nir: Optimize mask+downcast to just downcast
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fneg', a)), ('fabs', a)),
113 (('fabs', ('u2f', a)), ('u2f', a)),
114 (('iabs', ('iabs', a)), ('iabs', a)),
115 (('iabs', ('ineg', a)), ('iabs', a)),
116 (('f2b', ('fneg', a)), ('f2b', a)),
117 (('i2b', ('ineg', a)), ('i2b', a)),
118 (('~fadd', a, 0.0), a),
119 (('iadd', a, 0), a),
120 (('usadd_4x8', a, 0), a),
121 (('usadd_4x8', a, ~0), ~0),
122 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
123 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
124 (('iand', ('ior', a, b), ('ior', a, c)), ('ior', a, ('iand', b, c))),
125 (('ior', ('iand', a, b), ('iand', a, c)), ('iand', a, ('ior', b, c))),
126 (('~fadd', ('fneg', a), a), 0.0),
127 (('iadd', ('ineg', a), a), 0),
128 (('iadd', ('ineg', a), ('iadd', a, b)), b),
129 (('iadd', a, ('iadd', ('ineg', a), b)), b),
130 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
131 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
132 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
133 (('~fmul', a, 0.0), 0.0),
134 (('imul', a, 0), 0),
135 (('umul_unorm_4x8', a, 0), 0),
136 (('umul_unorm_4x8', a, ~0), a),
137 (('~fmul', a, 1.0), a),
138 (('imul', a, 1), a),
139 (('fmul', a, -1.0), ('fneg', a)),
140 (('imul', a, -1), ('ineg', a)),
141 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
142 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
143 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
144 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
145 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
146 (('~ffma', 0.0, a, b), b),
147 (('~ffma', a, b, 0.0), ('fmul', a, b)),
148 (('ffma', 1.0, a, b), ('fadd', a, b)),
149 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
150 (('~flrp', a, b, 0.0), a),
151 (('~flrp', a, b, 1.0), b),
152 (('~flrp', a, a, b), a),
153 (('~flrp', 0.0, a, b), ('fmul', a, b)),
154
155 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
156 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
157 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
158 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
159
160 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
161 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
162
163 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
164 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
165
166 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
167
168 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
169 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
170 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
171 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
172 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
173 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
174 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
175 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
176 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
177 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
178 # These are the same as the previous three rules, but it depends on
179 # 1-fsat(x) <=> fsat(1-x). See below.
180 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
181 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
182
183 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
184 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
185 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
186 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
187 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
188
189 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
190 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
191
192 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
193
194 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
195 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
196 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
197 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
198
199 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
200 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
201
202 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
203 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
204
205 # Lower fdot to fsum when it is available
206 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
208 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
209 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
210
211 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
212 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
213 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
214 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
215
216 # 1 - ((1 - a) * (1 - b))
217 # 1 - (1 - a - b + a*b)
218 # 1 - 1 + a + b - a*b
219 # a + b - a*b
220 # a + b*(1 - a)
221 # b*(1 - a) + 1*a
222 # flrp(b, 1, a)
223 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
224 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
225
226 # (a * #b + #c) << #d
227 # ((a * #b) << #d) + (#c << #d)
228 # (a * (#b << #d)) + (#c << #d)
229 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
230 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
231
232 # (a * #b) << #c
233 # a * (#b << #c)
234 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
235 ]
236
237 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
238 # bits of the second source. These replacements must correctly handle the
239 # case where (b % bitsize) + (c % bitsize) >= bitsize.
240 for s in [8, 16, 32, 64]:
241 mask = (1 << s) - 1
242
243 ishl = "ishl@{}".format(s)
244 ishr = "ishr@{}".format(s)
245 ushr = "ushr@{}".format(s)
246
247 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
248
249 optimizations.extend([
250 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
251 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
252
253 # To get get -1 for large shifts of negative values, ishr must instead
254 # clamp the shift count to the maximum value.
255 ((ishr, (ishr, a, '#b'), '#c'),
256 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
257 ])
258
259 # Optimize a pattern of address calculation created by DXVK where the offset is
260 # divided by 4 and then multipled by 4. This can be turned into an iand and the
261 # additions before can be reassociated to CSE the iand instruction.
262 for log2 in range(1, 7): # powers of two from 2 to 64
263 v = 1 << log2
264 mask = 0xffffffff & ~(v - 1)
265 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
266
267 optimizations.extend([
268 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
269 (('ishl@32', ('ushr@32', a, log2), log2), ('iand', a, mask)),
270
271 # Reassociate for improved CSE
272 (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
273 ])
274
275 # To save space in the state tables, reduce to the set that is known to help.
276 # Previously, this was range(1, 32). In addition, a couple rules inside the
277 # loop are commented out. Revisit someday, probably after mesa/#2635 has some
278 # resolution.
279 for i in [1, 2, 16, 24]:
280 lo_mask = 0xffffffff >> i
281 hi_mask = (0xffffffff << i) & 0xffffffff
282
283 optimizations.extend([
284 # This pattern seems to only help in the soft-fp64 code.
285 (('ishl@32', ('iand', 'a@32', lo_mask), i), ('ishl', a, i)),
286 # (('ushr@32', ('iand', 'a@32', hi_mask), i), ('ushr', a, i)),
287 # (('ishr@32', ('iand', 'a@32', hi_mask), i), ('ishr', a, i)),
288
289 (('iand', ('ishl', 'a@32', i), hi_mask), ('ishl', a, i)),
290 (('iand', ('ushr', 'a@32', i), lo_mask), ('ushr', a, i)),
291 # (('iand', ('ishr', 'a@32', i), lo_mask), ('ushr', a, i)), # Yes, ushr is correct
292 ])
293
294 optimizations.extend([
295 # This is common for address calculations. Reassociating may enable the
296 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
297 # instruction or a constant offset field for in load / store instructions.
298 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
299
300 # Comparison simplifications
301 (('~inot', ('flt', a, b)), ('fge', a, b)),
302 (('~inot', ('fge', a, b)), ('flt', a, b)),
303 (('inot', ('feq', a, b)), ('fne', a, b)),
304 (('inot', ('fne', a, b)), ('feq', a, b)),
305 (('inot', ('ilt', a, b)), ('ige', a, b)),
306 (('inot', ('ult', a, b)), ('uge', a, b)),
307 (('inot', ('ige', a, b)), ('ilt', a, b)),
308 (('inot', ('uge', a, b)), ('ult', a, b)),
309 (('inot', ('ieq', a, b)), ('ine', a, b)),
310 (('inot', ('ine', a, b)), ('ieq', a, b)),
311
312 (('iand', ('feq', a, b), ('fne', a, b)), False),
313 (('iand', ('flt', a, b), ('flt', b, a)), False),
314 (('iand', ('ieq', a, b), ('ine', a, b)), False),
315 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
316 (('iand', ('ult', a, b), ('ult', b, a)), False),
317
318 # This helps some shaders because, after some optimizations, they end up
319 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
320 # matching would be handled by CSE.
321 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
322 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
323 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
324 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
325 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
326 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
327 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
328 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
329 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
330 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
331
332 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
333 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
334 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
335 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
336 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
337 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
338
339 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
340 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
341 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
342 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
343
344 # 0.0 >= b2f(a)
345 # b2f(a) <= 0.0
346 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
347 # inot(a)
348 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
349
350 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
351
352 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
353 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
354 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
355 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
356 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
357 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
358 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
359 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
360 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
361 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
362 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
363 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
364 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
365 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
366 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
367 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
368 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
369 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
370 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
371 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
372
373 # -(b2f(a) + b2f(b)) < 0
374 # 0 < b2f(a) + b2f(b)
375 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
376 # a || b
377 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
378 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
379
380 # -(b2f(a) + b2f(b)) >= 0
381 # 0 >= b2f(a) + b2f(b)
382 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
383 # !(a || b)
384 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
385 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
386
387 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
388 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
389
390 # Some optimizations (below) convert things like (a < b || c < b) into
391 # (min(a, c) < b). However, this interfers with the previous optimizations
392 # that try to remove comparisons with negated sums of b2f. This just
393 # breaks that apart.
394 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
395 ('ior', ('flt', c, 0.0), ('ior', a, b))),
396
397 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
398 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
399 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
400 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
401 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
402 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
403 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
404 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
405 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
406 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
407 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
408 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
409
410 # Cannot remove the addition from ilt or ige due to overflow.
