b(is_not_const)', '#c')), ('iand', ('iand', a, c), b)),
1156 (('ior', '#a', ('ior', 'b(is_not_const)', '#c')), ('ior', ('ior', a, c), b)),
1157 (('ixor', '#a', ('ixor', 'b(is_not_const)', '#c')), ('ixor', ('ixor', a, c), b)),
1158
1159 # Drop mul-div by the same value when there's no wrapping.
1160 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
1161
1162 # By definition...
1163 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
1164 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1165 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1166
1167 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1168 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1169 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1170
1171 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1172
1173 (('~fmul', ('bcsel(is_used_once)', c, -1.0, 1.0), b), ('bcsel', c, ('fneg', b), b)),
1174 (('~fmul', ('bcsel(is_used_once)', c, 1.0, -1.0), b), ('bcsel', c, b, ('fneg', b))),
1175 (('~bcsel', ('flt', a, 0.0), ('fneg', a), a), ('fabs', a)),
1176
1177 (('bcsel', a, ('bcsel', b, c, d), d), ('bcsel', ('iand', a, b), c, d)),
1178 (('bcsel', a, b, ('bcsel', c, b, d)), ('bcsel', ('ior', a, c), b, d)),
1179
1180 # Misc. lowering
1181 (('fmod', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1182 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1183 (('uadd_carry', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1184 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1185
1186 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1187 ('bcsel', ('ult', 31, 'bits'), 'insert',
1188 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1189 'options->lower_bitfield_insert'),
1190 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1191 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1192 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1193 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1194 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1195 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1196 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1197 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1198
1199 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1200 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1201 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1202 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1203
1204 # int64_t sum = a + b;
1205 #
1206 # if (a < 0 && b < 0 && a < sum)
1207 # sum = INT64_MIN;
1208 # } else if (a >= 0 && b >= 0 && sum < a)
1209 # sum = INT64_MAX;
1210 # }
1211 #
1212 # A couple optimizations are applied.
1213 #
1214 # 1. a < sum => sum >= 0. This replacement works because it is known that
1215 # a < 0 and b < 0, so sum should also be < 0 unless there was
1216 # underflow.
1217 #
1218 # 2. sum < a => sum < 0. This replacement works because it is known that
1219 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1220 # overflow.
1221 #
1222 # 3. Invert the second if-condition and swap the order of parameters for
1223 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1224 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1225 #
1226 # On Intel Gen11, this saves ~11 instructions.
1227 (('iadd_sat@64', a, b), ('bcsel',
1228 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1229 0x8000000000000000,
1230 ('bcsel',
1231 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1232 ('iadd', a, b),
1233 0x7fffffffffffffff)),
1234 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1235
1236 # int64_t sum = a - b;
1237 #
1238 # if (a < 0 && b >= 0 && a < sum)
1239 # sum = INT64_MIN;
1240 # } else if (a >= 0 && b < 0 && a >= sum)
1241 # sum = INT64_MAX;
1242 # }
1243 #
1244 # Optimizations similar to the iadd_sat case are applied here.
1245 (('isub_sat@64', a, b), ('bcsel',
1246 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1247 0x8000000000000000,
1248 ('bcsel',
1249 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1250 ('isub', a, b),
1251 0x7fffffffffffffff)),
1252 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1253
1254 # These are done here instead of in the backend because the int64 lowering
1255 # pass will make a mess of the patterns. The first patterns are
1256 # conditioned on nir_lower_minmax64 because it was not clear that it was
1257 # always an improvement on platforms that have real int64 support. No
1258 # shaders in shader-db hit this, so it was hard to say one way or the
1259 # other.
1260 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1261 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1262 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1263 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1264 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1265 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1266
1267 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1268 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1269 # 0u < uint(a) <=> uint(a) != 0u
1270 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1271
1272 # Alternative lowering that doesn't rely on bfi.
1273 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1274 ('bcsel', ('ult', 31, 'bits'),
1275 'insert',
1276 (('ior',
1277 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1278 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1279 'options->lower_bitfield_insert_to_shifts'),
1280
1281 # Alternative lowering that uses bitfield_select.
