nir/algebraic: Add lowering for 64-bit hadd and rhadd
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fabs', a)), ('fabs', a)),
113 (('fabs', ('fneg', a)), ('fabs', a)),
114 (('fabs', ('u2f', a)), ('u2f', a)),
115 (('iabs', ('iabs', a)), ('iabs', a)),
116 (('iabs', ('ineg', a)), ('iabs', a)),
117 (('f2b', ('fneg', a)), ('f2b', a)),
118 (('i2b', ('ineg', a)), ('i2b', a)),
119 (('~fadd', a, 0.0), a),
120 (('iadd', a, 0), a),
121 (('usadd_4x8', a, 0), a),
122 (('usadd_4x8', a, ~0), ~0),
123 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
124 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
125 (('~fadd', ('fneg', a), a), 0.0),
126 (('iadd', ('ineg', a), a), 0),
127 (('iadd', ('ineg', a), ('iadd', a, b)), b),
128 (('iadd', a, ('iadd', ('ineg', a), b)), b),
129 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
130 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
131 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
132 (('~fmul', a, 0.0), 0.0),
133 (('imul', a, 0), 0),
134 (('umul_unorm_4x8', a, 0), 0),
135 (('umul_unorm_4x8', a, ~0), a),
136 (('~fmul', a, 1.0), a),
137 (('imul', a, 1), a),
138 (('fmul', a, -1.0), ('fneg', a)),
139 (('imul', a, -1), ('ineg', a)),
140 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
141 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
142 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
143 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
144 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
145 (('~ffma', 0.0, a, b), b),
146 (('~ffma', a, b, 0.0), ('fmul', a, b)),
147 (('ffma', 1.0, a, b), ('fadd', a, b)),
148 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
149 (('~flrp', a, b, 0.0), a),
150 (('~flrp', a, b, 1.0), b),
151 (('~flrp', a, a, b), a),
152 (('~flrp', 0.0, a, b), ('fmul', a, b)),
153
154 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
155 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
156 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
157 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
158
159 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
160 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
161
162 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
163 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
164
165 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
166
167 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
168 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
169 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
170 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
171 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
172 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
173 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
174 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
175 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
176 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
177 # These are the same as the previous three rules, but it depends on
178 # 1-fsat(x) <=> fsat(1-x). See below.
179 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
180 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
181
182 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
183 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
184 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
185 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
186 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
187
188 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
189 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
190
191 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
192
193 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
194 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
195 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
196 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
197
198 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
199 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
200
201 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
202 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
203
204 # Lower fdot to fsum when it is available
205 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
206 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
208 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
209
210 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
211 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
212 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
213 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
214
215 # 1 - ((1 - a) * (1 - b))
216 # 1 - (1 - a - b + a*b)
217 # 1 - 1 + a + b - a*b
218 # a + b - a*b
219 # a + b*(1 - a)
220 # b*(1 - a) + 1*a
221 # flrp(b, 1, a)
222 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
223 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
224
225 # (a * #b + #c) << #d
226 # ((a * #b) << #d) + (#c << #d)
227 # (a * (#b << #d)) + (#c << #d)
228 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
229 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
230
231 # (a * #b) << #c
232 # a * (#b << #c)
233 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
234 ]
235
236 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
237 # bits of the second source. These replacements must correctly handle the
238 # case where (b % bitsize) + (c % bitsize) >= bitsize.
239 for s in [8, 16, 32, 64]:
240 mask = (1 << s) - 1
241
242 ishl = "ishl@{}".format(s)
243 ishr = "ishr@{}".format(s)
244 ushr = "ushr@{}".format(s)
245
246 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
247
248 optimizations.extend([
249 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
250 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
251
252 # To get get -1 for large shifts of negative values, ishr must instead
253 # clamp the shift count to the maximum value.
254 ((ishr, (ishr, a, '#b'), '#c'),
255 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
256 ])
257
258 optimizations.extend([
259 # This is common for address calculations. Reassociating may enable the
260 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
261 # instruction or a constant offset field for in load / store instructions.
262 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
263
264 # Comparison simplifications
265 (('~inot', ('flt', a, b)), ('fge', a, b)),
266 (('~inot', ('fge', a, b)), ('flt', a, b)),
267 (('inot', ('feq', a, b)), ('fne', a, b)),
268 (('inot', ('fne', a, b)), ('feq', a, b)),
269 (('inot', ('ilt', a, b)), ('ige', a, b)),
270 (('inot', ('ult', a, b)), ('uge', a, b)),
271 (('inot', ('ige', a, b)), ('ilt', a, b)),
272 (('inot', ('uge', a, b)), ('ult', a, b)),
273 (('inot', ('ieq', a, b)), ('ine', a, b)),
274 (('inot', ('ine', a, b)), ('ieq', a, b)),
275
276 (('iand', ('feq', a, b), ('fne', a, b)), False),
277 (('iand', ('flt', a, b), ('flt', b, a)), False),
278 (('iand', ('ieq', a, b), ('ine', a, b)), False),
279 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
280 (('iand', ('ult', a, b), ('ult', b, a)), False),
281
282 # This helps some shaders because, after some optimizations, they end up
283 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
284 # matching would be handled by CSE.