411 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
412 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
413
414 # fmin(-b2f(a), b) >= 0.0
415 # -b2f(a) >= 0.0 && b >= 0.0
416 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
417 # b2f(a) == 0.0 && b >= 0.0
418 # a == False && b >= 0.0
419 # !a && b >= 0.0
420 #
421 # The fge in the second replacement is not a typo. I leave the proof that
422 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
423 # reader.
424 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
425 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
426
427 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
428 (('~fne', ('b2f', 'a@1'), 0.0), a),
429 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
430 (('ine', ('b2i', 'a@1'), 0), a),
431
432 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
433 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
434 (('fge', ('u2f', a), 0.0), True),
435 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
436 (('flt', ('u2f', a), 0.0), False),
437 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
438 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
439 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
440 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
441 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
442 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
443 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
444
445 # 0.0 < fabs(a)
446 # fabs(a) > 0.0
447 # fabs(a) != 0.0 because fabs(a) must be >= 0
448 # a != 0.0
449 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
450
451 # -fabs(a) < 0.0
452 # fabs(a) > 0.0
453 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
454
455 # 0.0 >= fabs(a)
456 # 0.0 == fabs(a) because fabs(a) must be >= 0
457 # 0.0 == a
458 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
459
460 # -fabs(a) >= 0.0
461 # 0.0 >= fabs(a)
462 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
463
464 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
465 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
466
467 # (a < 0.0) || (a > 1.0)
468 # !(!(a < 0.0) && !(a > 1.0))
469 # !((a >= 0.0) && (a <= 1.0))
470 # !(a == fsat(a))
471 # a != fsat(a)
472 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
473
474 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
475 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
476 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
477 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
478
479 # fmin(b2f(a), b)
480 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
481 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
482 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
483 #
484 # Since b is a constant, constant folding will eliminate the fmin and the
485 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
486 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
487
488 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
489
490 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
491 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
492 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
493 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
494 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
495 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
496 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
497 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
498 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
499 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
500 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
501 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
502 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
503 (('bcsel', a, True, b), ('ior', a, b)),
504 (('bcsel', a, a, b), ('ior', a, b)),
505 (('bcsel', a, b, False), ('iand', a, b)),
506 (('bcsel', a, b, a), ('iand', a, b)),
507 (('~fmin', a, a), a),
508 (('~fmax', a, a), a),
509 (('imin', a, a), a),
510 (('imax', a, a), a),
511 (('umin', a, a), a),
512 (('umax', a, a), a),
513 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
514 (('umax', ('umax', a, b), b), ('umax', a, b)),
515 (('imax', ('imax', a, b), b), ('imax', a, b)),
516 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
517 (('umin', ('umin', a, b), b), ('umin', a, b)),
518 (('imin', ('imin', a, b), b), ('imin', a, b)),
519 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
520
521 # Simplify logic to detect sign of an integer.
522 (('ieq', ('iand', 'a@32', 0x80000000), 0x00000000), ('ige', a, 0)),
523 (('ine', ('iand', 'a@32', 0x80000000), 0x80000000), ('ige', a, 0)),
524 (('ine', ('iand', 'a@32', 0x80000000), 0x00000000), ('ilt', a, 0)),
525 (('ieq', ('iand', 'a@32', 0x80000000), 0x80000000), ('ilt', a, 0)),
526 (('ine', ('ushr', 'a@32', 31), 0), ('ilt', a, 0)),
527 (('ieq', ('ushr', 'a@32', 31), 0), ('ige', a, 0)),
528 (('ieq', ('ushr', 'a@32', 31), 1), ('ilt', a, 0)),
529 (('ine', ('ushr', 'a@32', 31), 1), ('ige', a, 0)),
530 (('ine', ('ishr', 'a@32', 31), 0), ('ilt', a, 0)),
531 (('ieq', ('ishr', 'a@32', 31), 0), ('ige', a, 0)),
532 (('ieq', ('ishr', 'a@32', 31), -1), ('ilt', a, 0)),
533 (('ine', ('ishr', 'a@32', 31), -1), ('ige', a, 0)),
534
535 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
536 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
537 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
538 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
539 (('~fmin', a, ('fabs', a)), a),
540 (('imin', a, ('iabs', a)), a),
541 (('~fmax', a, ('fneg', ('fabs', a))), a),
542 (('imax', a, ('ineg', ('iabs', a))), a),
543 (('fmax', a, ('fabs', a)), ('fabs', a)),
544 (('imax', a, ('iabs', a)), ('iabs', a)),
545 (('fmax', a, ('fneg', a)), ('fabs', a)),
546 (('imax', a, ('ineg', a)), ('iabs', a)),
547 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
548 (('fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
549 # fmax(fmin(a, 1.0), 0.0) is inexact because it returns 1.0 on NaN, while
550 # fsat(a) returns 0.0.
551 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
552 # fmin(fmax(a, -1.0), 0.0) is inexact because it returns -1.0 on NaN, while
553 # fneg(fsat(fneg(a))) returns -0.0 on NaN.
554 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
555 # fmax(fmin(a, 0.0), -1.0) is inexact because it returns 0.0 on NaN, while
556 # fneg(fsat(fneg(a))) returns -0.0 on NaN. This only matters if
557 # SignedZeroInfNanPreserve is set, but we don't currently have any way of
558 # representing this in the optimizations other than the usual ~.
559 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
560 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
561 (('fsat', ('b2f', a)), ('b2f', a)),
562 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
563 (('fsat', ('fsat', a)), ('fsat', a)),
564 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
565 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
566 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
567 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
568 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
569 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
570 # Both the left and right patterns are "b" when isnan(a), so this is exact.
571 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
572 # The left pattern is 0.0 when isnan(a) (because fmin(fsat(NaN), b) ->
573 # fmin(0.0, b)) while the right one is "b", so this optimization is inexact.
574 (('~fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
575
576 # If a in [0,b] then b-a is also in [0,b]. Since b in [0,1], max(b-a, 0) =
577 # fsat(b-a).
578 #
579 # If a > b, then b-a < 0 and max(b-a, 0) = fsat(b-a) = 0
580 #
581 # This should be NaN safe since max(NaN, 0) = fsat(NaN) = 0.
582 (('fmax', ('fadd(is_used_once)', ('fneg', 'a(is_not_negative)'), '#b@32(is_zero_to_one)'), 0.0),
583 ('fsat', ('fadd', ('fneg', a), b)), '!options->lower_fsat'),
584
585 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
586 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
587 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
588 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
589 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
590 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
591 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
592 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
593 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
594 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
595 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
596 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
597 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
598 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
599 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
600 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
601 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
602
603 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
604 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
605 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
606 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
607 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
608 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
609 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
610 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
611 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
612 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
613 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
614 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
615 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
616 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
617 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
618 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
619
620 # These derive from the previous patterns with the application of b < 0 <=>
621 # 0 < -b. The transformation should be applied if either comparison is
622 # used once as this ensures that the number of comparisons will not
623 # increase. The sources to the ior and iand are not symmetric, so the
624 # rules have to be duplicated to get this behavior.
625 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
626 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
627 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
628 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
629 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
630 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
631 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
632 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
633
634 # Common pattern like 'if (i == 0 || i == 1 || ...)'
635 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
636 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
637 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
638
639 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
640 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
641 # so emit an open-coded version of that.
642 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
643 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
644
645 (('ior', a, ('ieq', a, False)), True),
646 (('ior', a, ('inot', a)), -1),
647
648 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
649 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
650
651 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umax', a, b), 0)),
652 (('ior', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
653 (('iand', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
654 (('ior', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umax', a, b), 0)),
655
656 # This pattern occurs coutresy of __flt64_nonnan in the soft-fp64 code.
657 # The first part of the iand comes from the !__feq64_nonnan.
658 #
659 # The second pattern is a reformulation of the first based on the relation
660 # (a == 0 || y == 0) <=> umin(a, y) == 0, where b in the first equation
661 # happens to be y == 0.
662 (('iand', ('inot', ('iand', ('ior', ('ieq', a, 0), b), c)), ('ilt', a, 0)),
663 ('iand', ('inot', ('iand', b , c)), ('ilt', a, 0))),
664 (('iand', ('inot', ('iand', ('ieq', ('umin', a, b), 0), c)), ('ilt', a, 0)),
665 ('iand', ('inot', ('iand', ('ieq', b , 0), c)), ('ilt', a, 0))),
666
667 # These patterns can result when (a < b || a < c) => (a < min(b, c))
668 # transformations occur before constant propagation and loop-unrolling.
