nir/algebraic: Remove a redundant fabs pattern
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fneg', a)), ('fabs', a)),
113 (('fabs', ('u2f', a)), ('u2f', a)),
114 (('iabs', ('iabs', a)), ('iabs', a)),
115 (('iabs', ('ineg', a)), ('iabs', a)),
116 (('f2b', ('fneg', a)), ('f2b', a)),
117 (('i2b', ('ineg', a)), ('i2b', a)),
118 (('~fadd', a, 0.0), a),
119 (('iadd', a, 0), a),
120 (('usadd_4x8', a, 0), a),
121 (('usadd_4x8', a, ~0), ~0),
122 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
123 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
124 (('~fadd', ('fneg', a), a), 0.0),
125 (('iadd', ('ineg', a), a), 0),
126 (('iadd', ('ineg', a), ('iadd', a, b)), b),
127 (('iadd', a, ('iadd', ('ineg', a), b)), b),
128 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
129 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
130 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
131 (('~fmul', a, 0.0), 0.0),
132 (('imul', a, 0), 0),
133 (('umul_unorm_4x8', a, 0), 0),
134 (('umul_unorm_4x8', a, ~0), a),
135 (('~fmul', a, 1.0), a),
136 (('imul', a, 1), a),
137 (('fmul', a, -1.0), ('fneg', a)),
138 (('imul', a, -1), ('ineg', a)),
139 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
140 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
141 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
142 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
143 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
144 (('~ffma', 0.0, a, b), b),
145 (('~ffma', a, b, 0.0), ('fmul', a, b)),
146 (('ffma', 1.0, a, b), ('fadd', a, b)),
147 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
148 (('~flrp', a, b, 0.0), a),
149 (('~flrp', a, b, 1.0), b),
150 (('~flrp', a, a, b), a),
151 (('~flrp', 0.0, a, b), ('fmul', a, b)),
152
153 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
154 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
155 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
156 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
157
158 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
159 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
160
161 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
162 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
163
164 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
165
166 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
167 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
168 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
169 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
170 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
171 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
172 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
173 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
174 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
175 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
176 # These are the same as the previous three rules, but it depends on
177 # 1-fsat(x) <=> fsat(1-x). See below.
178 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
179 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
180
181 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
182 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
183 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
184 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
185 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
186
187 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
188 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
189
190 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
191
192 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
193 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
194 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
195 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
196
197 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
198 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
199
200 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
201 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
202
203 # Lower fdot to fsum when it is available
204 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
205 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
206 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
208
209 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
210 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
211 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
212 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
213
214 # 1 - ((1 - a) * (1 - b))
215 # 1 - (1 - a - b + a*b)
216 # 1 - 1 + a + b - a*b
217 # a + b - a*b
218 # a + b*(1 - a)
219 # b*(1 - a) + 1*a
220 # flrp(b, 1, a)
221 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
222 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
223
224 # (a * #b + #c) << #d
225 # ((a * #b) << #d) + (#c << #d)
226 # (a * (#b << #d)) + (#c << #d)
227 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
228 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
229
230 # (a * #b) << #c
231 # a * (#b << #c)
232 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
233 ]
234
235 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
236 # bits of the second source. These replacements must correctly handle the
237 # case where (b % bitsize) + (c % bitsize) >= bitsize.
238 for s in [8, 16, 32, 64]:
239 mask = (1 << s) - 1
240
241 ishl = "ishl@{}".format(s)
242 ishr = "ishr@{}".format(s)
243 ushr = "ushr@{}".format(s)
244
245 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
246
247 optimizations.extend([
248 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
249 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
250
251 # To get get -1 for large shifts of negative values, ishr must instead
252 # clamp the shift count to the maximum value.
253 ((ishr, (ishr, a, '#b'), '#c'),
254 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
255 ])
256
257 # Optimize a pattern of address calculation created by DXVK where the offset is
258 # divided by 4 and then multipled by 4. This can be turned into an iand and the
259 # additions before can be reassociated to CSE the iand instruction.
260 for log2 in range(1, 7): # powers of two from 2 to 64
261 v = 1 << log2
262 mask = 0xffffffff & ~(v - 1)
263 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
264
265 optimizations.extend([
266 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
267 (('ishl@32', ('ushr@32', a, log2), log2), ('iand', a, mask)),
268
269 # Reassociate for improved CSE
270 (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
271 ])
272
273 # To save space in the state tables, reduce to the set that is known to help.
274 # Previously, this was range(1, 32). In addition, a couple rules inside the
275 # loop are commented out. Revisit someday, probably after mesa/#2635 has some
276 # resolution.
277 for i in [1, 2, 16, 24]:
278 lo_mask = 0xffffffff >> i
279 hi_mask = (0xffffffff << i) & 0xffffffff
280
281 optimizations.extend([
282 # This pattern seems to only help in the soft-fp64 code.
283 (('ishl@32', ('iand', 'a@32', lo_mask), i), ('ishl', a, i)),
284 # (('ushr@32', ('iand', 'a@32', hi_mask), i), ('ushr', a, i)),
285 # (('ishr@32', ('iand', 'a@32', hi_mask), i), ('ishr', a, i)),
286
287 (('iand', ('ishl', 'a@32', i), hi_mask), ('ishl', a, i)),
288 (('iand', ('ushr', 'a@32', i), lo_mask), ('ushr', a, i)),
289 # (('iand', ('ishr', 'a@32', i), lo_mask), ('ushr', a, i)), # Yes, ushr is correct
290 ])
291
292 optimizations.extend([
293 # This is common for address calculations. Reassociating may enable the
294 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
295 # instruction or a constant offset field for in load / store instructions.
296 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
297
298 # Comparison simplifications
299 (('~inot', ('flt', a, b)), ('fge', a, b)),
300 (('~inot', ('fge', a, b)), ('flt', a, b)),
301 (('inot', ('feq', a, b)), ('fne', a, b)),
302 (('inot', ('fne', a, b)), ('feq', a, b)),
303 (('inot', ('ilt', a, b)), ('ige', a, b)),
304 (('inot', ('ult', a, b)), ('uge', a, b)),
305 (('inot', ('ige', a, b)), ('ilt', a, b)),
306 (('inot', ('uge', a, b)), ('ult', a, b)),
307 (('inot', ('ieq', a, b)), ('ine', a, b)),
308 (('inot', ('ine', a, b)), ('ieq', a, b)),
309
310 (('iand', ('feq', a, b), ('fne', a, b)), False),
311 (('iand', ('flt', a, b), ('flt', b, a)), False),
312 (('iand', ('ieq', a, b), ('ine', a, b)), False),
313 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
314 (('iand', ('ult', a, b), ('ult', b, a)), False),
315
316 # This helps some shaders because, after some optimizations, they end up
317 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
318 # matching would be handled by CSE.
