nir/algebraic: add patterns for a >> #b << #b
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fabs', a)), ('fabs', a)),
113 (('fabs', ('fneg', a)), ('fabs', a)),
114 (('fabs', ('u2f', a)), ('u2f', a)),
115 (('iabs', ('iabs', a)), ('iabs', a)),
116 (('iabs', ('ineg', a)), ('iabs', a)),
117 (('f2b', ('fneg', a)), ('f2b', a)),
118 (('i2b', ('ineg', a)), ('i2b', a)),
119 (('~fadd', a, 0.0), a),
120 (('iadd', a, 0), a),
121 (('usadd_4x8', a, 0), a),
122 (('usadd_4x8', a, ~0), ~0),
123 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
124 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
125 (('~fadd', ('fneg', a), a), 0.0),
126 (('iadd', ('ineg', a), a), 0),
127 (('iadd', ('ineg', a), ('iadd', a, b)), b),
128 (('iadd', a, ('iadd', ('ineg', a), b)), b),
129 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
130 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
131 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
132 (('~fmul', a, 0.0), 0.0),
133 (('imul', a, 0), 0),
134 (('umul_unorm_4x8', a, 0), 0),
135 (('umul_unorm_4x8', a, ~0), a),
136 (('~fmul', a, 1.0), a),
137 (('imul', a, 1), a),
138 (('fmul', a, -1.0), ('fneg', a)),
139 (('imul', a, -1), ('ineg', a)),
140 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
141 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
142 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
143 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
144 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
145 (('~ffma', 0.0, a, b), b),
146 (('~ffma', a, b, 0.0), ('fmul', a, b)),
147 (('ffma', 1.0, a, b), ('fadd', a, b)),
148 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
149 (('~flrp', a, b, 0.0), a),
150 (('~flrp', a, b, 1.0), b),
151 (('~flrp', a, a, b), a),
152 (('~flrp', 0.0, a, b), ('fmul', a, b)),
153
154 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
155 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
156 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
157 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
158
159 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
160 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
161
162 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
163 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
164
165 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
166
167 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
168 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
169 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
170 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
171 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
172 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
173 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
174 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
175 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
176 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
177 # These are the same as the previous three rules, but it depends on
178 # 1-fsat(x) <=> fsat(1-x). See below.
179 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
180 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
181
182 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
183 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
184 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
185 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
186 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
187
188 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
189 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
190
191 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
192
193 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
194 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
195 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
196 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
197
198 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
199 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
200
201 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
202 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
203
204 # Lower fdot to fsum when it is available
205 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
206 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
208 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
209
210 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
211 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
212 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
213 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
214
215 # 1 - ((1 - a) * (1 - b))
216 # 1 - (1 - a - b + a*b)
217 # 1 - 1 + a + b - a*b
218 # a + b - a*b
219 # a + b*(1 - a)
220 # b*(1 - a) + 1*a
221 # flrp(b, 1, a)
222 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
223 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
224
225 # (a * #b + #c) << #d
226 # ((a * #b) << #d) + (#c << #d)
227 # (a * (#b << #d)) + (#c << #d)
228 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
229 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
230
231 # (a * #b) << #c
232 # a * (#b << #c)
233 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
234 ]
235
236 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
237 # bits of the second source. These replacements must correctly handle the
238 # case where (b % bitsize) + (c % bitsize) >= bitsize.
239 for s in [8, 16, 32, 64]:
240 mask = (1 << s) - 1
241
242 ishl = "ishl@{}".format(s)
243 ishr = "ishr@{}".format(s)
244 ushr = "ushr@{}".format(s)
245
246 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
247
248 optimizations.extend([
249 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
250 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
251
252 # To get get -1 for large shifts of negative values, ishr must instead
253 # clamp the shift count to the maximum value.
254 ((ishr, (ishr, a, '#b'), '#c'),
255 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
256 ])
257
258 # Optimize a pattern of address calculation created by DXVK where the offset is
259 # divided by 4 and then multipled by 4. This can be turned into an iand and the
260 # additions before can be reassociated to CSE the iand instruction.
261 for log2 in range(1, 7): # powers of two from 2 to 64
262 v = 1 << log2
263 mask = 0xffffffff & ~(v - 1)
264 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
265
266 optimizations.extend([
267 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
268 (('ishl@32', ('ushr@32', a, log2), log2), ('iand', a, mask)),
269
270 # Reassociate for improved CSE
271 (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
272 ])
273
274 optimizations.extend([
275 # This is common for address calculations. Reassociating may enable the
276 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
277 # instruction or a constant offset field for in load / store instructions.
278 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
279
280 # Comparison simplifications
281 (('~inot', ('flt', a, b)), ('fge', a, b)),
282 (('~inot', ('fge', a, b)), ('flt', a, b)),
283 (('inot', ('feq', a, b)), ('fne', a, b)),
284 (('inot', ('fne', a, b)), ('feq', a, b)),
285 (('inot', ('ilt', a, b)), ('ige', a, b)),
286 (('inot', ('ult', a, b)), ('uge', a, b)),
287 (('inot', ('ige', a, b)), ('ilt', a, b)),
288 (('inot', ('uge', a, b)), ('ult', a, b)),
289 (('inot', ('ieq', a, b)), ('ine', a, b)),
290 (('inot', ('ine', a, b)), ('ieq', a, b)),
291
292 (('iand', ('feq', a, b), ('fne', a, b)), False),
293 (('iand', ('flt', a, b), ('flt', b, a)), False),
294 (('iand', ('ieq', a, b), ('ine', a, b)), False),
295 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
296 (('iand', ('ult', a, b), ('ult', b, a)), False),
297
298 # This helps some shaders because, after some optimizations, they end up
299 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
300 # matching would be handled by CSE.