669 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
670 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
671 (('~fge', a, ('fmin', b, a)), True),
672 (('~fge', ('fmax', a, b), a), True),
673 (('~flt', a, ('fmin', b, a)), False),
674 (('~flt', ('fmax', a, b), a), False),
675 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
676 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
677
678 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
679 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
680 (('ige', a, ('imin', b, a)), True),
681 (('ige', ('imax', a, b), a), True),
682 (('ult', a, ('umax', b, a)), ('ult', a, b)),
683 (('ult', ('umin', a, b), a), ('ult', b, a)),
684 (('uge', a, ('umin', b, a)), True),
685 (('uge', ('umax', a, b), a), True),
686 (('ilt', a, ('imin', b, a)), False),
687 (('ilt', ('imax', a, b), a), False),
688 (('ige', a, ('imax', b, a)), ('ige', a, b)),
689 (('ige', ('imin', a, b), a), ('ige', b, a)),
690 (('ult', a, ('umin', b, a)), False),
691 (('ult', ('umax', a, b), a), False),
692 (('uge', a, ('umax', b, a)), ('uge', a, b)),
693 (('uge', ('umin', a, b), a), ('uge', b, a)),
694 (('ult', a, ('iand', b, a)), False),
695 (('ult', ('ior', a, b), a), False),
696 (('uge', a, ('iand', b, a)), True),
697 (('uge', ('ior', a, b), a), True),
698
699 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
700 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
701 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
702 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
703 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
704 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
705 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
706 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
707 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
708 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
709 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
710 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
711 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
712 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
713 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
714 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
715
716 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
717 # negative.
718 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
719 ('iabs', ('ishr', a, b))),
720 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
721
722 (('fabs', ('slt', a, b)), ('slt', a, b)),
723 (('fabs', ('sge', a, b)), ('sge', a, b)),
724 (('fabs', ('seq', a, b)), ('seq', a, b)),
725 (('fabs', ('sne', a, b)), ('sne', a, b)),
726 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
727 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
728 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
729 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
730 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
731 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
732 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
733 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
734 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
735 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
736 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
737 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
738 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
739 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
740 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
741 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
742 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
743 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
744 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
745 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
746 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
747 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
748 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
749 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
750 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
751 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
752 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
753 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
754 # Emulating booleans
755 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
756 (('iand', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
757 (('ior', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('ior', a, b))),
758 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
759 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
760 (('iand', 'a@bool32', 1.0), ('b2f', a)),
761 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
762 (('ineg', ('b2i32', 'a@32')), a),
763 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
764 # Comparison with the same args. Note that these are not done for
765 # the float versions because NaN always returns false on float
766 # inequalities.
767 (('ilt', a, a), False),
768 (('ige', a, a), True),
769 (('ieq', a, a), True),
770 (('ine', a, a), False),
771 (('ult', a, a), False),
772 (('uge', a, a), True),
773 # Logical and bit operations
774 (('iand', a, a), a),
775 (('iand', a, ~0), a),
776 (('iand', a, 0), 0),
777 (('ior', a, a), a),
778 (('ior', a, 0), a),
779 (('ior', a, True), True),
780 (('ixor', a, a), 0),
781 (('ixor', a, 0), a),
782 (('inot', ('inot', a)), a),
783 (('ior', ('iand', a, b), b), b),
784 (('ior', ('ior', a, b), b), ('ior', a, b)),
785 (('iand', ('ior', a, b), b), b),
786 (('iand', ('iand', a, b), b), ('iand', a, b)),
787 # DeMorgan's Laws
788 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
789 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
790 # Shift optimizations
791 (('ishl', 0, a), 0),
792 (('ishl', a, 0), a),
793 (('ishr', 0, a), 0),
794 (('ishr', a, 0), a),
795 (('ushr', 0, a), 0),
796 (('ushr', a, 0), a),
797 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
798 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
799 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
800 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
801 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
802 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
803 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
804 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
805 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
806 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
807 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
808 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
809 # Exponential/logarithmic identities
810 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
811 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
812 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
813 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
814 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
815 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
816 (('~fexp2', ('fmul', ('flog2', a), 0.5)), ('fsqrt', a)),
817 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
818 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
819 (('~fpow', a, 1.0), a),
820 (('~fpow', a, 2.0), ('fmul', a, a)),
821 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
822 (('~fpow', 2.0, a), ('fexp2', a)),
823 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
824 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
825 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
826 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
827 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
828 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
829 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
830 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
831 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
832 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
833 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
834 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
835 # Division and reciprocal
836 (('~fdiv', 1.0, a), ('frcp', a)),
837 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
838 (('~frcp', ('frcp', a)), a),
839 (('~frcp', ('fsqrt', a)), ('frsq', a)),
840 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
841 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
842 # Trig
843 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
844 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
845 # Boolean simplifications
846 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
847 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
848 (('ieq', a, True), a),
849 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
850 (('ine', a, False), a),
851 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
852 (('bcsel', a, True, False), a),
853 (('bcsel', a, False, True), ('inot', a)),
854 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
855 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
856 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
857 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
858 (('bcsel', True, b, c), b),
859 (('bcsel', False, b, c), c),
860 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
861
862 (('bcsel', a, b, b), b),
863 (('~fcsel', a, b, b), b),
864
865 # D3D Boolean emulation
866 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
867 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
868 (('bcsel', a, 1, 0), ('b2i', 'a@1')),
869 (('bcsel', a, 0, 1), ('b2i', ('inot', a))),
870 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
871 ('ineg', ('b2i', ('iand', a, b)))),
872 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
873 ('ineg', ('b2i', ('ior', a, b)))),
874 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
875 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
876 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
877 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
878 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
879 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
880
881 # SM5 32-bit shifts are defined to use the 5 least significant bits
882 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
883 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
884 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
885
886 # Conversions
887 (('i2b32', ('b2i', 'a@32')), a),
888 (('f2i', ('ftrunc', a)), ('f2i', a)),
889 (('f2u', ('ftrunc', a)), ('f2u', a)),
890 (('i2b', ('ineg', a)), ('i2b', a)),
891 (('i2b', ('iabs', a)), ('i2b', a)),
892 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
893
894 # The C spec says, "If the value of the integral part cannot be represented
895 # by the integer type, the behavior is undefined." "Undefined" can mean
896 # "the conversion doesn't happen at all."
897 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
898
899 # Ironically, mark these as imprecise because removing the conversions may
900 # preserve more precision than doing the conversions (e.g.,
901 # uint(float(0x81818181u)) == 0x81818200).
902 (('~f2i32', ('i2f', 'a@32')), a),
903 (('~f2i32', ('u2f', 'a@32')), a),
904 (('~f2u32', ('i2f', 'a@32')), a),
905 (('~f2u32', ('u2f', 'a@32')), a),
906
907 # Conversions from 16 bits to 32 bits and back can always be removed
908 (('f2f16', ('f2f32', 'a@16')), a),
909 (('f2fmp', ('f2f32', 'a@16')), a),
910 (('i2i16', ('i2i32', 'a@16')), a),
911 (('i2imp', ('i2i32', 'a@16')), a),
912 (('u2u16', ('u2u32', 'a@16')), a),
913 (('u2ump', ('u2u32', 'a@16')), a),
914 (('f2f16', ('b2f32', 'a@1')), ('b2f16', a)),
915 (('f2fmp', ('b2f32', 'a@1')), ('b2f16', a)),
916 (('i2i16', ('b2i32', 'a@1')), ('b2i16', a)),
917 (('i2imp', ('b2i32', 'a@1')), ('b2i16', a)),
918 (('u2u16', ('b2i32', 'a@1')), ('b2i16', a)),
919 (('u2ump', ('b2i32', 'a@1')), ('b2i16', a)),
920 # Conversions to 16 bits would be lossy so they should only be removed if
921 # the instruction was generated by the precision lowering pass.
