nir: make fsat return 0.0 with NaN instead of passing it through
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fneg', a)), ('fabs', a)),
113 (('fabs', ('u2f', a)), ('u2f', a)),
114 (('iabs', ('iabs', a)), ('iabs', a)),
115 (('iabs', ('ineg', a)), ('iabs', a)),
116 (('f2b', ('fneg', a)), ('f2b', a)),
117 (('i2b', ('ineg', a)), ('i2b', a)),
118 (('~fadd', a, 0.0), a),
119 (('iadd', a, 0), a),
120 (('usadd_4x8', a, 0), a),
121 (('usadd_4x8', a, ~0), ~0),
122 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
123 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
124 (('~fadd', ('fneg', a), a), 0.0),
125 (('iadd', ('ineg', a), a), 0),
126 (('iadd', ('ineg', a), ('iadd', a, b)), b),
127 (('iadd', a, ('iadd', ('ineg', a), b)), b),
128 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
129 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
130 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
131 (('~fmul', a, 0.0), 0.0),
132 (('imul', a, 0), 0),
133 (('umul_unorm_4x8', a, 0), 0),
134 (('umul_unorm_4x8', a, ~0), a),
135 (('~fmul', a, 1.0), a),
136 (('imul', a, 1), a),
137 (('fmul', a, -1.0), ('fneg', a)),
138 (('imul', a, -1), ('ineg', a)),
139 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
140 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
141 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
142 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
143 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
144 (('~ffma', 0.0, a, b), b),
145 (('~ffma', a, b, 0.0), ('fmul', a, b)),
146 (('ffma', 1.0, a, b), ('fadd', a, b)),
147 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
148 (('~flrp', a, b, 0.0), a),
149 (('~flrp', a, b, 1.0), b),
150 (('~flrp', a, a, b), a),
151 (('~flrp', 0.0, a, b), ('fmul', a, b)),
152
153 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
154 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
155 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
156 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
157
158 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
159 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
160
161 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
162 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
163
164 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
165
166 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
167 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
168 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
169 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
170 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
171 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
172 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
173 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
174 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
175 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
176 # These are the same as the previous three rules, but it depends on
177 # 1-fsat(x) <=> fsat(1-x). See below.
178 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
179 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
180
181 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
182 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
183 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
184 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
185 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
186
187 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
188 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
189
190 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
191
192 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
193 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
194 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
195 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
196
197 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
198 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
199
200 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
201 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
202
203 # Lower fdot to fsum when it is available
204 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
205 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
206 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
208
209 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
210 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
211 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
212 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
213
214 # 1 - ((1 - a) * (1 - b))
215 # 1 - (1 - a - b + a*b)
216 # 1 - 1 + a + b - a*b
217 # a + b - a*b
218 # a + b*(1 - a)
219 # b*(1 - a) + 1*a
220 # flrp(b, 1, a)
221 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
222 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
223
224 # (a * #b + #c) << #d
225 # ((a * #b) << #d) + (#c << #d)
226 # (a * (#b << #d)) + (#c << #d)
227 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
228 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
229
230 # (a * #b) << #c
231 # a * (#b << #c)
232 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
233 ]
234
235 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
236 # bits of the second source. These replacements must correctly handle the
237 # case where (b % bitsize) + (c % bitsize) >= bitsize.
238 for s in [8, 16, 32, 64]:
239 mask = (1 << s) - 1
240
241 ishl = "ishl@{}".format(s)
242 ishr = "ishr@{}".format(s)
243 ushr = "ushr@{}".format(s)
244
245 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
246
247 optimizations.extend([
248 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
249 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
250
251 # To get get -1 for large shifts of negative values, ishr must instead
252 # clamp the shift count to the maximum value.
253 ((ishr, (ishr, a, '#b'), '#c'),
254 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
255 ])
256
257 # Optimize a pattern of address calculation created by DXVK where the offset is
258 # divided by 4 and then multipled by 4. This can be turned into an iand and the
259 # additions before can be reassociated to CSE the iand instruction.
260 for log2 in range(1, 7): # powers of two from 2 to 64
261 v = 1 << log2
262 mask = 0xffffffff & ~(v - 1)
263 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
264
265 optimizations.extend([
266 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
267 (('ishl@32', ('ushr@32', a, log2), log2), ('iand', a, mask)),
268
269 # Reassociate for improved CSE
270 (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
271 ])
272
273 # To save space in the state tables, reduce to the set that is known to help.
274 # Previously, this was range(1, 32). In addition, a couple rules inside the
275 # loop are commented out. Revisit someday, probably after mesa/#2635 has some
276 # resolution.
277 for i in [1, 2, 16, 24]:
278 lo_mask = 0xffffffff >> i
279 hi_mask = (0xffffffff << i) & 0xffffffff
280
281 optimizations.extend([
282 # This pattern seems to only help in the soft-fp64 code.
283 (('ishl@32', ('iand', 'a@32', lo_mask), i), ('ishl', a, i)),
284 # (('ushr@32', ('iand', 'a@32', hi_mask), i), ('ushr', a, i)),
285 # (('ishr@32', ('iand', 'a@32', hi_mask), i), ('ishr', a, i)),
286
287 (('iand', ('ishl', 'a@32', i), hi_mask), ('ishl', a, i)),
288 (('iand', ('ushr', 'a@32', i), lo_mask), ('ushr', a, i)),
289 # (('iand', ('ishr', 'a@32', i), lo_mask), ('ushr', a, i)), # Yes, ushr is correct
290 ])
291
292 optimizations.extend([
293 # This is common for address calculations. Reassociating may enable the
294 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
295 # instruction or a constant offset field for in load / store instructions.
296 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
297
298 # Comparison simplifications
299 (('~inot', ('flt', a, b)), ('fge', a, b)),
300 (('~inot', ('fge', a, b)), ('flt', a, b)),
301 (('inot', ('feq', a, b)), ('fne', a, b)),
302 (('inot', ('fne', a, b)), ('feq', a, b)),
303 (('inot', ('ilt', a, b)), ('ige', a, b)),
304 (('inot', ('ult', a, b)), ('uge', a, b)),
305 (('inot', ('ige', a, b)), ('ilt', a, b)),
306 (('inot', ('uge', a, b)), ('ult', a, b)),
307 (('inot', ('ieq', a, b)), ('ine', a, b)),
308 (('inot', ('ine', a, b)), ('ieq', a, b)),
309
310 (('iand', ('feq', a, b), ('fne', a, b)), False),
311 (('iand', ('flt', a, b), ('flt', b, a)), False),
312 (('iand', ('ieq', a, b), ('ine', a, b)), False),
313 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
314 (('iand', ('ult', a, b), ('ult', b, a)), False),
315
316 # This helps some shaders because, after some optimizations, they end up
317 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
318 # matching would be handled by CSE.