319 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
320 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
321 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
322 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
323 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
324 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
325 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
326 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
327 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
328 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
329
330 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
331 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
332 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
333 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
334 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
335 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
336
337 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
338 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
339 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
340 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
341
342 # 0.0 >= b2f(a)
343 # b2f(a) <= 0.0
344 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
345 # inot(a)
346 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
347
348 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
349
350 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
351 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
352 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
353 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
354 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
355 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
356 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
357 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
358 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
359 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
360 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
361 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
362 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
363 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
364 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
365 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
366 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
367 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
368 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
369 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
370
371 # -(b2f(a) + b2f(b)) < 0
372 # 0 < b2f(a) + b2f(b)
373 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
374 # a || b
375 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
376 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
377
378 # -(b2f(a) + b2f(b)) >= 0
379 # 0 >= b2f(a) + b2f(b)
380 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
381 # !(a || b)
382 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
383 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
384
385 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
386 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
387
388 # Some optimizations (below) convert things like (a < b || c < b) into
389 # (min(a, c) < b). However, this interfers with the previous optimizations
390 # that try to remove comparisons with negated sums of b2f. This just
391 # breaks that apart.
392 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
393 ('ior', ('flt', c, 0.0), ('ior', a, b))),
394
395 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
396 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
397 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
398 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
399 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
400 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
401 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
402 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
403 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
404 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
405 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
406 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
407
408 # Cannot remove the addition from ilt or ige due to overflow.
409 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
410 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
411
412 # fmin(-b2f(a), b) >= 0.0
413 # -b2f(a) >= 0.0 && b >= 0.0
414 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
415 # b2f(a) == 0.0 && b >= 0.0
416 # a == False && b >= 0.0
417 # !a && b >= 0.0
418 #
419 # The fge in the second replacement is not a typo. I leave the proof that
420 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
421 # reader.
422 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
423 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
424
425 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
426 (('~fne', ('b2f', 'a@1'), 0.0), a),
427 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
428 (('ine', ('b2i', 'a@1'), 0), a),
429
430 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
431 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
432 (('fge', ('u2f', a), 0.0), True),
433 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
434 (('flt', ('u2f', a), 0.0), False),
435 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
436 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
437 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
438 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
439 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
440 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
441 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
442
443 # 0.0 < fabs(a)
444 # fabs(a) > 0.0
445 # fabs(a) != 0.0 because fabs(a) must be >= 0
446 # a != 0.0
447 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
448
449 # -fabs(a) < 0.0
450 # fabs(a) > 0.0
451 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
452
453 # 0.0 >= fabs(a)
454 # 0.0 == fabs(a) because fabs(a) must be >= 0
455 # 0.0 == a
456 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
457
458 # -fabs(a) >= 0.0
459 # 0.0 >= fabs(a)
460 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
461
462 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
463 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
464
465 # (a < 0.0) || (a > 1.0)
466 # !(!(a < 0.0) && !(a > 1.0))
467 # !((a >= 0.0) && (a <= 1.0))
468 # !(a == fsat(a))
469 # a != fsat(a)
470 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
471
472 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
473 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
474 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
475 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
476
477 # fmin(b2f(a), b)
478 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
479 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
480 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
481 #
482 # Since b is a constant, constant folding will eliminate the fmin and the
483 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
484 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
485
486 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
487
488 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
489 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
490 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
491 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
492 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
493 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
494 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
495 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
496 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
497 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
498 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
499 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
500 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
501 (('bcsel', a, True, b), ('ior', a, b)),
502 (('bcsel', a, a, b), ('ior', a, b)),
503 (('bcsel', a, b, False), ('iand', a, b)),
504 (('bcsel', a, b, a), ('iand', a, b)),
505 (('~fmin', a, a), a),
506 (('~fmax', a, a), a),
507 (('imin', a, a), a),
508 (('imax', a, a), a),
509 (('umin', a, a), a),
510 (('umax', a, a), a),
511 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
512 (('umax', ('umax', a, b), b), ('umax', a, b)),
513 (('imax', ('imax', a, b), b), ('imax', a, b)),
514 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
515 (('umin', ('umin', a, b), b), ('umin', a, b)),
516 (('imin', ('imin', a, b), b), ('imin', a, b)),
517 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
518
519 # Simplify logic to detect sign of an integer.
520 (('ieq', ('iand', a, 0x80000000), 0x00000000), ('ige', a, 0)),
521 (('ine', ('iand', a, 0x80000000), 0x80000000), ('ige', a, 0)),
522 (('ine', ('iand', a, 0x80000000), 0x00000000), ('ilt', a, 0)),
523 (('ieq', ('iand', a, 0x80000000), 0x80000000), ('ilt', a, 0)),
524 (('ine', ('ushr', 'a@32', 31), 0), ('ilt', a, 0)),
525 (('ieq', ('ushr', 'a@32', 31), 0), ('ige', a, 0)),
526 (('ieq', ('ushr', 'a@32', 31), 1), ('ilt', a, 0)),
527 (('ine', ('ushr', 'a@32', 31), 1), ('ige', a, 0)),
528 (('ine', ('ishr', 'a@32', 31), 0), ('ilt', a, 0)),
529 (('ieq', ('ishr', 'a@32', 31), 0), ('ige', a, 0)),
530 (('ieq', ('ishr', 'a@32', 31), -1), ('ilt', a, 0)),
531 (('ine', ('ishr', 'a@32', 31), -1), ('ige', a, 0)),
532
533 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
534 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
535 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
536 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
537 (('~fmin', a, ('fabs', a)), a),
538 (('imin', a, ('iabs', a)), a),
539 (('~fmax', a, ('fneg', ('fabs', a))), a),
540 (('imax', a, ('ineg', ('iabs', a))), a),
541 (('fmax', a, ('fabs', a)), ('fabs', a)),
542 (('imax', a, ('iabs', a)), ('iabs', a)),
543 (('fmax', a, ('fneg', a)), ('fabs', a)),
544 (('imax', a, ('ineg', a)), ('iabs', a)),
545 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
546 (('~fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
547 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
548 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
549 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
550 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
551 (('fsat', ('b2f', a)), ('b2f', a)),
552 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
553 (('fsat', ('fsat', a)), ('fsat', a)),
554 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
555 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
556 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
557 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
558 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
559 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
560 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
561 (('fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
562
563 # If a in [0,b] then b-a is also in [0,b]. Since b in [0,1], max(b-a, 0) =
564 # fsat(b-a).
565 #
566 # If a > b, then b-a < 0 and max(b-a, 0) = fsat(b-a) = 0
567 #
568 # This should be NaN safe since max(NaN, 0) = fsat(NaN) = 0.
