nir: add i2imp and u2ump opcodes for conversions to mediump
[mesa.git] / src / compiler / nir / nir_opt_algebraic.py
1 #
2 # Copyright (C) 2014 Intel Corporation
3 #
4 # Permission is hereby granted, free of charge, to any person obtaining a
5 # copy of this software and associated documentation files (the "Software"),
6 # to deal in the Software without restriction, including without limitation
7 # the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 # and/or sell copies of the Software, and to permit persons to whom the
9 # Software is furnished to do so, subject to the following conditions:
10 #
11 # The above copyright notice and this permission notice (including the next
12 # paragraph) shall be included in all copies or substantial portions of the
13 # Software.
14 #
15 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 # IN THE SOFTWARE.
22 #
23 # Authors:
24 # Jason Ekstrand (jason@jlekstrand.net)
25
26 from __future__ import print_function
27
28 from collections import OrderedDict
29 import nir_algebraic
30 from nir_opcodes import type_sizes
31 import itertools
32 import struct
33 from math import pi
34
35 # Convenience variables
36 a = 'a'
37 b = 'b'
38 c = 'c'
39 d = 'd'
40 e = 'e'
41
42 # Written in the form (<search>, <replace>) where <search> is an expression
43 # and <replace> is either an expression or a value. An expression is
44 # defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
45 # where each source is either an expression or a value. A value can be
46 # either a numeric constant or a string representing a variable name.
47 #
48 # If the opcode in a search expression is prefixed by a '~' character, this
49 # indicates that the operation is inexact. Such operations will only get
50 # applied to SSA values that do not have the exact bit set. This should be
51 # used by by any optimizations that are not bit-for-bit exact. It should not,
52 # however, be used for backend-requested lowering operations as those need to
53 # happen regardless of precision.
54 #
55 # Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
56 # "#" indicates that the given variable will only match constants,
57 # type indicates that the given variable will only match values from ALU
58 # instructions with the given output type,
59 # (cond) specifies an additional condition function (see nir_search_helpers.h),
60 # swiz is a swizzle applied to the variable (only in the <replace> expression)
61 #
62 # For constants, you have to be careful to make sure that it is the right
63 # type because python is unaware of the source and destination types of the
64 # opcodes.
65 #
66 # All expression types can have a bit-size specified. For opcodes, this
67 # looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
68 # type and size. In the search half of the expression this indicates that it
69 # should only match that particular bit-size. In the replace half of the
70 # expression this indicates that the constructed value should have that
71 # bit-size.
72 #
73 # If the opcode in a replacement expression is prefixed by a '!' character,
74 # this indicated that the new expression will be marked exact.
75 #
76 # A special condition "many-comm-expr" can be used with expressions to note
77 # that the expression and its subexpressions have more commutative expressions
78 # than nir_replace_instr can handle. If this special condition is needed with
79 # another condition, the two can be separated by a comma (e.g.,
80 # "(many-comm-expr,is_used_once)").