319 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
320 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
321 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
322 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
323 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
324 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
325 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
326 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
327 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
328 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
329
330 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
331 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
332 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
333 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
334 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
335 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
336
337 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
338 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
339 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
340 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
341
342 # 0.0 >= b2f(a)
343 # b2f(a) <= 0.0
344 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
345 # inot(a)
346 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
347
348 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
349
350 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
351 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
352 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
353 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
354 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
355 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
356 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
357 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
358 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
359 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
360 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
361 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
362 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
363 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
364 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
365 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
366 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
367 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
368 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
369 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
370
371 # -(b2f(a) + b2f(b)) < 0
372 # 0 < b2f(a) + b2f(b)
373 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
374 # a || b
375 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
376 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
377
378 # -(b2f(a) + b2f(b)) >= 0
379 # 0 >= b2f(a) + b2f(b)
380 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
381 # !(a || b)
382 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
383 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
384
385 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
386 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
387
388 # Some optimizations (below) convert things like (a < b || c < b) into
389 # (min(a, c) < b). However, this interfers with the previous optimizations
390 # that try to remove comparisons with negated sums of b2f. This just
391 # breaks that apart.
392 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
393 ('ior', ('flt', c, 0.0), ('ior', a, b))),
394
395 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
396 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
397 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
398 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
399 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
400 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
401 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
402 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
403 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
404 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
405 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
406 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
407
408 # Cannot remove the addition from ilt or ige due to overflow.
409 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
410 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
411
412 # fmin(-b2f(a), b) >= 0.0
413 # -b2f(a) >= 0.0 && b >= 0.0
414 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
415 # b2f(a) == 0.0 && b >= 0.0
416 # a == False && b >= 0.0
417 # !a && b >= 0.0
418 #
419 # The fge in the second replacement is not a typo. I leave the proof that
420 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
421 # reader.
422 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
423 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
424
425 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
426 (('~fne', ('b2f', 'a@1'), 0.0), a),
427 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
428 (('ine', ('b2i', 'a@1'), 0), a),
429
430 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
431 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
432 (('fge', ('u2f', a), 0.0), True),
433 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
434 (('flt', ('u2f', a), 0.0), False),
435 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
436 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
437 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
438 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
439 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
440 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
441 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
442
443 # 0.0 < fabs(a)
444 # fabs(a) > 0.0
445 # fabs(a) != 0.0 because fabs(a) must be >= 0
446 # a != 0.0
447 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
448
449 # -fabs(a) < 0.0
450 # fabs(a) > 0.0
451 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
452
453 # 0.0 >= fabs(a)
454 # 0.0 == fabs(a) because fabs(a) must be >= 0
455 # 0.0 == a
456 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
457
458 # -fabs(a) >= 0.0
459 # 0.0 >= fabs(a)
460 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
461
462 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
463 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
464
465 # (a < 0.0) || (a > 1.0)
466 # !(!(a < 0.0) && !(a > 1.0))
467 # !((a >= 0.0) && (a <= 1.0))
468 # !(a == fsat(a))
469 # a != fsat(a)
470 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
471
472 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
473 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
474 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
475 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
476
477 # fmin(b2f(a), b)
478 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
479 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
480 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
481 #
482 # Since b is a constant, constant folding will eliminate the fmin and the
483 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
484 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
485
486 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
487
488 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
489 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
490 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
491 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
492 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
493 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
494 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
495 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
496 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
497 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
498 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
499 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
500 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
501 (('bcsel', a, True, b), ('ior', a, b)),
502 (('bcsel', a, a, b), ('ior', a, b)),
503 (('bcsel', a, b, False), ('iand', a, b)),
504 (('bcsel', a, b, a), ('iand', a, b)),
505 (('~fmin', a, a), a),
506 (('~fmax', a, a), a),
507 (('imin', a, a), a),
508 (('imax', a, a), a),
509 (('umin', a, a), a),
510 (('umax', a, a), a),
511 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
512 (('umax', ('umax', a, b), b), ('umax', a, b)),
513 (('imax', ('imax', a, b), b), ('imax', a, b)),
514 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
515 (('umin', ('umin', a, b), b), ('umin', a, b)),
516 (('imin', ('imin', a, b), b), ('imin', a, b)),
517 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
518
519 # Simplify logic to detect sign of an integer.
520 (('ieq', ('iand', 'a@32', 0x80000000), 0x00000000), ('ige', a, 0)),
521 (('ine', ('iand', 'a@32', 0x80000000), 0x80000000), ('ige', a, 0)),
522 (('ine', ('iand', 'a@32', 0x80000000), 0x00000000), ('ilt', a, 0)),
523 (('ieq', ('iand', 'a@32', 0x80000000), 0x80000000), ('ilt', a, 0)),
524 (('ine', ('ushr', 'a@32', 31), 0), ('ilt', a, 0)),
525 (('ieq', ('ushr', 'a@32', 31), 0), ('ige', a, 0)),
526 (('ieq', ('ushr', 'a@32', 31), 1), ('ilt', a, 0)),
527 (('ine', ('ushr', 'a@32', 31), 1), ('ige', a, 0)),
528 (('ine', ('ishr', 'a@32', 31), 0), ('ilt', a, 0)),
529 (('ieq', ('ishr', 'a@32', 31), 0), ('ige', a, 0)),
530 (('ieq', ('ishr', 'a@32', 31), -1), ('ilt', a, 0)),
531 (('ine', ('ishr', 'a@32', 31), -1), ('ige', a, 0)),
532
533 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
534 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
535 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
536 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
537 (('~fmin', a, ('fabs', a)), a),
538 (('imin', a, ('iabs', a)), a),
539 (('~fmax', a, ('fneg', ('fabs', a))), a),
540 (('imax', a, ('ineg', ('iabs', a))), a),
541 (('fmax', a, ('fabs', a)), ('fabs', a)),
542 (('imax', a, ('iabs', a)), ('iabs', a)),
543 (('fmax', a, ('fneg', a)), ('fabs', a)),
544 (('imax', a, ('ineg', a)), ('iabs', a)),
545 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
546 (('fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
547 # fmax(fmin(a, 1.0), 0.0) is inexact because it returns 1.0 on NaN, while
548 # fsat(a) returns 0.0.
549 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
550 # fmin(fmax(a, -1.0), 0.0) is inexact because it returns -1.0 on NaN, while
551 # fneg(fsat(fneg(a))) returns -0.0 on NaN.
552 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
553 # fmax(fmin(a, 0.0), -1.0) is inexact because it returns 0.0 on NaN, while
554 # fneg(fsat(fneg(a))) returns -0.0 on NaN. This only matters if
555 # SignedZeroInfNanPreserve is set, but we don't currently have any way of
556 # representing this in the optimizations other than the usual ~.
557 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
558 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
559 (('fsat', ('b2f', a)), ('b2f', a)),
560 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
561 (('fsat', ('fsat', a)), ('fsat', a)),
562 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
563 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
564 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
565 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
566 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
567 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
568 # Both the left and right patterns are "b" when isnan(a), so this is exact.
569 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
570 # The left pattern is 0.0 when isnan(a) (because fmin(fsat(NaN), b) ->
571 # fmin(0.0, b)) while the right one is "b", so this optimization is inexact.
572 (('~fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
573
574 # If a in [0,b] then b-a is also in [0,b]. Since b in [0,1], max(b-a, 0) =
575 # fsat(b-a).