569 (('fmax', ('fadd(is_used_once)', ('fneg', 'a(is_not_negative)'), '#b@32(is_zero_to_one)'), 0.0),
570 ('fsat', ('fadd', ('fneg', a), b)), '!options->lower_fsat'),
571
572 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
573 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
574 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
575 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
576 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
577 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
578 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
579 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
580 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
581 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
582 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
583 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
584 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
585 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
586 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
587 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
588 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
589
590 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
591 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
592 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
593 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
594 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
595 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
596 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
597 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
598 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
599 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
600 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
601 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
602 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
603 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
604 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
605 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
606
607 # These derive from the previous patterns with the application of b < 0 <=>
608 # 0 < -b. The transformation should be applied if either comparison is
609 # used once as this ensures that the number of comparisons will not
610 # increase. The sources to the ior and iand are not symmetric, so the
611 # rules have to be duplicated to get this behavior.
612 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
613 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
614 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
615 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
616 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
617 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
618 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
619 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
620
621 # Common pattern like 'if (i == 0 || i == 1 || ...)'
622 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
623 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
624 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
625
626 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
627 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
628 # so emit an open-coded version of that.
629 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
630 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
631
632 (('ior', a, ('ieq', a, False)), True),
633 (('ior', a, ('inot', a)), -1),
634
635 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
636 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
637
638 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('ior', a, b), 0), '!options->lower_bitops'),
639 (('ior', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('ior', a, b), 0), '!options->lower_bitops'),
640
641 # This pattern occurs coutresy of __flt64_nonnan in the soft-fp64 code.
642 # The first part of the iand comes from the !__feq64_nonnan.
643 #
644 # The second pattern is a reformulation of the first based on the relation
645 # (a == 0 || y == 0) <=> umin(a, y) == 0, where b in the first equation
646 # happens to be y == 0.
647 (('iand', ('inot', ('iand', ('ior', ('ieq', a, 0), b), c)), ('ilt', a, 0)),
648 ('iand', ('inot', ('iand', b , c)), ('ilt', a, 0))),
649 (('iand', ('inot', ('iand', ('ieq', ('umin', a, b), 0), c)), ('ilt', a, 0)),
650 ('iand', ('inot', ('iand', ('ieq', b , 0), c)), ('ilt', a, 0))),
651
652 # These patterns can result when (a < b || a < c) => (a < min(b, c))
653 # transformations occur before constant propagation and loop-unrolling.
654 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
655 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
656 (('~fge', a, ('fmin', b, a)), True),
657 (('~fge', ('fmax', a, b), a), True),
658 (('~flt', a, ('fmin', b, a)), False),
659 (('~flt', ('fmax', a, b), a), False),
660 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
661 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
662
663 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
664 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
665 (('ige', a, ('imin', b, a)), True),
666 (('ige', ('imax', a, b), a), True),
667 (('ult', a, ('umax', b, a)), ('ult', a, b)),
668 (('ult', ('umin', a, b), a), ('ult', b, a)),
669 (('uge', a, ('umin', b, a)), True),
670 (('uge', ('umax', a, b), a), True),
671 (('ilt', a, ('imin', b, a)), False),
672 (('ilt', ('imax', a, b), a), False),
673 (('ige', a, ('imax', b, a)), ('ige', a, b)),
674 (('ige', ('imin', a, b), a), ('ige', b, a)),
675 (('ult', a, ('umin', b, a)), False),
676 (('ult', ('umax', a, b), a), False),
677 (('uge', a, ('umax', b, a)), ('uge', a, b)),
678 (('uge', ('umin', a, b), a), ('uge', b, a)),
679 (('ult', a, ('iand', b, a)), False),
680 (('ult', ('ior', a, b), a), False),
681 (('uge', a, ('iand', b, a)), True),
682 (('uge', ('ior', a, b), a), True),
683
684 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
685 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
686 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
687 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
688 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
689 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
690 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
691 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
692 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
693 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
694 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
695 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
696 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
697 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
698 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
699 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
700
701 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
702 # negative.
703 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
704 ('iabs', ('ishr', a, b))),
705 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
706
707 (('fabs', ('slt', a, b)), ('slt', a, b)),
708 (('fabs', ('sge', a, b)), ('sge', a, b)),
709 (('fabs', ('seq', a, b)), ('seq', a, b)),
710 (('fabs', ('sne', a, b)), ('sne', a, b)),
711 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
712 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
713 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
714 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
715 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
716 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
717 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
718 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
719 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
720 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
721 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
722 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
723 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
724 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
725 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
726 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
727 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
728 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
729 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
730 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
731 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
732 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
733 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
734 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
735 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
736 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
737 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
738 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
739 # Emulating booleans
740 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
741 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
742 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
743 (('iand', 'a@bool32', 1.0), ('b2f', a)),
744 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
745 (('ineg', ('b2i32', 'a@32')), a),
746 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
747 # Comparison with the same args. Note that these are not done for
748 # the float versions because NaN always returns false on float
749 # inequalities.
750 (('ilt', a, a), False),
751 (('ige', a, a), True),
752 (('ieq', a, a), True),
753 (('ine', a, a), False),
754 (('ult', a, a), False),
755 (('uge', a, a), True),
756 # Logical and bit operations
757 (('iand', a, a), a),
758 (('iand', a, ~0), a),
759 (('iand', a, 0), 0),
760 (('ior', a, a), a),
761 (('ior', a, 0), a),
762 (('ior', a, True), True),
763 (('ixor', a, a), 0),
764 (('ixor', a, 0), a),
765 (('inot', ('inot', a)), a),
766 (('ior', ('iand', a, b), b), b),
767 (('ior', ('ior', a, b), b), ('ior', a, b)),
768 (('iand', ('ior', a, b), b), b),
769 (('iand', ('iand', a, b), b), ('iand', a, b)),
770 # DeMorgan's Laws
771 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
772 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
773 # Shift optimizations
774 (('ishl', 0, a), 0),
775 (('ishl', a, 0), a),
776 (('ishr', 0, a), 0),
777 (('ishr', a, 0), a),
778 (('ushr', 0, a), 0),
779 (('ushr', a, 0), a),
780 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
781 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
782 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
783 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
784 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
785 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
786 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
787 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
788 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
789 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
790 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
791 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
792 # Exponential/logarithmic identities
793 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
794 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
795 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
796 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
797 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
798 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
799 (('~fexp2', ('fmul', ('flog2', a), 0.5)), ('fsqrt', a)),
800 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
801 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
802 (('~fpow', a, 1.0), a),
803 (('~fpow', a, 2.0), ('fmul', a, a)),
804 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
805 (('~fpow', 2.0, a), ('fexp2', a)),
806 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
807 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
808 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
809 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
810 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
811 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
812 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
813 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
814 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
815 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
816 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
817 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
818 # Division and reciprocal
819 (('~fdiv', 1.0, a), ('frcp', a)),
820 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
821 (('~frcp', ('frcp', a)), a),
822 (('~frcp', ('fsqrt', a)), ('frsq', a)),
823 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
824 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
825 # Trig
826 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
827 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
828 # Boolean simplifications
829 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
830 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
831 (('ieq', a, True), a),
832 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
833 (('ine', a, False), a),
834 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
835 (('bcsel', a, True, False), a),
836 (('bcsel', a, False, True), ('inot', a)),
837 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
838 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
839 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
840 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
841 (('bcsel', True, b, c), b),
842 (('bcsel', False, b, c), c),
843 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
844
845 (('bcsel', a, b, b), b),
846 (('~fcsel', a, b, b), b),
847
848 # D3D Boolean emulation
849 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
850 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
851 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
852 ('ineg', ('b2i', ('iand', a, b)))),
853 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
854 ('ineg', ('b2i', ('ior', a, b)))),
855 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
856 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
857 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
858 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
859 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
860 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
861
862 # SM5 32-bit shifts are defined to use the 5 least significant bits
863 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
864 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
865 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
866
867 # Conversions
868 (('i2b32', ('b2i', 'a@32')), a),
869 (('f2i', ('ftrunc', a)), ('f2i', a)),
870 (('f2u', ('ftrunc', a)), ('f2u', a)),
871 (('i2b', ('ineg', a)), ('i2b', a)),
872 (('i2b', ('iabs', a)), ('i2b', a)),
873 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
874
875 # The C spec says, "If the value of the integral part cannot be represented
876 # by the integer type, the behavior is undefined." "Undefined" can mean
877 # "the conversion doesn't happen at all."
