nir/algebraic: Add some half packing optimizations for pack_half_2x16_split
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fneg', a)), ('fabs', a)),
113 (('fabs', ('u2f', a)), ('u2f', a)),
114 (('iabs', ('iabs', a)), ('iabs', a)),
115 (('iabs', ('ineg', a)), ('iabs', a)),
116 (('f2b', ('fneg', a)), ('f2b', a)),
117 (('i2b', ('ineg', a)), ('i2b', a)),
118 (('~fadd', a, 0.0), a),
119 (('iadd', a, 0), a),
120 (('usadd_4x8', a, 0), a),
121 (('usadd_4x8', a, ~0), ~0),
122 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
123 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
124 (('~fadd', ('fneg', a), a), 0.0),
125 (('iadd', ('ineg', a), a), 0),
126 (('iadd', ('ineg', a), ('iadd', a, b)), b),
127 (('iadd', a, ('iadd', ('ineg', a), b)), b),
128 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
129 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
130 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
131 (('~fmul', a, 0.0), 0.0),
132 (('imul', a, 0), 0),
133 (('umul_unorm_4x8', a, 0), 0),
134 (('umul_unorm_4x8', a, ~0), a),
135 (('~fmul', a, 1.0), a),
136 (('imul', a, 1), a),
137 (('fmul', a, -1.0), ('fneg', a)),
138 (('imul', a, -1), ('ineg', a)),
139 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
140 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
141 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
142 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
143 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
144 (('~ffma', 0.0, a, b), b),
145 (('~ffma', a, b, 0.0), ('fmul', a, b)),
146 (('ffma', 1.0, a, b), ('fadd', a, b)),
147 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
148 (('~flrp', a, b, 0.0), a),
149 (('~flrp', a, b, 1.0), b),
150 (('~flrp', a, a, b), a),
151 (('~flrp', 0.0, a, b), ('fmul', a, b)),
152
153 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
154 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
155 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
156 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
157
158 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
159 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
160
161 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
162 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
163
164 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
165
166 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
167 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
168 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
169 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
170 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
171 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
172 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
173 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
174 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
175 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
176 # These are the same as the previous three rules, but it depends on
177 # 1-fsat(x) <=> fsat(1-x). See below.
178 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
179 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
180
181 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
182 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
183 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
184 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
185 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
186
187 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
188 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
189
190 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
191
192 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
193 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
194 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
195 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
196
197 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
198 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
199
200 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
201 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
202
203 # Lower fdot to fsum when it is available
204 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
205 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
206 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
208
209 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
210 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
211 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
212 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
213
214 # 1 - ((1 - a) * (1 - b))
215 # 1 - (1 - a - b + a*b)
216 # 1 - 1 + a + b - a*b
217 # a + b - a*b
218 # a + b*(1 - a)
219 # b*(1 - a) + 1*a
220 # flrp(b, 1, a)
221 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
222 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
223
224 # (a * #b + #c) << #d
225 # ((a * #b) << #d) + (#c << #d)
226 # (a * (#b << #d)) + (#c << #d)
227 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
228 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
229
230 # (a * #b) << #c
231 # a * (#b << #c)
232 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
233 ]
234
235 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
236 # bits of the second source. These replacements must correctly handle the
237 # case where (b % bitsize) + (c % bitsize) >= bitsize.
238 for s in [8, 16, 32, 64]:
239 mask = (1 << s) - 1
240
241 ishl = "ishl@{}".format(s)
242 ishr = "ishr@{}".format(s)
243 ushr = "ushr@{}".format(s)
244
245 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
246
247 optimizations.extend([
248 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
249 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
250
251 # To get get -1 for large shifts of negative values, ishr must instead
252 # clamp the shift count to the maximum value.
253 ((ishr, (ishr, a, '#b'), '#c'),
254 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
255 ])
256
257 # Optimize a pattern of address calculation created by DXVK where the offset is
258 # divided by 4 and then multipled by 4. This can be turned into an iand and the
259 # additions before can be reassociated to CSE the iand instruction.
260 for log2 in range(1, 7): # powers of two from 2 to 64
261 v = 1 << log2
262 mask = 0xffffffff & ~(v - 1)
263 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
264
265 optimizations.extend([
266 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
267 (('ishl@32', ('ushr@32', a, log2), log2), ('iand', a, mask)),
268
269 # Reassociate for improved CSE
270 (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
271 ])
272
273 # To save space in the state tables, reduce to the set that is known to help.
274 # Previously, this was range(1, 32). In addition, a couple rules inside the
275 # loop are commented out. Revisit someday, probably after mesa/#2635 has some
276 # resolution.
277 for i in [1, 2, 16, 24]:
278 lo_mask = 0xffffffff >> i
279 hi_mask = (0xffffffff << i) & 0xffffffff
280
281 optimizations.extend([
282 # This pattern seems to only help in the soft-fp64 code.
283 (('ishl@32', ('iand', 'a@32', lo_mask), i), ('ishl', a, i)),
284 # (('ushr@32', ('iand', 'a@32', hi_mask), i), ('ushr', a, i)),
285 # (('ishr@32', ('iand', 'a@32', hi_mask), i), ('ishr', a, i)),
286
287 (('iand', ('ishl', 'a@32', i), hi_mask), ('ishl', a, i)),
288 (('iand', ('ushr', 'a@32', i), lo_mask), ('ushr', a, i)),
289 # (('iand', ('ishr', 'a@32', i), lo_mask), ('ushr', a, i)), # Yes, ushr is correct
290 ])
291
292 optimizations.extend([
293 # This is common for address calculations. Reassociating may enable the
294 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
295 # instruction or a constant offset field for in load / store instructions.
296 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
297
298 # Comparison simplifications
299 (('~inot', ('flt', a, b)), ('fge', a, b)),
300 (('~inot', ('fge', a, b)), ('flt', a, b)),
301 (('inot', ('feq', a, b)), ('fne', a, b)),
302 (('inot', ('fne', a, b)), ('feq', a, b)),
303 (('inot', ('ilt', a, b)), ('ige', a, b)),
304 (('inot', ('ult', a, b)), ('uge', a, b)),
305 (('inot', ('ige', a, b)), ('ilt', a, b)),
306 (('inot', ('uge', a, b)), ('ult', a, b)),
307 (('inot', ('ieq', a, b)), ('ine', a, b)),
308 (('inot', ('ine', a, b)), ('ieq', a, b)),
309
310 (('iand', ('feq', a, b), ('fne', a, b)), False),
311 (('iand', ('flt', a, b), ('flt', b, a)), False),
312 (('iand', ('ieq', a, b), ('ine', a, b)), False),
313 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
314 (('iand', ('ult', a, b), ('ult', b, a)), False),
315
316 # This helps some shaders because, after some optimizations, they end up
317 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
318 # matching would be handled by CSE.
319 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
320 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
321 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
322 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
323 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
324 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
325 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
326 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
327 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
328 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
329
330 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
331 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
332 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
333 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
334 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
335 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
336
337 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
338 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
339 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
340 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
341
342 # 0.0 >= b2f(a)
343 # b2f(a) <= 0.0
344 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
345 # inot(a)
346 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
347
348 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
349
350 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
351 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
352 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
353 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
354 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
355 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
356 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
357 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
358 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
359 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
360 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
361 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
362 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
363 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
364 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
365 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
366 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
367 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
368 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
369 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
370
371 # -(b2f(a) + b2f(b)) < 0
372 # 0 < b2f(a) + b2f(b)
373 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
374 # a || b
375 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
376 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
377
378 # -(b2f(a) + b2f(b)) >= 0
379 # 0 >= b2f(a) + b2f(b)
380 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
381 # !(a || b)
382 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
383 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
384
385 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
386 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
387
388 # Some optimizations (below) convert things like (a < b || c < b) into
389 # (min(a, c) < b). However, this interfers with the previous optimizations
390 # that try to remove comparisons with negated sums of b2f. This just
391 # breaks that apart.