576 #
577 # If a > b, then b-a < 0 and max(b-a, 0) = fsat(b-a) = 0
578 #
579 # This should be NaN safe since max(NaN, 0) = fsat(NaN) = 0.
580 (('fmax', ('fadd(is_used_once)', ('fneg', 'a(is_not_negative)'), '#b@32(is_zero_to_one)'), 0.0),
581 ('fsat', ('fadd', ('fneg', a), b)), '!options->lower_fsat'),
582
583 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
584 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
585 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
586 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
587 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
588 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
589 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
590 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
591 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
592 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
593 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
594 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
595 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
596 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
597 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
598 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
599 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
600
601 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
602 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
603 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
604 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
605 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
606 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
607 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
608 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
609 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
610 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
611 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
612 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
613 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
614 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
615 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
616 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
617
618 # These derive from the previous patterns with the application of b < 0 <=>
619 # 0 < -b. The transformation should be applied if either comparison is
620 # used once as this ensures that the number of comparisons will not
621 # increase. The sources to the ior and iand are not symmetric, so the
622 # rules have to be duplicated to get this behavior.
623 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
624 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
625 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
626 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
627 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
628 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
629 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
630 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
631
632 # Common pattern like 'if (i == 0 || i == 1 || ...)'
633 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
634 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
635 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
636
637 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
638 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
639 # so emit an open-coded version of that.
640 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
641 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
642
643 (('ior', a, ('ieq', a, False)), True),
644 (('ior', a, ('inot', a)), -1),
645
646 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
647 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
648
649 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('ior', a, b), 0), '!options->lower_bitops'),
650 (('ior', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('ior', a, b), 0), '!options->lower_bitops'),
651
652 # This pattern occurs coutresy of __flt64_nonnan in the soft-fp64 code.
653 # The first part of the iand comes from the !__feq64_nonnan.
654 #
655 # The second pattern is a reformulation of the first based on the relation
656 # (a == 0 || y == 0) <=> umin(a, y) == 0, where b in the first equation
657 # happens to be y == 0.
658 (('iand', ('inot', ('iand', ('ior', ('ieq', a, 0), b), c)), ('ilt', a, 0)),
659 ('iand', ('inot', ('iand', b , c)), ('ilt', a, 0))),
660 (('iand', ('inot', ('iand', ('ieq', ('umin', a, b), 0), c)), ('ilt', a, 0)),
661 ('iand', ('inot', ('iand', ('ieq', b , 0), c)), ('ilt', a, 0))),
662
663 # These patterns can result when (a < b || a < c) => (a < min(b, c))
664 # transformations occur before constant propagation and loop-unrolling.
665 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
666 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
667 (('~fge', a, ('fmin', b, a)), True),
668 (('~fge', ('fmax', a, b), a), True),
669 (('~flt', a, ('fmin', b, a)), False),
670 (('~flt', ('fmax', a, b), a), False),
671 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
672 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
673
674 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
675 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
676 (('ige', a, ('imin', b, a)), True),
677 (('ige', ('imax', a, b), a), True),
678 (('ult', a, ('umax', b, a)), ('ult', a, b)),
679 (('ult', ('umin', a, b), a), ('ult', b, a)),
680 (('uge', a, ('umin', b, a)), True),
681 (('uge', ('umax', a, b), a), True),
682 (('ilt', a, ('imin', b, a)), False),
683 (('ilt', ('imax', a, b), a), False),
684 (('ige', a, ('imax', b, a)), ('ige', a, b)),
685 (('ige', ('imin', a, b), a), ('ige', b, a)),
686 (('ult', a, ('umin', b, a)), False),
687 (('ult', ('umax', a, b), a), False),
688 (('uge', a, ('umax', b, a)), ('uge', a, b)),
689 (('uge', ('umin', a, b), a), ('uge', b, a)),
690 (('ult', a, ('iand', b, a)), False),
691 (('ult', ('ior', a, b), a), False),
692 (('uge', a, ('iand', b, a)), True),
693 (('uge', ('ior', a, b), a), True),
694
695 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
696 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
697 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
698 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
699 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
700 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
701 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
702 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
703 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
704 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
705 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
706 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
707 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
708 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
709 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
710 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
711
712 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
713 # negative.
714 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
715 ('iabs', ('ishr', a, b))),
716 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
717
718 (('fabs', ('slt', a, b)), ('slt', a, b)),
719 (('fabs', ('sge', a, b)), ('sge', a, b)),
720 (('fabs', ('seq', a, b)), ('seq', a, b)),
721 (('fabs', ('sne', a, b)), ('sne', a, b)),
722 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
723 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
724 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
725 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
726 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
727 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
728 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
729 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
730 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
731 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
732 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
733 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
734 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
735 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
736 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
737 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
738 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
739 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
740 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
741 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
742 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
743 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
744 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
745 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
746 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
747 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
748 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
749 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
750 # Emulating booleans
751 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
752 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
753 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
754 (('iand', 'a@bool32', 1.0), ('b2f', a)),
755 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
756 (('ineg', ('b2i32', 'a@32')), a),
757 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
758 # Comparison with the same args. Note that these are not done for
759 # the float versions because NaN always returns false on float
760 # inequalities.
761 (('ilt', a, a), False),
762 (('ige', a, a), True),
763 (('ieq', a, a), True),
764 (('ine', a, a), False),
765 (('ult', a, a), False),
766 (('uge', a, a), True),
767 # Logical and bit operations
768 (('iand', a, a), a),
769 (('iand', a, ~0), a),
770 (('iand', a, 0), 0),
771 (('ior', a, a), a),
772 (('ior', a, 0), a),
773 (('ior', a, True), True),
774 (('ixor', a, a), 0),
775 (('ixor', a, 0), a),
776 (('inot', ('inot', a)), a),
777 (('ior', ('iand', a, b), b), b),
778 (('ior', ('ior', a, b), b), ('ior', a, b)),
779 (('iand', ('ior', a, b), b), b),
780 (('iand', ('iand', a, b), b), ('iand', a, b)),
781 # DeMorgan's Laws
782 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
783 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
784 # Shift optimizations
785 (('ishl', 0, a), 0),
786 (('ishl', a, 0), a),
787 (('ishr', 0, a), 0),
788 (('ishr', a, 0), a),
789 (('ushr', 0, a), 0),
790 (('ushr', a, 0), a),
791 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
792 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
793 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
794 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
795 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
796 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
797 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
798 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
799 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
800 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
801 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
802 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
803 # Exponential/logarithmic identities
804 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
805 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
806 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
807 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
808 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
809 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
810 (('~fexp2', ('fmul', ('flog2', a), 0.5)), ('fsqrt', a)),
811 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
812 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
813 (('~fpow', a, 1.0), a),
814 (('~fpow', a, 2.0), ('fmul', a, a)),
815 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
816 (('~fpow', 2.0, a), ('fexp2', a)),
817 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
818 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
819 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
820 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
821 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
822 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
823 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
824 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
825 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
826 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
827 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
828 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
829 # Division and reciprocal
830 (('~fdiv', 1.0, a), ('frcp', a)),
831 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
832 (('~frcp', ('frcp', a)), a),
833 (('~frcp', ('fsqrt', a)), ('frsq', a)),
834 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
835 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
836 # Trig
837 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
838 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
839 # Boolean simplifications
840 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
841 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
842 (('ieq', a, True), a),
843 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
844 (('ine', a, False), a),
845 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
846 (('bcsel', a, True, False), a),
847 (('bcsel', a, False, True), ('inot', a)),
848 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
849 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
850 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
851 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
852 (('bcsel', True, b, c), b),
853 (('bcsel', False, b, c), c),
854 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
855
856 (('bcsel', a, b, b), b),
857 (('~fcsel', a, b, b), b),
858
859 # D3D Boolean emulation
860 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
861 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
862 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
863 ('ineg', ('b2i', ('iand', a, b)))),
864 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
865 ('ineg', ('b2i', ('ior', a, b)))),
866 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
867 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
868 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
869 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
870 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
871 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
872
873 # SM5 32-bit shifts are defined to use the 5 least significant bits
874 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
875 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
876 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
877
878 # Conversions
879 (('i2b32', ('b2i', 'a@32')), a),
880 (('f2i', ('ftrunc', a)), ('f2i', a)),
881 (('f2u', ('ftrunc', a)), ('f2u', a)),
882 (('i2b', ('ineg', a)), ('i2b', a)),
883 (('i2b', ('iabs', a)), ('i2b', a)),
884 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
885
886 # The C spec says, "If the value of the integral part cannot be represented
887 # by the integer type, the behavior is undefined." "Undefined" can mean
888 # "the conversion doesn't happen at all."