878 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
879
880 # Ironically, mark these as imprecise because removing the conversions may
881 # preserve more precision than doing the conversions (e.g.,
882 # uint(float(0x81818181u)) == 0x81818200).
883 (('~f2i32', ('i2f', 'a@32')), a),
884 (('~f2i32', ('u2f', 'a@32')), a),
885 (('~f2u32', ('i2f', 'a@32')), a),
886 (('~f2u32', ('u2f', 'a@32')), a),
887
888 # Conversions from float16 to float32 and back can always be removed
889 (('f2f16', ('f2f32', 'a@16')), a),
890 (('f2fmp', ('f2f32', 'a@16')), a),
891 # Conversions to float16 would be lossy so they should only be removed if
892 # the instruction was generated by the precision lowering pass.
893 (('f2f32', ('f2fmp', 'a@32')), a),
894
895 (('ffloor', 'a(is_integral)'), a),
896 (('fceil', 'a(is_integral)'), a),
897 (('ftrunc', 'a(is_integral)'), a),
898 # fract(x) = x - floor(x), so fract(NaN) = NaN
899 (('~ffract', 'a(is_integral)'), 0.0),
900 (('fabs', 'a(is_not_negative)'), a),
901 (('iabs', 'a(is_not_negative)'), a),
902 (('fsat', 'a(is_not_positive)'), 0.0),
903
904 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
905 # says:
906 #
907 # It is undefined to convert a negative floating-point value to an
908 # uint.
909 #
910 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
911 # some optimizations in the i965 backend to proceed.
912 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
913 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
914 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
915 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
916
917 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
918
919 # The result of the multiply must be in [-1, 0], so the result of the ffma
920 # must be in [0, 1].
921 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
922 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
923 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
924 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
925
926 (('fne', 'a(is_not_zero)', 0.0), True),
927 (('feq', 'a(is_not_zero)', 0.0), False),
928
929 # In this chart, + means value > 0 and - means value < 0.
930 #
931 # + >= + -> unknown 0 >= + -> false - >= + -> false
932 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
933 # + >= - -> true 0 >= - -> true - >= - -> unknown
934 #
935 # Using grouping conceptually similar to a Karnaugh map...
936 #
937 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
938 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
939 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
940 #
941 # The flt / ilt cases just invert the expected result.
942 #
943 # The results expecting true, must be marked imprecise. The results
944 # expecting false are fine because NaN compared >= or < anything is false.
945
946 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
947 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
948 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
949
950 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
951 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
952 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
953
954 (('ine', 'a(is_not_zero)', 0), True),
955 (('ieq', 'a(is_not_zero)', 0), False),
956
957 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
958 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
959 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
960
961 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
962 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
963 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
964
965 (('ult', 0, 'a(is_gt_zero)'), True),
966 (('ult', a, 0), False),
967
968 # Packing and then unpacking does nothing
969 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
970 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
971 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
972 ('unpack_64_2x32_split_y', a)), a),
973
974 # Comparing two halves of an unpack separately. While this optimization
975 # should be correct for non-constant values, it's less obvious that it's
976 # useful in that case. For constant values, the pack will fold and we're
977 # guaranteed to reduce the whole tree to one instruction.
978 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
979 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
980 ('ieq', a, ('pack_32_2x16_split', b, c))),
981
982 # Byte extraction
983 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
984 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
985 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
986 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
987 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
988 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
989 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
990
991 # Useless masking before unpacking
992 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
993 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
994 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
995 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
996 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
997 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
998
999 # Optimize half packing
1000 (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))),
1001 (('ishr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))),
1002
1003 (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1004 ('pack_half_2x16', ('vec2', a, b))),
1005 (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1006 ('pack_half_2x16', ('vec2', a, b))),
1007 ])
1008
1009 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
1010 # patterns like those below.
1011 for op in ('ushr', 'ishr'):
1012 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
1013 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
1014 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
1015
1016 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
1017
1018 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
1019 # patterns like those below.
1020 for op in ('extract_u8', 'extract_i8'):
1021 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
1022 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
1023 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
1024
1025 optimizations.extend([
1026 # Word extraction
1027 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1028 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1029 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1030 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1031 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
1032
1033 # Subtracts
1034 (('ussub_4x8', a, 0), a),
1035 (('ussub_4x8', a, ~0), 0),
1036 # Lower all Subtractions first - they can get recombined later
1037 (('fsub', a, b), ('fadd', a, ('fneg', b))),
1038 (('isub', a, b), ('iadd', a, ('ineg', b))),
1039 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1040 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
1041 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1042
1043 # Propagate negation up multiplication chains
1044 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
1045 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
1046
1047 # Propagate constants up multiplication chains
1048 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
1049 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
1050 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
1051 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
1052
1053 # Reassociate constants in add/mul chains so they can be folded together.
1054 # For now, we mostly only handle cases where the constants are separated by
1055 # a single non-constant. We could do better eventually.
1056 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
1057 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
1058 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
1059 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
1060 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
1061 (('iand', '#a', ('iand', 'b(is_not_const)', '#c')), ('iand', ('iand', a, c), b)),
1062 (('ior', '#a', ('ior', 'b(is_not_const)', '#c')), ('ior', ('ior', a, c), b)),
1063 (('ixor', '#a', ('ixor', 'b(is_not_const)', '#c')), ('ixor', ('ixor', a, c), b)),
1064
1065 # Drop mul-div by the same value when there's no wrapping.