301 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
302 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
303 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
304 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
305 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
306 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
307 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
308 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
309 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
310 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
311
312 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
313 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
314 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
315 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
316 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
317 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
318
319 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
320 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
321 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
322 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
323
324 # 0.0 >= b2f(a)
325 # b2f(a) <= 0.0
326 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
327 # inot(a)
328 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
329
330 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
331
332 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
333 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
334 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
335 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
336 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
337 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
338 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
339 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
340 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
341 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
342 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
343 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
344 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
345 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
346 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
347 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
348 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
349 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
350 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
351 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
352
353 # -(b2f(a) + b2f(b)) < 0
354 # 0 < b2f(a) + b2f(b)
355 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
356 # a || b
357 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
358 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
359
360 # -(b2f(a) + b2f(b)) >= 0
361 # 0 >= b2f(a) + b2f(b)
362 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
363 # !(a || b)
364 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
365 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
366
367 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
368 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
369
370 # Some optimizations (below) convert things like (a < b || c < b) into
371 # (min(a, c) < b). However, this interfers with the previous optimizations
372 # that try to remove comparisons with negated sums of b2f. This just
373 # breaks that apart.
374 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
375 ('ior', ('flt', c, 0.0), ('ior', a, b))),
376
377 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
378 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
379 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
380 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
381 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
382 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
383 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
384 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
385 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
386 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
387 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
388 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
389
390 # Cannot remove the addition from ilt or ige due to overflow.
391 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
392 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
393
394 # fmin(-b2f(a), b) >= 0.0
395 # -b2f(a) >= 0.0 && b >= 0.0
396 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
397 # b2f(a) == 0.0 && b >= 0.0
398 # a == False && b >= 0.0
399 # !a && b >= 0.0
400 #
401 # The fge in the second replacement is not a typo. I leave the proof that
402 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
403 # reader.
404 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
405 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
406
407 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
408 (('~fne', ('b2f', 'a@1'), 0.0), a),
409 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
410 (('ine', ('b2i', 'a@1'), 0), a),
411
412 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
413 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
414 (('fge', ('u2f', a), 0.0), True),
415 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
416 (('flt', ('u2f', a), 0.0), False),
417 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
418 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
419 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
420 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
421 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
422 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
423 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
424
425 # 0.0 < fabs(a)
426 # fabs(a) > 0.0
427 # fabs(a) != 0.0 because fabs(a) must be >= 0
428 # a != 0.0
429 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
430
431 # -fabs(a) < 0.0
432 # fabs(a) > 0.0
433 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
434
435 # 0.0 >= fabs(a)
436 # 0.0 == fabs(a) because fabs(a) must be >= 0
437 # 0.0 == a
438 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
439
440 # -fabs(a) >= 0.0
441 # 0.0 >= fabs(a)
442 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
443
444 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
445 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
446
447 # (a < 0.0) || (a > 1.0)
448 # !(!(a < 0.0) && !(a > 1.0))
449 # !((a >= 0.0) && (a <= 1.0))
450 # !(a == fsat(a))
451 # a != fsat(a)
452 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
453
454 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
455 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
456 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
457 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
458
459 # fmin(b2f(a), b)
460 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
461 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
462 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
463 #
464 # Since b is a constant, constant folding will eliminate the fmin and the
465 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
466 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
467
468 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
469
470 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
471 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
472 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
473 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
474 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
475 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
476 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
477 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
478 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
479 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
480 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
481 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
482 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
483 (('bcsel', a, True, b), ('ior', a, b)),
484 (('bcsel', a, a, b), ('ior', a, b)),
485 (('bcsel', a, b, False), ('iand', a, b)),
486 (('bcsel', a, b, a), ('iand', a, b)),
487 (('~fmin', a, a), a),
488 (('~fmax', a, a), a),
489 (('imin', a, a), a),
490 (('imax', a, a), a),
491 (('umin', a, a), a),
492 (('umax', a, a), a),
493 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
494 (('umax', ('umax', a, b), b), ('umax', a, b)),
495 (('imax', ('imax', a, b), b), ('imax', a, b)),
496 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
497 (('umin', ('umin', a, b), b), ('umin', a, b)),
498 (('imin', ('imin', a, b), b), ('imin', a, b)),
499 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
500 (('fmax', a, ('fneg', a)), ('fabs', a)),
501 (('imax', a, ('ineg', a)), ('iabs', a)),
502 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
503 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
504 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
505 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
506 (('~fmin', a, ('fabs', a)), a),
507 (('imin', a, ('iabs', a)), a),
508 (('~fmax', a, ('fneg', ('fabs', a))), a),
509 (('imax', a, ('ineg', ('iabs', a))), a),
510 (('fmax', a, ('fabs', a)), ('fabs', a)),
511 (('imax', a, ('iabs', a)), ('iabs', a)),
512 (('fmax', a, ('fneg', a)), ('fabs', a)),
513 (('imax', a, ('ineg', a)), ('iabs', a)),
514 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
515 (('~fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
516 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
517 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
518 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
519 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
520 (('fsat', ('b2f', a)), ('b2f', a)),
521 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
522 (('fsat', ('fsat', a)), ('fsat', a)),
523 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
524 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
525 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
526 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
527 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
528 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
529 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
530 (('fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
531 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
532 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
533 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
534 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
535 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
536 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
537 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
538 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
539 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
540 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
541 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
542 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
543 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
544 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
545 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
546 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
547 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
548
549 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
550 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
551 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
552 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
553 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
554 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
555 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
556 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
557 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
558 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
559 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
560 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
561 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
562 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
563 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
564 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
565
566 # These derive from the previous patterns with the application of b < 0 <=>
567 # 0 < -b. The transformation should be applied if either comparison is
568 # used once as this ensures that the number of comparisons will not
569 # increase. The sources to the ior and iand are not symmetric, so the
570 # rules have to be duplicated to get this behavior.