889 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
890
891 # Ironically, mark these as imprecise because removing the conversions may
892 # preserve more precision than doing the conversions (e.g.,
893 # uint(float(0x81818181u)) == 0x81818200).
894 (('~f2i32', ('i2f', 'a@32')), a),
895 (('~f2i32', ('u2f', 'a@32')), a),
896 (('~f2u32', ('i2f', 'a@32')), a),
897 (('~f2u32', ('u2f', 'a@32')), a),
898
899 # Conversions from float16 to float32 and back can always be removed
900 (('f2f16', ('f2f32', 'a@16')), a),
901 (('f2fmp', ('f2f32', 'a@16')), a),
902 # Conversions to float16 would be lossy so they should only be removed if
903 # the instruction was generated by the precision lowering pass.
904 (('f2f32', ('f2fmp', 'a@32')), a),
905
906 (('ffloor', 'a(is_integral)'), a),
907 (('fceil', 'a(is_integral)'), a),
908 (('ftrunc', 'a(is_integral)'), a),
909 # fract(x) = x - floor(x), so fract(NaN) = NaN
910 (('~ffract', 'a(is_integral)'), 0.0),
911 (('fabs', 'a(is_not_negative)'), a),
912 (('iabs', 'a(is_not_negative)'), a),
913 (('fsat', 'a(is_not_positive)'), 0.0),
914
915 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
916 # says:
917 #
918 # It is undefined to convert a negative floating-point value to an
919 # uint.
920 #
921 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
922 # some optimizations in the i965 backend to proceed.
923 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
924 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
925 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
926 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
927
928 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
929
930 # The result of the multiply must be in [-1, 0], so the result of the ffma
931 # must be in [0, 1].
932 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
933 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
934 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
935 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
936
937 (('fne', 'a(is_not_zero)', 0.0), True),
938 (('feq', 'a(is_not_zero)', 0.0), False),
939
940 # In this chart, + means value > 0 and - means value < 0.
941 #
942 # + >= + -> unknown 0 >= + -> false - >= + -> false
943 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
944 # + >= - -> true 0 >= - -> true - >= - -> unknown
945 #
946 # Using grouping conceptually similar to a Karnaugh map...
947 #
948 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
949 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
950 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
951 #
952 # The flt / ilt cases just invert the expected result.
953 #
954 # The results expecting true, must be marked imprecise. The results
955 # expecting false are fine because NaN compared >= or < anything is false.
956
957 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
958 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
959 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
960
961 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
962 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
963 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
964
965 (('ine', 'a(is_not_zero)', 0), True),
966 (('ieq', 'a(is_not_zero)', 0), False),
967
968 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
969 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
970 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
971
972 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
973 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
974 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
975
976 (('ult', 0, 'a(is_gt_zero)'), True),
977 (('ult', a, 0), False),
978
979 # Packing and then unpacking does nothing
980 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
981 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
982 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
983 ('unpack_64_2x32_split_y', a)), a),
984
985 # Comparing two halves of an unpack separately. While this optimization
986 # should be correct for non-constant values, it's less obvious that it's
987 # useful in that case. For constant values, the pack will fold and we're
988 # guaranteed to reduce the whole tree to one instruction.
989 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
990 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
991 ('ieq', a, ('pack_32_2x16_split', b, c))),
992
993 # Byte extraction
994 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
995 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
996 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
997 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
998 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
999 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
1000 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1001
1002 # Useless masking before unpacking
1003 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
1004 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
1005 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
1006 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
1007 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
1008 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
1009
1010 # Optimize half packing
1011 (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))),
1012 (('ishr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))),
1013
1014 (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1015 ('pack_half_2x16', ('vec2', a, b))),
1016 (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1017 ('pack_half_2x16', ('vec2', a, b))),
1018 ])
1019
1020 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
1021 # patterns like those below.
1022 for op in ('ushr', 'ishr'):
1023 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
1024 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
1025 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
1026
1027 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
1028
1029 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
1030 # patterns like those below.
1031 for op in ('extract_u8', 'extract_i8'):
1032 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
1033 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
1034 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
1035
1036 optimizations.extend([
1037 # Word extraction
1038 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1039 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1040 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1041 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1042 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
1043
1044 # Subtracts
1045 (('ussub_4x8', a, 0), a),
1046 (('ussub_4x8', a, ~0), 0),
1047 # Lower all Subtractions first - they can get recombined later
1048 (('fsub', a, b), ('fadd', a, ('fneg', b))),
1049 (('isub', a, b), ('iadd', a, ('ineg', b))),
1050 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1051 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
1052 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1053
1054 # Propagate negation up multiplication chains
1055 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
1056 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
1057
1058 # Propagate constants up multiplication chains
1059 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
1060 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
1061 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
1062 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
1063
1064 # Reassociate constants in add/mul chains so they can be folded together.
1065 # For now, we mostly only handle cases where the constants are separated by
1066 # a single non-constant. We could do better eventually.
1067 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
1068 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
1069 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
1070 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
1071 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
1072 (('iand', '#a', ('iand', 'b(is_not_const)', '#c')), ('iand', ('iand', a, c), b)),
1073 (('ior', '#a', ('ior', 'b(is_not_const)', '#c')), ('ior', ('ior', a, c), b)),
1074 (('ixor', '#a', ('ixor', 'b(is_not_const)', '#c')), ('ixor', ('ixor', a, c), b)),
1075
1076 # Drop mul-div by the same value when there's no wrapping.