922 (('f2f32', ('f2fmp', 'a@32')), a),
923 (('i2i32', ('i2imp', 'a@32')), a),
924 (('u2u32', ('u2ump', 'a@32')), a),
925
926 (('ffloor', 'a(is_integral)'), a),
927 (('fceil', 'a(is_integral)'), a),
928 (('ftrunc', 'a(is_integral)'), a),
929 # fract(x) = x - floor(x), so fract(NaN) = NaN
930 (('~ffract', 'a(is_integral)'), 0.0),
931 (('fabs', 'a(is_not_negative)'), a),
932 (('iabs', 'a(is_not_negative)'), a),
933 (('fsat', 'a(is_not_positive)'), 0.0),
934
935 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
936 # says:
937 #
938 # It is undefined to convert a negative floating-point value to an
939 # uint.
940 #
941 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
942 # some optimizations in the i965 backend to proceed.
943 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
944 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
945 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
946 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
947
948 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
949
950 # The result of the multiply must be in [-1, 0], so the result of the ffma
951 # must be in [0, 1].
952 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
953 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
954 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
955 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
956
957 (('fne', 'a(is_not_zero)', 0.0), True),
958 (('feq', 'a(is_not_zero)', 0.0), False),
959
960 # In this chart, + means value > 0 and - means value < 0.
961 #
962 # + >= + -> unknown 0 >= + -> false - >= + -> false
963 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
964 # + >= - -> true 0 >= - -> true - >= - -> unknown
965 #
966 # Using grouping conceptually similar to a Karnaugh map...
967 #
968 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
969 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
970 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
971 #
972 # The flt / ilt cases just invert the expected result.
973 #
974 # The results expecting true, must be marked imprecise. The results
975 # expecting false are fine because NaN compared >= or < anything is false.
976
977 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
978 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
979 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
980
981 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
982 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
983 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
984
985 (('ine', 'a(is_not_zero)', 0), True),
986 (('ieq', 'a(is_not_zero)', 0), False),
987
988 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
989 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
990 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
991
992 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
993 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
994 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
995
996 (('ult', 0, 'a(is_gt_zero)'), True),
997 (('ult', a, 0), False),
998
999 # Packing and then unpacking does nothing
1000 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
1001 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
1002 (('unpack_64_2x32', ('pack_64_2x32_split', a, b)), ('vec2', a, b)),
1003 (('unpack_64_2x32', ('pack_64_2x32', a)), a),
1004 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
1005 ('unpack_64_2x32_split_y', a)), a),
1006 (('pack_64_2x32', ('vec2', ('unpack_64_2x32_split_x', a),
1007 ('unpack_64_2x32_split_y', a))), a),
1008 (('pack_64_2x32', ('unpack_64_2x32', a)), a),
1009
1010 # Comparing two halves of an unpack separately. While this optimization
1011 # should be correct for non-constant values, it's less obvious that it's
1012 # useful in that case. For constant values, the pack will fold and we're
1013 # guaranteed to reduce the whole tree to one instruction.
1014 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
1015 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
1016 ('ieq', a, ('pack_32_2x16_split', b, c))),
1017
1018 # Byte extraction
1019 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
1020 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
1021 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
1022 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
1023 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
1024 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
1025 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1026
1027 (('ubfe', a, 0, 8), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1028 (('ubfe', a, 8, 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
1029 (('ubfe', a, 16, 8), ('extract_u8', a, 2), '!options->lower_extract_byte'),
1030 (('ubfe', a, 24, 8), ('extract_u8', a, 3), '!options->lower_extract_byte'),
1031 (('ibfe', a, 0, 8), ('extract_i8', a, 0), '!options->lower_extract_byte'),
1032 (('ibfe', a, 8, 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
1033 (('ibfe', a, 16, 8), ('extract_i8', a, 2), '!options->lower_extract_byte'),
1034 (('ibfe', a, 24, 8), ('extract_i8', a, 3), '!options->lower_extract_byte'),
1035
1036 # Word extraction
1037 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1038 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1039 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1040 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1041 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
1042
1043 (('ubfe', a, 0, 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1044 (('ubfe', a, 16, 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1045 (('ibfe', a, 0, 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1046 (('ibfe', a, 16, 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1047
1048 # Useless masking before unpacking
1049 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
1050 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
1051 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
1052 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
1053 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
1054 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
1055
1056 (('unpack_half_2x16_split_x', ('extract_u16', a, 0)), ('unpack_half_2x16_split_x', a)),
1057 (('unpack_half_2x16_split_x', ('extract_u16', a, 1)), ('unpack_half_2x16_split_y', a)),
1058 (('unpack_32_2x16_split_x', ('extract_u16', a, 0)), ('unpack_32_2x16_split_x', a)),
1059 (('unpack_32_2x16_split_x', ('extract_u16', a, 1)), ('unpack_32_2x16_split_y', a)),
1060
1061 # Optimize half packing
1062 (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))),
1063 (('ushr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))),
1064
1065 (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1066 ('pack_half_2x16', ('vec2', a, b))),
1067 (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1068 ('pack_half_2x16', ('vec2', a, b))),
1069
1070 (('ishl', ('pack_half_2x16_split', a, 0), 16), ('pack_half_2x16_split', 0, a)),
1071 (('ushr', ('pack_half_2x16_split', 0, a), 16), ('pack_half_2x16_split', a, 0)),
1072 (('extract_u16', ('pack_half_2x16_split', 0, a), 1), ('pack_half_2x16_split', a, 0)),
1073
1074 (('iadd', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1075 (('ior', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1076 ])
1077
1078 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
1079 # patterns like those below.
1080 for op in ('ushr', 'ishr'):
1081 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
1082 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
1083 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
1084
1085 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
1086
1087 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
1088 # patterns like those below.
1089 for op in ('extract_u8', 'extract_i8'):
1090 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
1091 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
1092 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
1093
1094 optimizations.extend([
1095 # Subtracts
1096 (('ussub_4x8', a, 0), a),
1097 (('ussub_4x8', a, ~0), 0),
1098 # Lower all Subtractions first - they can get recombined later
1099 (('fsub', a, b), ('fadd', a, ('fneg', b))),
1100 (('isub', a, b), ('iadd', a, ('ineg', b))),
1101 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1102 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
1103 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1104
1105 # Propagate negation up multiplication chains
1106 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
1107 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
1108
1109 # Propagate constants up multiplication chains
1110 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
1111 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
1112 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
1113 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
1114
1115 # Reassociate constants in add/mul chains so they can be folded together.
1116 # For now, we mostly only handle cases where the constants are separated by
1117 # a single non-constant. We could do better eventually.
1118 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
1119 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
1120 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
1121 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
1122 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
1123 (('iand', '#a', ('iand', 'b(is_not_const)', '#c')), ('iand', ('iand', a, c), b)),
1124 (('ior', '#a', ('ior', 'b(is_not_const)', '#c')), ('ior', ('ior', a, c), b)),
1125 (('ixor', '#a', ('ixor', 'b(is_not_const)', '#c')), ('ixor', ('ixor', a, c), b)),
1126
1127 # Drop mul-div by the same value when there's no wrapping.
1128 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
1129
1130 # By definition...
1131 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
1132 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1133 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1134
1135 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1136 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1137 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1138
1139 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1140
1141 (('~fmul', ('bcsel(is_used_once)', c, -1.0, 1.0), b), ('bcsel', c, ('fneg', b), b)),
1142 (('~fmul', ('bcsel(is_used_once)', c, 1.0, -1.0), b), ('bcsel', c, b, ('fneg', b))),
1143 (('~bcsel', ('flt', a, 0.0), ('fneg', a), a), ('fabs', a)),
1144
1145 (('bcsel', a, ('bcsel', b, c, d), d), ('bcsel', ('iand', a, b), c, d)),
1146 (('bcsel', a, b, ('bcsel', c, b, d)), ('bcsel', ('ior', a, c), b, d)),
1147
1148 (('fmin3@64', a, b, c), ('fmin@64', a, ('fmin@64', b, c))),
1149 (('fmax3@64', a, b, c), ('fmax@64', a, ('fmax@64', b, c))),
1150 (('fmed3@64', a, b, c), ('fmax@64', ('fmin@64', ('fmax@64', a, b), c), ('fmin@64', a, b))),
1151
1152 # Misc. lowering
1153 (('fmod', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1154 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1155 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1156 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1157
1158 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1159 ('bcsel', ('ult', 31, 'bits'), 'insert',
1160 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1161 'options->lower_bitfield_insert'),
1162 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1163 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1164 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1165 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1166 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1167 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1168 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1169 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1170
1171 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1172 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1173 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1174 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1175
1176 # int64_t sum = a + b;
1177 #
1178 # if (a < 0 && b < 0 && a < sum)
1179 # sum = INT64_MIN;
1180 # } else if (a >= 0 && b >= 0 && sum < a)
1181 # sum = INT64_MAX;
1182 # }
1183 #
1184 # A couple optimizations are applied.