285 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
286 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
287 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
288 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
289 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
290 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
291 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
292 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
293 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
294 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
295
296 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
297 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
298 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
299 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
300 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
301 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
302
303 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
304 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
305 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
306 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
307
308 # 0.0 >= b2f(a)
309 # b2f(a) <= 0.0
310 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
311 # inot(a)
312 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
313
314 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
315
316 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
317 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
318 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
319 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
320 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
321 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
322 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
323 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
324 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
325 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
326 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
327 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
328 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
329 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
330 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
331 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
332 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
333 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
334 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
335 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
336
337 # -(b2f(a) + b2f(b)) < 0
338 # 0 < b2f(a) + b2f(b)
339 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
340 # a || b
341 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
342 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
343
344 # -(b2f(a) + b2f(b)) >= 0
345 # 0 >= b2f(a) + b2f(b)
346 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
347 # !(a || b)
348 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
349 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
350
351 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
352 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
353
354 # Some optimizations (below) convert things like (a < b || c < b) into
355 # (min(a, c) < b). However, this interfers with the previous optimizations
356 # that try to remove comparisons with negated sums of b2f. This just
357 # breaks that apart.
358 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
359 ('ior', ('flt', c, 0.0), ('ior', a, b))),
360
361 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
362 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
363 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
364 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
365 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
366 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
367 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
368 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
369 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
370 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
371 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
372 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
373
374 # Cannot remove the addition from ilt or ige due to overflow.
375 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
376 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
377
378 # fmin(-b2f(a), b) >= 0.0
379 # -b2f(a) >= 0.0 && b >= 0.0
380 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
381 # b2f(a) == 0.0 && b >= 0.0
382 # a == False && b >= 0.0
383 # !a && b >= 0.0
384 #
385 # The fge in the second replacement is not a typo. I leave the proof that
386 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
387 # reader.
388 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
389 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
390
391 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
392 (('~fne', ('b2f', 'a@1'), 0.0), a),
393 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
394 (('ine', ('b2i', 'a@1'), 0), a),
395
396 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
397 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
398 (('fge', ('u2f', a), 0.0), True),
399 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
400 (('flt', ('u2f', a), 0.0), False),
401 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
402 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
403 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
404 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
405 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
406 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
407 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
408
409 # 0.0 < fabs(a)
410 # fabs(a) > 0.0
411 # fabs(a) != 0.0 because fabs(a) must be >= 0
412 # a != 0.0
413 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
414
415 # -fabs(a) < 0.0
416 # fabs(a) > 0.0
417 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
418
419 # 0.0 >= fabs(a)
420 # 0.0 == fabs(a) because fabs(a) must be >= 0
421 # 0.0 == a
422 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
423
424 # -fabs(a) >= 0.0
425 # 0.0 >= fabs(a)
426 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
427
428 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
429 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
430
431 # (a < 0.0) || (a > 1.0)
432 # !(!(a < 0.0) && !(a > 1.0))
433 # !((a >= 0.0) && (a <= 1.0))
434 # !(a == fsat(a))
435 # a != fsat(a)
436 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
437
438 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
439 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
440 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
441 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
442
443 # fmin(b2f(a), b)
444 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
445 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
446 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
447 #
448 # Since b is a constant, constant folding will eliminate the fmin and the
449 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
450 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
451
452 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
453
454 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
455 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
456 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
457 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
458 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
459 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
460 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
461 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
462 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
463 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
464 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
465 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
466 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
467 (('bcsel', a, True, b), ('ior', a, b)),
468 (('bcsel', a, a, b), ('ior', a, b)),
469 (('bcsel', a, b, False), ('iand', a, b)),
470 (('bcsel', a, b, a), ('iand', a, b)),
471 (('~fmin', a, a), a),
472 (('~fmax', a, a), a),
473 (('imin', a, a), a),
474 (('imax', a, a), a),
475 (('umin', a, a), a),
476 (('umax', a, a), a),
477 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
478 (('umax', ('umax', a, b), b), ('umax', a, b)),
479 (('imax', ('imax', a, b), b), ('imax', a, b)),
480 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
481 (('umin', ('umin', a, b), b), ('umin', a, b)),
482 (('imin', ('imin', a, b), b), ('imin', a, b)),
483 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
484 (('fmax', a, ('fneg', a)), ('fabs', a)),
485 (('imax', a, ('ineg', a)), ('iabs', a)),
486 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
487 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
488 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
489 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
490 (('~fmin', a, ('fabs', a)), a),
491 (('imin', a, ('iabs', a)), a),
492 (('~fmax', a, ('fneg', ('fabs', a))), a),
493 (('imax', a, ('ineg', ('iabs', a))), a),
494 (('fmax', a, ('fabs', a)), ('fabs', a)),
495 (('imax', a, ('iabs', a)), ('iabs', a)),
496 (('fmax', a, ('fneg', a)), ('fabs', a)),
497 (('imax', a, ('ineg', a)), ('iabs', a)),
498 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
499 (('~fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
500 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
501 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
502 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
503 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
504 (('fsat', ('b2f', a)), ('b2f', a)),
505 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
506 (('fsat', ('fsat', a)), ('fsat', a)),
507 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
508 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
509 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
510 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
511 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
512 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
513 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
514 (('fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
515 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
516 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
517 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
518 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
519 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
520 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
521 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
522 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
523 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
524 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
525 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
526 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
527 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
528 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
529 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
530 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
531 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
532
533 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
534 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
535 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
536 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
537 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
538 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
539 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
540 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
541 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
542 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
543 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
544 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
545 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
546 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
547 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
548 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
549
550 # These derive from the previous patterns with the application of b < 0 <=>
551 # 0 < -b. The transformation should be applied if either comparison is
552 # used once as this ensures that the number of comparisons will not
553 # increase. The sources to the ior and iand are not symmetric, so the
554 # rules have to be duplicated to get this behavior.
