nir/algebraic: Use value range analysis to convert fmax to fsat
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fabs', a)), ('fabs', a)),
113 (('fabs', ('fneg', a)), ('fabs', a)),
114 (('fabs', ('u2f', a)), ('u2f', a)),
115 (('iabs', ('iabs', a)), ('iabs', a)),
116 (('iabs', ('ineg', a)), ('iabs', a)),
117 (('f2b', ('fneg', a)), ('f2b', a)),
118 (('i2b', ('ineg', a)), ('i2b', a)),
119 (('~fadd', a, 0.0), a),
120 (('iadd', a, 0), a),
121 (('usadd_4x8', a, 0), a),
122 (('usadd_4x8', a, ~0), ~0),
123 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
124 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
125 (('~fadd', ('fneg', a), a), 0.0),
126 (('iadd', ('ineg', a), a), 0),
127 (('iadd', ('ineg', a), ('iadd', a, b)), b),
128 (('iadd', a, ('iadd', ('ineg', a), b)), b),
129 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
130 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
131 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
132 (('~fmul', a, 0.0), 0.0),
133 (('imul', a, 0), 0),
134 (('umul_unorm_4x8', a, 0), 0),
135 (('umul_unorm_4x8', a, ~0), a),
136 (('~fmul', a, 1.0), a),
137 (('imul', a, 1), a),
138 (('fmul', a, -1.0), ('fneg', a)),
139 (('imul', a, -1), ('ineg', a)),
140 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
141 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
142 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
143 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
144 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
145 (('~ffma', 0.0, a, b), b),
146 (('~ffma', a, b, 0.0), ('fmul', a, b)),
147 (('ffma', 1.0, a, b), ('fadd', a, b)),
148 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
149 (('~flrp', a, b, 0.0), a),
150 (('~flrp', a, b, 1.0), b),
151 (('~flrp', a, a, b), a),
152 (('~flrp', 0.0, a, b), ('fmul', a, b)),
153
154 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
155 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
156 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
157 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
158
159 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
160 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
161
162 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
163 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
164
165 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
166
167 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
168 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
169 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
170 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
171 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
172 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
173 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
174 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
175 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
176 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
177 # These are the same as the previous three rules, but it depends on
178 # 1-fsat(x) <=> fsat(1-x). See below.
179 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
180 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
181
182 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
183 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
184 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
185 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
186 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
187
188 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
189 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
190
191 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
192
193 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
194 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
195 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
196 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
197
198 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
199 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
200
201 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
202 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
203
204 # Lower fdot to fsum when it is available
205 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
206 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
208 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
209
210 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
211 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
212 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
213 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
214
215 # 1 - ((1 - a) * (1 - b))
216 # 1 - (1 - a - b + a*b)
217 # 1 - 1 + a + b - a*b
218 # a + b - a*b
219 # a + b*(1 - a)
220 # b*(1 - a) + 1*a
221 # flrp(b, 1, a)
222 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
223 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
224
225 # (a * #b + #c) << #d
226 # ((a * #b) << #d) + (#c << #d)
227 # (a * (#b << #d)) + (#c << #d)
228 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
229 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
230
231 # (a * #b) << #c
232 # a * (#b << #c)
233 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
234 ]
235
236 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
237 # bits of the second source. These replacements must correctly handle the
238 # case where (b % bitsize) + (c % bitsize) >= bitsize.
239 for s in [8, 16, 32, 64]:
240 mask = (1 << s) - 1
241
242 ishl = "ishl@{}".format(s)
243 ishr = "ishr@{}".format(s)
244 ushr = "ushr@{}".format(s)
245
246 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
247
248 optimizations.extend([
249 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
250 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
251
252 # To get get -1 for large shifts of negative values, ishr must instead
253 # clamp the shift count to the maximum value.
254 ((ishr, (ishr, a, '#b'), '#c'),
255 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
256 ])
257
258 # Optimize a pattern of address calculation created by DXVK where the offset is
259 # divided by 4 and then multipled by 4. This can be turned into an iand and the
260 # additions before can be reassociated to CSE the iand instruction.
261 for log2 in range(1, 7): # powers of two from 2 to 64
262 v = 1 << log2
263 mask = 0xffffffff & ~(v - 1)
264 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
265
266 optimizations.extend([
267 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
268 (('ishl@32', ('ushr@32', a, log2), log2), ('iand', a, mask)),
269
270 # Reassociate for improved CSE
271 (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
272 ])
273
274 # To save space in the state tables, reduce to the set that is known to help.
275 # Previously, this was range(1, 32). In addition, a couple rules inside the
276 # loop are commented out. Revisit someday, probably after mesa/#2635 has some
277 # resolution.
278 for i in [1, 2, 16, 24]:
279 lo_mask = 0xffffffff >> i
280 hi_mask = (0xffffffff << i) & 0xffffffff
281
282 optimizations.extend([
283 # This pattern seems to only help in the soft-fp64 code.
284 (('ishl@32', ('iand', 'a@32', lo_mask), i), ('ishl', a, i)),
285 # (('ushr@32', ('iand', 'a@32', hi_mask), i), ('ushr', a, i)),
286 # (('ishr@32', ('iand', 'a@32', hi_mask), i), ('ishr', a, i)),
287
288 (('iand', ('ishl', 'a@32', i), hi_mask), ('ishl', a, i)),
289 (('iand', ('ushr', 'a@32', i), lo_mask), ('ushr', a, i)),
290 # (('iand', ('ishr', 'a@32', i), lo_mask), ('ushr', a, i)), # Yes, ushr is correct
291 ])
292
293 optimizations.extend([
294 # This is common for address calculations. Reassociating may enable the
295 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
296 # instruction or a constant offset field for in load / store instructions.
297 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
298
299 # Comparison simplifications
300 (('~inot', ('flt', a, b)), ('fge', a, b)),
301 (('~inot', ('fge', a, b)), ('flt', a, b)),
302 (('inot', ('feq', a, b)), ('fne', a, b)),
303 (('inot', ('fne', a, b)), ('feq', a, b)),
304 (('inot', ('ilt', a, b)), ('ige', a, b)),
305 (('inot', ('ult', a, b)), ('uge', a, b)),
306 (('inot', ('ige', a, b)), ('ilt', a, b)),
307 (('inot', ('uge', a, b)), ('ult', a, b)),
308 (('inot', ('ieq', a, b)), ('ine', a, b)),
309 (('inot', ('ine', a, b)), ('ieq', a, b)),
310
311 (('iand', ('feq', a, b), ('fne', a, b)), False),
312 (('iand', ('flt', a, b), ('flt', b, a)), False),
313 (('iand', ('ieq', a, b), ('ine', a, b)), False),
314 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
315 (('iand', ('ult', a, b), ('ult', b, a)), False),
316
317 # This helps some shaders because, after some optimizations, they end up
318 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
319 # matching would be handled by CSE.