1077 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
1078
1079 # By definition...
1080 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
1081 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1082 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1083
1084 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1085 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1086 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1087
1088 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1089
1090 (('fmin3@64', a, b, c), ('fmin@64', a, ('fmin@64', b, c))),
1091 (('fmax3@64', a, b, c), ('fmax@64', a, ('fmax@64', b, c))),
1092 (('fmed3@64', a, b, c), ('fmax@64', ('fmin@64', ('fmax@64', a, b), c), ('fmin@64', a, b))),
1093
1094 # Misc. lowering
1095 (('fmod', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1096 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1097 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1098 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1099
1100 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1101 ('bcsel', ('ult', 31, 'bits'), 'insert',
1102 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1103 'options->lower_bitfield_insert'),
1104 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1105 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1106 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1107 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1108 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1109 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1110 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1111 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1112
1113 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1114 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1115 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1116 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1117
1118 # int64_t sum = a + b;
1119 #
1120 # if (a < 0 && b < 0 && a < sum)
1121 # sum = INT64_MIN;
1122 # } else if (a >= 0 && b >= 0 && sum < a)
1123 # sum = INT64_MAX;
1124 # }
1125 #
1126 # A couple optimizations are applied.
1127 #
1128 # 1. a < sum => sum >= 0. This replacement works because it is known that
1129 # a < 0 and b < 0, so sum should also be < 0 unless there was
1130 # underflow.
1131 #
1132 # 2. sum < a => sum < 0. This replacement works because it is known that
1133 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1134 # overflow.
1135 #
1136 # 3. Invert the second if-condition and swap the order of parameters for
1137 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1138 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1139 #
1140 # On Intel Gen11, this saves ~11 instructions.
1141 (('iadd_sat@64', a, b), ('bcsel',
1142 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1143 0x8000000000000000,
1144 ('bcsel',
1145 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1146 ('iadd', a, b),
1147 0x7fffffffffffffff)),
1148 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1149
1150 # int64_t sum = a - b;
1151 #
1152 # if (a < 0 && b >= 0 && a < sum)
1153 # sum = INT64_MIN;
1154 # } else if (a >= 0 && b < 0 && a >= sum)
1155 # sum = INT64_MAX;
1156 # }
1157 #
1158 # Optimizations similar to the iadd_sat case are applied here.
1159 (('isub_sat@64', a, b), ('bcsel',
1160 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1161 0x8000000000000000,
1162 ('bcsel',
1163 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1164 ('isub', a, b),
1165 0x7fffffffffffffff)),
1166 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1167
1168 # These are done here instead of in the backend because the int64 lowering
1169 # pass will make a mess of the patterns. The first patterns are
1170 # conditioned on nir_lower_minmax64 because it was not clear that it was
1171 # always an improvement on platforms that have real int64 support. No
1172 # shaders in shader-db hit this, so it was hard to say one way or the
1173 # other.
1174 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1175 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1176 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1177 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1178 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1179 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1180
1181 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1182 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1183 # 0u < uint(a) <=> uint(a) != 0u
1184 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1185
1186 # Alternative lowering that doesn't rely on bfi.
1187 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1188 ('bcsel', ('ult', 31, 'bits'),
1189 'insert',
1190 (('ior',
1191 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1192 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1193 'options->lower_bitfield_insert_to_shifts'),
1194
1195 # Alternative lowering that uses bitfield_select.
1196 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1197 ('bcsel', ('ult', 31, 'bits'), 'insert',
1198 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1199 'options->lower_bitfield_insert_to_bitfield_select'),
1200
1201 (('ibitfield_extract', 'value', 'offset', 'bits'),
1202 ('bcsel', ('ult', 31, 'bits'), 'value',
1203 ('ibfe', 'value', 'offset', 'bits')),
1204 'options->lower_bitfield_extract'),
1205
1206 (('ubitfield_extract', 'value', 'offset', 'bits'),
1207 ('bcsel', ('ult', 31, 'bits'), 'value',
1208 ('ubfe', 'value', 'offset', 'bits')),
1209 'options->lower_bitfield_extract'),
1210
1211 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1212 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1213 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1214 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1215 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1216 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1217 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1218
1219 (('ibitfield_extract', 'value', 'offset', 'bits'),
1220 ('bcsel', ('ieq', 0, 'bits'),
1221 0,
1222 ('ishr',
1223 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1224 ('isub', 32, 'bits'))),
1225 'options->lower_bitfield_extract_to_shifts'),
1226
1227 (('ubitfield_extract', 'value', 'offset', 'bits'),
1228 ('iand',
1229 ('ushr', 'value', 'offset'),
1230 ('bcsel', ('ieq', 'bits', 32),
1231 0xffffffff,
1232 ('isub', ('ishl', 1, 'bits'), 1))),
1233 'options->lower_bitfield_extract_to_shifts'),
1234
1235 (('ifind_msb', 'value'),
1236 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1237 'options->lower_ifind_msb'),
1238
1239 (('find_lsb', 'value'),
1240 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1241 'options->lower_find_lsb'),
1242
1243 (('extract_i8', a, 'b@32'),
1244 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1245 'options->lower_extract_byte'),
1246
1247 (('extract_u8', a, 'b@32'),
1248 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1249 'options->lower_extract_byte'),
1250
1251 (('extract_i16', a, 'b@32'),
1252 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1253 'options->lower_extract_word'),
1254
1255 (('extract_u16', a, 'b@32'),
1256 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1257 'options->lower_extract_word'),
1258
1259 (('pack_unorm_2x16', 'v'),
1260 ('pack_uvec2_to_uint',
1261 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1262 'options->lower_pack_unorm_2x16'),
1263
1264 (('pack_unorm_4x8', 'v'),
1265 ('pack_uvec4_to_uint',
1266 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1267 'options->lower_pack_unorm_4x8'),
1268
1269 (('pack_snorm_2x16', 'v'),
1270 ('pack_uvec2_to_uint',
1271 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1272 'options->lower_pack_snorm_2x16'),
1273
1274 (('pack_snorm_4x8', 'v'),
1275 ('pack_uvec4_to_uint',
1276 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1277 'options->lower_pack_snorm_4x8'),
1278
1279 (('unpack_unorm_2x16', 'v'),