1185 #
1186 # 1. a < sum => sum >= 0. This replacement works because it is known that
1187 # a < 0 and b < 0, so sum should also be < 0 unless there was
1188 # underflow.
1189 #
1190 # 2. sum < a => sum < 0. This replacement works because it is known that
1191 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1192 # overflow.
1193 #
1194 # 3. Invert the second if-condition and swap the order of parameters for
1195 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1196 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1197 #
1198 # On Intel Gen11, this saves ~11 instructions.
1199 (('iadd_sat@64', a, b), ('bcsel',
1200 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1201 0x8000000000000000,
1202 ('bcsel',
1203 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1204 ('iadd', a, b),
1205 0x7fffffffffffffff)),
1206 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1207
1208 # int64_t sum = a - b;
1209 #
1210 # if (a < 0 && b >= 0 && a < sum)
1211 # sum = INT64_MIN;
1212 # } else if (a >= 0 && b < 0 && a >= sum)
1213 # sum = INT64_MAX;
1214 # }
1215 #
1216 # Optimizations similar to the iadd_sat case are applied here.
1217 (('isub_sat@64', a, b), ('bcsel',
1218 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1219 0x8000000000000000,
1220 ('bcsel',
1221 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1222 ('isub', a, b),
1223 0x7fffffffffffffff)),
1224 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1225
1226 # These are done here instead of in the backend because the int64 lowering
1227 # pass will make a mess of the patterns. The first patterns are
1228 # conditioned on nir_lower_minmax64 because it was not clear that it was
1229 # always an improvement on platforms that have real int64 support. No
1230 # shaders in shader-db hit this, so it was hard to say one way or the
1231 # other.
1232 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1233 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1234 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1235 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1236 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1237 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1238
1239 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1240 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1241 # 0u < uint(a) <=> uint(a) != 0u
1242 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1243
1244 # Alternative lowering that doesn't rely on bfi.
1245 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1246 ('bcsel', ('ult', 31, 'bits'),
1247 'insert',
1248 (('ior',
1249 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1250 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1251 'options->lower_bitfield_insert_to_shifts'),
1252
1253 # Alternative lowering that uses bitfield_select.
1254 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1255 ('bcsel', ('ult', 31, 'bits'), 'insert',
1256 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1257 'options->lower_bitfield_insert_to_bitfield_select'),
1258
1259 (('ibitfield_extract', 'value', 'offset', 'bits'),
1260 ('bcsel', ('ult', 31, 'bits'), 'value',
1261 ('ibfe', 'value', 'offset', 'bits')),
1262 'options->lower_bitfield_extract'),
1263
1264 (('ubitfield_extract', 'value', 'offset', 'bits'),
1265 ('bcsel', ('ult', 31, 'bits'), 'value',
1266 ('ubfe', 'value', 'offset', 'bits')),
1267 'options->lower_bitfield_extract'),
1268
1269 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1270 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1271 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1272 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1273 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1274 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1275 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1276
1277 # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says:
1278 #
1279 # If bits is zero, the result will be zero.
1280 #
1281 # These patterns prevent other patterns from generating invalid results
1282 # when count is zero.
1283 (('ubfe', a, b, 0), 0),
1284 (('ibfe', a, b, 0), 0),
1285
1286 (('ubfe', a, 0, '#b'), ('iand', a, ('ushr', 0xffffffff, ('ineg', b)))),
1287
1288 (('b2i32', ('i2b', ('ubfe', a, b, 1))), ('ubfe', a, b, 1)),
1289 (('b2i32', ('i2b', ('ibfe', a, b, 1))), ('ubfe', a, b, 1)), # ubfe in the replacement is correct
1290 (('ine', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1291 (('ieq', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1292 (('ine', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1293 (('ieq', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1294
1295 (('ibitfield_extract', 'value', 'offset', 'bits'),
1296 ('bcsel', ('ieq', 0, 'bits'),
1297 0,
1298 ('ishr',
1299 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1300 ('isub', 32, 'bits'))),
1301 'options->lower_bitfield_extract_to_shifts'),
1302
1303 (('ubitfield_extract', 'value', 'offset', 'bits'),
1304 ('iand',
1305 ('ushr', 'value', 'offset'),
1306 ('bcsel', ('ieq', 'bits', 32),
1307 0xffffffff,
1308 ('isub', ('ishl', 1, 'bits'), 1))),
1309 'options->lower_bitfield_extract_to_shifts'),
1310
1311 (('ifind_msb', 'value'),
1312 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1313 'options->lower_ifind_msb'),
1314
1315 (('find_lsb', 'value'),
1316 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1317 'options->lower_find_lsb'),
1318
1319 (('extract_i8', a, 'b@32'),
1320 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1321 'options->lower_extract_byte'),
1322
1323 (('extract_u8', a, 'b@32'),
1324 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1325 'options->lower_extract_byte'),
1326
1327 (('extract_i16', a, 'b@32'),
1328 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1329 'options->lower_extract_word'),
1330
1331 (('extract_u16', a, 'b@32'),
1332 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1333 'options->lower_extract_word'),
1334
1335 (('pack_unorm_2x16', 'v'),
1336 ('pack_uvec2_to_uint',
1337 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1338 'options->lower_pack_unorm_2x16'),
1339
1340 (('pack_unorm_4x8', 'v'),
1341 ('pack_uvec4_to_uint',
1342 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1343 'options->lower_pack_unorm_4x8'),
1344
1345 (('pack_snorm_2x16', 'v'),
1346 ('pack_uvec2_to_uint',
1347 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1348 'options->lower_pack_snorm_2x16'),
1349
1350 (('pack_snorm_4x8', 'v'),
1351 ('pack_uvec4_to_uint',
1352 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1353 'options->lower_pack_snorm_4x8'),
1354
1355 (('unpack_unorm_2x16', 'v'),
1356 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1357 ('extract_u16', 'v', 1))),
1358 65535.0),
1359 'options->lower_unpack_unorm_2x16'),
1360
1361 (('unpack_unorm_4x8', 'v'),
1362 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1363 ('extract_u8', 'v', 1),
1364 ('extract_u8', 'v', 2),
1365 ('extract_u8', 'v', 3))),
1366 255.0),
1367 'options->lower_unpack_unorm_4x8'),
1368
1369 (('unpack_snorm_2x16', 'v'),
1370 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1371 ('extract_i16', 'v', 1))),
1372 32767.0))),
1373 'options->lower_unpack_snorm_2x16'),
1374
1375 (('unpack_snorm_4x8', 'v'),
1376 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1377 ('extract_i8', 'v', 1),
1378 ('extract_i8', 'v', 2),
1379 ('extract_i8', 'v', 3))),
1380 127.0))),
1381 'options->lower_unpack_snorm_4x8'),
1382
1383 (('pack_half_2x16_split', 'a@32', 'b@32'),
1384 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1385 'options->lower_pack_split'),
1386
1387 (('unpack_half_2x16_split_x', 'a@32'),
1388 ('f2f32', ('u2u16', a)),
1389 'options->lower_pack_split'),
1390
1391 (('unpack_half_2x16_split_y', 'a@32'),
1392 ('f2f32', ('u2u16', ('ushr', a, 16))),
1393 'options->lower_pack_split'),
1394
1395 (('pack_32_2x16_split', 'a@16', 'b@16'),
1396 ('ior', ('ishl', ('u2u32', b), 16), ('u2u32', a)),
1397 'options->lower_pack_split'),
1398
1399 (('unpack_32_2x16_split_x', 'a@32'),
1400 ('u2u16', a),
1401 'options->lower_pack_split'),
1402
1403 (('unpack_32_2x16_split_y', 'a@32'),
1404 ('u2u16', ('ushr', 'a', 16)),
1405 'options->lower_pack_split'),
1406
1407 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1408 (('imin', ('imax', a, -1), 1), ('isign', a), '!options->lower_isign'),
1409 (('imax', ('imin', a, 1), -1), ('isign', a), '!options->lower_isign'),
1410 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1411 (('fadd', ('b2f32', ('flt', 0.0, 'a@32')), ('fneg', ('b2f32', ('flt', 'a@32', 0.0)))), ('fsign', a), '!options->lower_fsign'),