320 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
321 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
322 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
323 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
324 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
325 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
326 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
327 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
328 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
329 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
330
331 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
332 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
333 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
334 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
335 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
336 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
337
338 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
339 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
340 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
341 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
342
343 # 0.0 >= b2f(a)
344 # b2f(a) <= 0.0
345 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
346 # inot(a)
347 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
348
349 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
350
351 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
352 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
353 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
354 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
355 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
356 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
357 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
358 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
359 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
360 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
361 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
362 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
363 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
364 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
365 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
366 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
367 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
368 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
369 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
370 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
371
372 # -(b2f(a) + b2f(b)) < 0
373 # 0 < b2f(a) + b2f(b)
374 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
375 # a || b
376 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
377 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
378
379 # -(b2f(a) + b2f(b)) >= 0
380 # 0 >= b2f(a) + b2f(b)
381 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
382 # !(a || b)
383 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
384 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
385
386 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
387 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
388
389 # Some optimizations (below) convert things like (a < b || c < b) into
390 # (min(a, c) < b). However, this interfers with the previous optimizations
391 # that try to remove comparisons with negated sums of b2f. This just
392 # breaks that apart.
393 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
394 ('ior', ('flt', c, 0.0), ('ior', a, b))),
395
396 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
397 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
398 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
399 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
400 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
401 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
402 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
403 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
404 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
405 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
406 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
407 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
408
409 # Cannot remove the addition from ilt or ige due to overflow.
410 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
411 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
412
413 # fmin(-b2f(a), b) >= 0.0
414 # -b2f(a) >= 0.0 && b >= 0.0
415 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
416 # b2f(a) == 0.0 && b >= 0.0
417 # a == False && b >= 0.0
418 # !a && b >= 0.0
419 #
420 # The fge in the second replacement is not a typo. I leave the proof that
421 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
422 # reader.
423 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
424 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
425
426 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
427 (('~fne', ('b2f', 'a@1'), 0.0), a),
428 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
429 (('ine', ('b2i', 'a@1'), 0), a),
430
431 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
432 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
433 (('fge', ('u2f', a), 0.0), True),
434 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
435 (('flt', ('u2f', a), 0.0), False),
436 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
437 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
438 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
439 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
440 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
441 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
442 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
443
444 # 0.0 < fabs(a)
445 # fabs(a) > 0.0
446 # fabs(a) != 0.0 because fabs(a) must be >= 0
447 # a != 0.0
448 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
449
450 # -fabs(a) < 0.0
451 # fabs(a) > 0.0
452 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
453
454 # 0.0 >= fabs(a)
455 # 0.0 == fabs(a) because fabs(a) must be >= 0
456 # 0.0 == a
457 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
458
459 # -fabs(a) >= 0.0
460 # 0.0 >= fabs(a)
461 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
462
463 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
464 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
465
466 # (a < 0.0) || (a > 1.0)
467 # !(!(a < 0.0) && !(a > 1.0))
468 # !((a >= 0.0) && (a <= 1.0))
469 # !(a == fsat(a))
470 # a != fsat(a)
471 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
472
473 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
474 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
475 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
476 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
477
478 # fmin(b2f(a), b)
479 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
480 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
481 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
482 #
483 # Since b is a constant, constant folding will eliminate the fmin and the
484 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
485 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
486
487 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
488
489 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
490 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
491 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
492 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
493 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
494 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
495 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
496 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
497 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
498 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
499 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
500 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
501 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
502 (('bcsel', a, True, b), ('ior', a, b)),
503 (('bcsel', a, a, b), ('ior', a, b)),
504 (('bcsel', a, b, False), ('iand', a, b)),
505 (('bcsel', a, b, a), ('iand', a, b)),
506 (('~fmin', a, a), a),
507 (('~fmax', a, a), a),
508 (('imin', a, a), a),
509 (('imax', a, a), a),
510 (('umin', a, a), a),
511 (('umax', a, a), a),
512 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
513 (('umax', ('umax', a, b), b), ('umax', a, b)),
514 (('imax', ('imax', a, b), b), ('imax', a, b)),
515 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
516 (('umin', ('umin', a, b), b), ('umin', a, b)),
517 (('imin', ('imin', a, b), b), ('imin', a, b)),
518 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
519
520 # Simplify logic to detect sign of an integer.
521 (('ieq', ('iand', a, 0x80000000), 0x00000000), ('ige', a, 0)),
522 (('ine', ('iand', a, 0x80000000), 0x80000000), ('ige', a, 0)),
523 (('ine', ('iand', a, 0x80000000), 0x00000000), ('ilt', a, 0)),
524 (('ieq', ('iand', a, 0x80000000), 0x80000000), ('ilt', a, 0)),
525 (('ine', ('ushr', 'a@32', 31), 0), ('ilt', a, 0)),
526 (('ieq', ('ushr', 'a@32', 31), 0), ('ige', a, 0)),
527 (('ieq', ('ushr', 'a@32', 31), 1), ('ilt', a, 0)),
528 (('ine', ('ushr', 'a@32', 31), 1), ('ige', a, 0)),
529 (('ine', ('ishr', 'a@32', 31), 0), ('ilt', a, 0)),
530 (('ieq', ('ishr', 'a@32', 31), 0), ('ige', a, 0)),
531 (('ieq', ('ishr', 'a@32', 31), -1), ('ilt', a, 0)),
532 (('ine', ('ishr', 'a@32', 31), -1), ('ige', a, 0)),
533
534 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
535 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
536 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
537 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
538 (('~fmin', a, ('fabs', a)), a),
539 (('imin', a, ('iabs', a)), a),
540 (('~fmax', a, ('fneg', ('fabs', a))), a),
541 (('imax', a, ('ineg', ('iabs', a))), a),
542 (('fmax', a, ('fabs', a)), ('fabs', a)),
543 (('imax', a, ('iabs', a)), ('iabs', a)),
544 (('fmax', a, ('fneg', a)), ('fabs', a)),
545 (('imax', a, ('ineg', a)), ('iabs', a)),
546 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
547 (('~fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
548 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
549 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
550 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
551 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
552 (('fsat', ('b2f', a)), ('b2f', a)),
553 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
554 (('fsat', ('fsat', a)), ('fsat', a)),
555 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
556 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
557 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
558 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
559 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
560 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
561 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
562 (('fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
563
564 # If a in [0,b] then b-a is also in [0,b]. Since b in [0,1], max(b-a, 0) =
565 # fsat(b-a).
566 #
567 # If a > b, then b-a < 0 and max(b-a, 0) = fsat(b-a) = 0
568 #
569 # This should be NaN safe since max(NaN, 0) = fsat(NaN) = 0.