1282 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1283 ('bcsel', ('ult', 31, 'bits'), 'insert',
1284 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1285 'options->lower_bitfield_insert_to_bitfield_select'),
1286
1287 (('ibitfield_extract', 'value', 'offset', 'bits'),
1288 ('bcsel', ('ult', 31, 'bits'), 'value',
1289 ('ibfe', 'value', 'offset', 'bits')),
1290 'options->lower_bitfield_extract'),
1291
1292 (('ubitfield_extract', 'value', 'offset', 'bits'),
1293 ('bcsel', ('ult', 31, 'bits'), 'value',
1294 ('ubfe', 'value', 'offset', 'bits')),
1295 'options->lower_bitfield_extract'),
1296
1297 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1298 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1299 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1300 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1301 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1302 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1303 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1304
1305 # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says:
1306 #
1307 # If bits is zero, the result will be zero.
1308 #
1309 # These patterns prevent other patterns from generating invalid results
1310 # when count is zero.
1311 (('ubfe', a, b, 0), 0),
1312 (('ibfe', a, b, 0), 0),
1313
1314 (('ubfe', a, 0, '#b'), ('iand', a, ('ushr', 0xffffffff, ('ineg', b)))),
1315
1316 (('b2i32', ('i2b', ('ubfe', a, b, 1))), ('ubfe', a, b, 1)),
1317 (('b2i32', ('i2b', ('ibfe', a, b, 1))), ('ubfe', a, b, 1)), # ubfe in the replacement is correct
1318 (('ine', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1319 (('ieq', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1320 (('ine', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1321 (('ieq', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1322
1323 (('ibitfield_extract', 'value', 'offset', 'bits'),
1324 ('bcsel', ('ieq', 0, 'bits'),
1325 0,
1326 ('ishr',
1327 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1328 ('isub', 32, 'bits'))),
1329 'options->lower_bitfield_extract_to_shifts'),
1330
1331 (('ubitfield_extract', 'value', 'offset', 'bits'),
1332 ('iand',
1333 ('ushr', 'value', 'offset'),
1334 ('bcsel', ('ieq', 'bits', 32),
1335 0xffffffff,
1336 ('isub', ('ishl', 1, 'bits'), 1))),
1337 'options->lower_bitfield_extract_to_shifts'),
1338
1339 (('ifind_msb', 'value'),
1340 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1341 'options->lower_ifind_msb'),
1342
1343 (('find_lsb', 'value'),
1344 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1345 'options->lower_find_lsb'),
1346
1347 (('extract_i8', a, 'b@32'),
1348 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1349 'options->lower_extract_byte'),
1350
1351 (('extract_u8', a, 'b@32'),
1352 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1353 'options->lower_extract_byte'),
1354
1355 (('extract_i16', a, 'b@32'),
1356 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1357 'options->lower_extract_word'),
1358
1359 (('extract_u16', a, 'b@32'),
1360 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1361 'options->lower_extract_word'),
1362
1363 (('pack_unorm_2x16', 'v'),
1364 ('pack_uvec2_to_uint',
1365 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1366 'options->lower_pack_unorm_2x16'),
1367
1368 (('pack_unorm_4x8', 'v'),
1369 ('pack_uvec4_to_uint',
1370 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1371 'options->lower_pack_unorm_4x8'),
1372
1373 (('pack_snorm_2x16', 'v'),
1374 ('pack_uvec2_to_uint',
1375 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1376 'options->lower_pack_snorm_2x16'),
1377
1378 (('pack_snorm_4x8', 'v'),
1379 ('pack_uvec4_to_uint',
1380 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1381 'options->lower_pack_snorm_4x8'),
1382
1383 (('unpack_unorm_2x16', 'v'),
1384 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1385 ('extract_u16', 'v', 1))),
1386 65535.0),
1387 'options->lower_unpack_unorm_2x16'),
1388
1389 (('unpack_unorm_4x8', 'v'),
1390 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1391 ('extract_u8', 'v', 1),
1392 ('extract_u8', 'v', 2),
1393 ('extract_u8', 'v', 3))),
1394 255.0),
1395 'options->lower_unpack_unorm_4x8'),
1396
1397 (('unpack_snorm_2x16', 'v'),
1398 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1399 ('extract_i16', 'v', 1))),
1400 32767.0))),
1401 'options->lower_unpack_snorm_2x16'),
1402
1403 (('unpack_snorm_4x8', 'v'),
1404 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1405 ('extract_i8', 'v', 1),
1406 ('extract_i8', 'v', 2),
1407 ('extract_i8', 'v', 3))),
1408 127.0))),
1409 'options->lower_unpack_snorm_4x8'),
1410
1411 (('pack_half_2x16_split', 'a@32', 'b@32'),