571 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
572 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
573 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
574 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
575 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
576 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
577 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
578 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
579
580 # Common pattern like 'if (i == 0 || i == 1 || ...)'
581 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
582 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
583 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
584
585 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
586 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
587 # so emit an open-coded version of that.
588 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
589 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
590
591 (('ior', a, ('ieq', a, False)), True),
592 (('ior', a, ('inot', a)), -1),
593
594 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
595 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
596
597 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('ior', 'a@32', 'b@32'), 0), '!options->lower_bitops'),
598
599 # These patterns can result when (a < b || a < c) => (a < min(b, c))
600 # transformations occur before constant propagation and loop-unrolling.
601 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
602 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
603 (('~fge', a, ('fmin', b, a)), True),
604 (('~fge', ('fmax', a, b), a), True),
605 (('~flt', a, ('fmin', b, a)), False),
606 (('~flt', ('fmax', a, b), a), False),
607 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
608 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
609
610 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
611 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
612 (('ige', a, ('imin', b, a)), True),
613 (('ige', ('imax', a, b), a), True),
614 (('ult', a, ('umax', b, a)), ('ult', a, b)),
615 (('ult', ('umin', a, b), a), ('ult', b, a)),
616 (('uge', a, ('umin', b, a)), True),
617 (('uge', ('umax', a, b), a), True),
618 (('ilt', a, ('imin', b, a)), False),
619 (('ilt', ('imax', a, b), a), False),
620 (('ige', a, ('imax', b, a)), ('ige', a, b)),
621 (('ige', ('imin', a, b), a), ('ige', b, a)),
622 (('ult', a, ('umin', b, a)), False),
623 (('ult', ('umax', a, b), a), False),
624 (('uge', a, ('umax', b, a)), ('uge', a, b)),
625 (('uge', ('umin', a, b), a), ('uge', b, a)),
626 (('ult', a, ('iand', b, a)), False),
627 (('ult', ('ior', a, b), a), False),
628 (('uge', a, ('iand', b, a)), True),
629 (('uge', ('ior', a, b), a), True),
630
631 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
632 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
633 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
634 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
635 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
636 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
637 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
638 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
639 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
640 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
641 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
642 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
643 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
644 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
645 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
646 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
647
648 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
649 # negative.
650 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
651 ('iabs', ('ishr', a, b))),
652 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
653
654 (('fabs', ('slt', a, b)), ('slt', a, b)),
655 (('fabs', ('sge', a, b)), ('sge', a, b)),
656 (('fabs', ('seq', a, b)), ('seq', a, b)),
657 (('fabs', ('sne', a, b)), ('sne', a, b)),
658 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
659 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
660 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
661 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
662 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
663 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
664 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
665 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
666 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
667 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
668 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
669 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
670 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
671 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
672 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
673 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
674 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
675 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
676 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
677 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
678 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
679 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
680 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
681 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
682 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
683 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
684 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
685 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
686 # Emulating booleans
687 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
688 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
689 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
690 (('iand', 'a@bool32', 1.0), ('b2f', a)),
691 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
692 (('ineg', ('b2i32', 'a@32')), a),
693 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
694 # Comparison with the same args. Note that these are not done for
695 # the float versions because NaN always returns false on float
696 # inequalities.
697 (('ilt', a, a), False),
698 (('ige', a, a), True),
699 (('ieq', a, a), True),
700 (('ine', a, a), False),
701 (('ult', a, a), False),
702 (('uge', a, a), True),
703 # Logical and bit operations
704 (('iand', a, a), a),
705 (('iand', a, ~0), a),
706 (('iand', a, 0), 0),
707 (('ior', a, a), a),
708 (('ior', a, 0), a),
709 (('ior', a, True), True),
710 (('ixor', a, a), 0),
711 (('ixor', a, 0), a),
712 (('inot', ('inot', a)), a),
713 (('ior', ('iand', a, b), b), b),
714 (('ior', ('ior', a, b), b), ('ior', a, b)),
715 (('iand', ('ior', a, b), b), b),
716 (('iand', ('iand', a, b), b), ('iand', a, b)),
717 # DeMorgan's Laws
718 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
719 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
720 # Shift optimizations
721 (('ishl', 0, a), 0),
722 (('ishl', a, 0), a),
723 (('ishr', 0, a), 0),
724 (('ishr', a, 0), a),
725 (('ushr', 0, a), 0),
726 (('ushr', a, 0), a),
727 (('iand', 0xff, ('ushr@32', a, 24)), ('ushr', a, 24)),
728 (('iand', 0xffff, ('ushr@32', a, 16)), ('ushr', a, 16)),
729 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
730 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
731 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
732 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
733 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
734 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
735 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
736 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
737 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
738 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
739 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
740 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
741 # Exponential/logarithmic identities
742 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
743 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
744 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
745 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
746 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
747 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
748 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
749 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
750 (('~fpow', a, 1.0), a),
751 (('~fpow', a, 2.0), ('fmul', a, a)),
752 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
753 (('~fpow', 2.0, a), ('fexp2', a)),
754 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
755 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
756 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
757 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
758 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
759 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
760 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
761 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
762 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
763 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
764 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
765 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
766 # Division and reciprocal
767 (('~fdiv', 1.0, a), ('frcp', a)),
768 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
769 (('~frcp', ('frcp', a)), a),
770 (('~frcp', ('fsqrt', a)), ('frsq', a)),
771 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
772 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
773 # Trig
774 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
775 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
776 # Boolean simplifications
777 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
778 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
779 (('ieq', a, True), a),
780 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
781 (('ine', a, False), a),
782 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
783 (('bcsel', a, True, False), a),
784 (('bcsel', a, False, True), ('inot', a)),
785 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
786 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
787 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
788 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
789 (('bcsel', True, b, c), b),
790 (('bcsel', False, b, c), c),
791 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
792
793 (('bcsel', a, b, b), b),
794 (('~fcsel', a, b, b), b),
795
796 # D3D Boolean emulation
797 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
798 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
799 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
800 ('ineg', ('b2i', ('iand', a, b)))),
801 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
802 ('ineg', ('b2i', ('ior', a, b)))),
803 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
804 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
805 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
806 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
807 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
808 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
809
810 # SM5 32-bit shifts are defined to use the 5 least significant bits
811 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
812 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
813 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
814
815 # Conversions
816 (('i2b32', ('b2i', 'a@32')), a),
817 (('f2i', ('ftrunc', a)), ('f2i', a)),
818 (('f2u', ('ftrunc', a)), ('f2u', a)),
819 (('i2b', ('ineg', a)), ('i2b', a)),
820 (('i2b', ('iabs', a)), ('i2b', a)),
821 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
822
823 # The C spec says, "If the value of the integral part cannot be represented
824 # by the integer type, the behavior is undefined." "Undefined" can mean
825 # "the conversion doesn't happen at all."