555 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
556 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
557 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
558 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
559 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
560 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
561 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
562 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
563
564 # Common pattern like 'if (i == 0 || i == 1 || ...)'
565 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
566 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
567 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
568
569 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
570 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
571 # so emit an open-coded version of that.
572 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
573 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
574
575 (('ior', a, ('ieq', a, False)), True),
576 (('ior', a, ('inot', a)), -1),
577
578 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
579 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
580
581 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('ior', 'a@32', 'b@32'), 0), '!options->lower_bitops'),
582
583 # These patterns can result when (a < b || a < c) => (a < min(b, c))
584 # transformations occur before constant propagation and loop-unrolling.
585 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
586 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
587 (('~fge', a, ('fmin', b, a)), True),
588 (('~fge', ('fmax', a, b), a), True),
589 (('~flt', a, ('fmin', b, a)), False),
590 (('~flt', ('fmax', a, b), a), False),
591 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
592 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
593
594 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
595 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
596 (('ige', a, ('imin', b, a)), True),
597 (('ige', ('imax', a, b), a), True),
598 (('ult', a, ('umax', b, a)), ('ult', a, b)),
599 (('ult', ('umin', a, b), a), ('ult', b, a)),
600 (('uge', a, ('umin', b, a)), True),
601 (('uge', ('umax', a, b), a), True),
602 (('ilt', a, ('imin', b, a)), False),
603 (('ilt', ('imax', a, b), a), False),
604 (('ige', a, ('imax', b, a)), ('ige', a, b)),
605 (('ige', ('imin', a, b), a), ('ige', b, a)),
606 (('ult', a, ('umin', b, a)), False),
607 (('ult', ('umax', a, b), a), False),
608 (('uge', a, ('umax', b, a)), ('uge', a, b)),
609 (('uge', ('umin', a, b), a), ('uge', b, a)),
610 (('ult', a, ('iand', b, a)), False),
611 (('ult', ('ior', a, b), a), False),
612 (('uge', a, ('iand', b, a)), True),
613 (('uge', ('ior', a, b), a), True),
614
615 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
616 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
617 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
618 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
619 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
620 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
621 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
622 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
623 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
624 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
625 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
626 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
627 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
628 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
629 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
630 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
631
632 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
633 # negative.
634 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
635 ('iabs', ('ishr', a, b))),
636 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
637
638 (('fabs', ('slt', a, b)), ('slt', a, b)),
639 (('fabs', ('sge', a, b)), ('sge', a, b)),
640 (('fabs', ('seq', a, b)), ('seq', a, b)),
641 (('fabs', ('sne', a, b)), ('sne', a, b)),
642 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
643 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
644 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
645 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
646 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
647 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
648 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
649 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
650 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
651 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
652 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
653 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
654 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
655 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
656 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
657 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
658 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
659 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
660 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
661 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
662 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
663 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
664 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
665 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
666 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
667 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
668 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
669 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
670 # Emulating booleans
671 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
672 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
673 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
674 (('iand', 'a@bool32', 1.0), ('b2f', a)),
675 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
676 (('ineg', ('b2i32', 'a@32')), a),
677 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
678 # Comparison with the same args. Note that these are not done for
679 # the float versions because NaN always returns false on float
680 # inequalities.
681 (('ilt', a, a), False),
682 (('ige', a, a), True),
683 (('ieq', a, a), True),
684 (('ine', a, a), False),
685 (('ult', a, a), False),
686 (('uge', a, a), True),
687 # Logical and bit operations
688 (('iand', a, a), a),
689 (('iand', a, ~0), a),
690 (('iand', a, 0), 0),
691 (('ior', a, a), a),
692 (('ior', a, 0), a),
693 (('ior', a, True), True),
694 (('ixor', a, a), 0),
695 (('ixor', a, 0), a),
696 (('inot', ('inot', a)), a),
697 (('ior', ('iand', a, b), b), b),
698 (('ior', ('ior', a, b), b), ('ior', a, b)),
699 (('iand', ('ior', a, b), b), b),
700 (('iand', ('iand', a, b), b), ('iand', a, b)),
701 # DeMorgan's Laws
702 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
703 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
704 # Shift optimizations
705 (('ishl', 0, a), 0),
706 (('ishl', a, 0), a),
707 (('ishr', 0, a), 0),
708 (('ishr', a, 0), a),
709 (('ushr', 0, a), 0),
710 (('ushr', a, 0), a),
711 (('iand', 0xff, ('ushr@32', a, 24)), ('ushr', a, 24)),
712 (('iand', 0xffff, ('ushr@32', a, 16)), ('ushr', a, 16)),
713 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
714 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
715 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
716 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
717 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
718 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
719 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
720 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
721 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
722 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
723 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
724 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
725 # Exponential/logarithmic identities
726 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
727 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
728 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
729 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
730 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
731 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
732 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
733 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
734 (('~fpow', a, 1.0), a),
735 (('~fpow', a, 2.0), ('fmul', a, a)),
736 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
737 (('~fpow', 2.0, a), ('fexp2', a)),