1412 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1413 'options->lower_pack_split'),
1414
1415 (('unpack_half_2x16_split_x', 'a@32'),
1416 ('f2f32', ('u2u16', a)),
1417 'options->lower_pack_split'),
1418
1419 (('unpack_half_2x16_split_y', 'a@32'),
1420 ('f2f32', ('u2u16', ('ushr', a, 16))),
1421 'options->lower_pack_split'),
1422
1423 (('pack_32_2x16_split', 'a@16', 'b@16'),
1424 ('ior', ('ishl', ('u2u32', b), 16), ('u2u32', a)),
1425 'options->lower_pack_split'),
1426
1427 (('unpack_32_2x16_split_x', 'a@32'),
1428 ('u2u16', a),
1429 'options->lower_pack_split'),
1430
1431 (('unpack_32_2x16_split_y', 'a@32'),
1432 ('u2u16', ('ushr', 'a', 16)),
1433 'options->lower_pack_split'),
1434
1435 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1436 (('imin', ('imax', a, -1), 1), ('isign', a), '!options->lower_isign'),
1437 (('imax', ('imin', a, 1), -1), ('isign', a), '!options->lower_isign'),
1438 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1439 (('fadd', ('b2f32', ('flt', 0.0, 'a@32')), ('fneg', ('b2f32', ('flt', 'a@32', 0.0)))), ('fsign', a), '!options->lower_fsign'),
1440 (('iadd', ('b2i32', ('flt', 0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0)))), ('f2i32', ('fsign', a)), '!options->lower_fsign'),
1441
1442 # Address/offset calculations:
1443 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1444 # rule converts everyone else to imul:
1445 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1446
1447 (('umul24', a, b),
1448 ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)),
1449 '!options->has_umul24'),
1450 (('umad24', a, b, c),
1451 ('iadd', ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)), c),
1452 '!options->has_umad24'),
1453
1454 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1455 (('imad24_ir3', a, 0, c), (c)),
1456 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1457
1458 # if first two srcs are const, crack apart the imad so constant folding
1459 # can clean up the imul:
1460 # TODO ffma should probably get a similar rule:
1461 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1462
1463 # These will turn 24b address/offset calc back into 32b shifts, but
1464 # it should be safe to get back some of the bits of precision that we
1465 # already decided were no necessary:
1466 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1467 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1468 (('imul24', a, 0), (0)),
1469 ])
1470
1471 # bit_size dependent lowerings
1472 for bit_size in [8, 16, 32, 64]:
1473 # convenience constants
1474 intmax = (1 << (bit_size - 1)) - 1
1475 intmin = 1 << (bit_size - 1)
1476
1477 optimizations += [
1478 (('iadd_sat@' + str(bit_size), a, b),
1479 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1480 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1481 (('isub_sat@' + str(bit_size), a, b),
1482 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1483 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1484 ]
1485
1486 invert = OrderedDict([('feq', 'fneu'), ('fneu', 'feq')])
1487
1488 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1489 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1490 ('iand', (invert[left], a, b), (invert[right], c, d))))
1491 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1492 ('ior', (invert[left], a, b), (invert[right], c, d))))
1493
1494 # Optimize x2bN(b2x(x)) -> x
1495 for size in type_sizes('bool'):
1496 aN = 'a@' + str(size)
1497 f2bN = 'f2b' + str(size)
1498 i2bN = 'i2b' + str(size)
1499 optimizations.append(((f2bN, ('b2f', aN)), a))
1500 optimizations.append(((i2bN, ('b2i', aN)), a))
1501
1502 # Optimize x2yN(b2x(x)) -> b2y
1503 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1504 if x != 'f' and y != 'f' and x != y:
1505 continue
1506
1507 b2x = 'b2f' if x == 'f' else 'b2i'
1508 b2y = 'b2f' if y == 'f' else 'b2i'
1509 x2yN = '{}2{}'.format(x, y)
1510 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1511
1512 # Optimize away x2xN(a@N)
1513 for t in ['int', 'uint', 'float', 'bool']:
1514 for N in type_sizes(t):
1515 x2xN = '{0}2{0}{1}'.format(t[0], N)
1516 aN = 'a@{0}'.format(N)
1517 optimizations.append(((x2xN, aN), a))
1518
1519 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1520 # In particular, we can optimize away everything except upcast of downcast and
1521 # upcasts where the type differs from the other cast
1522 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1523 if N < M:
1524 # The outer cast is a down-cast. It doesn't matter what the size of the
1525 # argument of the inner cast is because we'll never been in the upcast
1526 # of downcast case. Regardless of types, we'll always end up with y2yN
1527 # in the end.