81
82 # based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
83 def lowered_sincos(c):
84 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
85 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
86 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
87
88 def intBitsToFloat(i):
89 return struct.unpack('!f', struct.pack('!I', i))[0]
90
91 optimizations = [
92
93 (('imul', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
94 (('imul', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
95 (('ishl', a, '#b@32'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
96
97 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
98 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
99 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
100 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
101 (('udiv', a, 1), a),
102 (('idiv', a, 1), a),
103 (('umod', a, 1), 0),
104 (('imod', a, 1), 0),
105 (('udiv', a, '#b@32(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
106 (('idiv', a, '#b@32(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), 'options->lower_idiv'),
107 (('idiv', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), 'options->lower_idiv'),
108 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1))),
109
110 (('~fneg', ('fneg', a)), a),
111 (('ineg', ('ineg', a)), a),
112 (('fabs', ('fneg', a)), ('fabs', a)),
113 (('fabs', ('u2f', a)), ('u2f', a)),
114 (('iabs', ('iabs', a)), ('iabs', a)),
115 (('iabs', ('ineg', a)), ('iabs', a)),
116 (('f2b', ('fneg', a)), ('f2b', a)),
117 (('i2b', ('ineg', a)), ('i2b', a)),
118 (('~fadd', a, 0.0), a),
119 (('iadd', a, 0), a),
120 (('usadd_4x8', a, 0), a),
121 (('usadd_4x8', a, ~0), ~0),
122 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
123 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
124 (('~fadd', ('fneg', a), a), 0.0),
125 (('iadd', ('ineg', a), a), 0),
126 (('iadd', ('ineg', a), ('iadd', a, b)), b),
127 (('iadd', a, ('iadd', ('ineg', a), b)), b),
128 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
129 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
130 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
131 (('~fmul', a, 0.0), 0.0),
132 (('imul', a, 0), 0),
133 (('umul_unorm_4x8', a, 0), 0),
134 (('umul_unorm_4x8', a, ~0), a),
135 (('~fmul', a, 1.0), a),
136 (('imul', a, 1), a),
137 (('fmul', a, -1.0), ('fneg', a)),
138 (('imul', a, -1), ('ineg', a)),
139 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
140 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
141 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
142 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
143 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
144 (('~ffma', 0.0, a, b), b),
145 (('~ffma', a, b, 0.0), ('fmul', a, b)),
146 (('ffma', 1.0, a, b), ('fadd', a, b)),
147 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
148 (('~flrp', a, b, 0.0), a),
149 (('~flrp', a, b, 1.0), b),
150 (('~flrp', a, a, b), a),
151 (('~flrp', 0.0, a, b), ('fmul', a, b)),
152
153 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
154 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
155 (('~flrp@32', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp32'),
156 (('~flrp@64', a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp64'),
157
158 (('~flrp@32', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp32'),
159 (('~flrp@64', ('fadd', a, b), ('fadd', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp64'),
160
161 (('~flrp@32', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp32'),
162 (('~flrp@64', a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp64'),
163
164 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
165
166 (('~flrp', a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp32'),
167 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
168 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
169 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
170 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
171 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
172 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
173 (('~fadd', ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp32'),
174 (('~fadd@32', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp32'),
175 (('~fadd@64', ('fmul', a, ('fadd', 1.0, ('fneg', c ) )), ('fmul', b, c )), ('flrp', a, b, c), '!options->lower_flrp64'),
176 # These are the same as the previous three rules, but it depends on
177 # 1-fsat(x) <=> fsat(1-x). See below.
178 (('~fadd@32', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp32'),
179 (('~fadd@64', ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c )))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp64'),
180
181 (('~fadd', a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp32'),
182 (('~fadd@32', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp32'),
183 (('~fadd@64', a, ('fmul', c , ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp64'),
184 (('ffma', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma'),
185 (('~fadd', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma'),
186
187 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i32', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
188 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
189
190 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
191
192 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'),
193 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
194 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
195 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)),
196
197 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
198 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)),
199
200 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
201 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
202
203 # Lower fdot to fsum when it is available
204 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
205 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
206 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
207 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
208
209 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
210 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
211 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
212 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
213
214 # 1 - ((1 - a) * (1 - b))
215 # 1 - (1 - a - b + a*b)
216 # 1 - 1 + a + b - a*b
217 # a + b - a*b
218 # a + b*(1 - a)
219 # b*(1 - a) + 1*a
220 # flrp(b, 1, a)
221 (('~fadd@32', 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))),
222 ('flrp', b, 1.0, a), '!options->lower_flrp32'),
223
224 # (a * #b + #c) << #d
225 # ((a * #b) << #d) + (#c << #d)
226 # (a * (#b << #d)) + (#c << #d)
227 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
228 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
229
230 # (a * #b) << #c
231 # a * (#b << #c)
232 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
233 ]
234
235 # Care must be taken here. Shifts in NIR uses only the lower log2(bitsize)
236 # bits of the second source. These replacements must correctly handle the
237 # case where (b % bitsize) + (c % bitsize) >= bitsize.