392 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
393 ('ior', ('flt', c, 0.0), ('ior', a, b))),
394
395 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
396 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
397 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
398 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
399 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
400 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
401 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
402 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
403 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
404 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
405 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
406 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
407
408 # Cannot remove the addition from ilt or ige due to overflow.
409 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
410 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
411
412 # fmin(-b2f(a), b) >= 0.0
413 # -b2f(a) >= 0.0 && b >= 0.0
414 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
415 # b2f(a) == 0.0 && b >= 0.0
416 # a == False && b >= 0.0
417 # !a && b >= 0.0
418 #
419 # The fge in the second replacement is not a typo. I leave the proof that
420 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
421 # reader.
422 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
423 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
424
425 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
426 (('~fne', ('b2f', 'a@1'), 0.0), a),
427 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
428 (('ine', ('b2i', 'a@1'), 0), a),
429
430 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
431 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
432 (('fge', ('u2f', a), 0.0), True),
433 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
434 (('flt', ('u2f', a), 0.0), False),
435 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
436 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
437 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
438 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
439 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
440 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
441 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
442
443 # 0.0 < fabs(a)
444 # fabs(a) > 0.0
445 # fabs(a) != 0.0 because fabs(a) must be >= 0
446 # a != 0.0
447 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
448
449 # -fabs(a) < 0.0
450 # fabs(a) > 0.0
451 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
452
453 # 0.0 >= fabs(a)
454 # 0.0 == fabs(a) because fabs(a) must be >= 0
455 # 0.0 == a
456 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
457
458 # -fabs(a) >= 0.0
459 # 0.0 >= fabs(a)
460 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
461
462 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
463 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
464
465 # (a < 0.0) || (a > 1.0)
466 # !(!(a < 0.0) && !(a > 1.0))
467 # !((a >= 0.0) && (a <= 1.0))
468 # !(a == fsat(a))
469 # a != fsat(a)
470 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
471
472 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
473 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
474 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
475 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
476
477 # fmin(b2f(a), b)
478 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
479 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
480 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
481 #
482 # Since b is a constant, constant folding will eliminate the fmin and the
483 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
484 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
485
486 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
487
488 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
489 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
490 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
491 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
492 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
493 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
494 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
495 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
496 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
497 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
498 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
499 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
500 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
501 (('bcsel', a, True, b), ('ior', a, b)),
502 (('bcsel', a, a, b), ('ior', a, b)),
503 (('bcsel', a, b, False), ('iand', a, b)),
504 (('bcsel', a, b, a), ('iand', a, b)),
505 (('~fmin', a, a), a),
506 (('~fmax', a, a), a),
507 (('imin', a, a), a),
508 (('imax', a, a), a),
509 (('umin', a, a), a),
510 (('umax', a, a), a),
511 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
512 (('umax', ('umax', a, b), b), ('umax', a, b)),
513 (('imax', ('imax', a, b), b), ('imax', a, b)),
514 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
515 (('umin', ('umin', a, b), b), ('umin', a, b)),
516 (('imin', ('imin', a, b), b), ('imin', a, b)),
517 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
518
519 # Simplify logic to detect sign of an integer.
520 (('ieq', ('iand', 'a@32', 0x80000000), 0x00000000), ('ige', a, 0)),
521 (('ine', ('iand', 'a@32', 0x80000000), 0x80000000), ('ige', a, 0)),
522 (('ine', ('iand', 'a@32', 0x80000000), 0x00000000), ('ilt', a, 0)),
523 (('ieq', ('iand', 'a@32', 0x80000000), 0x80000000), ('ilt', a, 0)),
524 (('ine', ('ushr', 'a@32', 31), 0), ('ilt', a, 0)),
525 (('ieq', ('ushr', 'a@32', 31), 0), ('ige', a, 0)),
526 (('ieq', ('ushr', 'a@32', 31), 1), ('ilt', a, 0)),
527 (('ine', ('ushr', 'a@32', 31), 1), ('ige', a, 0)),
528 (('ine', ('ishr', 'a@32', 31), 0), ('ilt', a, 0)),
529 (('ieq', ('ishr', 'a@32', 31), 0), ('ige', a, 0)),
530 (('ieq', ('ishr', 'a@32', 31), -1), ('ilt', a, 0)),
531 (('ine', ('ishr', 'a@32', 31), -1), ('ige', a, 0)),
532
533 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
534 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
535 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
536 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
537 (('~fmin', a, ('fabs', a)), a),
538 (('imin', a, ('iabs', a)), a),
539 (('~fmax', a, ('fneg', ('fabs', a))), a),
540 (('imax', a, ('ineg', ('iabs', a))), a),
541 (('fmax', a, ('fabs', a)), ('fabs', a)),
542 (('imax', a, ('iabs', a)), ('iabs', a)),
543 (('fmax', a, ('fneg', a)), ('fabs', a)),
544 (('imax', a, ('ineg', a)), ('iabs', a)),
545 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
546 (('fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
547 # fmax(fmin(a, 1.0), 0.0) is inexact because it returns 1.0 on NaN, while
548 # fsat(a) returns 0.0.
549 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
550 # fmin(fmax(a, -1.0), 0.0) is inexact because it returns -1.0 on NaN, while
551 # fneg(fsat(fneg(a))) returns -0.0 on NaN.
552 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
553 # fmax(fmin(a, 0.0), -1.0) is inexact because it returns 0.0 on NaN, while
554 # fneg(fsat(fneg(a))) returns -0.0 on NaN. This only matters if
555 # SignedZeroInfNanPreserve is set, but we don't currently have any way of
556 # representing this in the optimizations other than the usual ~.
557 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
558 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
559 (('fsat', ('b2f', a)), ('b2f', a)),
560 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
561 (('fsat', ('fsat', a)), ('fsat', a)),
562 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
563 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
564 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
565 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
566 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
567 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
568 # Both the left and right patterns are "b" when isnan(a), so this is exact.
569 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
570 # The left pattern is 0.0 when isnan(a) (because fmin(fsat(NaN), b) ->
571 # fmin(0.0, b)) while the right one is "b", so this optimization is inexact.
572 (('~fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
573
574 # If a in [0,b] then b-a is also in [0,b]. Since b in [0,1], max(b-a, 0) =
575 # fsat(b-a).
576 #
577 # If a > b, then b-a < 0 and max(b-a, 0) = fsat(b-a) = 0
578 #
579 # This should be NaN safe since max(NaN, 0) = fsat(NaN) = 0.
580 (('fmax', ('fadd(is_used_once)', ('fneg', 'a(is_not_negative)'), '#b@32(is_zero_to_one)'), 0.0),
581 ('fsat', ('fadd', ('fneg', a), b)), '!options->lower_fsat'),
582
583 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
584 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
585 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
586 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
587 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
588 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
589 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
590 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
591 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
592 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
593 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
594 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
595 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
596 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
597 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
598 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
599 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
600
601 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
602 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
603 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
604 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
605 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
606 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
607 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
608 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
609 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
610 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
611 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
612 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
613 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
614 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
615 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
616 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
617
618 # These derive from the previous patterns with the application of b < 0 <=>
619 # 0 < -b. The transformation should be applied if either comparison is
620 # used once as this ensures that the number of comparisons will not
621 # increase. The sources to the ior and iand are not symmetric, so the
622 # rules have to be duplicated to get this behavior.