738 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
739 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
740 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
741 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
742 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
743 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
744 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
745 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
746 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
747 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
748 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
749 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
750 # Division and reciprocal
751 (('~fdiv', 1.0, a), ('frcp', a)),
752 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
753 (('~frcp', ('frcp', a)), a),
754 (('~frcp', ('fsqrt', a)), ('frsq', a)),
755 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
756 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
757 # Trig
758 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
759 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
760 # Boolean simplifications
761 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
762 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
763 (('ieq', a, True), a),
764 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
765 (('ine', a, False), a),
766 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
767 (('bcsel', a, True, False), a),
768 (('bcsel', a, False, True), ('inot', a)),
769 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
770 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
771 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
772 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
773 (('bcsel', True, b, c), b),
774 (('bcsel', False, b, c), c),
775 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
776
777 (('bcsel', a, b, b), b),
778 (('~fcsel', a, b, b), b),
779
780 # D3D Boolean emulation
781 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
782 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
783 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
784 ('ineg', ('b2i', ('iand', a, b)))),
785 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
786 ('ineg', ('b2i', ('ior', a, b)))),
787 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
788 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
789 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
790 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
791 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
792 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
793
794 # SM5 32-bit shifts are defined to use the 5 least significant bits
795 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
796 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
797 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
798
799 # Conversions
800 (('i2b32', ('b2i', 'a@32')), a),
801 (('f2i', ('ftrunc', a)), ('f2i', a)),
802 (('f2u', ('ftrunc', a)), ('f2u', a)),
803 (('i2b', ('ineg', a)), ('i2b', a)),
804 (('i2b', ('iabs', a)), ('i2b', a)),
805 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
806
807 # The C spec says, "If the value of the integral part cannot be represented
808 # by the integer type, the behavior is undefined." "Undefined" can mean
809 # "the conversion doesn't happen at all."
810 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
811
812 # Ironically, mark these as imprecise because removing the conversions may
813 # preserve more precision than doing the conversions (e.g.,
814 # uint(float(0x81818181u)) == 0x81818200).
815 (('~f2i32', ('i2f', 'a@32')), a),
816 (('~f2i32', ('u2f', 'a@32')), a),
817 (('~f2u32', ('i2f', 'a@32')), a),
818 (('~f2u32', ('u2f', 'a@32')), a),
819
820 (('ffloor', 'a(is_integral)'), a),
821 (('fceil', 'a(is_integral)'), a),
822 (('ftrunc', 'a(is_integral)'), a),
823 # fract(x) = x - floor(x), so fract(NaN) = NaN
824 (('~ffract', 'a(is_integral)'), 0.0),
825 (('fabs', 'a(is_not_negative)'), a),
826 (('iabs', 'a(is_not_negative)'), a),
827 (('fsat', 'a(is_not_positive)'), 0.0),
828
829 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
830 # says:
831 #
832 # It is undefined to convert a negative floating-point value to an
833 # uint.
834 #
835 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
836 # some optimizations in the i965 backend to proceed.
837 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
838 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
839 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
840 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
841
842 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
843
844 # The result of the multiply must be in [-1, 0], so the result of the ffma
845 # must be in [0, 1].
846 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
847 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
848 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
849 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
850
851 (('fne', 'a(is_not_zero)', 0.0), True),
852 (('feq', 'a(is_not_zero)', 0.0), False),
853
854 # In this chart, + means value > 0 and - means value < 0.
855 #
856 # + >= + -> unknown 0 >= + -> false - >= + -> false
857 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
858 # + >= - -> true 0 >= - -> true - >= - -> unknown
859 #
860 # Using grouping conceptually similar to a Karnaugh map...
861 #
862 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
863 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
864 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
865 #
866 # The flt / ilt cases just invert the expected result.
867 #
868 # The results expecting true, must be marked imprecise. The results
869 # expecting false are fine because NaN compared >= or < anything is false.
870
871 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
872 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
873 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
874
875 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
876 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
877 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
878
879 (('ine', 'a(is_not_zero)', 0), True),
880 (('ieq', 'a(is_not_zero)', 0), False),
881
882 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
883 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
884 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
885
886 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
887 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
888 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
889
890 (('ult', 0, 'a(is_gt_zero)'), True),
891
892 # Packing and then unpacking does nothing
893 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
894 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
895 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
896 ('unpack_64_2x32_split_y', a)), a),
897
898 # Comparing two halves of an unpack separately. While this optimization
899 # should be correct for non-constant values, it's less obvious that it's
900 # useful in that case. For constant values, the pack will fold and we're
901 # guaranteed to reduce the whole tree to one instruction.
902 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
903 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
904 ('ieq', a, ('pack_32_2x16_split', b, c))),
905
906 # Byte extraction
907 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
908 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
909 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
910 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
911 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
912 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
913 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
914
915 # Useless masking before unpacking
916 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
917 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
918 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
919 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
920 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
921 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
922 ])
923
924 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
925 # patterns like those below.
926 for op in ('ushr', 'ishr'):
927 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
928 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
929 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
930
931 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
932
933 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
934 # patterns like those below.