238 for s in [8, 16, 32, 64]:
239 mask = (1 << s) - 1
240
241 ishl = "ishl@{}".format(s)
242 ishr = "ishr@{}".format(s)
243 ushr = "ushr@{}".format(s)
244
245 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
246
247 optimizations.extend([
248 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
249 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
250
251 # To get get -1 for large shifts of negative values, ishr must instead
252 # clamp the shift count to the maximum value.
253 ((ishr, (ishr, a, '#b'), '#c'),
254 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
255 ])
256
257 # Optimize a pattern of address calculation created by DXVK where the offset is
258 # divided by 4 and then multipled by 4. This can be turned into an iand and the
259 # additions before can be reassociated to CSE the iand instruction.
260 for log2 in range(1, 7): # powers of two from 2 to 64
261 v = 1 << log2
262 mask = 0xffffffff & ~(v - 1)
263 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
264
265 optimizations.extend([
266 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
267 (('ishl@32', ('ushr@32', a, log2), log2), ('iand', a, mask)),
268
269 # Reassociate for improved CSE
270 (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
271 ])
272
273 # To save space in the state tables, reduce to the set that is known to help.
274 # Previously, this was range(1, 32). In addition, a couple rules inside the
275 # loop are commented out. Revisit someday, probably after mesa/#2635 has some
276 # resolution.
277 for i in [1, 2, 16, 24]:
278 lo_mask = 0xffffffff >> i
279 hi_mask = (0xffffffff << i) & 0xffffffff
280
281 optimizations.extend([
282 # This pattern seems to only help in the soft-fp64 code.
283 (('ishl@32', ('iand', 'a@32', lo_mask), i), ('ishl', a, i)),
284 # (('ushr@32', ('iand', 'a@32', hi_mask), i), ('ushr', a, i)),
285 # (('ishr@32', ('iand', 'a@32', hi_mask), i), ('ishr', a, i)),
286
287 (('iand', ('ishl', 'a@32', i), hi_mask), ('ishl', a, i)),
288 (('iand', ('ushr', 'a@32', i), lo_mask), ('ushr', a, i)),
289 # (('iand', ('ishr', 'a@32', i), lo_mask), ('ushr', a, i)), # Yes, ushr is correct
290 ])
291
292 optimizations.extend([
293 # This is common for address calculations. Reassociating may enable the
294 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD
295 # instruction or a constant offset field for in load / store instructions.
296 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
297
298 # Comparison simplifications
299 (('~inot', ('flt', a, b)), ('fge', a, b)),
300 (('~inot', ('fge', a, b)), ('flt', a, b)),
301 (('inot', ('feq', a, b)), ('fne', a, b)),
302 (('inot', ('fne', a, b)), ('feq', a, b)),
303 (('inot', ('ilt', a, b)), ('ige', a, b)),
304 (('inot', ('ult', a, b)), ('uge', a, b)),
305 (('inot', ('ige', a, b)), ('ilt', a, b)),
306 (('inot', ('uge', a, b)), ('ult', a, b)),
307 (('inot', ('ieq', a, b)), ('ine', a, b)),
308 (('inot', ('ine', a, b)), ('ieq', a, b)),
309
310 (('iand', ('feq', a, b), ('fne', a, b)), False),
311 (('iand', ('flt', a, b), ('flt', b, a)), False),
312 (('iand', ('ieq', a, b), ('ine', a, b)), False),
313 (('iand', ('ilt', a, b), ('ilt', b, a)), False),
314 (('iand', ('ult', a, b), ('ult', b, a)), False),
315
316 # This helps some shaders because, after some optimizations, they end up
317 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of
318 # matching would be handled by CSE.