826 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
827
828 # Ironically, mark these as imprecise because removing the conversions may
829 # preserve more precision than doing the conversions (e.g.,
830 # uint(float(0x81818181u)) == 0x81818200).
831 (('~f2i32', ('i2f', 'a@32')), a),
832 (('~f2i32', ('u2f', 'a@32')), a),
833 (('~f2u32', ('i2f', 'a@32')), a),
834 (('~f2u32', ('u2f', 'a@32')), a),
835
836 (('ffloor', 'a(is_integral)'), a),
837 (('fceil', 'a(is_integral)'), a),
838 (('ftrunc', 'a(is_integral)'), a),
839 # fract(x) = x - floor(x), so fract(NaN) = NaN
840 (('~ffract', 'a(is_integral)'), 0.0),
841 (('fabs', 'a(is_not_negative)'), a),
842 (('iabs', 'a(is_not_negative)'), a),
843 (('fsat', 'a(is_not_positive)'), 0.0),
844
845 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
846 # says:
847 #
848 # It is undefined to convert a negative floating-point value to an
849 # uint.
850 #
851 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
852 # some optimizations in the i965 backend to proceed.
853 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
854 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
855 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
856 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
857
858 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
859
860 # The result of the multiply must be in [-1, 0], so the result of the ffma
861 # must be in [0, 1].
862 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
863 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
864 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
865 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
866
867 (('fne', 'a(is_not_zero)', 0.0), True),
868 (('feq', 'a(is_not_zero)', 0.0), False),
869
870 # In this chart, + means value > 0 and - means value < 0.
871 #
872 # + >= + -> unknown 0 >= + -> false - >= + -> false
873 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
874 # + >= - -> true 0 >= - -> true - >= - -> unknown
875 #
876 # Using grouping conceptually similar to a Karnaugh map...
877 #
878 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
879 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
880 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
881 #
882 # The flt / ilt cases just invert the expected result.
883 #
884 # The results expecting true, must be marked imprecise. The results
885 # expecting false are fine because NaN compared >= or < anything is false.
886
887 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
888 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
889 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
890
891 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
892 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
893 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
894
895 (('ine', 'a(is_not_zero)', 0), True),
896 (('ieq', 'a(is_not_zero)', 0), False),
897
898 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
899 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
900 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
901
902 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
903 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
904 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
905
906 (('ult', 0, 'a(is_gt_zero)'), True),
907
908 # Packing and then unpacking does nothing
909 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
910 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
911 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
912 ('unpack_64_2x32_split_y', a)), a),
913
914 # Comparing two halves of an unpack separately. While this optimization
915 # should be correct for non-constant values, it's less obvious that it's
916 # useful in that case. For constant values, the pack will fold and we're
917 # guaranteed to reduce the whole tree to one instruction.
918 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
919 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
920 ('ieq', a, ('pack_32_2x16_split', b, c))),
921
922 # Byte extraction
923 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
924 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
925 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
926 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
927 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
928 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
929 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
930
931 # Useless masking before unpacking
932 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
933 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
934 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
935 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
936 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
937 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
938 ])
939
940 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
941 # patterns like those below.
942 for op in ('ushr', 'ishr'):
943 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
944 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
945 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
946
947 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
948
949 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
950 # patterns like those below.
951 for op in ('extract_u8', 'extract_i8'):
952 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
953 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
954 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
955
956 optimizations.extend([
957 # Word extraction
958 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
959 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
960 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
961 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
962 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
963
964 # Subtracts
965 (('ussub_4x8', a, 0), a),
966 (('ussub_4x8', a, ~0), 0),
967 # Lower all Subtractions first - they can get recombined later
968 (('fsub', a, b), ('fadd', a, ('fneg', b))),
969 (('isub', a, b), ('iadd', a, ('ineg', b))),
970 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
971 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
972 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
973
974 # Propagate negation up multiplication chains
975 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
976 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
977
978 # Propagate constants up multiplication chains
979 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
980 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
981 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
982 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
983
984 # Reassociate constants in add/mul chains so they can be folded together.
985 # For now, we mostly only handle cases where the constants are separated by
986 # a single non-constant. We could do better eventually.
987 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
988 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
989 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
990 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
991 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
992
993 # Drop mul-div by the same value when there's no wrapping.