1066 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
1067
1068 # By definition...
1069 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
1070 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1071 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1072
1073 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1074 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1075 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1076
1077 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1078
1079 # Misc. lowering
1080 (('fmod', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1081 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1082 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1083 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1084
1085 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1086 ('bcsel', ('ult', 31, 'bits'), 'insert',
1087 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1088 'options->lower_bitfield_insert'),
1089 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1090 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1091 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1092 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1093 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1094 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1095 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1096 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1097
1098 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1099 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1100 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1101 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1102
1103 # int64_t sum = a + b;
1104 #
1105 # if (a < 0 && b < 0 && a < sum)
1106 # sum = INT64_MIN;
1107 # } else if (a >= 0 && b >= 0 && sum < a)
1108 # sum = INT64_MAX;
1109 # }
1110 #
1111 # A couple optimizations are applied.
1112 #
1113 # 1. a < sum => sum >= 0. This replacement works because it is known that
1114 # a < 0 and b < 0, so sum should also be < 0 unless there was
1115 # underflow.
1116 #
1117 # 2. sum < a => sum < 0. This replacement works because it is known that
1118 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1119 # overflow.
1120 #
1121 # 3. Invert the second if-condition and swap the order of parameters for
1122 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1123 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1124 #
1125 # On Intel Gen11, this saves ~11 instructions.
1126 (('iadd_sat@64', a, b), ('bcsel',
1127 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1128 0x8000000000000000,
1129 ('bcsel',
1130 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1131 ('iadd', a, b),
1132 0x7fffffffffffffff)),
1133 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1134
1135 # int64_t sum = a - b;
1136 #
1137 # if (a < 0 && b >= 0 && a < sum)
1138 # sum = INT64_MIN;
1139 # } else if (a >= 0 && b < 0 && a >= sum)
1140 # sum = INT64_MAX;
1141 # }
1142 #
1143 # Optimizations similar to the iadd_sat case are applied here.
1144 (('isub_sat@64', a, b), ('bcsel',
1145 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1146 0x8000000000000000,
1147 ('bcsel',
1148 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1149 ('isub', a, b),
1150 0x7fffffffffffffff)),
1151 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1152
1153 # These are done here instead of in the backend because the int64 lowering
1154 # pass will make a mess of the patterns. The first patterns are
1155 # conditioned on nir_lower_minmax64 because it was not clear that it was
1156 # always an improvement on platforms that have real int64 support. No
1157 # shaders in shader-db hit this, so it was hard to say one way or the
1158 # other.
1159 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1160 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1161 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1162 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1163 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1164 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1165
1166 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1167 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1168 # 0u < uint(a) <=> uint(a) != 0u
1169 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1170
1171 # Alternative lowering that doesn't rely on bfi.
1172 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1173 ('bcsel', ('ult', 31, 'bits'),
1174 'insert',
1175 (('ior',
1176 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1177 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1178 'options->lower_bitfield_insert_to_shifts'),
1179
1180 # Alternative lowering that uses bitfield_select.
1181 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1182 ('bcsel', ('ult', 31, 'bits'), 'insert',
1183 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1184 'options->lower_bitfield_insert_to_bitfield_select'),
1185
1186 (('ibitfield_extract', 'value', 'offset', 'bits'),
1187 ('bcsel', ('ult', 31, 'bits'), 'value',
1188 ('ibfe', 'value', 'offset', 'bits')),
1189 'options->lower_bitfield_extract'),
1190
1191 (('ubitfield_extract', 'value', 'offset', 'bits'),
1192 ('bcsel', ('ult', 31, 'bits'), 'value',
1193 ('ubfe', 'value', 'offset', 'bits')),
1194 'options->lower_bitfield_extract'),
1195
1196 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1197 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1198 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1199 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1200 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1201 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1202 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1203
1204 (('ibitfield_extract', 'value', 'offset', 'bits'),
1205 ('bcsel', ('ieq', 0, 'bits'),
1206 0,
1207 ('ishr',
1208 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1209 ('isub', 32, 'bits'))),
1210 'options->lower_bitfield_extract_to_shifts'),
1211
1212 (('ubitfield_extract', 'value', 'offset', 'bits'),
1213 ('iand',
1214 ('ushr', 'value', 'offset'),
1215 ('bcsel', ('ieq', 'bits', 32),
1216 0xffffffff,
1217 ('isub', ('ishl', 1, 'bits'), 1))),
1218 'options->lower_bitfield_extract_to_shifts'),
1219
1220 (('ifind_msb', 'value'),
1221 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1222 'options->lower_ifind_msb'),
1223
1224 (('find_lsb', 'value'),
1225 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1226 'options->lower_find_lsb'),
1227
1228 (('extract_i8', a, 'b@32'),
1229 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1230 'options->lower_extract_byte'),
1231
1232 (('extract_u8', a, 'b@32'),
1233 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1234 'options->lower_extract_byte'),
1235
1236 (('extract_i16', a, 'b@32'),
1237 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1238 'options->lower_extract_word'),
1239
1240 (('extract_u16', a, 'b@32'),
1241 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1242 'options->lower_extract_word'),
1243
1244 (('pack_unorm_2x16', 'v'),
1245 ('pack_uvec2_to_uint',
1246 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1247 'options->lower_pack_unorm_2x16'),
1248
1249 (('pack_unorm_4x8', 'v'),
1250 ('pack_uvec4_to_uint',
1251 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1252 'options->lower_pack_unorm_4x8'),
1253
1254 (('pack_snorm_2x16', 'v'),
1255 ('pack_uvec2_to_uint',
1256 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1257 'options->lower_pack_snorm_2x16'),
1258
1259 (('pack_snorm_4x8', 'v'),
1260 ('pack_uvec4_to_uint',
1261 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1262 'options->lower_pack_snorm_4x8'),