1528 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1529 x2xN = '{0}2{0}{1}'.format(x, N)
1530 y2yM = '{0}2{0}{1}'.format(y, M)
1531 y2yN = '{0}2{0}{1}'.format(y, N)
1532 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1533 elif N > M:
1534 # If the outer cast is an up-cast, we have to be more careful about the
1535 # size of the argument of the inner cast and with types. In this case,
1536 # the type is always the type of type up-cast which is given by the
1537 # outer cast.
1538 for P in type_sizes('uint'):
1539 # We can't optimize away up-cast of down-cast.
1540 if M < P:
1541 continue
1542
1543 # Because we're doing down-cast of down-cast, the types always have
1544 # to match between the two casts
1545 for x in ['i', 'u']:
1546 x2xN = '{0}2{0}{1}'.format(x, N)
1547 x2xM = '{0}2{0}{1}'.format(x, M)
1548 aP = 'a@{0}'.format(P)
1549 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1550 else:
1551 # The N == M case is handled by other optimizations
1552 pass
1553
1554 # Downcast operations should be able to see through pack
1555 for t in ['i', 'u']:
1556 for N in [8, 16, 32]:
1557 x2xN = '{0}2{0}{1}'.format(t, N)
1558 optimizations += [
1559 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1560 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1561 ]
1562
1563 # Optimize comparisons with up-casts
1564 for t in ['int', 'uint', 'float']:
1565 for N, M in itertools.product(type_sizes(t), repeat=2):
1566 if N == 1 or N >= M:
1567 continue
1568
1569 cond = 'true'
1570 if N == 8:
1571 cond = 'options->support_8bit_alu'
1572 elif N == 16:
1573 cond = 'options->support_16bit_alu'
1574 x2xM = '{0}2{0}{1}'.format(t[0], M)
1575 x2xN = '{0}2{0}{1}'.format(t[0], N)
1576 aN = 'a@' + str(N)
1577 bN = 'b@' + str(N)
1578 xeq = 'feq' if t == 'float' else 'ieq'
1579 xne = 'fneu' if t == 'float' else 'ine'
1580 xge = '{0}ge'.format(t[0])
1581 xlt = '{0}lt'.format(t[0])
1582
1583 # Up-casts are lossless so for correctly signed comparisons of
1584 # up-casted values we can do the comparison at the largest of the two
1585 # original sizes and drop one or both of the casts. (We have
1586 # optimizations to drop the no-op casts which this may generate.)
1587 for P in type_sizes(t):
1588 if P == 1 or P > N:
1589 continue
1590
1591 bP = 'b@' + str(P)
1592 optimizations += [
1593 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b)), cond),
1594 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b)), cond),
1595 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b)), cond),
1596 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b)), cond),
1597 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a), cond),
1598 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a), cond),
1599 ]
1600
1601 # The next bit doesn't work on floats because the range checks would
1602 # get way too complicated.
1603 if t in ['int', 'uint']:
1604 if t == 'int':
1605 xN_min = -(1 << (N - 1))
1606 xN_max = (1 << (N - 1)) - 1
1607 elif t == 'uint':
1608 xN_min = 0
1609 xN_max = (1 << N) - 1
1610 else:
1611 assert False
1612
1613 # If we're up-casting and comparing to a constant, we can unfold
1614 # the comparison into a comparison with the shrunk down constant
1615 # and a check that the constant fits in the smaller bit size.