935 for op in ('extract_u8', 'extract_i8'):
936 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
937 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
938 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
939
940 optimizations.extend([
941 # Word extraction
942 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
943 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
944 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
945 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
946 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
947
948 # Subtracts
949 (('ussub_4x8', a, 0), a),
950 (('ussub_4x8', a, ~0), 0),
951 # Lower all Subtractions first - they can get recombined later
952 (('fsub', a, b), ('fadd', a, ('fneg', b))),
953 (('isub', a, b), ('iadd', a, ('ineg', b))),
954 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
955 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
956 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
957
958 # Propagate negation up multiplication chains
959 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
960 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
961
962 # Propagate constants up multiplication chains
963 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
964 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
965 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
966 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
967
968 # Reassociate constants in add/mul chains so they can be folded together.
969 # For now, we mostly only handle cases where the constants are separated by
970 # a single non-constant. We could do better eventually.
971 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
972 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
973 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
974 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
975 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
976
977 # Drop mul-div by the same value when there's no wrapping.
978 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
979
980 # By definition...
981 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
982 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
983 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
984
985 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
986 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
987 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
988
989 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
990
991 # Misc. lowering
992 (('fmod@16', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
993 (('fmod@32', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
994 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
995 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
996 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
997
998 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
999 ('bcsel', ('ult', 31, 'bits'), 'insert',
1000 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1001 'options->lower_bitfield_insert'),
1002 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1003 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1004 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1005 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1006 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1007 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1008 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1009 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1010
1011 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1012 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1013
1014 # Alternative lowering that doesn't rely on bfi.
1015 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1016 ('bcsel', ('ult', 31, 'bits'),
1017 'insert',
1018 (('ior',
1019 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1020 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1021 'options->lower_bitfield_insert_to_shifts'),
1022
1023 # Alternative lowering that uses bitfield_select.
1024 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1025 ('bcsel', ('ult', 31, 'bits'), 'insert',
1026 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1027 'options->lower_bitfield_insert_to_bitfield_select'),
1028
1029 (('ibitfield_extract', 'value', 'offset', 'bits'),
1030 ('bcsel', ('ult', 31, 'bits'), 'value',
1031 ('ibfe', 'value', 'offset', 'bits')),
1032 'options->lower_bitfield_extract'),
1033
1034 (('ubitfield_extract', 'value', 'offset', 'bits'),
1035 ('bcsel', ('ult', 31, 'bits'), 'value',
1036 ('ubfe', 'value', 'offset', 'bits')),
1037 'options->lower_bitfield_extract'),
1038
1039 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1040 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1041 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1042 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1043 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1044 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1045 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1046
1047 (('ibitfield_extract', 'value', 'offset', 'bits'),
1048 ('bcsel', ('ieq', 0, 'bits'),
1049 0,
1050 ('ishr',
1051 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1052 ('isub', 32, 'bits'))),
1053 'options->lower_bitfield_extract_to_shifts'),
1054
1055 (('ubitfield_extract', 'value', 'offset', 'bits'),
1056 ('iand',
1057 ('ushr', 'value', 'offset'),
1058 ('bcsel', ('ieq', 'bits', 32),
1059 0xffffffff,
1060 ('isub', ('ishl', 1, 'bits'), 1))),
1061 'options->lower_bitfield_extract_to_shifts'),
1062
1063 (('ifind_msb', 'value'),
1064 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1065 'options->lower_ifind_msb'),
1066
1067 (('find_lsb', 'value'),
1068 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1069 'options->lower_find_lsb'),
1070
1071 (('extract_i8', a, 'b@32'),
1072 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1073 'options->lower_extract_byte'),
1074
1075 (('extract_u8', a, 'b@32'),
1076 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1077 'options->lower_extract_byte'),
1078
1079 (('extract_i16', a, 'b@32'),
1080 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1081 'options->lower_extract_word'),
1082
1083 (('extract_u16', a, 'b@32'),
1084 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1085 'options->lower_extract_word'),
1086
1087 (('pack_unorm_2x16', 'v'),
1088 ('pack_uvec2_to_uint',
1089 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1090 'options->lower_pack_unorm_2x16'),
1091
1092 (('pack_unorm_4x8', 'v'),
1093 ('pack_uvec4_to_uint',
1094 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1095 'options->lower_pack_unorm_4x8'),