1263
1264 (('unpack_unorm_2x16', 'v'),
1265 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1266 ('extract_u16', 'v', 1))),
1267 65535.0),
1268 'options->lower_unpack_unorm_2x16'),
1269
1270 (('unpack_unorm_4x8', 'v'),
1271 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1272 ('extract_u8', 'v', 1),
1273 ('extract_u8', 'v', 2),
1274 ('extract_u8', 'v', 3))),
1275 255.0),
1276 'options->lower_unpack_unorm_4x8'),
1277
1278 (('unpack_snorm_2x16', 'v'),
1279 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1280 ('extract_i16', 'v', 1))),
1281 32767.0))),
1282 'options->lower_unpack_snorm_2x16'),
1283
1284 (('unpack_snorm_4x8', 'v'),
1285 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1286 ('extract_i8', 'v', 1),
1287 ('extract_i8', 'v', 2),
1288 ('extract_i8', 'v', 3))),
1289 127.0))),
1290 'options->lower_unpack_snorm_4x8'),
1291
1292 (('pack_half_2x16_split', 'a@32', 'b@32'),
1293 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1294 'options->lower_pack_half_2x16_split'),
1295
1296 (('unpack_half_2x16_split_x', 'a@32'),
1297 ('f2f32', ('u2u16', a)),
1298 'options->lower_unpack_half_2x16_split'),
1299
1300 (('unpack_half_2x16_split_y', 'a@32'),
1301 ('f2f32', ('u2u16', ('ushr', a, 16))),
1302 'options->lower_unpack_half_2x16_split'),
1303
1304 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1305 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1306
1307 # Address/offset calculations:
1308 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1309 # rule converts everyone else to imul:
1310 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1311
1312 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1313 (('imad24_ir3', a, 0, c), (c)),
1314 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1315
1316 # if first two srcs are const, crack apart the imad so constant folding
1317 # can clean up the imul:
1318 # TODO ffma should probably get a similar rule:
1319 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1320
1321 # These will turn 24b address/offset calc back into 32b shifts, but
1322 # it should be safe to get back some of the bits of precision that we
1323 # already decided were no necessary:
1324 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1325 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1326 (('imul24', a, 0), (0)),
1327 ])
1328
1329 # bit_size dependent lowerings
1330 for bit_size in [8, 16, 32, 64]:
1331 # convenience constants
1332 intmax = (1 << (bit_size - 1)) - 1
1333 intmin = 1 << (bit_size - 1)
1334
1335 optimizations += [
1336 (('iadd_sat@' + str(bit_size), a, b),
1337 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1338 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1339 (('isub_sat@' + str(bit_size), a, b),
1340 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1341 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1342 ]
1343
1344 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq')])
1345
1346 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1347 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1348 ('iand', (invert[left], a, b), (invert[right], c, d))))
1349 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1350 ('ior', (invert[left], a, b), (invert[right], c, d))))
1351
1352 # Optimize x2bN(b2x(x)) -> x
1353 for size in type_sizes('bool'):
1354 aN = 'a@' + str(size)
1355 f2bN = 'f2b' + str(size)
1356 i2bN = 'i2b' + str(size)
1357 optimizations.append(((f2bN, ('b2f', aN)), a))
1358 optimizations.append(((i2bN, ('b2i', aN)), a))
1359
1360 # Optimize x2yN(b2x(x)) -> b2y
1361 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1362 if x != 'f' and y != 'f' and x != y:
1363 continue
1364
1365 b2x = 'b2f' if x == 'f' else 'b2i'
1366 b2y = 'b2f' if y == 'f' else 'b2i'
1367 x2yN = '{}2{}'.format(x, y)
1368 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1369
1370 # Optimize away x2xN(a@N)
1371 for t in ['int', 'uint', 'float', 'bool']:
1372 for N in type_sizes(t):
1373 x2xN = '{0}2{0}{1}'.format(t[0], N)
1374 aN = 'a@{0}'.format(N)
1375 optimizations.append(((x2xN, aN), a))
1376
1377 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1378 # In particular, we can optimize away everything except upcast of downcast and
1379 # upcasts where the type differs from the other cast
1380 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1381 if N < M:
1382 # The outer cast is a down-cast. It doesn't matter what the size of the
1383 # argument of the inner cast is because we'll never been in the upcast
1384 # of downcast case. Regardless of types, we'll always end up with y2yN
1385 # in the end.
1386 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1387 x2xN = '{0}2{0}{1}'.format(x, N)
1388 y2yM = '{0}2{0}{1}'.format(y, M)
1389 y2yN = '{0}2{0}{1}'.format(y, N)
1390 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1391 elif N > M:
1392 # If the outer cast is an up-cast, we have to be more careful about the
1393 # size of the argument of the inner cast and with types. In this case,
1394 # the type is always the type of type up-cast which is given by the
1395 # outer cast.
1396 for P in type_sizes('uint'):
1397 # We can't optimize away up-cast of down-cast.
1398 if M < P:
1399 continue
1400
1401 # Because we're doing down-cast of down-cast, the types always have
1402 # to match between the two casts
1403 for x in ['i', 'u']:
1404 x2xN = '{0}2{0}{1}'.format(x, N)
1405 x2xM = '{0}2{0}{1}'.format(x, M)
1406 aP = 'a@{0}'.format(P)
1407 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1408 else:
1409 # The N == M case is handled by other optimizations
1410 pass
1411
1412 # Downcast operations should be able to see through pack
1413 for t in ['i', 'u']:
1414 for N in [8, 16, 32]:
1415 x2xN = '{0}2{0}{1}'.format(t, N)
1416 optimizations += [
1417 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1418 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1419 ]
1420
1421 # Optimize comparisons with up-casts
1422 for t in ['int', 'uint', 'float']:
1423 for N, M in itertools.product(type_sizes(t), repeat=2):
1424 if N == 1 or N >= M:
1425 continue
1426
1427 x2xM = '{0}2{0}{1}'.format(t[0], M)
1428 x2xN = '{0}2{0}{1}'.format(t[0], N)
1429 aN = 'a@' + str(N)
1430 bN = 'b@' + str(N)
1431 xeq = 'feq' if t == 'float' else 'ieq'
1432 xne = 'fne' if t == 'float' else 'ine'
1433 xge = '{0}ge'.format(t[0])
1434 xlt = '{0}lt'.format(t[0])
1435
1436 # Up-casts are lossless so for correctly signed comparisons of
1437 # up-casted values we can do the comparison at the largest of the two
1438 # original sizes and drop one or both of the casts. (We have
1439 # optimizations to drop the no-op casts which this may generate.)
1440 for P in type_sizes(t):
1441 if P == 1 or P > N:
1442 continue
1443
1444 bP = 'b@' + str(P)
1445 optimizations += [
1446 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b))),
1447 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b))),
1448 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b))),
1449 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b))),
1450 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a)),
1451 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a)),
1452 ]
1453
1454 # The next bit doesn't work on floats because the range checks would
1455 # get way too complicated.
1456 if t in ['int', 'uint']:
1457 if t == 'int':
1458 xN_min = -(1 << (N - 1))
1459 xN_max = (1 << (N - 1)) - 1
1460 elif t == 'uint':
1461 xN_min = 0
1462 xN_max = (1 << N) - 1
1463 else:
1464 assert False
1465
1466 # If we're up-casting and comparing to a constant, we can unfold
1467 # the comparison into a comparison with the shrunk down constant
1468 # and a check that the constant fits in the smaller bit size.