1280 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1281 ('extract_u16', 'v', 1))),
1282 65535.0),
1283 'options->lower_unpack_unorm_2x16'),
1284
1285 (('unpack_unorm_4x8', 'v'),
1286 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1287 ('extract_u8', 'v', 1),
1288 ('extract_u8', 'v', 2),
1289 ('extract_u8', 'v', 3))),
1290 255.0),
1291 'options->lower_unpack_unorm_4x8'),
1292
1293 (('unpack_snorm_2x16', 'v'),
1294 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1295 ('extract_i16', 'v', 1))),
1296 32767.0))),
1297 'options->lower_unpack_snorm_2x16'),
1298
1299 (('unpack_snorm_4x8', 'v'),
1300 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1301 ('extract_i8', 'v', 1),
1302 ('extract_i8', 'v', 2),
1303 ('extract_i8', 'v', 3))),
1304 127.0))),
1305 'options->lower_unpack_snorm_4x8'),
1306
1307 (('pack_half_2x16_split', 'a@32', 'b@32'),
1308 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1309 'options->lower_pack_split'),
1310
1311 (('unpack_half_2x16_split_x', 'a@32'),
1312 ('f2f32', ('u2u16', a)),
1313 'options->lower_pack_split'),
1314
1315 (('unpack_half_2x16_split_y', 'a@32'),
1316 ('f2f32', ('u2u16', ('ushr', a, 16))),
1317 'options->lower_pack_split'),
1318
1319 (('pack_32_2x16_split', 'a@16', 'b@16'),
1320 ('ior', ('ishl', ('u2u32', b), 16), ('u2u32', a)),
1321 'options->lower_pack_split'),
1322
1323 (('unpack_32_2x16_split_x', 'a@32'),
1324 ('u2u16', a),
1325 'options->lower_pack_split'),
1326
1327 (('unpack_32_2x16_split_y', 'a@32'),
1328 ('u2u16', ('ushr', 'a', 16)),
1329 'options->lower_pack_split'),
1330
1331 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1332 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1333
1334 # Address/offset calculations:
1335 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1336 # rule converts everyone else to imul:
1337 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1338
1339 (('umul24', a, b),
1340 ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)),
1341 '!options->has_umul24'),
1342 (('umad24', a, b, c),
1343 ('iadd', ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)), c),
1344 '!options->has_umad24'),
1345
1346 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1347 (('imad24_ir3', a, 0, c), (c)),
1348 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1349
1350 # if first two srcs are const, crack apart the imad so constant folding
1351 # can clean up the imul:
1352 # TODO ffma should probably get a similar rule:
1353 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1354
1355 # These will turn 24b address/offset calc back into 32b shifts, but
1356 # it should be safe to get back some of the bits of precision that we
1357 # already decided were no necessary:
1358 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1359 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1360 (('imul24', a, 0), (0)),
1361 ])
1362
1363 # bit_size dependent lowerings
1364 for bit_size in [8, 16, 32, 64]:
1365 # convenience constants
1366 intmax = (1 << (bit_size - 1)) - 1
1367 intmin = 1 << (bit_size - 1)
1368
1369 optimizations += [
1370 (('iadd_sat@' + str(bit_size), a, b),
1371 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1372 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1373 (('isub_sat@' + str(bit_size), a, b),
1374 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1375 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1376 ]
1377
1378 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq')])
1379
1380 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1381 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1382 ('iand', (invert[left], a, b), (invert[right], c, d))))
1383 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1384 ('ior', (invert[left], a, b), (invert[right], c, d))))
1385
1386 # Optimize x2bN(b2x(x)) -> x
1387 for size in type_sizes('bool'):
1388 aN = 'a@' + str(size)
1389 f2bN = 'f2b' + str(size)
1390 i2bN = 'i2b' + str(size)
1391 optimizations.append(((f2bN, ('b2f', aN)), a))
1392 optimizations.append(((i2bN, ('b2i', aN)), a))
1393
1394 # Optimize x2yN(b2x(x)) -> b2y
1395 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1396 if x != 'f' and y != 'f' and x != y:
1397 continue
1398
1399 b2x = 'b2f' if x == 'f' else 'b2i'
1400 b2y = 'b2f' if y == 'f' else 'b2i'
1401 x2yN = '{}2{}'.format(x, y)
1402 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1403
1404 # Optimize away x2xN(a@N)
1405 for t in ['int', 'uint', 'float', 'bool']:
1406 for N in type_sizes(t):
1407 x2xN = '{0}2{0}{1}'.format(t[0], N)
1408 aN = 'a@{0}'.format(N)
1409 optimizations.append(((x2xN, aN), a))
1410
1411 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1412 # In particular, we can optimize away everything except upcast of downcast and
1413 # upcasts where the type differs from the other cast
1414 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1415 if N < M:
1416 # The outer cast is a down-cast. It doesn't matter what the size of the
1417 # argument of the inner cast is because we'll never been in the upcast
1418 # of downcast case. Regardless of types, we'll always end up with y2yN
1419 # in the end.
1420 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1421 x2xN = '{0}2{0}{1}'.format(x, N)
1422 y2yM = '{0}2{0}{1}'.format(y, M)
1423 y2yN = '{0}2{0}{1}'.format(y, N)
1424 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1425 elif N > M:
1426 # If the outer cast is an up-cast, we have to be more careful about the
1427 # size of the argument of the inner cast and with types. In this case,
1428 # the type is always the type of type up-cast which is given by the
1429 # outer cast.
1430 for P in type_sizes('uint'):
1431 # We can't optimize away up-cast of down-cast.
1432 if M < P:
1433 continue
1434
1435 # Because we're doing down-cast of down-cast, the types always have
1436 # to match between the two casts
1437 for x in ['i', 'u']:
1438 x2xN = '{0}2{0}{1}'.format(x, N)
1439 x2xM = '{0}2{0}{1}'.format(x, M)
1440 aP = 'a@{0}'.format(P)
1441 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1442 else:
1443 # The N == M case is handled by other optimizations
1444 pass
1445
1446 # Downcast operations should be able to see through pack
1447 for t in ['i', 'u']:
1448 for N in [8, 16, 32]:
1449 x2xN = '{0}2{0}{1}'.format(t, N)
1450 optimizations += [
1451 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1452 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1453 ]
1454
1455 # Optimize comparisons with up-casts
1456 for t in ['int', 'uint', 'float']:
1457 for N, M in itertools.product(type_sizes(t), repeat=2):
1458 if N == 1 or N >= M:
1459 continue
1460
1461 cond = 'true'
1462 if N == 8:
1463 cond = 'options->support_8bit_alu'
1464 elif N == 16:
1465 cond = 'options->support_16bit_alu'
1466 x2xM = '{0}2{0}{1}'.format(t[0], M)
1467 x2xN = '{0}2{0}{1}'.format(t[0], N)
1468 aN = 'a@' + str(N)
1469 bN = 'b@' + str(N)
1470 xeq = 'feq' if t == 'float' else 'ieq'
1471 xne = 'fne' if t == 'float' else 'ine'
1472 xge = '{0}ge'.format(t[0])
1473 xlt = '{0}lt'.format(t[0])
1474
1475 # Up-casts are lossless so for correctly signed comparisons of
1476 # up-casted values we can do the comparison at the largest of the two
1477 # original sizes and drop one or both of the casts. (We have
1478 # optimizations to drop the no-op casts which this may generate.)
1479 for P in type_sizes(t):
1480 if P == 1 or P > N:
1481 continue
1482
1483 bP = 'b@' + str(P)
1484 optimizations += [
1485 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b)), cond),
1486 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b)), cond),
1487 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b)), cond),
1488 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b)), cond),
1489 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a), cond),
1490 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a), cond),
1491 ]
1492
1493 # The next bit doesn't work on floats because the range checks would
1494 # get way too complicated.