994 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
995
996 # By definition...
997 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
998 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
999 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1000
1001 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1002 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1003 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1004
1005 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1006
1007 # Misc. lowering
1008 (('fmod@16', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1009 (('fmod@32', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1010 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1011 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1012 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1013
1014 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1015 ('bcsel', ('ult', 31, 'bits'), 'insert',
1016 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1017 'options->lower_bitfield_insert'),
1018 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1019 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1020 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1021 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1022 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1023 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1024 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1025 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1026
1027 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1028 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1029 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1030 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1031
1032 # int64_t sum = a + b;
1033 #
1034 # if (a < 0 && b < 0 && a < sum)
1035 # sum = INT64_MIN;
1036 # } else if (a >= 0 && b >= 0 && sum < a)
1037 # sum = INT64_MAX;
1038 # }
1039 #
1040 # A couple optimizations are applied.
1041 #
1042 # 1. a < sum => sum >= 0. This replacement works because it is known that
1043 # a < 0 and b < 0, so sum should also be < 0 unless there was
1044 # underflow.
1045 #
1046 # 2. sum < a => sum < 0. This replacement works because it is known that
1047 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1048 # overflow.
1049 #
1050 # 3. Invert the second if-condition and swap the order of parameters for
1051 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1052 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1053 #
1054 # On Intel Gen11, this saves ~11 instructions.
1055 (('iadd_sat@64', a, b), ('bcsel',
1056 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1057 0x8000000000000000,
1058 ('bcsel',
1059 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1060 ('iadd', a, b),
1061 0x7fffffffffffffff)),
1062 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1063
1064 # int64_t sum = a - b;
1065 #
1066 # if (a < 0 && b >= 0 && a < sum)
1067 # sum = INT64_MIN;
1068 # } else if (a >= 0 && b < 0 && a >= sum)
1069 # sum = INT64_MAX;
1070 # }
1071 #
1072 # Optimizations similar to the iadd_sat case are applied here.
1073 (('isub_sat@64', a, b), ('bcsel',
1074 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1075 0x8000000000000000,
1076 ('bcsel',
1077 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1078 ('isub', a, b),
1079 0x7fffffffffffffff)),
1080 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1081
1082 # These are done here instead of in the backend because the int64 lowering
1083 # pass will make a mess of the patterns. The first patterns are
1084 # conditioned on nir_lower_minmax64 because it was not clear that it was
1085 # always an improvement on platforms that have real int64 support. No
1086 # shaders in shader-db hit this, so it was hard to say one way or the
1087 # other.
1088 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1089 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1090 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1091 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1092 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1093 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1094
1095 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1096 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1097 # 0u < uint(a) <=> uint(a) != 0u
1098 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1099
1100 # Alternative lowering that doesn't rely on bfi.
1101 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1102 ('bcsel', ('ult', 31, 'bits'),
1103 'insert',
1104 (('ior',
1105 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1106 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1107 'options->lower_bitfield_insert_to_shifts'),
1108
1109 # Alternative lowering that uses bitfield_select.
1110 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1111 ('bcsel', ('ult', 31, 'bits'), 'insert',
1112 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1113 'options->lower_bitfield_insert_to_bitfield_select'),
1114
1115 (('ibitfield_extract', 'value', 'offset', 'bits'),
1116 ('bcsel', ('ult', 31, 'bits'), 'value',
1117 ('ibfe', 'value', 'offset', 'bits')),
1118 'options->lower_bitfield_extract'),
1119
1120 (('ubitfield_extract', 'value', 'offset', 'bits'),
1121 ('bcsel', ('ult', 31, 'bits'), 'value',
1122 ('ubfe', 'value', 'offset', 'bits')),
1123 'options->lower_bitfield_extract'),
1124
1125 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1126 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1127 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1128 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1129 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1130 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1131 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1132
1133 (('ibitfield_extract', 'value', 'offset', 'bits'),
1134 ('bcsel', ('ieq', 0, 'bits'),
1135 0,
1136 ('ishr',
1137 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1138 ('isub', 32, 'bits'))),
1139 'options->lower_bitfield_extract_to_shifts'),
1140
1141 (('ubitfield_extract', 'value', 'offset', 'bits'),
1142 ('iand',
1143 ('ushr', 'value', 'offset'),
1144 ('bcsel', ('ieq', 'bits', 32),
1145 0xffffffff,
1146 ('isub', ('ishl', 1, 'bits'), 1))),
1147 'options->lower_bitfield_extract_to_shifts'),
1148
1149 (('ifind_msb', 'value'),
1150 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1151 'options->lower_ifind_msb'),
1152
1153 (('find_lsb', 'value'),