623 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
624 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
625 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
626 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
627 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
628 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
629 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
630 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
631
632 # Common pattern like 'if (i == 0 || i == 1 || ...)'
633 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
634 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
635 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
636
637 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
638 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
639 # so emit an open-coded version of that.
640 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
641 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
642
643 (('ior', a, ('ieq', a, False)), True),
644 (('ior', a, ('inot', a)), -1),
645
646 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
647 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
648
649 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('ior', a, b), 0), '!options->lower_bitops'),
650 (('ior', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('ior', a, b), 0), '!options->lower_bitops'),
651
652 # This pattern occurs coutresy of __flt64_nonnan in the soft-fp64 code.
653 # The first part of the iand comes from the !__feq64_nonnan.
654 #
655 # The second pattern is a reformulation of the first based on the relation
656 # (a == 0 || y == 0) <=> umin(a, y) == 0, where b in the first equation
657 # happens to be y == 0.
658 (('iand', ('inot', ('iand', ('ior', ('ieq', a, 0), b), c)), ('ilt', a, 0)),
659 ('iand', ('inot', ('iand', b , c)), ('ilt', a, 0))),
660 (('iand', ('inot', ('iand', ('ieq', ('umin', a, b), 0), c)), ('ilt', a, 0)),
661 ('iand', ('inot', ('iand', ('ieq', b , 0), c)), ('ilt', a, 0))),
662
663 # These patterns can result when (a < b || a < c) => (a < min(b, c))
664 # transformations occur before constant propagation and loop-unrolling.
665 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
666 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
667 (('~fge', a, ('fmin', b, a)), True),
668 (('~fge', ('fmax', a, b), a), True),
669 (('~flt', a, ('fmin', b, a)), False),
670 (('~flt', ('fmax', a, b), a), False),
671 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
672 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
673
674 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
675 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
676 (('ige', a, ('imin', b, a)), True),
677 (('ige', ('imax', a, b), a), True),
678 (('ult', a, ('umax', b, a)), ('ult', a, b)),
679 (('ult', ('umin', a, b), a), ('ult', b, a)),
680 (('uge', a, ('umin', b, a)), True),
681 (('uge', ('umax', a, b), a), True),
682 (('ilt', a, ('imin', b, a)), False),
683 (('ilt', ('imax', a, b), a), False),
684 (('ige', a, ('imax', b, a)), ('ige', a, b)),
685 (('ige', ('imin', a, b), a), ('ige', b, a)),
686 (('ult', a, ('umin', b, a)), False),
687 (('ult', ('umax', a, b), a), False),
688 (('uge', a, ('umax', b, a)), ('uge', a, b)),
689 (('uge', ('umin', a, b), a), ('uge', b, a)),
690 (('ult', a, ('iand', b, a)), False),
691 (('ult', ('ior', a, b), a), False),
692 (('uge', a, ('iand', b, a)), True),
693 (('uge', ('ior', a, b), a), True),
694
695 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
696 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
697 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
698 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
699 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
700 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
701 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
702 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
703 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
704 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
705 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
706 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
707 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
708 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
709 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
710 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
711
712 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
713 # negative.
714 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
715 ('iabs', ('ishr', a, b))),
716 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
717
718 (('fabs', ('slt', a, b)), ('slt', a, b)),
719 (('fabs', ('sge', a, b)), ('sge', a, b)),
720 (('fabs', ('seq', a, b)), ('seq', a, b)),
721 (('fabs', ('sne', a, b)), ('sne', a, b)),
722 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
723 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
724 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
725 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
726 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
727 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
728 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
729 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
730 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
731 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
732 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
733 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
734 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
735 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
736 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
737 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
738 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
739 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
740 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
741 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
742 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
743 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
744 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
745 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
746 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
747 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
748 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
749 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
750 # Emulating booleans
751 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
752 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
753 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
754 (('iand', 'a@bool32', 1.0), ('b2f', a)),
755 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
756 (('ineg', ('b2i32', 'a@32')), a),
757 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
758 # Comparison with the same args. Note that these are not done for
759 # the float versions because NaN always returns false on float
760 # inequalities.
761 (('ilt', a, a), False),
762 (('ige', a, a), True),
763 (('ieq', a, a), True),
764 (('ine', a, a), False),
765 (('ult', a, a), False),
766 (('uge', a, a), True),
767 # Logical and bit operations
768 (('iand', a, a), a),
769 (('iand', a, ~0), a),
770 (('iand', a, 0), 0),
771 (('ior', a, a), a),
772 (('ior', a, 0), a),
773 (('ior', a, True), True),
774 (('ixor', a, a), 0),
775 (('ixor', a, 0), a),
776 (('inot', ('inot', a)), a),
777 (('ior', ('iand', a, b), b), b),
778 (('ior', ('ior', a, b), b), ('ior', a, b)),
779 (('iand', ('ior', a, b), b), b),
780 (('iand', ('iand', a, b), b), ('iand', a, b)),
781 # DeMorgan's Laws
782 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
783 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
784 # Shift optimizations
785 (('ishl', 0, a), 0),
786 (('ishl', a, 0), a),
787 (('ishr', 0, a), 0),
788 (('ishr', a, 0), a),
789 (('ushr', 0, a), 0),
790 (('ushr', a, 0), a),
791 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
792 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
793 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
794 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
795 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
796 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
797 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
798 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
799 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
800 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
801 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
802 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
803 # Exponential/logarithmic identities
804 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
805 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
806 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
807 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
808 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
809 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
810 (('~fexp2', ('fmul', ('flog2', a), 0.5)), ('fsqrt', a)),
811 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
812 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
813 (('~fpow', a, 1.0), a),
814 (('~fpow', a, 2.0), ('fmul', a, a)),
815 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
816 (('~fpow', 2.0, a), ('fexp2', a)),
817 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
818 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
819 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
820 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
821 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
822 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
823 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
824 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
825 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
826 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
827 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
828 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
829 # Division and reciprocal
830 (('~fdiv', 1.0, a), ('frcp', a)),
831 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
832 (('~frcp', ('frcp', a)), a),
833 (('~frcp', ('fsqrt', a)), ('frsq', a)),
834 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
835 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
836 # Trig
837 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
838 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
839 # Boolean simplifications
840 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
841 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
842 (('ieq', a, True), a),
843 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
844 (('ine', a, False), a),
845 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
846 (('bcsel', a, True, False), a),
847 (('bcsel', a, False, True), ('inot', a)),
848 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
849 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
850 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
851 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
852 (('bcsel', True, b, c), b),
853 (('bcsel', False, b, c), c),
854 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
855
856 (('bcsel', a, b, b), b),
857 (('~fcsel', a, b, b), b),
858
859 # D3D Boolean emulation
860 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
861 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
862 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
863 ('ineg', ('b2i', ('iand', a, b)))),
864 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
865 ('ineg', ('b2i', ('ior', a, b)))),
866 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
867 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
868 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
869 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
870 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
871 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
872
873 # SM5 32-bit shifts are defined to use the 5 least significant bits
874 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
875 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
876 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
877
878 # Conversions
879 (('i2b32', ('b2i', 'a@32')), a),
880 (('f2i', ('ftrunc', a)), ('f2i', a)),
881 (('f2u', ('ftrunc', a)), ('f2u', a)),
882 (('i2b', ('ineg', a)), ('i2b', a)),
883 (('i2b', ('iabs', a)), ('i2b', a)),
884 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
885
886 # The C spec says, "If the value of the integral part cannot be represented
887 # by the integer type, the behavior is undefined." "Undefined" can mean
888 # "the conversion doesn't happen at all."