570 (('fmax', ('fadd(is_used_once)', ('fneg', 'a(is_not_negative)'), '#b@32(is_zero_to_one)'), 0.0),
571 ('fsat', ('fadd', ('fneg', a), b)), '!options->lower_fsat'),
572
573 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
574 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
575 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
576 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
577 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
578 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
579 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
580 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
581 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
582 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
583 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
584 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
585 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
586 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
587 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
588 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
589 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
590
591 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
592 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
593 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
594 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
595 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
596 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
597 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
598 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
599 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
600 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
601 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
602 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
603 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
604 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
605 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
606 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
607
608 # These derive from the previous patterns with the application of b < 0 <=>
609 # 0 < -b. The transformation should be applied if either comparison is
610 # used once as this ensures that the number of comparisons will not
611 # increase. The sources to the ior and iand are not symmetric, so the
612 # rules have to be duplicated to get this behavior.
613 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
614 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
615 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
616 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
617 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
618 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
619 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
620 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
621
622 # Common pattern like 'if (i == 0 || i == 1 || ...)'
623 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
624 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
625 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
626
627 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
628 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
629 # so emit an open-coded version of that.
630 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
631 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
632
633 (('ior', a, ('ieq', a, False)), True),
634 (('ior', a, ('inot', a)), -1),
635
636 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
637 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
638
639 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('ior', a, b), 0), '!options->lower_bitops'),
640 (('ior', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('ior', a, b), 0), '!options->lower_bitops'),
641
642 # This pattern occurs coutresy of __flt64_nonnan in the soft-fp64 code.
643 # The first part of the iand comes from the !__feq64_nonnan.
644 #
645 # The second pattern is a reformulation of the first based on the relation
646 # (a == 0 || y == 0) <=> umin(a, y) == 0, where b in the first equation
647 # happens to be y == 0.
648 (('iand', ('inot', ('iand', ('ior', ('ieq', a, 0), b), c)), ('ilt', a, 0)),
649 ('iand', ('inot', ('iand', b , c)), ('ilt', a, 0))),
650 (('iand', ('inot', ('iand', ('ieq', ('umin', a, b), 0), c)), ('ilt', a, 0)),
651 ('iand', ('inot', ('iand', ('ieq', b , 0), c)), ('ilt', a, 0))),
652
653 # These patterns can result when (a < b || a < c) => (a < min(b, c))
654 # transformations occur before constant propagation and loop-unrolling.
655 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
656 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
657 (('~fge', a, ('fmin', b, a)), True),
658 (('~fge', ('fmax', a, b), a), True),
659 (('~flt', a, ('fmin', b, a)), False),
660 (('~flt', ('fmax', a, b), a), False),
661 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
662 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
663
664 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
665 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
666 (('ige', a, ('imin', b, a)), True),
667 (('ige', ('imax', a, b), a), True),
668 (('ult', a, ('umax', b, a)), ('ult', a, b)),
669 (('ult', ('umin', a, b), a), ('ult', b, a)),
670 (('uge', a, ('umin', b, a)), True),
671 (('uge', ('umax', a, b), a), True),
672 (('ilt', a, ('imin', b, a)), False),
673 (('ilt', ('imax', a, b), a), False),
674 (('ige', a, ('imax', b, a)), ('ige', a, b)),
675 (('ige', ('imin', a, b), a), ('ige', b, a)),
676 (('ult', a, ('umin', b, a)), False),
677 (('ult', ('umax', a, b), a), False),
678 (('uge', a, ('umax', b, a)), ('uge', a, b)),
679 (('uge', ('umin', a, b), a), ('uge', b, a)),
680 (('ult', a, ('iand', b, a)), False),
681 (('ult', ('ior', a, b), a), False),
682 (('uge', a, ('iand', b, a)), True),
683 (('uge', ('ior', a, b), a), True),
684
685 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
686 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
687 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
688 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
689 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
690 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
691 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
692 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
693 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
694 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
695 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
696 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
697 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
698 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
699 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
700 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
701
702 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
703 # negative.
704 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
705 ('iabs', ('ishr', a, b))),
706 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
707
708 (('fabs', ('slt', a, b)), ('slt', a, b)),
709 (('fabs', ('sge', a, b)), ('sge', a, b)),
710 (('fabs', ('seq', a, b)), ('seq', a, b)),
711 (('fabs', ('sne', a, b)), ('sne', a, b)),
712 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
713 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
714 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
715 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
716 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
717 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
718 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
719 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
720 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
721 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
722 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
723 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
724 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
725 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
726 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
727 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
728 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
729 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
730 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
731 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
732 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
733 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
734 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
735 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
736 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
737 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
738 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
739 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
740 # Emulating booleans
741 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
742 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
743 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
744 (('iand', 'a@bool32', 1.0), ('b2f', a)),
745 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
746 (('ineg', ('b2i32', 'a@32')), a),
747 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
748 # Comparison with the same args. Note that these are not done for
749 # the float versions because NaN always returns false on float
750 # inequalities.
751 (('ilt', a, a), False),
752 (('ige', a, a), True),
753 (('ieq', a, a), True),
754 (('ine', a, a), False),
755 (('ult', a, a), False),
756 (('uge', a, a), True),
757 # Logical and bit operations
758 (('iand', a, a), a),
759 (('iand', a, ~0), a),
760 (('iand', a, 0), 0),
761 (('ior', a, a), a),
762 (('ior', a, 0), a),
763 (('ior', a, True), True),
764 (('ixor', a, a), 0),
765 (('ixor', a, 0), a),
766 (('inot', ('inot', a)), a),
767 (('ior', ('iand', a, b), b), b),
768 (('ior', ('ior', a, b), b), ('ior', a, b)),
769 (('iand', ('ior', a, b), b), b),
770 (('iand', ('iand', a, b), b), ('iand', a, b)),
771 # DeMorgan's Laws
772 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
773 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
774 # Shift optimizations
775 (('ishl', 0, a), 0),
776 (('ishl', a, 0), a),
777 (('ishr', 0, a), 0),
778 (('ishr', a, 0), a),
779 (('ushr', 0, a), 0),
780 (('ushr', a, 0), a),
781 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
782 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
783 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
784 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
785 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
786 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
787 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
788 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
789 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
790 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
791 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
792 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
793 # Exponential/logarithmic identities
794 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
795 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
796 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
797 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
798 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
799 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
800 (('~fexp2', ('fmul', ('flog2', a), 0.5)), ('fsqrt', a)),
801 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
802 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
803 (('~fpow', a, 1.0), a),
804 (('~fpow', a, 2.0), ('fmul', a, a)),
805 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
806 (('~fpow', 2.0, a), ('fexp2', a)),
807 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
808 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
809 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
810 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
811 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
812 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
813 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
814 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
815 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
816 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
817 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
818 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
819 # Division and reciprocal
820 (('~fdiv', 1.0, a), ('frcp', a)),
821 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
822 (('~frcp', ('frcp', a)), a),
823 (('~frcp', ('fsqrt', a)), ('frsq', a)),
824 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
825 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
826 # Trig
827 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
828 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
829 # Boolean simplifications
830 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
831 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
832 (('ieq', a, True), a),
833 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
834 (('ine', a, False), a),
835 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
836 (('bcsel', a, True, False), a),
837 (('bcsel', a, False, True), ('inot', a)),
838 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
839 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
840 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
841 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
842 (('bcsel', True, b, c), b),
843 (('bcsel', False, b, c), c),
844 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
845
846 (('bcsel', a, b, b), b),
847 (('~fcsel', a, b, b), b),
848
849 # D3D Boolean emulation
850 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
851 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
852 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
853 ('ineg', ('b2i', ('iand', a, b)))),
854 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
855 ('ineg', ('b2i', ('ior', a, b)))),
856 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
857 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
858 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
859 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
860 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
861 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
862
863 # SM5 32-bit shifts are defined to use the 5 least significant bits
864 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
865 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
866 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
867
868 # Conversions
869 (('i2b32', ('b2i', 'a@32')), a),
870 (('f2i', ('ftrunc', a)), ('f2i', a)),
871 (('f2u', ('ftrunc', a)), ('f2u', a)),
872 (('i2b', ('ineg', a)), ('i2b', a)),
873 (('i2b', ('iabs', a)), ('i2b', a)),
874 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
875
876 # The C spec says, "If the value of the integral part cannot be represented
877 # by the integer type, the behavior is undefined." "Undefined" can mean
878 # "the conversion doesn't happen at all."