1495 if t in ['int', 'uint']:
1496 if t == 'int':
1497 xN_min = -(1 << (N - 1))
1498 xN_max = (1 << (N - 1)) - 1
1499 elif t == 'uint':
1500 xN_min = 0
1501 xN_max = (1 << N) - 1
1502 else:
1503 assert False
1504
1505 # If we're up-casting and comparing to a constant, we can unfold
1506 # the comparison into a comparison with the shrunk down constant
1507 # and a check that the constant fits in the smaller bit size.
1508 optimizations += [
1509 ((xeq, (x2xM, aN), '#b'),
1510 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b)), cond),
1511 ((xne, (x2xM, aN), '#b'),
1512 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b)), cond),
1513 ((xlt, (x2xM, aN), '#b'),
1514 ('iand', (xlt, xN_min, b),
1515 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b)))), cond),
1516 ((xlt, '#a', (x2xM, bN)),
1517 ('iand', (xlt, a, xN_max),
1518 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b))), cond),
1519 ((xge, (x2xM, aN), '#b'),
1520 ('iand', (xge, xN_max, b),
1521 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b)))), cond),
1522 ((xge, '#a', (x2xM, bN)),
1523 ('iand', (xge, a, xN_min),
1524 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b))), cond),
1525 ]
1526
1527 def fexp2i(exp, bits):
1528 # Generate an expression which constructs value 2.0^exp or 0.0.
1529 #
1530 # We assume that exp is already in a valid range:
1531 #
1532 # * [-15, 15] for 16-bit float
1533 # * [-127, 127] for 32-bit float
1534 # * [-1023, 1023] for 16-bit float
1535 #
1536 # If exp is the lowest value in the valid range, a value of 0.0 is
1537 # constructed. Otherwise, the value 2.0^exp is constructed.
1538 if bits == 16:
1539 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1540 elif bits == 32:
1541 return ('ishl', ('iadd', exp, 127), 23)
1542 elif bits == 64:
1543 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1544 else:
1545 assert False
1546
1547 def ldexp(f, exp, bits):
1548 # The maximum possible range for a normal exponent is [-126, 127] and,
1549 # throwing in denormals, you get a maximum range of [-149, 127]. This
1550 # means that we can potentially have a swing of +-276. If you start with
1551 # FLT_MAX, you actually have to do ldexp(FLT_MAX, -278) to get it to flush
1552 # all the way to zero. The GLSL spec only requires that we handle a subset
1553 # of this range. From version 4.60 of the spec:
1554 #
1555 # "If exp is greater than +128 (single-precision) or +1024
1556 # (double-precision), the value returned is undefined. If exp is less
1557 # than -126 (single-precision) or -1022 (double-precision), the value
1558 # returned may be flushed to zero. Additionally, splitting the value
1559 # into a significand and exponent using frexp() and then reconstructing
1560 # a floating-point value using ldexp() should yield the original input
1561 # for zero and all finite non-denormalized values."
1562 #
1563 # The SPIR-V spec has similar language.
1564 #
1565 # In order to handle the maximum value +128 using the fexp2i() helper
1566 # above, we have to split the exponent in half and do two multiply
1567 # operations.
1568 #
1569 # First, we clamp exp to a reasonable range. Specifically, we clamp to
1570 # twice the full range that is valid for the fexp2i() function above. If
1571 # exp/2 is the bottom value of that range, the fexp2i() expression will
1572 # yield 0.0f which, when multiplied by f, will flush it to zero which is
1573 # allowed by the GLSL and SPIR-V specs for low exponent values. If the
1574 # value is clamped from above, then it must have been above the supported
1575 # range of the GLSL built-in and therefore any return value is acceptable.
1576 if bits == 16:
1577 exp = ('imin', ('imax', exp, -30), 30)
1578 elif bits == 32:
1579 exp = ('imin', ('imax', exp, -254), 254)
1580 elif bits == 64:
1581 exp = ('imin', ('imax', exp, -2046), 2046)
1582 else:
1583 assert False
1584
1585 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1586 # (We use ishr which isn't the same for -1, but the -1 case still works
1587 # since we use exp-exp/2 as the second exponent.) While the spec
1588 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1589 # work with denormals and doesn't allow for the full swing in exponents
1590 # that you can get with normalized values. Instead, we create two powers
1591 # of two and multiply by them each in turn. That way the effective range
1592 # of our exponent is doubled.
1593 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1594 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1595 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1596
1597 optimizations += [
1598 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1599 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1600 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1601 ]
1602
1603 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1604 def bitfield_reverse(u):
1605 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1606 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1607 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1608 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1609 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1610
1611 return step5
1612
1613 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1614
1615 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1616 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1617 # and, if a is a NaN then the second comparison will fail anyway.
1618 for op in ['flt', 'fge', 'feq']:
1619 optimizations += [
1620 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1621 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1622 ]
1623
1624 # Add optimizations to handle the case where the result of a ternary is
1625 # compared to a constant. This way we can take things like
1626 #
1627 # (a ? 0 : 1) > 0
1628 #
1629 # and turn it into
1630 #
1631 # a ? (0 > 0) : (1 > 0)
1632 #
1633 # which constant folding will eat for lunch. The resulting ternary will
1634 # further get cleaned up by the boolean reductions above and we will be
1635 # left with just the original variable "a".
1636 for op in ['flt', 'fge', 'feq', 'fne',
1637 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1638 optimizations += [
1639 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1640 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1641 ((op, '#d', ('bcsel', a, '#b', '#c')),
1642 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1643 ]
1644
1645
1646 # For example, this converts things like
1647 #
1648 # 1 + mix(0, a - 1, condition)
1649 #
1650 # into
1651 #
1652 # mix(1, (a-1)+1, condition)
1653 #
1654 # Other optimizations will rearrange the constants.
1655 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1656 optimizations += [
1657 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1658 ]
1659
1660 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1661 # states:
1662 #
1663 # If neither layout qualifier is specified, derivatives in compute shaders
1664 # return zero, which is consistent with the handling of built-in texture
1665 # functions like texture() in GLSL 4.50 compute shaders.
1666 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1667 'fddy', 'fddy_fine', 'fddy_coarse']:
1668 optimizations += [
1669 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1670 ]
1671
1672 # Some optimizations for ir3-specific instructions.
1673 optimizations += [
1674 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1675 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1676 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1677 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1678 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1679 ]
1680
1681 # These kinds of sequences can occur after nir_opt_peephole_select.
1682 #
1683 # NOTE: fadd is not handled here because that gets in the way of ffma
1684 # generation in the i965 driver. Instead, fadd and ffma are handled in
1685 # late_optimizations.
1686
1687 for op in ['flrp']:
1688 optimizations += [
1689 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1690 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1691 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1692 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1693 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1694 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1695 ]
1696
1697 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1698 optimizations += [
1699 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1700 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1701 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1702 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1703 ]
1704
1705 for op in ['fpow']:
1706 optimizations += [
1707 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1708 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1709 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1710 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1711 ]
1712
1713 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos']:
1714 optimizations += [
1715 (('bcsel', a, (op + '(is_used_once)', b), (op, c)), (op, ('bcsel', a, b, c))),
1716 (('bcsel', a, (op, b), (op + '(is_used_once)', c)), (op, ('bcsel', a, b, c))),
1717 ]
1718
1719 # This section contains "late" optimizations that should be run before
1720 # creating ffmas and calling regular optimizations for the final time.