889 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
890
891 # Ironically, mark these as imprecise because removing the conversions may
892 # preserve more precision than doing the conversions (e.g.,
893 # uint(float(0x81818181u)) == 0x81818200).
894 (('~f2i32', ('i2f', 'a@32')), a),
895 (('~f2i32', ('u2f', 'a@32')), a),
896 (('~f2u32', ('i2f', 'a@32')), a),
897 (('~f2u32', ('u2f', 'a@32')), a),
898
899 # Conversions from float16 to float32 and back can always be removed
900 (('f2f16', ('f2f32', 'a@16')), a),
901 (('f2fmp', ('f2f32', 'a@16')), a),
902 # Conversions to float16 would be lossy so they should only be removed if
903 # the instruction was generated by the precision lowering pass.
904 (('f2f32', ('f2fmp', 'a@32')), a),
905
906 (('ffloor', 'a(is_integral)'), a),
907 (('fceil', 'a(is_integral)'), a),
908 (('ftrunc', 'a(is_integral)'), a),
909 # fract(x) = x - floor(x), so fract(NaN) = NaN
910 (('~ffract', 'a(is_integral)'), 0.0),
911 (('fabs', 'a(is_not_negative)'), a),
912 (('iabs', 'a(is_not_negative)'), a),
913 (('fsat', 'a(is_not_positive)'), 0.0),
914
915 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
916 # says:
917 #
918 # It is undefined to convert a negative floating-point value to an
919 # uint.
920 #
921 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
922 # some optimizations in the i965 backend to proceed.
923 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
924 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
925 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
926 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
927
928 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
929
930 # The result of the multiply must be in [-1, 0], so the result of the ffma
931 # must be in [0, 1].
932 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
933 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
934 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
935 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
936
937 (('fne', 'a(is_not_zero)', 0.0), True),
938 (('feq', 'a(is_not_zero)', 0.0), False),
939
940 # In this chart, + means value > 0 and - means value < 0.
941 #
942 # + >= + -> unknown 0 >= + -> false - >= + -> false
943 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
944 # + >= - -> true 0 >= - -> true - >= - -> unknown
945 #
946 # Using grouping conceptually similar to a Karnaugh map...
947 #
948 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
949 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
950 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
951 #
952 # The flt / ilt cases just invert the expected result.
953 #
954 # The results expecting true, must be marked imprecise. The results
955 # expecting false are fine because NaN compared >= or < anything is false.
956
957 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
958 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
959 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
960
961 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
962 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
963 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
964
965 (('ine', 'a(is_not_zero)', 0), True),
966 (('ieq', 'a(is_not_zero)', 0), False),
967
968 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
969 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
970 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
971
972 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
973 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
974 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
975
976 (('ult', 0, 'a(is_gt_zero)'), True),
977 (('ult', a, 0), False),
978
979 # Packing and then unpacking does nothing
980 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
981 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
982 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
983 ('unpack_64_2x32_split_y', a)), a),
984
985 # Comparing two halves of an unpack separately. While this optimization
986 # should be correct for non-constant values, it's less obvious that it's
987 # useful in that case. For constant values, the pack will fold and we're
988 # guaranteed to reduce the whole tree to one instruction.
989 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
990 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
991 ('ieq', a, ('pack_32_2x16_split', b, c))),
992
993 # Byte extraction
994 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
995 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
996 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
997 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
998 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
999 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
1000 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1001
1002 (('ubfe', a, 0, 8), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1003 (('ubfe', a, 8, 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
1004 (('ubfe', a, 16, 8), ('extract_u8', a, 2), '!options->lower_extract_byte'),
1005 (('ubfe', a, 24, 8), ('extract_u8', a, 3), '!options->lower_extract_byte'),
1006 (('ibfe', a, 0, 8), ('extract_i8', a, 0), '!options->lower_extract_byte'),
1007 (('ibfe', a, 8, 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
1008 (('ibfe', a, 16, 8), ('extract_i8', a, 2), '!options->lower_extract_byte'),
1009 (('ibfe', a, 24, 8), ('extract_i8', a, 3), '!options->lower_extract_byte'),
1010
1011 # Word extraction
1012 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1013 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1014 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1015 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1016 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
1017
1018 (('ubfe', a, 0, 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1019 (('ubfe', a, 16, 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1020 (('ibfe', a, 0, 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1021 (('ibfe', a, 16, 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1022
1023 # Useless masking before unpacking
1024 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
1025 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
1026 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
1027 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
1028 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
1029 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
1030
1031 # Optimize half packing
1032 (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))),
1033 (('ushr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))),
1034
1035 (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1036 ('pack_half_2x16', ('vec2', a, b))),
1037 (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1038 ('pack_half_2x16', ('vec2', a, b))),
1039
1040 (('ishl', ('pack_half_2x16_split', a, 0), 16), ('pack_half_2x16_split', 0, a)),
1041 (('ushr', ('pack_half_2x16_split', 0, a), 16), ('pack_half_2x16_split', a, 0)),
1042 (('extract_u16', ('pack_half_2x16_split', 0, a), 1), ('pack_half_2x16_split', a, 0)),
1043
1044 (('iadd', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1045 (('ior', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1046 ])
1047
1048 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
1049 # patterns like those below.
1050 for op in ('ushr', 'ishr'):
1051 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
1052 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
1053 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
1054
1055 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
1056
1057 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
1058 # patterns like those below.
1059 for op in ('extract_u8', 'extract_i8'):
1060 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
1061 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
1062 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
1063
1064 optimizations.extend([
1065 # Subtracts
1066 (('ussub_4x8', a, 0), a),
1067 (('ussub_4x8', a, ~0), 0),
1068 # Lower all Subtractions first - they can get recombined later
1069 (('fsub', a, b), ('fadd', a, ('fneg', b))),
1070 (('isub', a, b), ('iadd', a, ('ineg', b))),
1071 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1072 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
1073 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1074
1075 # Propagate negation up multiplication chains
1076 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
1077 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
1078
1079 # Propagate constants up multiplication chains
1080 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
1081 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
1082 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
1083 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
1084
1085 # Reassociate constants in add/mul chains so they can be folded together.
1086 # For now, we mostly only handle cases where the constants are separated by
1087 # a single non-constant. We could do better eventually.
1088 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
1089 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
1090 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
1091 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
1092 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
1093 (('iand', '#a', ('iand', 'b(is_not_const)', '#c')), ('iand', ('iand', a, c), b)),
1094 (('ior', '#a', ('ior', 'b(is_not_const)', '#c')), ('ior', ('ior', a, c), b)),
1095 (('ixor', '#a', ('ixor', 'b(is_not_const)', '#c')), ('ixor', ('ixor', a, c), b)),
1096
1097 # Drop mul-div by the same value when there's no wrapping.
1098 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
1099
1100 # By definition...