879 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
880
881 # Ironically, mark these as imprecise because removing the conversions may
882 # preserve more precision than doing the conversions (e.g.,
883 # uint(float(0x81818181u)) == 0x81818200).
884 (('~f2i32', ('i2f', 'a@32')), a),
885 (('~f2i32', ('u2f', 'a@32')), a),
886 (('~f2u32', ('i2f', 'a@32')), a),
887 (('~f2u32', ('u2f', 'a@32')), a),
888
889 # Conversions from float16 to float32 and back can always be removed
890 (('f2f16', ('f2f32', 'a@16')), a),
891 (('f2fmp', ('f2f32', 'a@16')), a),
892 # Conversions to float16 would be lossy so they should only be removed if
893 # the instruction was generated by the precision lowering pass.
894 (('f2f32', ('f2fmp', 'a@32')), a),
895
896 (('ffloor', 'a(is_integral)'), a),
897 (('fceil', 'a(is_integral)'), a),
898 (('ftrunc', 'a(is_integral)'), a),
899 # fract(x) = x - floor(x), so fract(NaN) = NaN
900 (('~ffract', 'a(is_integral)'), 0.0),
901 (('fabs', 'a(is_not_negative)'), a),
902 (('iabs', 'a(is_not_negative)'), a),
903 (('fsat', 'a(is_not_positive)'), 0.0),
904
905 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
906 # says:
907 #
908 # It is undefined to convert a negative floating-point value to an
909 # uint.
910 #
911 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
912 # some optimizations in the i965 backend to proceed.
913 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
914 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
915 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
916 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
917
918 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
919
920 # The result of the multiply must be in [-1, 0], so the result of the ffma
921 # must be in [0, 1].
922 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
923 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
924 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
925 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
926
927 (('fne', 'a(is_not_zero)', 0.0), True),
928 (('feq', 'a(is_not_zero)', 0.0), False),
929
930 # In this chart, + means value > 0 and - means value < 0.
931 #
932 # + >= + -> unknown 0 >= + -> false - >= + -> false
933 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
934 # + >= - -> true 0 >= - -> true - >= - -> unknown
935 #
936 # Using grouping conceptually similar to a Karnaugh map...
937 #
938 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
939 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
940 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
941 #
942 # The flt / ilt cases just invert the expected result.
943 #
944 # The results expecting true, must be marked imprecise. The results
945 # expecting false are fine because NaN compared >= or < anything is false.
946
947 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
948 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
949 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
950
951 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
952 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
953 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
954
955 (('ine', 'a(is_not_zero)', 0), True),
956 (('ieq', 'a(is_not_zero)', 0), False),
957
958 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
959 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
960 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
961
962 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
963 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
964 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
965
966 (('ult', 0, 'a(is_gt_zero)'), True),
967 (('ult', a, 0), False),
968
969 # Packing and then unpacking does nothing
970 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
971 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
972 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
973 ('unpack_64_2x32_split_y', a)), a),
974
975 # Comparing two halves of an unpack separately. While this optimization
976 # should be correct for non-constant values, it's less obvious that it's
977 # useful in that case. For constant values, the pack will fold and we're
978 # guaranteed to reduce the whole tree to one instruction.
979 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
980 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
981 ('ieq', a, ('pack_32_2x16_split', b, c))),
982
983 # Byte extraction
984 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
985 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
986 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
987 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
988 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
989 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
990 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
991
992 # Useless masking before unpacking
993 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
994 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
995 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
996 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
997 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
998 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
999
1000 # Optimize half packing
1001 (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))),
1002 (('ishr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))),
1003
1004 (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1005 ('pack_half_2x16', ('vec2', a, b))),
1006 (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1007 ('pack_half_2x16', ('vec2', a, b))),
1008 ])
1009
1010 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
1011 # patterns like those below.
1012 for op in ('ushr', 'ishr'):
1013 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
1014 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
1015 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
1016
1017 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
1018
1019 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
1020 # patterns like those below.
1021 for op in ('extract_u8', 'extract_i8'):
1022 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
1023 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
1024 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
1025
1026 optimizations.extend([
1027 # Word extraction
1028 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1029 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1030 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1031 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1032 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
1033
1034 # Subtracts
1035 (('ussub_4x8', a, 0), a),
1036 (('ussub_4x8', a, ~0), 0),
1037 # Lower all Subtractions first - they can get recombined later
1038 (('fsub', a, b), ('fadd', a, ('fneg', b))),
1039 (('isub', a, b), ('iadd', a, ('ineg', b))),
1040 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1041 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
1042 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1043
1044 # Propagate negation up multiplication chains
1045 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
1046 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
1047
1048 # Propagate constants up multiplication chains
1049 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
1050 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
1051 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
1052 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
1053
1054 # Reassociate constants in add/mul chains so they can be folded together.
1055 # For now, we mostly only handle cases where the constants are separated by
1056 # a single non-constant. We could do better eventually.
1057 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
1058 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
1059 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
1060 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
1061 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
1062 (('iand', '#a', ('iand', 'b(is_not_const)', '#c')), ('iand', ('iand', a, c), b)),
1063 (('ior', '#a', ('ior', 'b(is_not_const)', '#c')), ('ior', ('ior', a, c), b)),
1064 (('ixor', '#a', ('ixor', 'b(is_not_const)', '#c')), ('ixor', ('ixor', a, c), b)),
1065
1066 # Drop mul-div by the same value when there's no wrapping.