1412 (('iadd', ('b2i32', ('flt', 0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0)))), ('f2i32', ('fsign', a)), '!options->lower_fsign'),
1413
1414 # Address/offset calculations:
1415 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1416 # rule converts everyone else to imul:
1417 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1418
1419 (('umul24', a, b),
1420 ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)),
1421 '!options->has_umul24'),
1422 (('umad24', a, b, c),
1423 ('iadd', ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)), c),
1424 '!options->has_umad24'),
1425
1426 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1427 (('imad24_ir3', a, 0, c), (c)),
1428 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1429
1430 # if first two srcs are const, crack apart the imad so constant folding
1431 # can clean up the imul:
1432 # TODO ffma should probably get a similar rule:
1433 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1434
1435 # These will turn 24b address/offset calc back into 32b shifts, but
1436 # it should be safe to get back some of the bits of precision that we
1437 # already decided were no necessary:
1438 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1439 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1440 (('imul24', a, 0), (0)),
1441 ])
1442
1443 # bit_size dependent lowerings
1444 for bit_size in [8, 16, 32, 64]:
1445 # convenience constants
1446 intmax = (1 << (bit_size - 1)) - 1
1447 intmin = 1 << (bit_size - 1)
1448
1449 optimizations += [
1450 (('iadd_sat@' + str(bit_size), a, b),
1451 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1452 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1453 (('isub_sat@' + str(bit_size), a, b),
1454 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1455 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1456 ]
1457
1458 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq')])
1459
1460 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1461 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1462 ('iand', (invert[left], a, b), (invert[right], c, d))))
1463 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1464 ('ior', (invert[left], a, b), (invert[right], c, d))))
1465
1466 # Optimize x2bN(b2x(x)) -> x
1467 for size in type_sizes('bool'):
1468 aN = 'a@' + str(size)
1469 f2bN = 'f2b' + str(size)
1470 i2bN = 'i2b' + str(size)
1471 optimizations.append(((f2bN, ('b2f', aN)), a))
1472 optimizations.append(((i2bN, ('b2i', aN)), a))
1473
1474 # Optimize x2yN(b2x(x)) -> b2y
1475 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1476 if x != 'f' and y != 'f' and x != y:
1477 continue
1478
1479 b2x = 'b2f' if x == 'f' else 'b2i'
1480 b2y = 'b2f' if y == 'f' else 'b2i'
1481 x2yN = '{}2{}'.format(x, y)
1482 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1483
1484 # Optimize away x2xN(a@N)
1485 for t in ['int', 'uint', 'float', 'bool']:
1486 for N in type_sizes(t):
1487 x2xN = '{0}2{0}{1}'.format(t[0], N)
1488 aN = 'a@{0}'.format(N)
1489 optimizations.append(((x2xN, aN), a))
1490
1491 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1492 # In particular, we can optimize away everything except upcast of downcast and
1493 # upcasts where the type differs from the other cast
1494 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1495 if N < M:
1496 # The outer cast is a down-cast. It doesn't matter what the size of the
1497 # argument of the inner cast is because we'll never been in the upcast
1498 # of downcast case. Regardless of types, we'll always end up with y2yN
1499 # in the end.
1500 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1501 x2xN = '{0}2{0}{1}'.format(x, N)
1502 y2yM = '{0}2{0}{1}'.format(y, M)
1503 y2yN = '{0}2{0}{1}'.format(y, N)
1504 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1505 elif N > M:
1506 # If the outer cast is an up-cast, we have to be more careful about the
1507 # size of the argument of the inner cast and with types. In this case,
1508 # the type is always the type of type up-cast which is given by the
1509 # outer cast.
1510 for P in type_sizes('uint'):
1511 # We can't optimize away up-cast of down-cast.
1512 if M < P:
1513 continue
1514
1515 # Because we're doing down-cast of down-cast, the types always have
1516 # to match between the two casts
1517 for x in ['i', 'u']:
1518 x2xN = '{0}2{0}{1}'.format(x, N)
1519 x2xM = '{0}2{0}{1}'.format(x, M)
1520 aP = 'a@{0}'.format(P)
1521 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1522 else:
1523 # The N == M case is handled by other optimizations
1524 pass
1525
1526 # Downcast operations should be able to see through pack
1527 for t in ['i', 'u']:
1528 for N in [8, 16, 32]:
1529 x2xN = '{0}2{0}{1}'.format(t, N)
1530 optimizations += [
1531 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1532 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1533 ]
1534
1535 # Optimize comparisons with up-casts
1536 for t in ['int', 'uint', 'float']:
1537 for N, M in itertools.product(type_sizes(t), repeat=2):
1538 if N == 1 or N >= M:
1539 continue
1540
1541 cond = 'true'
1542 if N == 8:
1543 cond = 'options->support_8bit_alu'
1544 elif N == 16:
1545 cond = 'options->support_16bit_alu'
1546 x2xM = '{0}2{0}{1}'.format(t[0], M)
1547 x2xN = '{0}2{0}{1}'.format(t[0], N)
1548 aN = 'a@' + str(N)
1549 bN = 'b@' + str(N)
1550 xeq = 'feq' if t == 'float' else 'ieq'
1551 xne = 'fne' if t == 'float' else 'ine'
1552 xge = '{0}ge'.format(t[0])
1553 xlt = '{0}lt'.format(t[0])
1554
1555 # Up-casts are lossless so for correctly signed comparisons of
1556 # up-casted values we can do the comparison at the largest of the two
1557 # original sizes and drop one or both of the casts. (We have
1558 # optimizations to drop the no-op casts which this may generate.)
1559 for P in type_sizes(t):
1560 if P == 1 or P > N:
1561 continue
1562
1563 bP = 'b@' + str(P)
1564 optimizations += [
1565 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b)), cond),
1566 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b)), cond),
1567 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b)), cond),
1568 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b)), cond),
1569 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a), cond),
1570 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a), cond),
1571 ]
1572
1573 # The next bit doesn't work on floats because the range checks would
1574 # get way too complicated.
1575 if t in ['int', 'uint']:
1576 if t == 'int':
1577 xN_min = -(1 << (N - 1))
1578 xN_max = (1 << (N - 1)) - 1
1579 elif t == 'uint':
1580 xN_min = 0
1581 xN_max = (1 << N) - 1
1582 else:
1583 assert False
1584
1585 # If we're up-casting and comparing to a constant, we can unfold
1586 # the comparison into a comparison with the shrunk down constant
1587 # and a check that the constant fits in the smaller bit size.
1588 optimizations += [
1589 ((xeq, (x2xM, aN), '#b'),
1590 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b)), cond),
1591 ((xne, (x2xM, aN), '#b'),
1592 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b)), cond),
1593 ((xlt, (x2xM, aN), '#b'),
1594 ('iand', (xlt, xN_min, b),
1595 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b)))), cond),
1596 ((xlt, '#a', (x2xM, bN)),
1597 ('iand', (xlt, a, xN_max),
1598 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b))), cond),
1599 ((xge, (x2xM, aN), '#b'),
1600 ('iand', (xge, xN_max, b),
1601 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b)))), cond),
1602 ((xge, '#a', (x2xM, bN)),
1603 ('iand', (xge, a, xN_min),
1604 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b))), cond),
1605 ]
1606
1607 # Convert masking followed by signed downcast to just unsigned downcast
1608 optimizations += [
1609 (('i2i32', ('iand', 'a@64', 0xffffffff)), ('u2u32', a)),
1610 (('i2i16', ('iand', 'a@32', 0xffff)), ('u2u16', a)),
1611 (('i2i16', ('iand', 'a@64', 0xffff)), ('u2u16', a)),
1612 (('i2i8', ('iand', 'a@16', 0xff)), ('u2u8', a)),
1613 (('i2i8', ('iand', 'a@32', 0xff)), ('u2u8', a)),
1614 (('i2i8', ('iand', 'a@64', 0xff)), ('u2u8', a)),
1615 ]
1616
1617 def fexp2i(exp, bits):
1618 # Generate an expression which constructs value 2.0^exp or 0.0.
1619 #
1620 # We assume that exp is already in a valid range:
1621 #
1622 # * [-15, 15] for 16-bit float
1623 # * [-127, 127] for 32-bit float
1624 # * [-1023, 1023] for 16-bit float
1625 #
1626 # If exp is the lowest value in the valid range, a value of 0.0 is
1627 # constructed. Otherwise, the value 2.0^exp is constructed.