1101 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
1102 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1103 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1104
1105 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1106 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1107 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1108
1109 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1110
1111 (('fmin3@64', a, b, c), ('fmin@64', a, ('fmin@64', b, c))),
1112 (('fmax3@64', a, b, c), ('fmax@64', a, ('fmax@64', b, c))),
1113 (('fmed3@64', a, b, c), ('fmax@64', ('fmin@64', ('fmax@64', a, b), c), ('fmin@64', a, b))),
1114
1115 # Misc. lowering
1116 (('fmod', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1117 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1118 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1119 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1120
1121 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1122 ('bcsel', ('ult', 31, 'bits'), 'insert',
1123 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1124 'options->lower_bitfield_insert'),
1125 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1126 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1127 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1128 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1129 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1130 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1131 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1132 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1133
1134 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1135 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1136 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1137 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1138
1139 # int64_t sum = a + b;
1140 #
1141 # if (a < 0 && b < 0 && a < sum)
1142 # sum = INT64_MIN;
1143 # } else if (a >= 0 && b >= 0 && sum < a)
1144 # sum = INT64_MAX;
1145 # }
1146 #
1147 # A couple optimizations are applied.
1148 #
1149 # 1. a < sum => sum >= 0. This replacement works because it is known that
1150 # a < 0 and b < 0, so sum should also be < 0 unless there was
1151 # underflow.
1152 #
1153 # 2. sum < a => sum < 0. This replacement works because it is known that
1154 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1155 # overflow.
1156 #
1157 # 3. Invert the second if-condition and swap the order of parameters for
1158 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1159 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1160 #
1161 # On Intel Gen11, this saves ~11 instructions.
1162 (('iadd_sat@64', a, b), ('bcsel',
1163 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1164 0x8000000000000000,
1165 ('bcsel',
1166 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1167 ('iadd', a, b),
1168 0x7fffffffffffffff)),
1169 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1170
1171 # int64_t sum = a - b;
1172 #
1173 # if (a < 0 && b >= 0 && a < sum)
1174 # sum = INT64_MIN;
1175 # } else if (a >= 0 && b < 0 && a >= sum)
1176 # sum = INT64_MAX;
1177 # }
1178 #
1179 # Optimizations similar to the iadd_sat case are applied here.
1180 (('isub_sat@64', a, b), ('bcsel',
1181 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1182 0x8000000000000000,
1183 ('bcsel',
1184 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1185 ('isub', a, b),
1186 0x7fffffffffffffff)),
1187 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1188
1189 # These are done here instead of in the backend because the int64 lowering
1190 # pass will make a mess of the patterns. The first patterns are
1191 # conditioned on nir_lower_minmax64 because it was not clear that it was
1192 # always an improvement on platforms that have real int64 support. No
1193 # shaders in shader-db hit this, so it was hard to say one way or the
1194 # other.
1195 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1196 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1197 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1198 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1199 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1200 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1201
1202 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1203 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1204 # 0u < uint(a) <=> uint(a) != 0u
1205 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1206
1207 # Alternative lowering that doesn't rely on bfi.
1208 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1209 ('bcsel', ('ult', 31, 'bits'),
1210 'insert',
1211 (('ior',
1212 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1213 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1214 'options->lower_bitfield_insert_to_shifts'),
1215
1216 # Alternative lowering that uses bitfield_select.
1217 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1218 ('bcsel', ('ult', 31, 'bits'), 'insert',
1219 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1220 'options->lower_bitfield_insert_to_bitfield_select'),
1221
1222 (('ibitfield_extract', 'value', 'offset', 'bits'),
1223 ('bcsel', ('ult', 31, 'bits'), 'value',
1224 ('ibfe', 'value', 'offset', 'bits')),
1225 'options->lower_bitfield_extract'),
1226
1227 (('ubitfield_extract', 'value', 'offset', 'bits'),
1228 ('bcsel', ('ult', 31, 'bits'), 'value',
1229 ('ubfe', 'value', 'offset', 'bits')),
1230 'options->lower_bitfield_extract'),
1231
1232 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1233 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1234 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1235 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1236 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1237 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1238 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1239
1240 # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says:
1241 #
1242 # If bits is zero, the result will be zero.
1243 #
1244 # These patterns prevent other patterns from generating invalid results
1245 # when count is zero.
1246 (('ubfe', a, b, 0), 0),
1247 (('ibfe', a, b, 0), 0),
1248
1249 (('ubfe', a, 0, '#b'), ('iand', a, ('ushr', 0xffffffff, ('ineg', b)))),
1250
1251 (('b2i32', ('i2b', ('ubfe', a, b, 1))), ('ubfe', a, b, 1)),
1252 (('b2i32', ('i2b', ('ibfe', a, b, 1))), ('ubfe', a, b, 1)), # ubfe in the replacement is correct
1253 (('ine', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1254 (('ieq', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1255 (('ine', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1256 (('ieq', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1257
1258 (('ibitfield_extract', 'value', 'offset', 'bits'),
1259 ('bcsel', ('ieq', 0, 'bits'),
1260 0,
1261 ('ishr',
1262 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1263 ('isub', 32, 'bits'))),
1264 'options->lower_bitfield_extract_to_shifts'),
1265
1266 (('ubitfield_extract', 'value', 'offset', 'bits'),
1267 ('iand',
1268 ('ushr', 'value', 'offset'),
1269 ('bcsel', ('ieq', 'bits', 32),
1270 0xffffffff,
1271 ('isub', ('ishl', 1, 'bits'), 1))),
1272 'options->lower_bitfield_extract_to_shifts'),
1273
1274 (('ifind_msb', 'value'),
1275 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1276 'options->lower_ifind_msb'),
1277
1278 (('find_lsb', 'value'),
1279 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1280 'options->lower_find_lsb'),
1281
1282 (('extract_i8', a, 'b@32'),
1283 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1284 'options->lower_extract_byte'),
1285
1286 (('extract_u8', a, 'b@32'),
1287 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1288 'options->lower_extract_byte'),
1289
1290 (('extract_i16', a, 'b@32'),
1291 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1292 'options->lower_extract_word'),
1293
1294 (('extract_u16', a, 'b@32'),
1295 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1296 'options->lower_extract_word'),
1297
1298 (('pack_unorm_2x16', 'v'),
1299 ('pack_uvec2_to_uint',
1300 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1301 'options->lower_pack_unorm_2x16'),
1302
1303 (('pack_unorm_4x8', 'v'),
1304 ('pack_uvec4_to_uint',
1305 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1306 'options->lower_pack_unorm_4x8'),
1307
1308 (('pack_snorm_2x16', 'v'),
1309 ('pack_uvec2_to_uint',
1310 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1311 'options->lower_pack_snorm_2x16'),
1312
1313 (('pack_snorm_4x8', 'v'),
1314 ('pack_uvec4_to_uint',