1721 # Optimizations should go here if they help code generation and conflict
1722 # with the regular optimizations.
1723 before_ffma_optimizations = [
1724 # Propagate constants down multiplication chains
1725 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1726 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1727 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1728 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1729
1730 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1731 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1732 (('~fadd', ('fneg', a), a), 0.0),
1733 (('iadd', ('ineg', a), a), 0),
1734 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1735 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1736 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1737 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1738
1739 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1740 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1741 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1742 ]
1743
1744 # This section contains "late" optimizations that should be run after the
1745 # regular optimizations have finished. Optimizations should go here if
1746 # they help code generation but do not necessarily produce code that is
1747 # more easily optimizable.
1748 late_optimizations = [
1749 # Most of these optimizations aren't quite safe when you get infinity or
1750 # Nan involved but the first one should be fine.
1751 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1752 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1753 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1754 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1755 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1756 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1757
1758 # nir_lower_to_source_mods will collapse this, but its existence during the
1759 # optimization loop can prevent other optimizations.
1760 (('fneg', ('fneg', a)), a),
1761
1762 # Subtractions get lowered during optimization, so we need to recombine them
1763 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1764 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1765 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1766 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1767
1768 # These are duplicated from the main optimizations table. The late
1769 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1770 # new patterns like these. The patterns that compare with zero are removed
1771 # because they are unlikely to be created in by anything in
1772 # late_optimizations.
1773 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1774 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1775 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1776 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1777 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1778 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1779
1780 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1781 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1782
1783 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1784
1785 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1786 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1787 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1788 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1789 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1790 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1791 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1792 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1793 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1794 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1795
1796 (('ior', a, a), a),
1797 (('iand', a, a), a),
1798
1799 (('iand', ('ine(is_used_once)', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
1800 (('ior', ('ieq(is_used_once)', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
1801
1802 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1803
1804 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1805 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1806 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1807 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1808
1809 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1810 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1811
1812 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1813 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1814
1815 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1816 # particular operation is common for expanding values stored in a texture
1817 # from [0,1] to [-1,1].
1818 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1819 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1820 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1821 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1822 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1823 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1824 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1825 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1826
1827 # flrp(a, b, a)
1828 # a*(1-a) + b*a
1829 # a + -a*a + a*b (1)
1830 # a + a*(b - a)
1831 # Option 1: ffma(a, (b-a), a)
1832 #
1833 # Alternately, after (1):
1834 # a*(1+b) + -a*a
1835 # a*((1+b) + -a)
1836 #
1837 # Let b=1
1838 #
1839 # Option 2: ffma(a, 2, -(a*a))
1840 # Option 3: ffma(a, 2, (-a)*a)
1841 # Option 4: ffma(a, -a, (2*a)
1842 # Option 5: a * (2 - a)
1843 #
1844 # There are a lot of other possible combinations.
1845 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1846 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1847 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1848 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1849 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1850
1851 # we do these late so that we don't get in the way of creating ffmas
1852 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1853 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1854
1855 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1856
1857 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1858 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1859 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1860 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1861
1862 # Things that look like DPH in the source shader may get expanded to
1863 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1864 # to NIR. After FFMA is generated, this can look like:
1865 #
1866 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1867 #
1868 # Reassociate the last addition into the first multiplication.
1869 #
1870 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
1871 # shader stages on some outputs that are intended to be invariant. For
1872 # various reasons, this optimization may not be fully applied in all
1873 # shaders used for different rendering passes of the same geometry. This
1874 # can result in Z-fighting artifacts (at best). For now, disable this
1875 # optimization in these stages. See bugzilla #111490. In tessellation
1876 # stages applications seem to use 'precise' when necessary, so allow the
1877 # optimization in those stages.
1878 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
1879 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1880 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
1881 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1882
1883 # Convert f2fmp instructions to concrete f2f16 instructions. At this point
1884 # any conversions that could have been removed will have been removed in
1885 # nir_opt_algebraic so any remaining ones are required.
1886 (('f2fmp', a), ('f2f16', a)),
1887 ]
1888
1889 for op in ['fadd']:
1890 late_optimizations += [
1891 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1892 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1893 ]
1894
1895 for op in ['ffma']:
1896 late_optimizations += [
1897 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1898 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1899
1900 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1901 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1902 ]
1903
1904 distribute_src_mods = [
1905 # Try to remove some spurious negations rather than pushing them down.
1906 (('fmul', ('fneg', a), ('fneg', b)), ('fmul', a, b)),
1907 (('ffma', ('fneg', a), ('fneg', b), c), ('ffma', a, b, c)),
1908 (('fdot_replicated2', ('fneg', a), ('fneg', b)), ('fdot_replicated2', a, b)),
1909 (('fdot_replicated3', ('fneg', a), ('fneg', b)), ('fdot_replicated3', a, b)),
1910 (('fdot_replicated4', ('fneg', a), ('fneg', b)), ('fdot_replicated4', a, b)),
1911 (('fneg', ('fneg', a)), a),
1912
1913 (('fneg', ('ffma(is_used_once)', a, b, c)), ('ffma', ('fneg', a), b, ('fneg', c))),
1914 (('fneg', ('flrp(is_used_once)', a, b, c)), ('flrp', ('fneg', a), ('fneg', b), c)),
1915 (('fneg', ('fadd(is_used_once)', a, b)), ('fadd', ('fneg', a), ('fneg', b))),
1916
1917 # Note that fmin <-> fmax. I don't think there is a way to distribute
1918 # fabs() into fmin or fmax.
1919 (('fneg', ('fmin(is_used_once)', a, b)), ('fmax', ('fneg', a), ('fneg', b))),
1920 (('fneg', ('fmax(is_used_once)', a, b)), ('fmin', ('fneg', a), ('fneg', b))),
1921
1922 # fdph works mostly like fdot, but to get the correct result, the negation
1923 # must be applied to the second source.
1924 (('fneg', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', a, ('fneg', b))),
1925 (('fabs', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', ('fabs', a), ('fabs', b))),
1926
1927 (('fneg', ('fsign(is_used_once)', a)), ('fsign', ('fneg', a))),
1928 (('fabs', ('fsign(is_used_once)', a)), ('fsign', ('fabs', a))),
1929 ]
1930
1931 for op in ['fmul', 'fdot_replicated2', 'fdot_replicated3', 'fdot_replicated4']:
1932 distribute_src_mods.extend([
1933 (('fneg', (op + '(is_used_once)', a, b)), (op, ('fneg', a), b)),
1934 (('fabs', (op + '(is_used_once)', a, b)), (op, ('fabs', a), ('fabs', b))),
1935 ])
1936
1937 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
1938 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
1939 before_ffma_optimizations).render())
1940 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
1941 late_optimizations).render())
1942 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_distribute_src_mods",
1943 distribute_src_mods).render())