1616 optimizations += [
1617 ((xeq, (x2xM, aN), '#b'),
1618 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b)), cond),
1619 ((xne, (x2xM, aN), '#b'),
1620 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b)), cond),
1621 ((xlt, (x2xM, aN), '#b'),
1622 ('iand', (xlt, xN_min, b),
1623 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b)))), cond),
1624 ((xlt, '#a', (x2xM, bN)),
1625 ('iand', (xlt, a, xN_max),
1626 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b))), cond),
1627 ((xge, (x2xM, aN), '#b'),
1628 ('iand', (xge, xN_max, b),
1629 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b)))), cond),
1630 ((xge, '#a', (x2xM, bN)),
1631 ('iand', (xge, a, xN_min),
1632 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b))), cond),
1633 ]
1634
1635 # Convert masking followed by signed downcast to just unsigned downcast
1636 optimizations += [
1637 (('i2i32', ('iand', 'a@64', 0xffffffff)), ('u2u32', a)),
1638 (('i2i16', ('iand', 'a@32', 0xffff)), ('u2u16', a)),
1639 (('i2i16', ('iand', 'a@64', 0xffff)), ('u2u16', a)),
1640 (('i2i8', ('iand', 'a@16', 0xff)), ('u2u8', a)),
1641 (('i2i8', ('iand', 'a@32', 0xff)), ('u2u8', a)),
1642 (('i2i8', ('iand', 'a@64', 0xff)), ('u2u8', a)),
1643 ]
1644
1645 def fexp2i(exp, bits):
1646 # Generate an expression which constructs value 2.0^exp or 0.0.
1647 #
1648 # We assume that exp is already in a valid range:
1649 #
1650 # * [-15, 15] for 16-bit float
1651 # * [-127, 127] for 32-bit float
1652 # * [-1023, 1023] for 16-bit float
1653 #
1654 # If exp is the lowest value in the valid range, a value of 0.0 is
1655 # constructed. Otherwise, the value 2.0^exp is constructed.
1656 if bits == 16:
1657 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1658 elif bits == 32:
1659 return ('ishl', ('iadd', exp, 127), 23)
1660 elif bits == 64:
1661 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1662 else:
1663 assert False
1664
1665 def ldexp(f, exp, bits):
1666 # The maximum possible range for a normal exponent is [-126, 127] and,
1667 # throwing in denormals, you get a maximum range of [-149, 127]. This
1668 # means that we can potentially have a swing of +-276. If you start with
1669 # FLT_MAX, you actually have to do ldexp(FLT_MAX, -278) to get it to flush
1670 # all the way to zero. The GLSL spec only requires that we handle a subset
1671 # of this range. From version 4.60 of the spec:
1672 #
1673 # "If exp is greater than +128 (single-precision) or +1024
1674 # (double-precision), the value returned is undefined. If exp is less
1675 # than -126 (single-precision) or -1022 (double-precision), the value
1676 # returned may be flushed to zero. Additionally, splitting the value
1677 # into a significand and exponent using frexp() and then reconstructing
1678 # a floating-point value using ldexp() should yield the original input
1679 # for zero and all finite non-denormalized values."
1680 #
1681 # The SPIR-V spec has similar language.
1682 #
1683 # In order to handle the maximum value +128 using the fexp2i() helper
1684 # above, we have to split the exponent in half and do two multiply
1685 # operations.
1686 #
1687 # First, we clamp exp to a reasonable range. Specifically, we clamp to
1688 # twice the full range that is valid for the fexp2i() function above. If
1689 # exp/2 is the bottom value of that range, the fexp2i() expression will
1690 # yield 0.0f which, when multiplied by f, will flush it to zero which is
1691 # allowed by the GLSL and SPIR-V specs for low exponent values. If the
1692 # value is clamped from above, then it must have been above the supported
1693 # range of the GLSL built-in and therefore any return value is acceptable.
1694 if bits == 16:
1695 exp = ('imin', ('imax', exp, -30), 30)
1696 elif bits == 32:
1697 exp = ('imin', ('imax', exp, -254), 254)
1698 elif bits == 64:
1699 exp = ('imin', ('imax', exp, -2046), 2046)
1700 else:
1701 assert False
1702
1703 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1704 # (We use ishr which isn't the same for -1, but the -1 case still works
1705 # since we use exp-exp/2 as the second exponent.) While the spec
1706 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1707 # work with denormals and doesn't allow for the full swing in exponents
1708 # that you can get with normalized values. Instead, we create two powers
1709 # of two and multiply by them each in turn. That way the effective range
1710 # of our exponent is doubled.