1315 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1316 'options->lower_pack_snorm_4x8'),
1317
1318 (('unpack_unorm_2x16', 'v'),
1319 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1320 ('extract_u16', 'v', 1))),
1321 65535.0),
1322 'options->lower_unpack_unorm_2x16'),
1323
1324 (('unpack_unorm_4x8', 'v'),
1325 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1326 ('extract_u8', 'v', 1),
1327 ('extract_u8', 'v', 2),
1328 ('extract_u8', 'v', 3))),
1329 255.0),
1330 'options->lower_unpack_unorm_4x8'),
1331
1332 (('unpack_snorm_2x16', 'v'),
1333 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1334 ('extract_i16', 'v', 1))),
1335 32767.0))),
1336 'options->lower_unpack_snorm_2x16'),
1337
1338 (('unpack_snorm_4x8', 'v'),
1339 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1340 ('extract_i8', 'v', 1),
1341 ('extract_i8', 'v', 2),
1342 ('extract_i8', 'v', 3))),
1343 127.0))),
1344 'options->lower_unpack_snorm_4x8'),
1345
1346 (('pack_half_2x16_split', 'a@32', 'b@32'),
1347 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1348 'options->lower_pack_split'),
1349
1350 (('unpack_half_2x16_split_x', 'a@32'),
1351 ('f2f32', ('u2u16', a)),
1352 'options->lower_pack_split'),
1353
1354 (('unpack_half_2x16_split_y', 'a@32'),
1355 ('f2f32', ('u2u16', ('ushr', a, 16))),
1356 'options->lower_pack_split'),
1357
1358 (('pack_32_2x16_split', 'a@16', 'b@16'),
1359 ('ior', ('ishl', ('u2u32', b), 16), ('u2u32', a)),
1360 'options->lower_pack_split'),
1361
1362 (('unpack_32_2x16_split_x', 'a@32'),
1363 ('u2u16', a),
1364 'options->lower_pack_split'),
1365
1366 (('unpack_32_2x16_split_y', 'a@32'),
1367 ('u2u16', ('ushr', 'a', 16)),
1368 'options->lower_pack_split'),
1369
1370 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1371 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1372
1373 # Address/offset calculations:
1374 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1375 # rule converts everyone else to imul:
1376 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1377
1378 (('umul24', a, b),
1379 ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)),
1380 '!options->has_umul24'),
1381 (('umad24', a, b, c),
1382 ('iadd', ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)), c),
1383 '!options->has_umad24'),
1384
1385 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1386 (('imad24_ir3', a, 0, c), (c)),
1387 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1388
1389 # if first two srcs are const, crack apart the imad so constant folding
1390 # can clean up the imul:
1391 # TODO ffma should probably get a similar rule:
1392 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1393
1394 # These will turn 24b address/offset calc back into 32b shifts, but
1395 # it should be safe to get back some of the bits of precision that we
1396 # already decided were no necessary:
1397 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1398 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1399 (('imul24', a, 0), (0)),
1400 ])
1401
1402 # bit_size dependent lowerings
1403 for bit_size in [8, 16, 32, 64]:
1404 # convenience constants
1405 intmax = (1 << (bit_size - 1)) - 1
1406 intmin = 1 << (bit_size - 1)
1407
1408 optimizations += [
1409 (('iadd_sat@' + str(bit_size), a, b),
1410 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1411 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1412 (('isub_sat@' + str(bit_size), a, b),
1413 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1414 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1415 ]
1416
1417 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq')])
1418
1419 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1420 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1421 ('iand', (invert[left], a, b), (invert[right], c, d))))
1422 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1423 ('ior', (invert[left], a, b), (invert[right], c, d))))
1424
1425 # Optimize x2bN(b2x(x)) -> x
1426 for size in type_sizes('bool'):
1427 aN = 'a@' + str(size)
1428 f2bN = 'f2b' + str(size)
1429 i2bN = 'i2b' + str(size)
1430 optimizations.append(((f2bN, ('b2f', aN)), a))
1431 optimizations.append(((i2bN, ('b2i', aN)), a))
1432
1433 # Optimize x2yN(b2x(x)) -> b2y
1434 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1435 if x != 'f' and y != 'f' and x != y:
1436 continue
1437
1438 b2x = 'b2f' if x == 'f' else 'b2i'
1439 b2y = 'b2f' if y == 'f' else 'b2i'
1440 x2yN = '{}2{}'.format(x, y)
1441 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1442
1443 # Optimize away x2xN(a@N)
1444 for t in ['int', 'uint', 'float', 'bool']:
1445 for N in type_sizes(t):
1446 x2xN = '{0}2{0}{1}'.format(t[0], N)
1447 aN = 'a@{0}'.format(N)
1448 optimizations.append(((x2xN, aN), a))
1449
1450 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1451 # In particular, we can optimize away everything except upcast of downcast and
1452 # upcasts where the type differs from the other cast
1453 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1454 if N < M:
1455 # The outer cast is a down-cast. It doesn't matter what the size of the
1456 # argument of the inner cast is because we'll never been in the upcast
1457 # of downcast case. Regardless of types, we'll always end up with y2yN
1458 # in the end.
1459 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1460 x2xN = '{0}2{0}{1}'.format(x, N)
1461 y2yM = '{0}2{0}{1}'.format(y, M)
1462 y2yN = '{0}2{0}{1}'.format(y, N)
1463 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1464 elif N > M:
1465 # If the outer cast is an up-cast, we have to be more careful about the
1466 # size of the argument of the inner cast and with types. In this case,
1467 # the type is always the type of type up-cast which is given by the
1468 # outer cast.
1469 for P in type_sizes('uint'):
1470 # We can't optimize away up-cast of down-cast.
1471 if M < P:
1472 continue
1473
1474 # Because we're doing down-cast of down-cast, the types always have
1475 # to match between the two casts
1476 for x in ['i', 'u']:
1477 x2xN = '{0}2{0}{1}'.format(x, N)
1478 x2xM = '{0}2{0}{1}'.format(x, M)
1479 aP = 'a@{0}'.format(P)
1480 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1481 else:
1482 # The N == M case is handled by other optimizations
1483 pass
1484
1485 # Downcast operations should be able to see through pack
1486 for t in ['i', 'u']:
1487 for N in [8, 16, 32]:
1488 x2xN = '{0}2{0}{1}'.format(t, N)
1489 optimizations += [
1490 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1491 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1492 ]
1493
1494 # Optimize comparisons with up-casts
1495 for t in ['int', 'uint', 'float']:
1496 for N, M in itertools.product(type_sizes(t), repeat=2):
1497 if N == 1 or N >= M:
1498 continue
1499
1500 cond = 'true'
1501 if N == 8:
1502 cond = 'options->support_8bit_alu'
1503 elif N == 16:
1504 cond = 'options->support_16bit_alu'
1505 x2xM = '{0}2{0}{1}'.format(t[0], M)
1506 x2xN = '{0}2{0}{1}'.format(t[0], N)
1507 aN = 'a@' + str(N)
1508 bN = 'b@' + str(N)
1509 xeq = 'feq' if t == 'float' else 'ieq'
1510 xne = 'fne' if t == 'float' else 'ine'
1511 xge = '{0}ge'.format(t[0])
1512 xlt = '{0}lt'.format(t[0])
1513
1514 # Up-casts are lossless so for correctly signed comparisons of
1515 # up-casted values we can do the comparison at the largest of the two
1516 # original sizes and drop one or both of the casts. (We have
1517 # optimizations to drop the no-op casts which this may generate.)
1518 for P in type_sizes(t):
1519 if P == 1 or P > N:
1520 continue
1521
1522 bP = 'b@' + str(P)
1523 optimizations += [
1524 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b)), cond),
1525 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b)), cond),
1526 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b)), cond),
1527 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b)), cond),
1528 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a), cond),
1529 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a), cond),
1530 ]
1531
1532 # The next bit doesn't work on floats because the range checks would
1533 # get way too complicated.
1534 if t in ['int', 'uint']:
1535 if t == 'int':
1536 xN_min = -(1 << (N - 1))
1537 xN_max = (1 << (N - 1)) - 1
1538 elif t == 'uint':
1539 xN_min = 0
1540 xN_max = (1 << N) - 1
1541 else:
1542 assert False
1543
1544 # If we're up-casting and comparing to a constant, we can unfold
1545 # the comparison into a comparison with the shrunk down constant
1546 # and a check that the constant fits in the smaller bit size.