1628 if bits == 16:
1629 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1630 elif bits == 32:
1631 return ('ishl', ('iadd', exp, 127), 23)
1632 elif bits == 64:
1633 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1634 else:
1635 assert False
1636
1637 def ldexp(f, exp, bits):
1638 # The maximum possible range for a normal exponent is [-126, 127] and,
1639 # throwing in denormals, you get a maximum range of [-149, 127]. This
1640 # means that we can potentially have a swing of +-276. If you start with
1641 # FLT_MAX, you actually have to do ldexp(FLT_MAX, -278) to get it to flush
1642 # all the way to zero. The GLSL spec only requires that we handle a subset
1643 # of this range. From version 4.60 of the spec:
1644 #
1645 # "If exp is greater than +128 (single-precision) or +1024
1646 # (double-precision), the value returned is undefined. If exp is less
1647 # than -126 (single-precision) or -1022 (double-precision), the value
1648 # returned may be flushed to zero. Additionally, splitting the value
1649 # into a significand and exponent using frexp() and then reconstructing
1650 # a floating-point value using ldexp() should yield the original input
1651 # for zero and all finite non-denormalized values."
1652 #
1653 # The SPIR-V spec has similar language.
1654 #
1655 # In order to handle the maximum value +128 using the fexp2i() helper
1656 # above, we have to split the exponent in half and do two multiply
1657 # operations.
1658 #
1659 # First, we clamp exp to a reasonable range. Specifically, we clamp to
1660 # twice the full range that is valid for the fexp2i() function above. If
1661 # exp/2 is the bottom value of that range, the fexp2i() expression will
1662 # yield 0.0f which, when multiplied by f, will flush it to zero which is
1663 # allowed by the GLSL and SPIR-V specs for low exponent values. If the
1664 # value is clamped from above, then it must have been above the supported
1665 # range of the GLSL built-in and therefore any return value is acceptable.
1666 if bits == 16:
1667 exp = ('imin', ('imax', exp, -30), 30)
1668 elif bits == 32:
1669 exp = ('imin', ('imax', exp, -254), 254)
1670 elif bits == 64:
1671 exp = ('imin', ('imax', exp, -2046), 2046)
1672 else:
1673 assert False
1674
1675 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1676 # (We use ishr which isn't the same for -1, but the -1 case still works
1677 # since we use exp-exp/2 as the second exponent.) While the spec
1678 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1679 # work with denormals and doesn't allow for the full swing in exponents
1680 # that you can get with normalized values. Instead, we create two powers
1681 # of two and multiply by them each in turn. That way the effective range
1682 # of our exponent is doubled.
1683 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1684 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1685 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1686
1687 optimizations += [
1688 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1689 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1690 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1691 ]
1692
1693 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1694 def bitfield_reverse(u):
1695 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1696 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1697 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1698 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1699 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1700
1701 return step5
1702
1703 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1704
1705 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1706 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1707 # and, if a is a NaN then the second comparison will fail anyway.
1708 for op in ['flt', 'fge', 'feq']:
1709 optimizations += [
1710 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1711 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1712 ]
1713
1714 # Add optimizations to handle the case where the result of a ternary is
1715 # compared to a constant. This way we can take things like
1716 #
1717 # (a ? 0 : 1) > 0
1718 #
1719 # and turn it into
1720 #
1721 # a ? (0 > 0) : (1 > 0)
1722 #
1723 # which constant folding will eat for lunch. The resulting ternary will
1724 # further get cleaned up by the boolean reductions above and we will be
1725 # left with just the original variable "a".
1726 for op in ['flt', 'fge', 'feq', 'fne',
1727 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1728 optimizations += [
1729 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1730 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1731 ((op, '#d', ('bcsel', a, '#b', '#c')),
1732 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1733 ]
1734
1735
1736 # For example, this converts things like
1737 #
1738 # 1 + mix(0, a - 1, condition)
1739 #
1740 # into
1741 #
1742 # mix(1, (a-1)+1, condition)
1743 #
1744 # Other optimizations will rearrange the constants.
1745 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1746 optimizations += [
1747 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1748 ]
1749
1750 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1751 # states:
1752 #
1753 # If neither layout qualifier is specified, derivatives in compute shaders
1754 # return zero, which is consistent with the handling of built-in texture
1755 # functions like texture() in GLSL 4.50 compute shaders.
1756 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1757 'fddy', 'fddy_fine', 'fddy_coarse']:
1758 optimizations += [
1759 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1760 ]
1761
1762 # Some optimizations for ir3-specific instructions.
1763 optimizations += [
1764 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1765 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1766 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1767 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1768 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1769 ]
1770
1771 # These kinds of sequences can occur after nir_opt_peephole_select.
1772 #
1773 # NOTE: fadd is not handled here because that gets in the way of ffma
1774 # generation in the i965 driver. Instead, fadd and ffma are handled in
1775 # late_optimizations.
1776
1777 for op in ['flrp']:
1778 optimizations += [
1779 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1780 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1781 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1782 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1783 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1784 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1785 ]
1786
1787 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1788 optimizations += [
1789 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1790 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1791 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1792 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1793 ]
1794
1795 for op in ['fpow']:
1796 optimizations += [
1797 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1798 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1799 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1800 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1801 ]
1802
1803 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos', 'fneg', 'fabs', 'fsign']:
1804 optimizations += [
1805 (('bcsel', c, (op + '(is_used_once)', a), (op + '(is_used_once)', b)), (op, ('bcsel', c, a, b))),
1806 ]
1807
1808 for op in ['ineg', 'iabs', 'inot', 'isign']:
1809 optimizations += [
1810 ((op, ('bcsel', c, '#a', '#b')), ('bcsel', c, (op, a), (op, b))),
1811 ]
1812
1813 # This section contains optimizations to propagate downsizing conversions of
1814 # constructed vectors into vectors of downsized components. Whether this is
1815 # useful depends on the SIMD semantics of the backend. On a true SIMD machine,
1816 # this reduces the register pressure of the vector itself and often enables the
1817 # conversions to be eliminated via other algebraic rules or constant folding.
1818 # In the worst case on a SIMD architecture, the propagated conversions may be
1819 # revectorized via nir_opt_vectorize so instruction count is minimally
1820 # impacted.
1821 #
1822 # On a machine with SIMD-within-a-register only, this actually
1823 # counterintuitively hurts instruction count. These machines are the same that
1824 # require vectorize_vec2_16bit, so we predicate the optimizations on that flag
1825 # not being set.
1826 #
1827 # Finally for scalar architectures, there should be no difference in generated
1828 # code since it all ends up scalarized at the end, but it might minimally help
1829 # compile-times.
1830
1831 for i in range(2, 4 + 1):
1832 for T in ('f', 'u', 'i'):
1833 vec_inst = ('vec' + str(i),)
1834
1835 indices = ['a', 'b', 'c', 'd']
1836 suffix_in = tuple((indices[j] + '@32') for j in range(i))
1837
1838 to_16 = '{}2{}16'.format(T, T)
1839 to_mp = '{}2{}mp'.format(T, T)
1840
1841 out_16 = tuple((to_16, indices[j]) for j in range(i))
1842 out_mp = tuple((to_mp, indices[j]) for j in range(i))
1843
1844 optimizations += [
1845 ((to_16, vec_inst + suffix_in), vec_inst + out_16, '!options->vectorize_vec2_16bit'),
1846 ((to_mp, vec_inst + suffix_in), vec_inst + out_mp, '!options->vectorize_vec2_16bit')
1847 ]
1848
1849 # This section contains "late" optimizations that should be run before
1850 # creating ffmas and calling regular optimizations for the final time.
1851 # Optimizations should go here if they help code generation and conflict
1852 # with the regular optimizations.
1853 before_ffma_optimizations = [
1854 # Propagate constants down multiplication chains
1855 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1856 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1857 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1858 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1859
1860 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1861 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1862 (('~fadd', ('fneg', a), a), 0.0),
1863 (('iadd', ('ineg', a), a), 0),
1864 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1865 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1866 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1867 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1868
1869 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1870 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1871 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1872 ]
1873
1874 # This section contains "late" optimizations that should be run after the
1875 # regular optimizations have finished. Optimizations should go here if
1876 # they help code generation but do not necessarily produce code that is
1877 # more easily optimizable.