1096
1097 (('pack_snorm_2x16', 'v'),
1098 ('pack_uvec2_to_uint',
1099 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1100 'options->lower_pack_snorm_2x16'),
1101
1102 (('pack_snorm_4x8', 'v'),
1103 ('pack_uvec4_to_uint',
1104 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1105 'options->lower_pack_snorm_4x8'),
1106
1107 (('unpack_unorm_2x16', 'v'),
1108 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1109 ('extract_u16', 'v', 1))),
1110 65535.0),
1111 'options->lower_unpack_unorm_2x16'),
1112
1113 (('unpack_unorm_4x8', 'v'),
1114 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1115 ('extract_u8', 'v', 1),
1116 ('extract_u8', 'v', 2),
1117 ('extract_u8', 'v', 3))),
1118 255.0),
1119 'options->lower_unpack_unorm_4x8'),
1120
1121 (('unpack_snorm_2x16', 'v'),
1122 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1123 ('extract_i16', 'v', 1))),
1124 32767.0))),
1125 'options->lower_unpack_snorm_2x16'),
1126
1127 (('unpack_snorm_4x8', 'v'),
1128 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1129 ('extract_i8', 'v', 1),
1130 ('extract_i8', 'v', 2),
1131 ('extract_i8', 'v', 3))),
1132 127.0))),
1133 'options->lower_unpack_snorm_4x8'),
1134
1135 (('pack_half_2x16_split', 'a@32', 'b@32'),
1136 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1137 'options->lower_pack_half_2x16_split'),
1138
1139 (('unpack_half_2x16_split_x', 'a@32'),
1140 ('f2f32', ('u2u16', a)),
1141 'options->lower_unpack_half_2x16_split'),
1142
1143 (('unpack_half_2x16_split_y', 'a@32'),
1144 ('f2f32', ('u2u16', ('ushr', a, 16))),
1145 'options->lower_unpack_half_2x16_split'),
1146
1147 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1148 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1149
1150 # Address/offset calculations:
1151 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1152 # rule converts everyone else to imul:
1153 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1154
1155 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1156 (('imad24_ir3', a, 0, c), (c)),
1157 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1158
1159 # if first two srcs are const, crack apart the imad so constant folding
1160 # can clean up the imul:
1161 # TODO ffma should probably get a similar rule:
1162 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1163
1164 # These will turn 24b address/offset calc back into 32b shifts, but
1165 # it should be safe to get back some of the bits of precision that we
1166 # already decided were no necessary:
1167 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1168 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1169 (('imul24', a, 0), (0)),
1170 ])
1171
1172 # bit_size dependent lowerings
1173 for bit_size in [8, 16, 32, 64]:
1174 # convenience constants
1175 intmax = (1 << (bit_size - 1)) - 1
1176 intmin = 1 << (bit_size - 1)
1177
1178 optimizations += [
1179 (('iadd_sat@' + str(bit_size), a, b),
1180 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1181 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1182 (('isub_sat@' + str(bit_size), a, b),
1183 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1184 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1185 ]
1186
1187 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq'), ('fge', 'flt'), ('flt', 'fge')])
1188
1189 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1190 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1191 ('iand', (invert[left], a, b), (invert[right], c, d))))
1192 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1193 ('ior', (invert[left], a, b), (invert[right], c, d))))
1194
1195 # Optimize x2bN(b2x(x)) -> x
1196 for size in type_sizes('bool'):
1197 aN = 'a@' + str(size)
1198 f2bN = 'f2b' + str(size)
1199 i2bN = 'i2b' + str(size)
1200 optimizations.append(((f2bN, ('b2f', aN)), a))
1201 optimizations.append(((i2bN, ('b2i', aN)), a))
1202
1203 # Optimize x2yN(b2x(x)) -> b2y
1204 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1205 if x != 'f' and y != 'f' and x != y:
1206 continue
1207
1208 b2x = 'b2f' if x == 'f' else 'b2i'
1209 b2y = 'b2f' if y == 'f' else 'b2i'
1210 x2yN = '{}2{}'.format(x, y)
1211 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1212
1213 # Optimize away x2xN(a@N)
1214 for t in ['int', 'uint', 'float']:
1215 for N in type_sizes(t):
1216 x2xN = '{0}2{0}{1}'.format(t[0], N)
1217 aN = 'a@{0}'.format(N)
1218 optimizations.append(((x2xN, aN), a))
1219
1220 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1221 # In particular, we can optimize away everything except upcast of downcast and
1222 # upcasts where the type differs from the other cast
1223 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1224 if N < M:
1225 # The outer cast is a down-cast. It doesn't matter what the size of the
1226 # argument of the inner cast is because we'll never been in the upcast
1227 # of downcast case. Regardless of types, we'll always end up with y2yN
1228 # in the end.
1229 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1230 x2xN = '{0}2{0}{1}'.format(x, N)
1231 y2yM = '{0}2{0}{1}'.format(y, M)
1232 y2yN = '{0}2{0}{1}'.format(y, N)
1233 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1234 elif N > M:
1235 # If the outer cast is an up-cast, we have to be more careful about the
1236 # size of the argument of the inner cast and with types. In this case,
1237 # the type is always the type of type up-cast which is given by the
1238 # outer cast.
1239 for P in type_sizes('uint'):
1240 # We can't optimize away up-cast of down-cast.
1241 if M < P:
1242 continue
1243
1244 # Because we're doing down-cast of down-cast, the types always have
1245 # to match between the two casts
1246 for x in ['i', 'u']:
1247 x2xN = '{0}2{0}{1}'.format(x, N)
1248 x2xM = '{0}2{0}{1}'.format(x, M)
1249 aP = 'a@{0}'.format(P)
1250 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1251 else:
1252 # The N == M case is handled by other optimizations
1253 pass
1254
1255 # Optimize comparisons with up-casts
1256 for t in ['int', 'uint', 'float']:
1257 for N, M in itertools.product(type_sizes(t), repeat=2):
1258 if N == 1 or N >= M:
1259 continue
1260
1261 x2xM = '{0}2{0}{1}'.format(t[0], M)
1262 x2xN = '{0}2{0}{1}'.format(t[0], N)
1263 aN = 'a@' + str(N)
1264 bN = 'b@' + str(N)
1265 xeq = 'feq' if t == 'float' else 'ieq'
1266 xne = 'fne' if t == 'float' else 'ine'
1267 xge = '{0}ge'.format(t[0])
1268 xlt = '{0}lt'.format(t[0])
1269
1270 # Up-casts are lossless so for correctly signed comparisons of
1271 # up-casted values we can do the comparison at the largest of the two
1272 # original sizes and drop one or both of the casts. (We have
1273 # optimizations to drop the no-op casts which this may generate.)