1547 optimizations += [
1548 ((xeq, (x2xM, aN), '#b'),
1549 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b)), cond),
1550 ((xne, (x2xM, aN), '#b'),
1551 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b)), cond),
1552 ((xlt, (x2xM, aN), '#b'),
1553 ('iand', (xlt, xN_min, b),
1554 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b)))), cond),
1555 ((xlt, '#a', (x2xM, bN)),
1556 ('iand', (xlt, a, xN_max),
1557 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b))), cond),
1558 ((xge, (x2xM, aN), '#b'),
1559 ('iand', (xge, xN_max, b),
1560 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b)))), cond),
1561 ((xge, '#a', (x2xM, bN)),
1562 ('iand', (xge, a, xN_min),
1563 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b))), cond),
1564 ]
1565
1566 def fexp2i(exp, bits):
1567 # Generate an expression which constructs value 2.0^exp or 0.0.
1568 #
1569 # We assume that exp is already in a valid range:
1570 #
1571 # * [-15, 15] for 16-bit float
1572 # * [-127, 127] for 32-bit float
1573 # * [-1023, 1023] for 16-bit float
1574 #
1575 # If exp is the lowest value in the valid range, a value of 0.0 is
1576 # constructed. Otherwise, the value 2.0^exp is constructed.
1577 if bits == 16:
1578 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1579 elif bits == 32:
1580 return ('ishl', ('iadd', exp, 127), 23)
1581 elif bits == 64:
1582 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1583 else:
1584 assert False
1585
1586 def ldexp(f, exp, bits):
1587 # The maximum possible range for a normal exponent is [-126, 127] and,
1588 # throwing in denormals, you get a maximum range of [-149, 127]. This
1589 # means that we can potentially have a swing of +-276. If you start with
1590 # FLT_MAX, you actually have to do ldexp(FLT_MAX, -278) to get it to flush
1591 # all the way to zero. The GLSL spec only requires that we handle a subset
1592 # of this range. From version 4.60 of the spec:
1593 #
1594 # "If exp is greater than +128 (single-precision) or +1024
1595 # (double-precision), the value returned is undefined. If exp is less
1596 # than -126 (single-precision) or -1022 (double-precision), the value
1597 # returned may be flushed to zero. Additionally, splitting the value
1598 # into a significand and exponent using frexp() and then reconstructing
1599 # a floating-point value using ldexp() should yield the original input
1600 # for zero and all finite non-denormalized values."
1601 #
1602 # The SPIR-V spec has similar language.
1603 #
1604 # In order to handle the maximum value +128 using the fexp2i() helper
1605 # above, we have to split the exponent in half and do two multiply
1606 # operations.
1607 #
1608 # First, we clamp exp to a reasonable range. Specifically, we clamp to
1609 # twice the full range that is valid for the fexp2i() function above. If
1610 # exp/2 is the bottom value of that range, the fexp2i() expression will
1611 # yield 0.0f which, when multiplied by f, will flush it to zero which is
1612 # allowed by the GLSL and SPIR-V specs for low exponent values. If the
1613 # value is clamped from above, then it must have been above the supported
1614 # range of the GLSL built-in and therefore any return value is acceptable.
1615 if bits == 16:
1616 exp = ('imin', ('imax', exp, -30), 30)
1617 elif bits == 32:
1618 exp = ('imin', ('imax', exp, -254), 254)
1619 elif bits == 64:
1620 exp = ('imin', ('imax', exp, -2046), 2046)
1621 else:
1622 assert False
1623
1624 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1625 # (We use ishr which isn't the same for -1, but the -1 case still works
1626 # since we use exp-exp/2 as the second exponent.) While the spec
1627 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1628 # work with denormals and doesn't allow for the full swing in exponents
1629 # that you can get with normalized values. Instead, we create two powers
1630 # of two and multiply by them each in turn. That way the effective range
1631 # of our exponent is doubled.
1632 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1633 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1634 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1635
1636 optimizations += [
1637 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1638 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1639 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1640 ]
1641
1642 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1643 def bitfield_reverse(u):
1644 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1645 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1646 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1647 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1648 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1649
1650 return step5
1651
1652 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1653
1654 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1655 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1656 # and, if a is a NaN then the second comparison will fail anyway.
1657 for op in ['flt', 'fge', 'feq']:
1658 optimizations += [
1659 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1660 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1661 ]
1662
1663 # Add optimizations to handle the case where the result of a ternary is
1664 # compared to a constant. This way we can take things like
1665 #
1666 # (a ? 0 : 1) > 0
1667 #
1668 # and turn it into
1669 #
1670 # a ? (0 > 0) : (1 > 0)
1671 #
1672 # which constant folding will eat for lunch. The resulting ternary will
1673 # further get cleaned up by the boolean reductions above and we will be
1674 # left with just the original variable "a".
1675 for op in ['flt', 'fge', 'feq', 'fne',
1676 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1677 optimizations += [
1678 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1679 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1680 ((op, '#d', ('bcsel', a, '#b', '#c')),
1681 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1682 ]
1683
1684
1685 # For example, this converts things like
1686 #
1687 # 1 + mix(0, a - 1, condition)
1688 #
1689 # into
1690 #
1691 # mix(1, (a-1)+1, condition)
1692 #
1693 # Other optimizations will rearrange the constants.
1694 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1695 optimizations += [
1696 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1697 ]
1698
1699 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1700 # states:
1701 #
1702 # If neither layout qualifier is specified, derivatives in compute shaders
1703 # return zero, which is consistent with the handling of built-in texture
1704 # functions like texture() in GLSL 4.50 compute shaders.
1705 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1706 'fddy', 'fddy_fine', 'fddy_coarse']:
1707 optimizations += [
1708 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1709 ]
1710
1711 # Some optimizations for ir3-specific instructions.
1712 optimizations += [
1713 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1714 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1715 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1716 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1717 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1718 ]
1719
1720 # These kinds of sequences can occur after nir_opt_peephole_select.
1721 #
1722 # NOTE: fadd is not handled here because that gets in the way of ffma
1723 # generation in the i965 driver. Instead, fadd and ffma are handled in
1724 # late_optimizations.
1725
1726 for op in ['flrp']:
1727 optimizations += [
1728 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1729 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1730 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1731 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1732 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1733 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1734 ]
1735
1736 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1737 optimizations += [
1738 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1739 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1740 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1741 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1742 ]
1743
1744 for op in ['fpow']:
1745 optimizations += [
1746 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1747 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1748 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1749 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1750 ]
1751
1752 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos']:
1753 optimizations += [
1754 (('bcsel', a, (op + '(is_used_once)', b), (op, c)), (op, ('bcsel', a, b, c))),
1755 (('bcsel', a, (op, b), (op + '(is_used_once)', c)), (op, ('bcsel', a, b, c))),
1756 ]
1757
1758 # This section contains "late" optimizations that should be run before
1759 # creating ffmas and calling regular optimizations for the final time.
1760 # Optimizations should go here if they help code generation and conflict
1761 # with the regular optimizations.
1762 before_ffma_optimizations = [
1763 # Propagate constants down multiplication chains
1764 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1765 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1766 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1767 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1768
1769 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1770 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1771 (('~fadd', ('fneg', a), a), 0.0),
1772 (('iadd', ('ineg', a), a), 0),
1773 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1774 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1775 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1776 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1777
1778 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1779 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1780 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1781 ]
1782
1783 # This section contains "late" optimizations that should be run after the
1784 # regular optimizations have finished. Optimizations should go here if
1785 # they help code generation but do not necessarily produce code that is
1786 # more easily optimizable.
1787 late_optimizations = [
1788 # Most of these optimizations aren't quite safe when you get infinity or
1789 # Nan involved but the first one should be fine.
1790 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1791 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1792 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1793 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1794 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1795 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1796
1797 # nir_lower_to_source_mods will collapse this, but its existence during the
1798 # optimization loop can prevent other optimizations.