1067 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
1068
1069 # By definition...
1070 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
1071 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1072 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1073
1074 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1075 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1076 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1077
1078 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1079
1080 # Misc. lowering
1081 (('fmod', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1082 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1083 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1084 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1085
1086 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1087 ('bcsel', ('ult', 31, 'bits'), 'insert',
1088 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1089 'options->lower_bitfield_insert'),
1090 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1091 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1092 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1093 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1094 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1095 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1096 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1097 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1098
1099 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1100 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1101 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1102 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1103
1104 # int64_t sum = a + b;
1105 #
1106 # if (a < 0 && b < 0 && a < sum)
1107 # sum = INT64_MIN;
1108 # } else if (a >= 0 && b >= 0 && sum < a)
1109 # sum = INT64_MAX;
1110 # }
1111 #
1112 # A couple optimizations are applied.
1113 #
1114 # 1. a < sum => sum >= 0. This replacement works because it is known that
1115 # a < 0 and b < 0, so sum should also be < 0 unless there was
1116 # underflow.
1117 #
1118 # 2. sum < a => sum < 0. This replacement works because it is known that
1119 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1120 # overflow.
1121 #
1122 # 3. Invert the second if-condition and swap the order of parameters for
1123 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1124 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1125 #
1126 # On Intel Gen11, this saves ~11 instructions.
1127 (('iadd_sat@64', a, b), ('bcsel',
1128 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1129 0x8000000000000000,
1130 ('bcsel',
1131 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1132 ('iadd', a, b),
1133 0x7fffffffffffffff)),
1134 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1135
1136 # int64_t sum = a - b;
1137 #
1138 # if (a < 0 && b >= 0 && a < sum)
1139 # sum = INT64_MIN;
1140 # } else if (a >= 0 && b < 0 && a >= sum)
1141 # sum = INT64_MAX;
1142 # }
1143 #
1144 # Optimizations similar to the iadd_sat case are applied here.
1145 (('isub_sat@64', a, b), ('bcsel',
1146 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1147 0x8000000000000000,
1148 ('bcsel',
1149 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1150 ('isub', a, b),
1151 0x7fffffffffffffff)),
1152 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1153
1154 # These are done here instead of in the backend because the int64 lowering
1155 # pass will make a mess of the patterns. The first patterns are
1156 # conditioned on nir_lower_minmax64 because it was not clear that it was
1157 # always an improvement on platforms that have real int64 support. No
1158 # shaders in shader-db hit this, so it was hard to say one way or the
1159 # other.
1160 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1161 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1162 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1163 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1164 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1165 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1166
1167 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1168 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1169 # 0u < uint(a) <=> uint(a) != 0u
1170 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1171
1172 # Alternative lowering that doesn't rely on bfi.
1173 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1174 ('bcsel', ('ult', 31, 'bits'),
1175 'insert',
1176 (('ior',
1177 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1178 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1179 'options->lower_bitfield_insert_to_shifts'),
1180
1181 # Alternative lowering that uses bitfield_select.
1182 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1183 ('bcsel', ('ult', 31, 'bits'), 'insert',
1184 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1185 'options->lower_bitfield_insert_to_bitfield_select'),
1186
1187 (('ibitfield_extract', 'value', 'offset', 'bits'),
1188 ('bcsel', ('ult', 31, 'bits'), 'value',
1189 ('ibfe', 'value', 'offset', 'bits')),
1190 'options->lower_bitfield_extract'),
1191
1192 (('ubitfield_extract', 'value', 'offset', 'bits'),
1193 ('bcsel', ('ult', 31, 'bits'), 'value',
1194 ('ubfe', 'value', 'offset', 'bits')),
1195 'options->lower_bitfield_extract'),
1196
1197 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1198 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1199 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1200 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1201 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1202 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1203 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1204
1205 (('ibitfield_extract', 'value', 'offset', 'bits'),
1206 ('bcsel', ('ieq', 0, 'bits'),
1207 0,
1208 ('ishr',
1209 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1210 ('isub', 32, 'bits'))),
1211 'options->lower_bitfield_extract_to_shifts'),
1212
1213 (('ubitfield_extract', 'value', 'offset', 'bits'),
1214 ('iand',
1215 ('ushr', 'value', 'offset'),
1216 ('bcsel', ('ieq', 'bits', 32),
1217 0xffffffff,
1218 ('isub', ('ishl', 1, 'bits'), 1))),
1219 'options->lower_bitfield_extract_to_shifts'),
1220
1221 (('ifind_msb', 'value'),
1222 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1223 'options->lower_ifind_msb'),
1224
1225 (('find_lsb', 'value'),
1226 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1227 'options->lower_find_lsb'),
1228
1229 (('extract_i8', a, 'b@32'),
1230 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1231 'options->lower_extract_byte'),
1232
1233 (('extract_u8', a, 'b@32'),
1234 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1235 'options->lower_extract_byte'),
1236
1237 (('extract_i16', a, 'b@32'),
1238 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1239 'options->lower_extract_word'),
1240
1241 (('extract_u16', a, 'b@32'),
1242 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1243 'options->lower_extract_word'),
1244
1245 (('pack_unorm_2x16', 'v'),
1246 ('pack_uvec2_to_uint',
1247 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1248 'options->lower_pack_unorm_2x16'),
1249
1250 (('pack_unorm_4x8', 'v'),
1251 ('pack_uvec4_to_uint',
1252 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1253 'options->lower_pack_unorm_4x8'),
1254
1255 (('pack_snorm_2x16', 'v'),
1256 ('pack_uvec2_to_uint',
1257 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1258 'options->lower_pack_snorm_2x16'),
1259
1260 (('pack_snorm_4x8', 'v'),
1261 ('pack_uvec4_to_uint',
1262 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1263 'options->lower_pack_snorm_4x8'),