1154 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1155 'options->lower_find_lsb'),
1156
1157 (('extract_i8', a, 'b@32'),
1158 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1159 'options->lower_extract_byte'),
1160
1161 (('extract_u8', a, 'b@32'),
1162 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1163 'options->lower_extract_byte'),
1164
1165 (('extract_i16', a, 'b@32'),
1166 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1167 'options->lower_extract_word'),
1168
1169 (('extract_u16', a, 'b@32'),
1170 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1171 'options->lower_extract_word'),
1172
1173 (('pack_unorm_2x16', 'v'),
1174 ('pack_uvec2_to_uint',
1175 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1176 'options->lower_pack_unorm_2x16'),
1177
1178 (('pack_unorm_4x8', 'v'),
1179 ('pack_uvec4_to_uint',
1180 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1181 'options->lower_pack_unorm_4x8'),
1182
1183 (('pack_snorm_2x16', 'v'),
1184 ('pack_uvec2_to_uint',
1185 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1186 'options->lower_pack_snorm_2x16'),
1187
1188 (('pack_snorm_4x8', 'v'),
1189 ('pack_uvec4_to_uint',
1190 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1191 'options->lower_pack_snorm_4x8'),
1192
1193 (('unpack_unorm_2x16', 'v'),
1194 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1195 ('extract_u16', 'v', 1))),
1196 65535.0),
1197 'options->lower_unpack_unorm_2x16'),
1198
1199 (('unpack_unorm_4x8', 'v'),
1200 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1201 ('extract_u8', 'v', 1),
1202 ('extract_u8', 'v', 2),
1203 ('extract_u8', 'v', 3))),
1204 255.0),
1205 'options->lower_unpack_unorm_4x8'),
1206
1207 (('unpack_snorm_2x16', 'v'),
1208 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1209 ('extract_i16', 'v', 1))),
1210 32767.0))),
1211 'options->lower_unpack_snorm_2x16'),
1212
1213 (('unpack_snorm_4x8', 'v'),
1214 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1215 ('extract_i8', 'v', 1),
1216 ('extract_i8', 'v', 2),
1217 ('extract_i8', 'v', 3))),
1218 127.0))),
1219 'options->lower_unpack_snorm_4x8'),
1220
1221 (('pack_half_2x16_split', 'a@32', 'b@32'),
1222 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1223 'options->lower_pack_half_2x16_split'),
1224
1225 (('unpack_half_2x16_split_x', 'a@32'),
1226 ('f2f32', ('u2u16', a)),
1227 'options->lower_unpack_half_2x16_split'),
1228
1229 (('unpack_half_2x16_split_y', 'a@32'),
1230 ('f2f32', ('u2u16', ('ushr', a, 16))),
1231 'options->lower_unpack_half_2x16_split'),
1232
1233 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1234 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1235
1236 # Address/offset calculations:
1237 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1238 # rule converts everyone else to imul:
1239 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1240
1241 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1242 (('imad24_ir3', a, 0, c), (c)),
1243 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1244
1245 # if first two srcs are const, crack apart the imad so constant folding
1246 # can clean up the imul:
1247 # TODO ffma should probably get a similar rule:
1248 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1249
1250 # These will turn 24b address/offset calc back into 32b shifts, but
1251 # it should be safe to get back some of the bits of precision that we
1252 # already decided were no necessary:
1253 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1254 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1255 (('imul24', a, 0), (0)),
1256 ])
1257
1258 # bit_size dependent lowerings
1259 for bit_size in [8, 16, 32, 64]:
1260 # convenience constants
1261 intmax = (1 << (bit_size - 1)) - 1
1262 intmin = 1 << (bit_size - 1)
1263
1264 optimizations += [
1265 (('iadd_sat@' + str(bit_size), a, b),
1266 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1267 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1268 (('isub_sat@' + str(bit_size), a, b),
1269 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1270 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1271 ]
1272
1273 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq'), ('fge', 'flt'), ('flt', 'fge')])
1274
1275 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1276 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1277 ('iand', (invert[left], a, b), (invert[right], c, d))))
1278 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1279 ('ior', (invert[left], a, b), (invert[right], c, d))))
1280
1281 # Optimize x2bN(b2x(x)) -> x
1282 for size in type_sizes('bool'):
1283 aN = 'a@' + str(size)
1284 f2bN = 'f2b' + str(size)
1285 i2bN = 'i2b' + str(size)
1286 optimizations.append(((f2bN, ('b2f', aN)), a))
1287 optimizations.append(((i2bN, ('b2i', aN)), a))
1288
1289 # Optimize x2yN(b2x(x)) -> b2y
1290 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1291 if x != 'f' and y != 'f' and x != y:
1292 continue
1293
1294 b2x = 'b2f' if x == 'f' else 'b2i'
1295 b2y = 'b2f' if y == 'f' else 'b2i'
1296 x2yN = '{}2{}'.format(x, y)
1297 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1298
1299 # Optimize away x2xN(a@N)
1300 for t in ['int', 'uint', 'float']:
1301 for N in type_sizes(t):
1302 x2xN = '{0}2{0}{1}'.format(t[0], N)
1303 aN = 'a@{0}'.format(N)
1304 optimizations.append(((x2xN, aN), a))
1305
1306 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1307 # In particular, we can optimize away everything except upcast of downcast and
1308 # upcasts where the type differs from the other cast
1309 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1310 if N < M:
1311 # The outer cast is a down-cast. It doesn't matter what the size of the
1312 # argument of the inner cast is because we'll never been in the upcast
1313 # of downcast case. Regardless of types, we'll always end up with y2yN
1314 # in the end.
1315 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1316 x2xN = '{0}2{0}{1}'.format(x, N)
1317 y2yM = '{0}2{0}{1}'.format(y, M)
1318 y2yN = '{0}2{0}{1}'.format(y, N)
1319 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1320 elif N > M:
1321 # If the outer cast is an up-cast, we have to be more careful about the
1322 # size of the argument of the inner cast and with types. In this case,
1323 # the type is always the type of type up-cast which is given by the
1324 # outer cast.
1325 for P in type_sizes('uint'):
1326 # We can't optimize away up-cast of down-cast.