1469 optimizations += [
1470 ((xeq, (x2xM, aN), '#b'),
1471 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b))),
1472 ((xne, (x2xM, aN), '#b'),
1473 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b))),
1474 ((xlt, (x2xM, aN), '#b'),
1475 ('iand', (xlt, xN_min, b),
1476 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b))))),
1477 ((xlt, '#a', (x2xM, bN)),
1478 ('iand', (xlt, a, xN_max),
1479 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b)))),
1480 ((xge, (x2xM, aN), '#b'),
1481 ('iand', (xge, xN_max, b),
1482 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b))))),
1483 ((xge, '#a', (x2xM, bN)),
1484 ('iand', (xge, a, xN_min),
1485 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b)))),
1486 ]
1487
1488 def fexp2i(exp, bits):
1489 # Generate an expression which constructs value 2.0^exp or 0.0.
1490 #
1491 # We assume that exp is already in a valid range:
1492 #
1493 # * [-15, 15] for 16-bit float
1494 # * [-127, 127] for 32-bit float
1495 # * [-1023, 1023] for 16-bit float
1496 #
1497 # If exp is the lowest value in the valid range, a value of 0.0 is
1498 # constructed. Otherwise, the value 2.0^exp is constructed.
1499 if bits == 16:
1500 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1501 elif bits == 32:
1502 return ('ishl', ('iadd', exp, 127), 23)
1503 elif bits == 64:
1504 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1505 else:
1506 assert False
1507
1508 def ldexp(f, exp, bits):
1509 # The maximum possible range for a normal exponent is [-126, 127] and,
1510 # throwing in denormals, you get a maximum range of [-149, 127]. This
1511 # means that we can potentially have a swing of +-276. If you start with
1512 # FLT_MAX, you actually have to do ldexp(FLT_MAX, -278) to get it to flush
1513 # all the way to zero. The GLSL spec only requires that we handle a subset
1514 # of this range. From version 4.60 of the spec:
1515 #
1516 # "If exp is greater than +128 (single-precision) or +1024
1517 # (double-precision), the value returned is undefined. If exp is less
1518 # than -126 (single-precision) or -1022 (double-precision), the value
1519 # returned may be flushed to zero. Additionally, splitting the value
1520 # into a significand and exponent using frexp() and then reconstructing
1521 # a floating-point value using ldexp() should yield the original input
1522 # for zero and all finite non-denormalized values."
1523 #
1524 # The SPIR-V spec has similar language.
1525 #
1526 # In order to handle the maximum value +128 using the fexp2i() helper
1527 # above, we have to split the exponent in half and do two multiply
1528 # operations.
1529 #
1530 # First, we clamp exp to a reasonable range. Specifically, we clamp to
1531 # twice the full range that is valid for the fexp2i() function above. If
1532 # exp/2 is the bottom value of that range, the fexp2i() expression will
1533 # yield 0.0f which, when multiplied by f, will flush it to zero which is
1534 # allowed by the GLSL and SPIR-V specs for low exponent values. If the
1535 # value is clamped from above, then it must have been above the supported
1536 # range of the GLSL built-in and therefore any return value is acceptable.
1537 if bits == 16:
1538 exp = ('imin', ('imax', exp, -30), 30)
1539 elif bits == 32:
1540 exp = ('imin', ('imax', exp, -254), 254)
1541 elif bits == 64:
1542 exp = ('imin', ('imax', exp, -2046), 2046)
1543 else:
1544 assert False
1545
1546 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1547 # (We use ishr which isn't the same for -1, but the -1 case still works
1548 # since we use exp-exp/2 as the second exponent.) While the spec
1549 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1550 # work with denormals and doesn't allow for the full swing in exponents
1551 # that you can get with normalized values. Instead, we create two powers
1552 # of two and multiply by them each in turn. That way the effective range
1553 # of our exponent is doubled.
1554 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1555 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1556 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1557
1558 optimizations += [
1559 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1560 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1561 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1562 ]
1563
1564 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1565 def bitfield_reverse(u):
1566 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1567 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1568 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1569 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1570 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1571
1572 return step5
1573
1574 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1575
1576 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1577 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1578 # and, if a is a NaN then the second comparison will fail anyway.
1579 for op in ['flt', 'fge', 'feq']:
1580 optimizations += [
1581 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1582 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1583 ]
1584
1585 # Add optimizations to handle the case where the result of a ternary is
1586 # compared to a constant. This way we can take things like
1587 #
1588 # (a ? 0 : 1) > 0
1589 #
1590 # and turn it into
1591 #
1592 # a ? (0 > 0) : (1 > 0)
1593 #
1594 # which constant folding will eat for lunch. The resulting ternary will
1595 # further get cleaned up by the boolean reductions above and we will be
1596 # left with just the original variable "a".
1597 for op in ['flt', 'fge', 'feq', 'fne',
1598 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1599 optimizations += [
1600 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1601 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1602 ((op, '#d', ('bcsel', a, '#b', '#c')),
1603 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1604 ]
1605
1606
1607 # For example, this converts things like
1608 #
1609 # 1 + mix(0, a - 1, condition)
1610 #
1611 # into
1612 #
1613 # mix(1, (a-1)+1, condition)
1614 #
1615 # Other optimizations will rearrange the constants.
1616 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1617 optimizations += [
1618 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1619 ]
1620
1621 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1622 # states:
1623 #
1624 # If neither layout qualifier is specified, derivatives in compute shaders
1625 # return zero, which is consistent with the handling of built-in texture
1626 # functions like texture() in GLSL 4.50 compute shaders.
1627 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1628 'fddy', 'fddy_fine', 'fddy_coarse']:
1629 optimizations += [
1630 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1631 ]
1632
1633 # Some optimizations for ir3-specific instructions.
1634 optimizations += [
1635 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1636 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1637 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1638 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1639 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1640 ]
1641
1642 # These kinds of sequences can occur after nir_opt_peephole_select.
1643 #
1644 # NOTE: fadd is not handled here because that gets in the way of ffma
1645 # generation in the i965 driver. Instead, fadd and ffma are handled in
1646 # late_optimizations.
1647
1648 for op in ['flrp']:
1649 optimizations += [
1650 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1651 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1652 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1653 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1654 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1655 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1656 ]
1657
1658 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1659 optimizations += [
1660 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1661 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1662 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1663 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1664 ]
1665
1666 for op in ['fpow']:
1667 optimizations += [
1668 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1669 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1670 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1671 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1672 ]
1673
1674 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos']:
1675 optimizations += [
1676 (('bcsel', a, (op + '(is_used_once)', b), (op, c)), (op, ('bcsel', a, b, c))),
1677 (('bcsel', a, (op, b), (op + '(is_used_once)', c)), (op, ('bcsel', a, b, c))),
1678 ]
1679
1680 # This section contains "late" optimizations that should be run before
1681 # creating ffmas and calling regular optimizations for the final time.