1799 (('fneg', ('fneg', a)), a),
1800
1801 # Subtractions get lowered during optimization, so we need to recombine them
1802 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1803 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1804 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1805 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1806
1807 # These are duplicated from the main optimizations table. The late
1808 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1809 # new patterns like these. The patterns that compare with zero are removed
1810 # because they are unlikely to be created in by anything in
1811 # late_optimizations.
1812 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1813 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1814 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1815 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1816 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1817 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1818
1819 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1820 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1821
1822 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1823
1824 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1825 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1826 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1827 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1828 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1829 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1830 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1831 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1832 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1833 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1834
1835 (('ior', a, a), a),
1836 (('iand', a, a), a),
1837
1838 (('iand', ('ine(is_used_once)', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
1839 (('ior', ('ieq(is_used_once)', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
1840
1841 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1842
1843 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1844 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1845 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1846 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1847
1848 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1849 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1850
1851 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1852 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1853
1854 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1855 # particular operation is common for expanding values stored in a texture
1856 # from [0,1] to [-1,1].
1857 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1858 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1859 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1860 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1861 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1862 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1863 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1864 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1865
1866 # flrp(a, b, a)
1867 # a*(1-a) + b*a
1868 # a + -a*a + a*b (1)
1869 # a + a*(b - a)
1870 # Option 1: ffma(a, (b-a), a)
1871 #
1872 # Alternately, after (1):
1873 # a*(1+b) + -a*a
1874 # a*((1+b) + -a)
1875 #
1876 # Let b=1
1877 #
1878 # Option 2: ffma(a, 2, -(a*a))
1879 # Option 3: ffma(a, 2, (-a)*a)
1880 # Option 4: ffma(a, -a, (2*a)
1881 # Option 5: a * (2 - a)
1882 #
1883 # There are a lot of other possible combinations.
1884 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1885 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1886 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1887 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1888 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1889
1890 # we do these late so that we don't get in the way of creating ffmas
1891 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1892 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1893
1894 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1895
1896 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1897 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1898 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1899 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1900
1901 # Things that look like DPH in the source shader may get expanded to
1902 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1903 # to NIR. After FFMA is generated, this can look like:
1904 #
1905 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1906 #
1907 # Reassociate the last addition into the first multiplication.
1908 #
1909 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
1910 # shader stages on some outputs that are intended to be invariant. For
1911 # various reasons, this optimization may not be fully applied in all
1912 # shaders used for different rendering passes of the same geometry. This
1913 # can result in Z-fighting artifacts (at best). For now, disable this
1914 # optimization in these stages. See bugzilla #111490. In tessellation
1915 # stages applications seem to use 'precise' when necessary, so allow the
1916 # optimization in those stages.
1917 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
1918 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1919 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
1920 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1921
1922 # Convert f2fmp instructions to concrete f2f16 instructions. At this point
1923 # any conversions that could have been removed will have been removed in
1924 # nir_opt_algebraic so any remaining ones are required.
1925 (('f2fmp', a), ('f2f16', a)),
1926
1927 # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says:
1928 #
1929 # If bits is zero, the result will be zero.
1930 #
1931 # These prevent the next two lowerings generating incorrect results when
1932 # count is zero.
1933 (('ubfe', a, b, 0), 0),
1934 (('ibfe', a, b, 0), 0),
1935
1936 # On Intel GPUs, BFE is a 3-source instruction. Like all 3-source
1937 # instructions on Intel GPUs, it cannot have an immediate values as
1938 # sources. There are also limitations on source register strides. As a
1939 # result, it is very easy for 3-source instruction combined with either
1940 # loads of immediate values or copies from weird register strides to be
1941 # more expensive than the primitive instructions it represents.
1942 (('ubfe', a, '#b', '#c'), ('iand', ('ushr', 0xffffffff, ('ineg', c)), ('ushr', a, b)), 'options->lower_bfe_with_two_constants'),
1943
1944 # b is the lowest order bit to be extracted and c is the number of bits to
1945 # extract. The inner shift removes the bits above b + c by shifting left
1946 # 32 - (b + c). ishl only sees the low 5 bits of the shift count, which is
1947 # -(b + c). The outer shift moves the bit that was at b to bit zero.
1948 # After the first shift, that bit is now at b + (32 - (b + c)) or 32 - c.
1949 # This means that it must be shifted right by 32 - c or -c bits.
1950 (('ibfe', a, '#b', '#c'), ('ishr', ('ishl', a, ('ineg', ('iadd', b, c))), ('ineg', c)), 'options->lower_bfe_with_two_constants'),
1951
1952 # Clean up no-op shifts that may result from the bfe lowerings.
1953 (('ishl', a, 0), a),
1954 (('ishl', a, -32), a),
1955 (('ishr', a, 0), a),
1956 (('ishr', a, -32), a),
1957 (('ushr', a, 0), a),
1958 ]
1959
1960 for op in ['fadd']:
1961 late_optimizations += [
1962 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1963 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1964 ]
1965
1966 for op in ['ffma']:
1967 late_optimizations += [
1968 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1969 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1970
1971 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1972 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1973 ]
1974
1975 distribute_src_mods = [
1976 # Try to remove some spurious negations rather than pushing them down.
1977 (('fmul', ('fneg', a), ('fneg', b)), ('fmul', a, b)),
1978 (('ffma', ('fneg', a), ('fneg', b), c), ('ffma', a, b, c)),
1979 (('fdot_replicated2', ('fneg', a), ('fneg', b)), ('fdot_replicated2', a, b)),
1980 (('fdot_replicated3', ('fneg', a), ('fneg', b)), ('fdot_replicated3', a, b)),
1981 (('fdot_replicated4', ('fneg', a), ('fneg', b)), ('fdot_replicated4', a, b)),
1982 (('fneg', ('fneg', a)), a),
1983
1984 (('fneg', ('ffma(is_used_once)', a, b, c)), ('ffma', ('fneg', a), b, ('fneg', c))),
1985 (('fneg', ('flrp(is_used_once)', a, b, c)), ('flrp', ('fneg', a), ('fneg', b), c)),
1986 (('fneg', ('fadd(is_used_once)', a, b)), ('fadd', ('fneg', a), ('fneg', b))),
1987
1988 # Note that fmin <-> fmax. I don't think there is a way to distribute
1989 # fabs() into fmin or fmax.
1990 (('fneg', ('fmin(is_used_once)', a, b)), ('fmax', ('fneg', a), ('fneg', b))),
1991 (('fneg', ('fmax(is_used_once)', a, b)), ('fmin', ('fneg', a), ('fneg', b))),
1992
1993 # fdph works mostly like fdot, but to get the correct result, the negation
1994 # must be applied to the second source.
1995 (('fneg', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', a, ('fneg', b))),
1996 (('fabs', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', ('fabs', a), ('fabs', b))),
1997
1998 (('fneg', ('fsign(is_used_once)', a)), ('fsign', ('fneg', a))),
1999 (('fabs', ('fsign(is_used_once)', a)), ('fsign', ('fabs', a))),
2000 ]
2001
2002 for op in ['fmul', 'fdot_replicated2', 'fdot_replicated3', 'fdot_replicated4']:
2003 distribute_src_mods.extend([
2004 (('fneg', (op + '(is_used_once)', a, b)), (op, ('fneg', a), b)),
2005 (('fabs', (op + '(is_used_once)', a, b)), (op, ('fabs', a), ('fabs', b))),
2006 ])
2007
2008 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
2009 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
2010 before_ffma_optimizations).render())
2011 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
2012 late_optimizations).render())
2013 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_distribute_src_mods",
2014 distribute_src_mods).render())