1274 for P in type_sizes(t):
1275 if P == 1 or P > N:
1276 continue
1277
1278 bP = 'b@' + str(P)
1279 optimizations += [
1280 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b))),
1281 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b))),
1282 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b))),
1283 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b))),
1284 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a)),
1285 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a)),
1286 ]
1287
1288 # The next bit doesn't work on floats because the range checks would
1289 # get way too complicated.
1290 if t in ['int', 'uint']:
1291 if t == 'int':
1292 xN_min = -(1 << (N - 1))
1293 xN_max = (1 << (N - 1)) - 1
1294 elif t == 'uint':
1295 xN_min = 0
1296 xN_max = (1 << N) - 1
1297 else:
1298 assert False
1299
1300 # If we're up-casting and comparing to a constant, we can unfold
1301 # the comparison into a comparison with the shrunk down constant
1302 # and a check that the constant fits in the smaller bit size.
1303 optimizations += [
1304 ((xeq, (x2xM, aN), '#b'),
1305 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b))),
1306 ((xne, (x2xM, aN), '#b'),
1307 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b))),
1308 ((xlt, (x2xM, aN), '#b'),
1309 ('iand', (xlt, xN_min, b),
1310 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b))))),
1311 ((xlt, '#a', (x2xM, bN)),
1312 ('iand', (xlt, a, xN_max),
1313 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b)))),
1314 ((xge, (x2xM, aN), '#b'),
1315 ('iand', (xge, xN_max, b),
1316 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b))))),
1317 ((xge, '#a', (x2xM, bN)),
1318 ('iand', (xge, a, xN_min),
1319 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b)))),
1320 ]
1321
1322 def fexp2i(exp, bits):
1323 # We assume that exp is already in the right range.
1324 if bits == 16:
1325 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1326 elif bits == 32:
1327 return ('ishl', ('iadd', exp, 127), 23)
1328 elif bits == 64:
1329 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1330 else:
1331 assert False
1332
1333 def ldexp(f, exp, bits):
1334 # First, we clamp exp to a reasonable range. The maximum possible range
1335 # for a normal exponent is [-126, 127] and, throwing in denormals, you get
1336 # a maximum range of [-149, 127]. This means that we can potentially have
1337 # a swing of +-276. If you start with FLT_MAX, you actually have to do
1338 # ldexp(FLT_MAX, -278) to get it to flush all the way to zero. The GLSL
1339 # spec, on the other hand, only requires that we handle an exponent value
1340 # in the range [-126, 128]. This implementation is *mostly* correct; it
1341 # handles a range on exp of [-252, 254] which allows you to create any
1342 # value (including denorms if the hardware supports it) and to adjust the
1343 # exponent of any normal value to anything you want.
1344 if bits == 16:
1345 exp = ('imin', ('imax', exp, -28), 30)
1346 elif bits == 32:
1347 exp = ('imin', ('imax', exp, -252), 254)
1348 elif bits == 64:
1349 exp = ('imin', ('imax', exp, -2044), 2046)
1350 else:
1351 assert False
1352
1353 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1354 # (We use ishr which isn't the same for -1, but the -1 case still works
1355 # since we use exp-exp/2 as the second exponent.) While the spec
1356 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1357 # work with denormals and doesn't allow for the full swing in exponents
1358 # that you can get with normalized values. Instead, we create two powers
1359 # of two and multiply by them each in turn. That way the effective range
1360 # of our exponent is doubled.
1361 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1362 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1363 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1364
1365 optimizations += [
1366 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1367 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1368 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1369 ]
1370
1371 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1372 def bitfield_reverse(u):
1373 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1374 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1375 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1376 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1377 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1378
1379 return step5
1380
1381 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1382
1383 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1384 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1385 # and, if a is a NaN then the second comparison will fail anyway.
1386 for op in ['flt', 'fge', 'feq']:
1387 optimizations += [
1388 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1389 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1390 ]
1391
1392 # Add optimizations to handle the case where the result of a ternary is
1393 # compared to a constant. This way we can take things like
1394 #
1395 # (a ? 0 : 1) > 0
1396 #
1397 # and turn it into
1398 #
1399 # a ? (0 > 0) : (1 > 0)
1400 #
1401 # which constant folding will eat for lunch. The resulting ternary will
1402 # further get cleaned up by the boolean reductions above and we will be
1403 # left with just the original variable "a".
1404 for op in ['flt', 'fge', 'feq', 'fne',
1405 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1406 optimizations += [
1407 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1408 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1409 ((op, '#d', ('bcsel', a, '#b', '#c')),
1410 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1411 ]
1412
1413
1414 # For example, this converts things like
1415 #
1416 # 1 + mix(0, a - 1, condition)
1417 #
1418 # into
1419 #
1420 # mix(1, (a-1)+1, condition)
1421 #
1422 # Other optimizations will rearrange the constants.
1423 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1424 optimizations += [
1425 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1426 ]
1427
1428 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1429 # states:
1430 #
1431 # If neither layout qualifier is specified, derivatives in compute shaders
1432 # return zero, which is consistent with the handling of built-in texture
1433 # functions like texture() in GLSL 4.50 compute shaders.