1327 if M < P:
1328 continue
1329
1330 # Because we're doing down-cast of down-cast, the types always have
1331 # to match between the two casts
1332 for x in ['i', 'u']:
1333 x2xN = '{0}2{0}{1}'.format(x, N)
1334 x2xM = '{0}2{0}{1}'.format(x, M)
1335 aP = 'a@{0}'.format(P)
1336 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1337 else:
1338 # The N == M case is handled by other optimizations
1339 pass
1340
1341 # Optimize comparisons with up-casts
1342 for t in ['int', 'uint', 'float']:
1343 for N, M in itertools.product(type_sizes(t), repeat=2):
1344 if N == 1 or N >= M:
1345 continue
1346
1347 x2xM = '{0}2{0}{1}'.format(t[0], M)
1348 x2xN = '{0}2{0}{1}'.format(t[0], N)
1349 aN = 'a@' + str(N)
1350 bN = 'b@' + str(N)
1351 xeq = 'feq' if t == 'float' else 'ieq'
1352 xne = 'fne' if t == 'float' else 'ine'
1353 xge = '{0}ge'.format(t[0])
1354 xlt = '{0}lt'.format(t[0])
1355
1356 # Up-casts are lossless so for correctly signed comparisons of
1357 # up-casted values we can do the comparison at the largest of the two
1358 # original sizes and drop one or both of the casts. (We have
1359 # optimizations to drop the no-op casts which this may generate.)
1360 for P in type_sizes(t):
1361 if P == 1 or P > N:
1362 continue
1363
1364 bP = 'b@' + str(P)
1365 optimizations += [
1366 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b))),
1367 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b))),
1368 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b))),
1369 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b))),
1370 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a)),
1371 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a)),
1372 ]
1373
1374 # The next bit doesn't work on floats because the range checks would
1375 # get way too complicated.
1376 if t in ['int', 'uint']:
1377 if t == 'int':
1378 xN_min = -(1 << (N - 1))
1379 xN_max = (1 << (N - 1)) - 1
1380 elif t == 'uint':
1381 xN_min = 0
1382 xN_max = (1 << N) - 1
1383 else:
1384 assert False
1385
1386 # If we're up-casting and comparing to a constant, we can unfold
1387 # the comparison into a comparison with the shrunk down constant
1388 # and a check that the constant fits in the smaller bit size.
1389 optimizations += [
1390 ((xeq, (x2xM, aN), '#b'),
1391 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b))),
1392 ((xne, (x2xM, aN), '#b'),
1393 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b))),
1394 ((xlt, (x2xM, aN), '#b'),
1395 ('iand', (xlt, xN_min, b),
1396 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b))))),
1397 ((xlt, '#a', (x2xM, bN)),
1398 ('iand', (xlt, a, xN_max),
1399 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b)))),
1400 ((xge, (x2xM, aN), '#b'),
1401 ('iand', (xge, xN_max, b),
1402 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b))))),
1403 ((xge, '#a', (x2xM, bN)),
1404 ('iand', (xge, a, xN_min),
1405 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b)))),
1406 ]
1407
1408 def fexp2i(exp, bits):
1409 # We assume that exp is already in the right range.
1410 if bits == 16:
1411 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1412 elif bits == 32:
1413 return ('ishl', ('iadd', exp, 127), 23)
1414 elif bits == 64:
1415 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1416 else:
1417 assert False
1418
1419 def ldexp(f, exp, bits):
1420 # First, we clamp exp to a reasonable range. The maximum possible range
1421 # for a normal exponent is [-126, 127] and, throwing in denormals, you get
1422 # a maximum range of [-149, 127]. This means that we can potentially have
1423 # a swing of +-276. If you start with FLT_MAX, you actually have to do
1424 # ldexp(FLT_MAX, -278) to get it to flush all the way to zero. The GLSL
1425 # spec, on the other hand, only requires that we handle an exponent value
1426 # in the range [-126, 128]. This implementation is *mostly* correct; it
1427 # handles a range on exp of [-252, 254] which allows you to create any
1428 # value (including denorms if the hardware supports it) and to adjust the
1429 # exponent of any normal value to anything you want.
1430 if bits == 16:
1431 exp = ('imin', ('imax', exp, -28), 30)
1432 elif bits == 32:
1433 exp = ('imin', ('imax', exp, -252), 254)
1434 elif bits == 64:
1435 exp = ('imin', ('imax', exp, -2044), 2046)
1436 else:
1437 assert False
1438
1439 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1440 # (We use ishr which isn't the same for -1, but the -1 case still works
1441 # since we use exp-exp/2 as the second exponent.) While the spec
1442 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1443 # work with denormals and doesn't allow for the full swing in exponents
1444 # that you can get with normalized values. Instead, we create two powers
1445 # of two and multiply by them each in turn. That way the effective range
1446 # of our exponent is doubled.
1447 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1448 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1449 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1450
1451 optimizations += [
1452 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1453 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1454 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1455 ]
1456
1457 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1458 def bitfield_reverse(u):
1459 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1460 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1461 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1462 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1463 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1464
1465 return step5
1466
1467 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1468
1469 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1470 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1471 # and, if a is a NaN then the second comparison will fail anyway.
1472 for op in ['flt', 'fge', 'feq']:
1473 optimizations += [
1474 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1475 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1476 ]
1477
1478 # Add optimizations to handle the case where the result of a ternary is
1479 # compared to a constant. This way we can take things like
1480 #
1481 # (a ? 0 : 1) > 0
1482 #
1483 # and turn it into
1484 #
1485 # a ? (0 > 0) : (1 > 0)
1486 #
1487 # which constant folding will eat for lunch. The resulting ternary will
1488 # further get cleaned up by the boolean reductions above and we will be
1489 # left with just the original variable "a".
1490 for op in ['flt', 'fge', 'feq', 'fne',
1491 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1492 optimizations += [
1493 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1494 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1495 ((op, '#d', ('bcsel', a, '#b', '#c')),
1496 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1497 ]
1498
1499
1500 # For example, this converts things like
1501 #
1502 # 1 + mix(0, a - 1, condition)
1503 #
1504 # into
1505 #
1506 # mix(1, (a-1)+1, condition)
1507 #
1508 # Other optimizations will rearrange the constants.