1878 late_optimizations = [
1879 # Most of these optimizations aren't quite safe when you get infinity or
1880 # Nan involved but the first one should be fine.
1881 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1882 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1883 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1884 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1885 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1886 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1887
1888 # nir_lower_to_source_mods will collapse this, but its existence during the
1889 # optimization loop can prevent other optimizations.
1890 (('fneg', ('fneg', a)), a),
1891
1892 # Subtractions get lowered during optimization, so we need to recombine them
1893 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1894 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1895 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1896 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1897
1898 # These are duplicated from the main optimizations table. The late
1899 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1900 # new patterns like these. The patterns that compare with zero are removed
1901 # because they are unlikely to be created in by anything in
1902 # late_optimizations.
1903 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1904 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1905 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1906 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1907 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1908 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1909
1910 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1911 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1912
1913 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1914
1915 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1916 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1917 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1918 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1919 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1920 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1921 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1922 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1923 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1924 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1925
1926 (('ior', a, a), a),
1927 (('iand', a, a), a),
1928
1929 (('iand', ('ine(is_used_once)', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
1930 (('ior', ('ieq(is_used_once)', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
1931
1932 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1933
1934 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1935 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1936 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1937 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1938
1939 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1940 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1941
1942 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1943 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1944
1945 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1946 # particular operation is common for expanding values stored in a texture
1947 # from [0,1] to [-1,1].
1948 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1949 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1950 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1951 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1952 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1953 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1954 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1955 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1956
1957 # flrp(a, b, a)
1958 # a*(1-a) + b*a
1959 # a + -a*a + a*b (1)
1960 # a + a*(b - a)
1961 # Option 1: ffma(a, (b-a), a)
1962 #
1963 # Alternately, after (1):
1964 # a*(1+b) + -a*a
1965 # a*((1+b) + -a)
1966 #
1967 # Let b=1
1968 #
1969 # Option 2: ffma(a, 2, -(a*a))
1970 # Option 3: ffma(a, 2, (-a)*a)
1971 # Option 4: ffma(a, -a, (2*a)
1972 # Option 5: a * (2 - a)
1973 #
1974 # There are a lot of other possible combinations.
1975 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1976 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1977 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1978 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1979 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1980
1981 # we do these late so that we don't get in the way of creating ffmas
1982 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1983 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1984
1985 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1986
1987 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1988 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1989 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1990 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1991
1992 # Things that look like DPH in the source shader may get expanded to
1993 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1994 # to NIR. After FFMA is generated, this can look like:
1995 #
1996 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1997 #
1998 # Reassociate the last addition into the first multiplication.
1999 #
2000 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
2001 # shader stages on some outputs that are intended to be invariant. For
2002 # various reasons, this optimization may not be fully applied in all
2003 # shaders used for different rendering passes of the same geometry. This
2004 # can result in Z-fighting artifacts (at best). For now, disable this
2005 # optimization in these stages. See bugzilla #111490. In tessellation
2006 # stages applications seem to use 'precise' when necessary, so allow the
2007 # optimization in those stages.
2008 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
2009 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
2010 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
2011 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
2012
2013 # Convert *2*mp instructions to concrete *2*16 instructions. At this point
2014 # any conversions that could have been removed will have been removed in
2015 # nir_opt_algebraic so any remaining ones are required.
2016 (('f2fmp', a), ('f2f16', a)),
2017 (('i2imp', a), ('i2i16', a)),
2018 (('u2ump', a), ('u2u16', a)),
2019
2020 # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says:
2021 #
2022 # If bits is zero, the result will be zero.
2023 #
2024 # These prevent the next two lowerings generating incorrect results when
2025 # count is zero.
2026 (('ubfe', a, b, 0), 0),
2027 (('ibfe', a, b, 0), 0),
2028
2029 # On Intel GPUs, BFE is a 3-source instruction. Like all 3-source
2030 # instructions on Intel GPUs, it cannot have an immediate values as
2031 # sources. There are also limitations on source register strides. As a
2032 # result, it is very easy for 3-source instruction combined with either
2033 # loads of immediate values or copies from weird register strides to be
2034 # more expensive than the primitive instructions it represents.
2035 (('ubfe', a, '#b', '#c'), ('iand', ('ushr', 0xffffffff, ('ineg', c)), ('ushr', a, b)), 'options->lower_bfe_with_two_constants'),
2036
2037 # b is the lowest order bit to be extracted and c is the number of bits to
2038 # extract. The inner shift removes the bits above b + c by shifting left
2039 # 32 - (b + c). ishl only sees the low 5 bits of the shift count, which is
2040 # -(b + c). The outer shift moves the bit that was at b to bit zero.
2041 # After the first shift, that bit is now at b + (32 - (b + c)) or 32 - c.
2042 # This means that it must be shifted right by 32 - c or -c bits.
2043 (('ibfe', a, '#b', '#c'), ('ishr', ('ishl', a, ('ineg', ('iadd', b, c))), ('ineg', c)), 'options->lower_bfe_with_two_constants'),
2044
2045 # Clean up no-op shifts that may result from the bfe lowerings.
2046 (('ishl', a, 0), a),
2047 (('ishl', a, -32), a),
2048 (('ishr', a, 0), a),
2049 (('ishr', a, -32), a),
2050 (('ushr', a, 0), a),
2051 ]
2052
2053 for op in ['fadd']:
2054 late_optimizations += [
2055 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
2056 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
2057 ]
2058
2059 for op in ['ffma']:
2060 late_optimizations += [
2061 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
2062 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
2063
2064 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
2065 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
2066 ]
2067
2068 distribute_src_mods = [
2069 # Try to remove some spurious negations rather than pushing them down.
2070 (('fmul', ('fneg', a), ('fneg', b)), ('fmul', a, b)),
2071 (('ffma', ('fneg', a), ('fneg', b), c), ('ffma', a, b, c)),
2072 (('fdot_replicated2', ('fneg', a), ('fneg', b)), ('fdot_replicated2', a, b)),
2073 (('fdot_replicated3', ('fneg', a), ('fneg', b)), ('fdot_replicated3', a, b)),
2074 (('fdot_replicated4', ('fneg', a), ('fneg', b)), ('fdot_replicated4', a, b)),
2075 (('fneg', ('fneg', a)), a),
2076
2077 (('fneg', ('fmul(is_used_once)', a, b)), ('fmul', ('fneg', a), b)),
2078 (('fabs', ('fmul(is_used_once)', a, b)), ('fmul', ('fabs', a), ('fabs', b))),
2079
2080 (('fneg', ('ffma(is_used_once)', a, b, c)), ('ffma', ('fneg', a), b, ('fneg', c))),
2081 (('fneg', ('flrp(is_used_once)', a, b, c)), ('flrp', ('fneg', a), ('fneg', b), c)),
2082 (('fneg', ('fadd(is_used_once)', a, b)), ('fadd', ('fneg', a), ('fneg', b))),
2083
2084 # Note that fmin <-> fmax. I don't think there is a way to distribute
2085 # fabs() into fmin or fmax.
2086 (('fneg', ('fmin(is_used_once)', a, b)), ('fmax', ('fneg', a), ('fneg', b))),
2087 (('fneg', ('fmax(is_used_once)', a, b)), ('fmin', ('fneg', a), ('fneg', b))),
2088
2089 (('fneg', ('fdot_replicated2(is_used_once)', a, b)), ('fdot_replicated2', ('fneg', a), b)),
2090 (('fneg', ('fdot_replicated3(is_used_once)', a, b)), ('fdot_replicated3', ('fneg', a), b)),
2091 (('fneg', ('fdot_replicated4(is_used_once)', a, b)), ('fdot_replicated4', ('fneg', a), b)),
2092
2093 # fdph works mostly like fdot, but to get the correct result, the negation
2094 # must be applied to the second source.
2095 (('fneg', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', a, ('fneg', b))),
2096
2097 (('fneg', ('fsign(is_used_once)', a)), ('fsign', ('fneg', a))),
2098 (('fabs', ('fsign(is_used_once)', a)), ('fsign', ('fabs', a))),
2099 ]
2100
2101 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
2102 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
2103 before_ffma_optimizations).render())
2104 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
2105 late_optimizations).render())
2106 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_distribute_src_mods",
2107 distribute_src_mods).render())