1434 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1435 'fddy', 'fddy_fine', 'fddy_coarse']:
1436 optimizations += [
1437 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1438 ]
1439
1440 # Some optimizations for ir3-specific instructions.
1441 optimizations += [
1442 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1443 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1444 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1445 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1446 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1447 ]
1448
1449 # These kinds of sequences can occur after nir_opt_peephole_select.
1450 #
1451 # NOTE: fadd is not handled here because that gets in the way of ffma
1452 # generation in the i965 driver. Instead, fadd and ffma are handled in
1453 # late_optimizations.
1454
1455 for op in ['flrp']:
1456 optimizations += [
1457 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1458 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1459 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1460 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1461 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1462 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1463 ]
1464
1465 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1466 optimizations += [
1467 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1468 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1469 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1470 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1471 ]
1472
1473 for op in ['fpow']:
1474 optimizations += [
1475 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1476 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1477 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1478 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1479 ]
1480
1481 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos']:
1482 optimizations += [
1483 (('bcsel', a, (op + '(is_used_once)', b), (op, c)), (op, ('bcsel', a, b, c))),
1484 (('bcsel', a, (op, b), (op + '(is_used_once)', c)), (op, ('bcsel', a, b, c))),
1485 ]
1486
1487 # This section contains "late" optimizations that should be run before
1488 # creating ffmas and calling regular optimizations for the final time.
1489 # Optimizations should go here if they help code generation and conflict
1490 # with the regular optimizations.
1491 before_ffma_optimizations = [
1492 # Propagate constants down multiplication chains
1493 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1494 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1495 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1496 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1497
1498 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1499 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1500 (('~fadd', ('fneg', a), a), 0.0),
1501 (('iadd', ('ineg', a), a), 0),
1502 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1503 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1504 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1505 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1506
1507 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1508 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1509 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1510 ]
1511
1512 # This section contains "late" optimizations that should be run after the
1513 # regular optimizations have finished. Optimizations should go here if
1514 # they help code generation but do not necessarily produce code that is
1515 # more easily optimizable.
1516 late_optimizations = [
1517 # Most of these optimizations aren't quite safe when you get infinity or
1518 # Nan involved but the first one should be fine.
1519 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1520 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1521 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1522 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1523 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1524 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1525
1526 # nir_lower_to_source_mods will collapse this, but its existence during the
1527 # optimization loop can prevent other optimizations.
1528 (('fneg', ('fneg', a)), a),
1529
1530 # Subtractions get lowered during optimization, so we need to recombine them
1531 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1532 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1533 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1534 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1535
1536 # These are duplicated from the main optimizations table. The late
1537 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1538 # new patterns like these. The patterns that compare with zero are removed
1539 # because they are unlikely to be created in by anything in
1540 # late_optimizations.
1541 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1542 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1543 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1544 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1545 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1546 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1547
1548 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1549 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1550
1551 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1552
1553 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1554 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1555 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1556 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1557 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1558 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1559 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1560 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1561 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1562 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1563
1564 (('ior', a, a), a),
1565 (('iand', a, a), a),
1566
1567 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1568
1569 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1570 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1571 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1572 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1573
1574 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1575 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1576
1577 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1578 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1579
1580 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1581 # particular operation is common for expanding values stored in a texture
1582 # from [0,1] to [-1,1].
1583 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1584 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1585 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1586 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1587 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1588 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1589 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1590 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1591
1592 # flrp(a, b, a)
1593 # a*(1-a) + b*a
1594 # a + -a*a + a*b (1)
1595 # a + a*(b - a)
1596 # Option 1: ffma(a, (b-a), a)
1597 #
1598 # Alternately, after (1):
1599 # a*(1+b) + -a*a
1600 # a*((1+b) + -a)
1601 #
1602 # Let b=1
1603 #
1604 # Option 2: ffma(a, 2, -(a*a))
1605 # Option 3: ffma(a, 2, (-a)*a)
1606 # Option 4: ffma(a, -a, (2*a)
1607 # Option 5: a * (2 - a)
1608 #
1609 # There are a lot of other possible combinations.
1610 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1611 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1612 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1613 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1614 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1615
1616 # we do these late so that we don't get in the way of creating ffmas
1617 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1618 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1619
1620 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1621
1622 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1623 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1624 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1625 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1626
1627 # Things that look like DPH in the source shader may get expanded to
1628 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1629 # to NIR. After FFMA is generated, this can look like:
1630 #
1631 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1632 #
1633 # Reassociate the last addition into the first multiplication.
1634 #
1635 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
1636 # shader stages on some outputs that are intended to be invariant. For
1637 # various reasons, this optimization may not be fully applied in all
1638 # shaders used for different rendering passes of the same geometry. This
1639 # can result in Z-fighting artifacts (at best). For now, disable this
1640 # optimization in these stages. See bugzilla #111490. In tessellation
1641 # stages applications seem to use 'precise' when necessary, so allow the
1642 # optimization in those stages.
1643 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
1644 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1645 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
1646 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1647 ]
1648
1649 for op in ['fadd']:
1650 late_optimizations += [
1651 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1652 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1653 ]
1654
1655 for op in ['ffma']:
1656 late_optimizations += [
1657 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1658 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1659
1660 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1661 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1662 ]
1663
1664 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
1665 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
1666 before_ffma_optimizations).render())
1667 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
1668 late_optimizations).render())