1711 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1712 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1713 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1714
1715 optimizations += [
1716 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1717 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1718 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1719 ]
1720
1721 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1722 def bitfield_reverse(u):
1723 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1724 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1725 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1726 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1727 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1728
1729 return step5
1730
1731 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1732
1733 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1734 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1735 # and, if a is a NaN then the second comparison will fail anyway.
1736 for op in ['flt', 'fge', 'feq']:
1737 optimizations += [
1738 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1739 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1740 ]
1741
1742 # Add optimizations to handle the case where the result of a ternary is
1743 # compared to a constant. This way we can take things like
1744 #
1745 # (a ? 0 : 1) > 0
1746 #
1747 # and turn it into
1748 #
1749 # a ? (0 > 0) : (1 > 0)
1750 #
1751 # which constant folding will eat for lunch. The resulting ternary will
1752 # further get cleaned up by the boolean reductions above and we will be
1753 # left with just the original variable "a".
1754 for op in ['flt', 'fge', 'feq', 'fneu',
1755 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1756 optimizations += [
1757 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1758 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1759 ((op, '#d', ('bcsel', a, '#b', '#c')),
1760 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1761 ]
1762
1763
1764 # For example, this converts things like
1765 #
1766 # 1 + mix(0, a - 1, condition)
1767 #
1768 # into
1769 #
1770 # mix(1, (a-1)+1, condition)
1771 #
1772 # Other optimizations will rearrange the constants.
1773 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1774 optimizations += [
1775 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1776 ]
1777
1778 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1779 # states:
1780 #
1781 # If neither layout qualifier is specified, derivatives in compute shaders
1782 # return zero, which is consistent with the handling of built-in texture
1783 # functions like texture() in GLSL 4.50 compute shaders.
1784 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1785 'fddy', 'fddy_fine', 'fddy_coarse']:
1786 optimizations += [
1787 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1788 ]
1789
1790 # Some optimizations for ir3-specific instructions.
1791 optimizations += [
1792 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1793 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1794 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1795 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1796 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1797 ]
1798
1799 # These kinds of sequences can occur after nir_opt_peephole_select.
1800 #
1801 # NOTE: fadd is not handled here because that gets in the way of ffma
1802 # generation in the i965 driver. Instead, fadd and ffma are handled in
1803 # late_optimizations.
1804
1805 for op in ['flrp']:
1806 optimizations += [
1807 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1808 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1809 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1810 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1811 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1812 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1813 ]
1814
1815 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1816 optimizations += [
1817 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1818 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1819 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1820 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1821 ]
1822
1823 for op in ['fpow']:
1824 optimizations += [
1825 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1826 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1827 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1828 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1829 ]
1830
1831 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos', 'fneg', 'fabs', 'fsign']:
1832 optimizations += [
1833 (('bcsel', c, (op + '(is_used_once)', a), (op + '(is_used_once)', b)), (op, ('bcsel', c, a, b))),
1834 ]
1835
1836 for op in ['ineg', 'iabs', 'inot', 'isign']:
1837 optimizations += [
1838 ((op, ('bcsel', c, '#a', '#b')), ('bcsel', c, (op, a), (op, b))),
1839 ]
1840
1841 # This section contains optimizations to propagate downsizing conversions of
1842 # constructed vectors into vectors of downsized components. Whether this is
1843 # useful depends on the SIMD semantics of the backend. On a true SIMD machine,
1844 # this reduces the register pressure of the vector itself and often enables the
1845 # conversions to be eliminated via other algebraic rules or constant folding.
1846 # In the worst case on a SIMD architecture, the propagated conversions may be
1847 # revectorized via nir_opt_vectorize so instruction count is minimally
1848 # impacted.
1849 #
1850 # On a machine with SIMD-within-a-register only, this actually
1851 # counterintuitively hurts instruction count. These machines are the same that
1852 # require vectorize_vec2_16bit, so we predicate the optimizations on that flag
1853 # not being set.
1854 #
1855 # Finally for scalar architectures, there should be no difference in generated
1856 # code since it all ends up scalarized at the end, but it might minimally help
1857 # compile-times.