1264
1265 (('unpack_unorm_2x16', 'v'),
1266 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1267 ('extract_u16', 'v', 1))),
1268 65535.0),
1269 'options->lower_unpack_unorm_2x16'),
1270
1271 (('unpack_unorm_4x8', 'v'),
1272 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1273 ('extract_u8', 'v', 1),
1274 ('extract_u8', 'v', 2),
1275 ('extract_u8', 'v', 3))),
1276 255.0),
1277 'options->lower_unpack_unorm_4x8'),
1278
1279 (('unpack_snorm_2x16', 'v'),
1280 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1281 ('extract_i16', 'v', 1))),
1282 32767.0))),
1283 'options->lower_unpack_snorm_2x16'),
1284
1285 (('unpack_snorm_4x8', 'v'),
1286 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1287 ('extract_i8', 'v', 1),
1288 ('extract_i8', 'v', 2),
1289 ('extract_i8', 'v', 3))),
1290 127.0))),
1291 'options->lower_unpack_snorm_4x8'),
1292
1293 (('pack_half_2x16_split', 'a@32', 'b@32'),
1294 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1295 'options->lower_pack_half_2x16_split'),
1296
1297 (('unpack_half_2x16_split_x', 'a@32'),
1298 ('f2f32', ('u2u16', a)),
1299 'options->lower_unpack_half_2x16_split'),
1300
1301 (('unpack_half_2x16_split_y', 'a@32'),
1302 ('f2f32', ('u2u16', ('ushr', a, 16))),
1303 'options->lower_unpack_half_2x16_split'),
1304
1305 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1306 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1307
1308 # Address/offset calculations:
1309 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1310 # rule converts everyone else to imul:
1311 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1312
1313 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1314 (('imad24_ir3', a, 0, c), (c)),
1315 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1316
1317 # if first two srcs are const, crack apart the imad so constant folding
1318 # can clean up the imul:
1319 # TODO ffma should probably get a similar rule:
1320 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1321
1322 # These will turn 24b address/offset calc back into 32b shifts, but
1323 # it should be safe to get back some of the bits of precision that we
1324 # already decided were no necessary:
1325 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1326 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1327 (('imul24', a, 0), (0)),
1328 ])
1329
1330 # bit_size dependent lowerings
1331 for bit_size in [8, 16, 32, 64]:
1332 # convenience constants
1333 intmax = (1 << (bit_size - 1)) - 1
1334 intmin = 1 << (bit_size - 1)
1335
1336 optimizations += [
1337 (('iadd_sat@' + str(bit_size), a, b),
1338 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1339 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1340 (('isub_sat@' + str(bit_size), a, b),
1341 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1342 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1343 ]
1344
1345 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq')])
1346
1347 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1348 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1349 ('iand', (invert[left], a, b), (invert[right], c, d))))
1350 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1351 ('ior', (invert[left], a, b), (invert[right], c, d))))
1352
1353 # Optimize x2bN(b2x(x)) -> x
1354 for size in type_sizes('bool'):
1355 aN = 'a@' + str(size)
1356 f2bN = 'f2b' + str(size)
1357 i2bN = 'i2b' + str(size)
1358 optimizations.append(((f2bN, ('b2f', aN)), a))
1359 optimizations.append(((i2bN, ('b2i', aN)), a))
1360
1361 # Optimize x2yN(b2x(x)) -> b2y
1362 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1363 if x != 'f' and y != 'f' and x != y:
1364 continue
1365
1366 b2x = 'b2f' if x == 'f' else 'b2i'
1367 b2y = 'b2f' if y == 'f' else 'b2i'
1368 x2yN = '{}2{}'.format(x, y)
1369 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1370
1371 # Optimize away x2xN(a@N)
1372 for t in ['int', 'uint', 'float', 'bool']:
1373 for N in type_sizes(t):
1374 x2xN = '{0}2{0}{1}'.format(t[0], N)
1375 aN = 'a@{0}'.format(N)
1376 optimizations.append(((x2xN, aN), a))
1377
1378 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1379 # In particular, we can optimize away everything except upcast of downcast and
1380 # upcasts where the type differs from the other cast
1381 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1382 if N < M:
1383 # The outer cast is a down-cast. It doesn't matter what the size of the
1384 # argument of the inner cast is because we'll never been in the upcast
1385 # of downcast case. Regardless of types, we'll always end up with y2yN
1386 # in the end.
1387 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1388 x2xN = '{0}2{0}{1}'.format(x, N)
1389 y2yM = '{0}2{0}{1}'.format(y, M)
1390 y2yN = '{0}2{0}{1}'.format(y, N)
1391 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1392 elif N > M:
1393 # If the outer cast is an up-cast, we have to be more careful about the
1394 # size of the argument of the inner cast and with types. In this case,
1395 # the type is always the type of type up-cast which is given by the
1396 # outer cast.
1397 for P in type_sizes('uint'):
1398 # We can't optimize away up-cast of down-cast.
1399 if M < P:
1400 continue
1401
1402 # Because we're doing down-cast of down-cast, the types always have
1403 # to match between the two casts
1404 for x in ['i', 'u']:
1405 x2xN = '{0}2{0}{1}'.format(x, N)
1406 x2xM = '{0}2{0}{1}'.format(x, M)
1407 aP = 'a@{0}'.format(P)
1408 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1409 else:
1410 # The N == M case is handled by other optimizations
1411 pass
1412
1413 # Downcast operations should be able to see through pack
1414 for t in ['i', 'u']:
1415 for N in [8, 16, 32]:
1416 x2xN = '{0}2{0}{1}'.format(t, N)
1417 optimizations += [
1418 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1419 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1420 ]
1421
1422 # Optimize comparisons with up-casts
1423 for t in ['int', 'uint', 'float']:
1424 for N, M in itertools.product(type_sizes(t), repeat=2):
1425 if N == 1 or N >= M:
1426 continue
1427
1428 x2xM = '{0}2{0}{1}'.format(t[0], M)
1429 x2xN = '{0}2{0}{1}'.format(t[0], N)
1430 aN = 'a@' + str(N)
1431 bN = 'b@' + str(N)
1432 xeq = 'feq' if t == 'float' else 'ieq'
1433 xne = 'fne' if t == 'float' else 'ine'
1434 xge = '{0}ge'.format(t[0])
1435 xlt = '{0}lt'.format(t[0])
1436
1437 # Up-casts are lossless so for correctly signed comparisons of
1438 # up-casted values we can do the comparison at the largest of the two
1439 # original sizes and drop one or both of the casts. (We have
1440 # optimizations to drop the no-op casts which this may generate.)
1441 for P in type_sizes(t):
1442 if P == 1 or P > N:
1443 continue
1444
1445 bP = 'b@' + str(P)
1446 optimizations += [
1447 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b))),
1448 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b))),
1449 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b))),
1450 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b))),
1451 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a)),
1452 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a)),
1453 ]
1454
1455 # The next bit doesn't work on floats because the range checks would
1456 # get way too complicated.
1457 if t in ['int', 'uint']:
1458 if t == 'int':
1459 xN_min = -(1 << (N - 1))
1460 xN_max = (1 << (N - 1)) - 1
1461 elif t == 'uint':
1462 xN_min = 0
1463 xN_max = (1 << N) - 1
1464 else:
1465 assert False
1466
1467 # If we're up-casting and comparing to a constant, we can unfold
1468 # the comparison into a comparison with the shrunk down constant
1469 # and a check that the constant fits in the smaller bit size.