1509 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1510 optimizations += [
1511 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1512 ]
1513
1514 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1515 # states:
1516 #
1517 # If neither layout qualifier is specified, derivatives in compute shaders
1518 # return zero, which is consistent with the handling of built-in texture
1519 # functions like texture() in GLSL 4.50 compute shaders.
1520 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1521 'fddy', 'fddy_fine', 'fddy_coarse']:
1522 optimizations += [
1523 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1524 ]
1525
1526 # Some optimizations for ir3-specific instructions.
1527 optimizations += [
1528 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1529 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1530 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1531 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1532 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1533 ]
1534
1535 # These kinds of sequences can occur after nir_opt_peephole_select.
1536 #
1537 # NOTE: fadd is not handled here because that gets in the way of ffma
1538 # generation in the i965 driver. Instead, fadd and ffma are handled in
1539 # late_optimizations.
1540
1541 for op in ['flrp']:
1542 optimizations += [
1543 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1544 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1545 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1546 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1547 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1548 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1549 ]
1550
1551 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1552 optimizations += [
1553 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1554 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1555 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1556 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1557 ]
1558
1559 for op in ['fpow']:
1560 optimizations += [
1561 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1562 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1563 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1564 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1565 ]
1566
1567 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos']:
1568 optimizations += [
1569 (('bcsel', a, (op + '(is_used_once)', b), (op, c)), (op, ('bcsel', a, b, c))),
1570 (('bcsel', a, (op, b), (op + '(is_used_once)', c)), (op, ('bcsel', a, b, c))),
1571 ]
1572
1573 # This section contains "late" optimizations that should be run before
1574 # creating ffmas and calling regular optimizations for the final time.
1575 # Optimizations should go here if they help code generation and conflict
1576 # with the regular optimizations.
1577 before_ffma_optimizations = [
1578 # Propagate constants down multiplication chains
1579 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1580 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1581 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1582 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1583
1584 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1585 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1586 (('~fadd', ('fneg', a), a), 0.0),
1587 (('iadd', ('ineg', a), a), 0),
1588 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1589 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1590 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1591 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1592
1593 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1594 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1595 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1596 ]
1597
1598 # This section contains "late" optimizations that should be run after the
1599 # regular optimizations have finished. Optimizations should go here if
1600 # they help code generation but do not necessarily produce code that is
1601 # more easily optimizable.
1602 late_optimizations = [
1603 # Most of these optimizations aren't quite safe when you get infinity or
1604 # Nan involved but the first one should be fine.
1605 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1606 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1607 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1608 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1609 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1610 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1611
1612 # nir_lower_to_source_mods will collapse this, but its existence during the
1613 # optimization loop can prevent other optimizations.
1614 (('fneg', ('fneg', a)), a),
1615
1616 # Subtractions get lowered during optimization, so we need to recombine them
1617 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1618 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1619 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1620 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1621
1622 # These are duplicated from the main optimizations table. The late
1623 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1624 # new patterns like these. The patterns that compare with zero are removed
1625 # because they are unlikely to be created in by anything in
1626 # late_optimizations.
1627 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1628 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1629 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1630 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1631 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1632 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1633
1634 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1635 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1636
1637 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1638
1639 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1640 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1641 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1642 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1643 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1644 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1645 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1646 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1647 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1648 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1649
1650 (('ior', a, a), a),
1651 (('iand', a, a), a),
1652
1653 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1654
1655 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1656 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1657 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1658 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1659
1660 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1661 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1662
1663 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1664 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1665
1666 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1667 # particular operation is common for expanding values stored in a texture
1668 # from [0,1] to [-1,1].
1669 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1670 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1671 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1672 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1673 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1674 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1675 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1676 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1677
1678 # flrp(a, b, a)
1679 # a*(1-a) + b*a
1680 # a + -a*a + a*b (1)
1681 # a + a*(b - a)
1682 # Option 1: ffma(a, (b-a), a)
1683 #
1684 # Alternately, after (1):
1685 # a*(1+b) + -a*a
1686 # a*((1+b) + -a)
1687 #
1688 # Let b=1
1689 #
1690 # Option 2: ffma(a, 2, -(a*a))
1691 # Option 3: ffma(a, 2, (-a)*a)
1692 # Option 4: ffma(a, -a, (2*a)
1693 # Option 5: a * (2 - a)
1694 #
1695 # There are a lot of other possible combinations.
1696 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1697 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1698 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1699 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1700 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1701
1702 # we do these late so that we don't get in the way of creating ffmas
1703 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1704 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1705
1706 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1707
1708 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1709 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1710 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1711 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1712
1713 # Things that look like DPH in the source shader may get expanded to
1714 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1715 # to NIR. After FFMA is generated, this can look like:
1716 #
1717 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1718 #
1719 # Reassociate the last addition into the first multiplication.
1720 #
1721 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
1722 # shader stages on some outputs that are intended to be invariant. For
1723 # various reasons, this optimization may not be fully applied in all
1724 # shaders used for different rendering passes of the same geometry. This
1725 # can result in Z-fighting artifacts (at best). For now, disable this
1726 # optimization in these stages. See bugzilla #111490. In tessellation
1727 # stages applications seem to use 'precise' when necessary, so allow the
1728 # optimization in those stages.
1729 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
1730 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1731 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
1732 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1733 ]
1734
1735 for op in ['fadd']:
1736 late_optimizations += [
1737 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1738 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1739 ]
1740
1741 for op in ['ffma']:
1742 late_optimizations += [
1743 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1744 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1745
1746 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1747 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1748 ]
1749
1750 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
1751 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
1752 before_ffma_optimizations).render())
1753 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
1754 late_optimizations).render())