1858
1859 for i in range(2, 4 + 1):
1860 for T in ('f', 'u', 'i'):
1861 vec_inst = ('vec' + str(i),)
1862
1863 indices = ['a', 'b', 'c', 'd']
1864 suffix_in = tuple((indices[j] + '@32') for j in range(i))
1865
1866 to_16 = '{}2{}16'.format(T, T)
1867 to_mp = '{}2{}mp'.format(T, T)
1868
1869 out_16 = tuple((to_16, indices[j]) for j in range(i))
1870 out_mp = tuple((to_mp, indices[j]) for j in range(i))
1871
1872 optimizations += [
1873 ((to_16, vec_inst + suffix_in), vec_inst + out_16, '!options->vectorize_vec2_16bit'),
1874 ((to_mp, vec_inst + suffix_in), vec_inst + out_mp, '!options->vectorize_vec2_16bit')
1875 ]
1876
1877 # This section contains "late" optimizations that should be run before
1878 # creating ffmas and calling regular optimizations for the final time.
1879 # Optimizations should go here if they help code generation and conflict
1880 # with the regular optimizations.
1881 before_ffma_optimizations = [
1882 # Propagate constants down multiplication chains
1883 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1884 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1885 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1886 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1887
1888 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1889 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1890 (('~fadd', ('fneg', a), a), 0.0),
1891 (('iadd', ('ineg', a), a), 0),
1892 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1893 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1894 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1895 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1896
1897 (('~flrp', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1898 (('~flrp', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1899 (('~flrp', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1900 ]
1901
1902 # This section contains "late" optimizations that should be run after the
1903 # regular optimizations have finished. Optimizations should go here if
1904 # they help code generation but do not necessarily produce code that is
1905 # more easily optimizable.
1906 late_optimizations = [
1907 # Most of these optimizations aren't quite safe when you get infinity or
1908 # Nan involved but the first one should be fine.
1909 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1910 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1911 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1912 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1913 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1914 (('~fneu', ('fadd', a, b), 0.0), ('fneu', a, ('fneg', b))),
1915
1916 # nir_lower_to_source_mods will collapse this, but its existence during the
1917 # optimization loop can prevent other optimizations.
1918 (('fneg', ('fneg', a)), a),
1919
1920 # Subtractions get lowered during optimization, so we need to recombine them
1921 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1922 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1923 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1924 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1925 (('iabs', a), ('imax', a, ('ineg', a)), 'options->lower_iabs'),
1926
1927 # These are duplicated from the main optimizations table. The late
1928 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1929 # new patterns like these. The patterns that compare with zero are removed
1930 # because they are unlikely to be created in by anything in
1931 # late_optimizations.
1932 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1933 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1934 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1935 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1936 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1937 (('fneu', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fneu', a, b)),
1938
1939 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1940 # flt(fsat(a), 1.0) is inexact because it returns True if a is NaN
1941 # (fsat(NaN) is 0), while flt(a, 1.0) always returns FALSE.
1942 (('~flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1943
1944 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1945
1946 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1947 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1948 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1949 (('fneu', ('fneg', a), ('fneg', b)), ('fneu', b, a)),
1950 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1951 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1952 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1953 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1954 (('fneu', ('fneg', a), -1.0), ('fneu', 1.0, a)),
1955 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1956
1957 (('ior', a, a), a),
1958 (('iand', a, a), a),
1959
1960 (('iand', ('ine(is_used_once)', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
1961 (('ior', ('ieq(is_used_once)', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
1962
1963 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1964
1965 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1966 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1967 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1968 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1969
1970 (('~flrp', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1971
1972 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1973 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1974
1975 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1976 # particular operation is common for expanding values stored in a texture
1977 # from [0,1] to [-1,1].
1978 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1979 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1980 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1981 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1982 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1983 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1984 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1985 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1986
1987 # flrp(a, b, a)
1988 # a*(1-a) + b*a
1989 # a + -a*a + a*b (1)
1990 # a + a*(b - a)
1991 # Option 1: ffma(a, (b-a), a)
1992 #
1993 # Alternately, after (1):
1994 # a*(1+b) + -a*a
1995 # a*((1+b) + -a)