1470 optimizations += [
1471 ((xeq, (x2xM, aN), '#b'),
1472 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b))),
1473 ((xne, (x2xM, aN), '#b'),
1474 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b))),
1475 ((xlt, (x2xM, aN), '#b'),
1476 ('iand', (xlt, xN_min, b),
1477 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b))))),
1478 ((xlt, '#a', (x2xM, bN)),
1479 ('iand', (xlt, a, xN_max),
1480 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b)))),
1481 ((xge, (x2xM, aN), '#b'),
1482 ('iand', (xge, xN_max, b),
1483 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b))))),
1484 ((xge, '#a', (x2xM, bN)),
1485 ('iand', (xge, a, xN_min),
1486 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b)))),
1487 ]
1488
1489 def fexp2i(exp, bits):
1490 # Generate an expression which constructs value 2.0^exp or 0.0.
1491 #
1492 # We assume that exp is already in a valid range:
1493 #
1494 # * [-15, 15] for 16-bit float
1495 # * [-127, 127] for 32-bit float
1496 # * [-1023, 1023] for 16-bit float
1497 #
1498 # If exp is the lowest value in the valid range, a value of 0.0 is
1499 # constructed. Otherwise, the value 2.0^exp is constructed.
1500 if bits == 16:
1501 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1502 elif bits == 32:
1503 return ('ishl', ('iadd', exp, 127), 23)
1504 elif bits == 64:
1505 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1506 else:
1507 assert False
1508
1509 def ldexp(f, exp, bits):
1510 # The maximum possible range for a normal exponent is [-126, 127] and,
1511 # throwing in denormals, you get a maximum range of [-149, 127]. This
1512 # means that we can potentially have a swing of +-276. If you start with
1513 # FLT_MAX, you actually have to do ldexp(FLT_MAX, -278) to get it to flush
1514 # all the way to zero. The GLSL spec only requires that we handle a subset
1515 # of this range. From version 4.60 of the spec:
1516 #
1517 # "If exp is greater than +128 (single-precision) or +1024
1518 # (double-precision), the value returned is undefined. If exp is less
1519 # than -126 (single-precision) or -1022 (double-precision), the value
1520 # returned may be flushed to zero. Additionally, splitting the value
1521 # into a significand and exponent using frexp() and then reconstructing
1522 # a floating-point value using ldexp() should yield the original input
1523 # for zero and all finite non-denormalized values."
1524 #
1525 # The SPIR-V spec has similar language.
1526 #
1527 # In order to handle the maximum value +128 using the fexp2i() helper
1528 # above, we have to split the exponent in half and do two multiply
1529 # operations.
1530 #
1531 # First, we clamp exp to a reasonable range. Specifically, we clamp to
1532 # twice the full range that is valid for the fexp2i() function above. If
1533 # exp/2 is the bottom value of that range, the fexp2i() expression will
1534 # yield 0.0f which, when multiplied by f, will flush it to zero which is
1535 # allowed by the GLSL and SPIR-V specs for low exponent values. If the
1536 # value is clamped from above, then it must have been above the supported
1537 # range of the GLSL built-in and therefore any return value is acceptable.
1538 if bits == 16:
1539 exp = ('imin', ('imax', exp, -30), 30)
1540 elif bits == 32:
1541 exp = ('imin', ('imax', exp, -254), 254)
1542 elif bits == 64:
1543 exp = ('imin', ('imax', exp, -2046), 2046)
1544 else:
1545 assert False
1546
1547 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1548 # (We use ishr which isn't the same for -1, but the -1 case still works
1549 # since we use exp-exp/2 as the second exponent.) While the spec
1550 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1551 # work with denormals and doesn't allow for the full swing in exponents
1552 # that you can get with normalized values. Instead, we create two powers
1553 # of two and multiply by them each in turn. That way the effective range
1554 # of our exponent is doubled.
1555 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1556 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1557 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1558
1559 optimizations += [
1560 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1561 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1562 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1563 ]
1564
1565 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1566 def bitfield_reverse(u):
1567 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1568 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1569 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1570 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1571 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1572
1573 return step5
1574
1575 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1576
1577 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1578 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1579 # and, if a is a NaN then the second comparison will fail anyway.
1580 for op in ['flt', 'fge', 'feq']:
1581 optimizations += [
1582 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1583 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1584 ]
1585
1586 # Add optimizations to handle the case where the result of a ternary is
1587 # compared to a constant. This way we can take things like
1588 #
1589 # (a ? 0 : 1) > 0
1590 #
1591 # and turn it into
1592 #
1593 # a ? (0 > 0) : (1 > 0)
1594 #
1595 # which constant folding will eat for lunch. The resulting ternary will
1596 # further get cleaned up by the boolean reductions above and we will be
1597 # left with just the original variable "a".
1598 for op in ['flt', 'fge', 'feq', 'fne',
1599 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1600 optimizations += [
1601 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1602 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1603 ((op, '#d', ('bcsel', a, '#b', '#c')),
1604 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1605 ]
1606
1607
1608 # For example, this converts things like
1609 #
1610 # 1 + mix(0, a - 1, condition)
1611 #
1612 # into
1613 #
1614 # mix(1, (a-1)+1, condition)
1615 #
1616 # Other optimizations will rearrange the constants.
1617 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1618 optimizations += [
1619 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1620 ]
1621
1622 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1623 # states:
1624 #
1625 # If neither layout qualifier is specified, derivatives in compute shaders
1626 # return zero, which is consistent with the handling of built-in texture
1627 # functions like texture() in GLSL 4.50 compute shaders.
1628 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1629 'fddy', 'fddy_fine', 'fddy_coarse']:
1630 optimizations += [
1631 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1632 ]
1633
1634 # Some optimizations for ir3-specific instructions.
1635 optimizations += [
1636 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1637 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1638 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1639 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1640 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1641 ]
1642
1643 # These kinds of sequences can occur after nir_opt_peephole_select.
1644 #
1645 # NOTE: fadd is not handled here because that gets in the way of ffma
1646 # generation in the i965 driver. Instead, fadd and ffma are handled in
1647 # late_optimizations.
1648
1649 for op in ['flrp']:
1650 optimizations += [
1651 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1652 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1653 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1654 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1655 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1656 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1657 ]
1658
1659 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1660 optimizations += [
1661 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1662 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1663 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1664 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1665 ]
1666
1667 for op in ['fpow']:
1668 optimizations += [
1669 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1670 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1671 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1672 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1673 ]
1674
1675 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos']:
1676 optimizations += [
1677 (('bcsel', a, (op + '(is_used_once)', b), (op, c)), (op, ('bcsel', a, b, c))),
1678 (('bcsel', a, (op, b), (op + '(is_used_once)', c)), (op, ('bcsel', a, b, c))),
1679 ]
1680
1681 # This section contains "late" optimizations that should be run before
1682 # creating ffmas and calling regular optimizations for the final time.