1682 # Optimizations should go here if they help code generation and conflict
1683 # with the regular optimizations.
1684 before_ffma_optimizations = [
1685 # Propagate constants down multiplication chains
1686 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1687 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1688 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1689 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1690
1691 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1692 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1693 (('~fadd', ('fneg', a), a), 0.0),
1694 (('iadd', ('ineg', a), a), 0),
1695 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1696 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1697 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1698 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1699
1700 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1701 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1702 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1703 ]
1704
1705 # This section contains "late" optimizations that should be run after the
1706 # regular optimizations have finished. Optimizations should go here if
1707 # they help code generation but do not necessarily produce code that is
1708 # more easily optimizable.
1709 late_optimizations = [
1710 # Most of these optimizations aren't quite safe when you get infinity or
1711 # Nan involved but the first one should be fine.
1712 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1713 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1714 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1715 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1716 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1717 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1718
1719 # nir_lower_to_source_mods will collapse this, but its existence during the
1720 # optimization loop can prevent other optimizations.
1721 (('fneg', ('fneg', a)), a),
1722
1723 # Subtractions get lowered during optimization, so we need to recombine them
1724 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1725 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1726 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1727 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1728
1729 # These are duplicated from the main optimizations table. The late
1730 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1731 # new patterns like these. The patterns that compare with zero are removed
1732 # because they are unlikely to be created in by anything in
1733 # late_optimizations.
1734 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1735 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1736 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1737 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1738 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1739 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1740
1741 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1742 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1743
1744 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1745
1746 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1747 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1748 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1749 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1750 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1751 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1752 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1753 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1754 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1755 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1756
1757 (('ior', a, a), a),
1758 (('iand', a, a), a),
1759
1760 (('iand', ('ine(is_used_once)', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
1761 (('ior', ('ieq(is_used_once)', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
1762
1763 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1764
1765 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1766 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1767 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1768 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1769
1770 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1771 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1772
1773 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1774 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1775
1776 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1777 # particular operation is common for expanding values stored in a texture
1778 # from [0,1] to [-1,1].
1779 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1780 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1781 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1782 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1783 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1784 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1785 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1786 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1787
1788 # flrp(a, b, a)
1789 # a*(1-a) + b*a
1790 # a + -a*a + a*b (1)
1791 # a + a*(b - a)
1792 # Option 1: ffma(a, (b-a), a)
1793 #
1794 # Alternately, after (1):
1795 # a*(1+b) + -a*a
1796 # a*((1+b) + -a)
1797 #
1798 # Let b=1
1799 #
1800 # Option 2: ffma(a, 2, -(a*a))
1801 # Option 3: ffma(a, 2, (-a)*a)
1802 # Option 4: ffma(a, -a, (2*a)
1803 # Option 5: a * (2 - a)
1804 #
1805 # There are a lot of other possible combinations.
1806 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1807 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1808 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1809 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1810 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1811
1812 # we do these late so that we don't get in the way of creating ffmas
1813 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1814 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1815
1816 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1817
1818 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1819 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1820 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1821 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1822
1823 # Things that look like DPH in the source shader may get expanded to
1824 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1825 # to NIR. After FFMA is generated, this can look like:
1826 #
1827 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1828 #
1829 # Reassociate the last addition into the first multiplication.
1830 #
1831 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
1832 # shader stages on some outputs that are intended to be invariant. For
1833 # various reasons, this optimization may not be fully applied in all
1834 # shaders used for different rendering passes of the same geometry. This
1835 # can result in Z-fighting artifacts (at best). For now, disable this
1836 # optimization in these stages. See bugzilla #111490. In tessellation
1837 # stages applications seem to use 'precise' when necessary, so allow the
1838 # optimization in those stages.
1839 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
1840 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1841 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
1842 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1843
1844 # Convert f2fmp instructions to concrete f2f16 instructions. At this point
1845 # any conversions that could have been removed will have been removed in
1846 # nir_opt_algebraic so any remaining ones are required.
1847 (('f2fmp', a), ('f2f16', a)),
1848 ]
1849
1850 for op in ['fadd']:
1851 late_optimizations += [
1852 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1853 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1854 ]
1855
1856 for op in ['ffma']:
1857 late_optimizations += [
1858 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1859 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1860
1861 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1862 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1863 ]
1864
1865 distribute_src_mods = [
1866 # Try to remove some spurious negations rather than pushing them down.
1867 (('fmul', ('fneg', a), ('fneg', b)), ('fmul', a, b)),
1868 (('ffma', ('fneg', a), ('fneg', b), c), ('ffma', a, b, c)),
1869 (('fdot_replicated2', ('fneg', a), ('fneg', b)), ('fdot_replicated2', a, b)),
1870 (('fdot_replicated3', ('fneg', a), ('fneg', b)), ('fdot_replicated3', a, b)),
1871 (('fdot_replicated4', ('fneg', a), ('fneg', b)), ('fdot_replicated4', a, b)),
1872 (('fneg', ('fneg', a)), a),
1873
1874 (('fneg', ('ffma(is_used_once)', a, b, c)), ('ffma', ('fneg', a), b, ('fneg', c))),
1875 (('fneg', ('flrp(is_used_once)', a, b, c)), ('flrp', ('fneg', a), ('fneg', b), c)),
1876 (('fneg', ('fadd(is_used_once)', a, b)), ('fadd', ('fneg', a), ('fneg', b))),
1877
1878 # Note that fmin <-> fmax. I don't think there is a way to distribute
1879 # fabs() into fmin or fmax.
1880 (('fneg', ('fmin(is_used_once)', a, b)), ('fmax', ('fneg', a), ('fneg', b))),
1881 (('fneg', ('fmax(is_used_once)', a, b)), ('fmin', ('fneg', a), ('fneg', b))),
1882
1883 # fdph works mostly like fdot, but to get the correct result, the negation
1884 # must be applied to the second source.
1885 (('fneg', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', a, ('fneg', b))),
1886 (('fabs', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', ('fabs', a), ('fabs', b))),
1887
1888 (('fneg', ('fsign(is_used_once)', a)), ('fsign', ('fneg', a))),
1889 (('fabs', ('fsign(is_used_once)', a)), ('fsign', ('fabs', a))),
1890 ]
1891
1892 for op in ['fmul', 'fdot_replicated2', 'fdot_replicated3', 'fdot_replicated4']:
1893 distribute_src_mods.extend([
1894 (('fneg', (op + '(is_used_once)', a, b)), (op, ('fneg', a), b)),
1895 (('fabs', (op + '(is_used_once)', a, b)), (op, ('fabs', a), ('fabs', b))),
1896 ])
1897
1898 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
1899 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
1900 before_ffma_optimizations).render())
1901 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
1902 late_optimizations).render())
1903 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_distribute_src_mods",
1904 distribute_src_mods).render())