1683 # Optimizations should go here if they help code generation and conflict
1684 # with the regular optimizations.
1685 before_ffma_optimizations = [
1686 # Propagate constants down multiplication chains
1687 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1688 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1689 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1690 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1691
1692 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1693 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1694 (('~fadd', ('fneg', a), a), 0.0),
1695 (('iadd', ('ineg', a), a), 0),
1696 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1697 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1698 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1699 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1700
1701 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1702 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1703 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1704 ]
1705
1706 # This section contains "late" optimizations that should be run after the
1707 # regular optimizations have finished. Optimizations should go here if
1708 # they help code generation but do not necessarily produce code that is
1709 # more easily optimizable.
1710 late_optimizations = [
1711 # Most of these optimizations aren't quite safe when you get infinity or
1712 # Nan involved but the first one should be fine.
1713 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1714 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1715 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1716 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1717 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1718 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1719
1720 # nir_lower_to_source_mods will collapse this, but its existence during the
1721 # optimization loop can prevent other optimizations.
1722 (('fneg', ('fneg', a)), a),
1723
1724 # Subtractions get lowered during optimization, so we need to recombine them
1725 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1726 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1727 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1728 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1729
1730 # These are duplicated from the main optimizations table. The late
1731 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1732 # new patterns like these. The patterns that compare with zero are removed
1733 # because they are unlikely to be created in by anything in
1734 # late_optimizations.
1735 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1736 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1737 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1738 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1739 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1740 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1741
1742 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1743 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1744
1745 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1746
1747 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1748 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1749 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1750 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1751 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1752 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1753 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1754 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1755 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1756 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1757
1758 (('ior', a, a), a),
1759 (('iand', a, a), a),
1760
1761 (('iand', ('ine(is_used_once)', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
1762 (('ior', ('ieq(is_used_once)', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
1763
1764 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1765
1766 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1767 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1768 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1769 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1770
1771 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1772 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1773
1774 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1775 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1776
1777 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1778 # particular operation is common for expanding values stored in a texture
1779 # from [0,1] to [-1,1].
1780 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1781 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1782 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1783 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1784 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1785 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1786 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1787 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1788
1789 # flrp(a, b, a)
1790 # a*(1-a) + b*a
1791 # a + -a*a + a*b (1)
1792 # a + a*(b - a)
1793 # Option 1: ffma(a, (b-a), a)
1794 #
1795 # Alternately, after (1):
1796 # a*(1+b) + -a*a
1797 # a*((1+b) + -a)
1798 #
1799 # Let b=1
1800 #
1801 # Option 2: ffma(a, 2, -(a*a))
1802 # Option 3: ffma(a, 2, (-a)*a)
1803 # Option 4: ffma(a, -a, (2*a)
1804 # Option 5: a * (2 - a)
1805 #
1806 # There are a lot of other possible combinations.
1807 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1808 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1809 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1810 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1811 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1812
1813 # we do these late so that we don't get in the way of creating ffmas
1814 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1815 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1816
1817 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1818
1819 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1820 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1821 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1822 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1823
1824 # Things that look like DPH in the source shader may get expanded to
1825 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1826 # to NIR. After FFMA is generated, this can look like:
1827 #
1828 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1829 #
1830 # Reassociate the last addition into the first multiplication.
1831 #
1832 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
1833 # shader stages on some outputs that are intended to be invariant. For
1834 # various reasons, this optimization may not be fully applied in all
1835 # shaders used for different rendering passes of the same geometry. This
1836 # can result in Z-fighting artifacts (at best). For now, disable this
1837 # optimization in these stages. See bugzilla #111490. In tessellation
1838 # stages applications seem to use 'precise' when necessary, so allow the
1839 # optimization in those stages.
1840 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
1841 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1842 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
1843 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1844
1845 # Convert f2fmp instructions to concrete f2f16 instructions. At this point
1846 # any conversions that could have been removed will have been removed in
1847 # nir_opt_algebraic so any remaining ones are required.
1848 (('f2fmp', a), ('f2f16', a)),
1849 ]
1850
1851 for op in ['fadd']:
1852 late_optimizations += [
1853 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1854 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1855 ]
1856
1857 for op in ['ffma']:
1858 late_optimizations += [
1859 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1860 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1861
1862 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1863 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1864 ]
1865
1866 distribute_src_mods = [
1867 # Try to remove some spurious negations rather than pushing them down.
1868 (('fmul', ('fneg', a), ('fneg', b)), ('fmul', a, b)),
1869 (('ffma', ('fneg', a), ('fneg', b), c), ('ffma', a, b, c)),
1870 (('fdot_replicated2', ('fneg', a), ('fneg', b)), ('fdot_replicated2', a, b)),
1871 (('fdot_replicated3', ('fneg', a), ('fneg', b)), ('fdot_replicated3', a, b)),
1872 (('fdot_replicated4', ('fneg', a), ('fneg', b)), ('fdot_replicated4', a, b)),
1873 (('fneg', ('fneg', a)), a),
1874
1875 (('fneg', ('ffma(is_used_once)', a, b, c)), ('ffma', ('fneg', a), b, ('fneg', c))),
1876 (('fneg', ('flrp(is_used_once)', a, b, c)), ('flrp', ('fneg', a), ('fneg', b), c)),
1877 (('fneg', ('fadd(is_used_once)', a, b)), ('fadd', ('fneg', a), ('fneg', b))),
1878
1879 # Note that fmin <-> fmax. I don't think there is a way to distribute
1880 # fabs() into fmin or fmax.
1881 (('fneg', ('fmin(is_used_once)', a, b)), ('fmax', ('fneg', a), ('fneg', b))),
1882 (('fneg', ('fmax(is_used_once)', a, b)), ('fmin', ('fneg', a), ('fneg', b))),
1883
1884 # fdph works mostly like fdot, but to get the correct result, the negation
1885 # must be applied to the second source.
1886 (('fneg', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', a, ('fneg', b))),
1887 (('fabs', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', ('fabs', a), ('fabs', b))),
1888
1889 (('fneg', ('fsign(is_used_once)', a)), ('fsign', ('fneg', a))),
1890 (('fabs', ('fsign(is_used_once)', a)), ('fsign', ('fabs', a))),
1891 ]
1892
1893 for op in ['fmul', 'fdot_replicated2', 'fdot_replicated3', 'fdot_replicated4']:
1894 distribute_src_mods.extend([
1895 (('fneg', (op + '(is_used_once)', a, b)), (op, ('fneg', a), b)),
1896 (('fabs', (op + '(is_used_once)', a, b)), (op, ('fabs', a), ('fabs', b))),
1897 ])
1898
1899 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
1900 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
1901 before_ffma_optimizations).render())
1902 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
1903 late_optimizations).render())
1904 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_distribute_src_mods",
1905 distribute_src_mods).render())