319 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
320 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
321 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
322 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
323 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
324 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
325 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
326 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
327 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
328 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
329
330 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
331 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
332 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
333 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
334 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
335 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
336
337 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
338 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
339 (('fge', 0.0, ('fsat(is_used_once)', a)), ('fge', 0.0, a)),
340 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
341
342 # 0.0 >= b2f(a)
343 # b2f(a) <= 0.0
344 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
345 # inot(a)
346 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
347
348 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
349
350 (('fne', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
351 (('fne', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
352 (('fne', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)),
353 (('fne', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)),
354 (('fne', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
355 (('fne', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
356 (('fne', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)),
357 (('fne', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
358 (('fne', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)),
359 (('fne', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)),
360 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
361 (('feq', ('fmax', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
362 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))),
363 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
364 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
365 (('feq', ('fmin', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
366 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))),
367 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
368 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)),
369 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)),
370
371 # -(b2f(a) + b2f(b)) < 0
372 # 0 < b2f(a) + b2f(b)
373 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
374 # a || b
375 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
376 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
377
378 # -(b2f(a) + b2f(b)) >= 0
379 # 0 >= b2f(a) + b2f(b)
380 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative
381 # !(a || b)
382 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
383 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
384
385 (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
386 (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
387
388 # Some optimizations (below) convert things like (a < b || c < b) into
389 # (min(a, c) < b). However, this interfers with the previous optimizations
390 # that try to remove comparisons with negated sums of b2f. This just
391 # breaks that apart.
392 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
393 ('ior', ('flt', c, 0.0), ('ior', a, b))),
394
395 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
396 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
397 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
398 (('~fne', ('fadd', a, b), a), ('fne', b, 0.0)),
399 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
400 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
401 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
402 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
403 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
404 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
405 (('~fne', ('fadd(is_used_once)', a, '#b'), '#c'), ('fne', a, ('fadd', c, ('fneg', b)))),
406 (('~fne', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fne', ('fneg', ('fadd', c, b)), a)),
407
408 # Cannot remove the addition from ilt or ige due to overflow.
409 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
410 (('ine', ('iadd', a, b), a), ('ine', b, 0)),
411
412 # fmin(-b2f(a), b) >= 0.0
413 # -b2f(a) >= 0.0 && b >= 0.0
414 # -b2f(a) == 0.0 && b >= 0.0 -b2f can only be 0 or -1, never >0
415 # b2f(a) == 0.0 && b >= 0.0
416 # a == False && b >= 0.0
417 # !a && b >= 0.0
418 #
419 # The fge in the second replacement is not a typo. I leave the proof that
420 # "fmin(-b2f(a), b) >= 0 <=> fmin(-b2f(a), b) == 0" as an exercise for the
421 # reader.
422 (('fge', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
423 (('feq', ('fmin', ('fneg', ('b2f', 'a@1')), 'b@1'), 0.0), ('iand', ('inot', a), ('fge', b, 0.0))),
424
425 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
426 (('~fne', ('b2f', 'a@1'), 0.0), a),
427 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)),
428 (('ine', ('b2i', 'a@1'), 0), a),
429
430 (('fne', ('u2f', a), 0.0), ('ine', a, 0)),
431 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
432 (('fge', ('u2f', a), 0.0), True),
433 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead?
434 (('flt', ('u2f', a), 0.0), False),
435 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead?
436 (('fne', ('i2f', a), 0.0), ('ine', a, 0)),
437 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
438 (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
439 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
440 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
441 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
442
443 # 0.0 < fabs(a)
444 # fabs(a) > 0.0
445 # fabs(a) != 0.0 because fabs(a) must be >= 0
446 # a != 0.0
447 (('~flt', 0.0, ('fabs', a)), ('fne', a, 0.0)),
448
449 # -fabs(a) < 0.0
450 # fabs(a) > 0.0
451 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fne', a, 0.0)),
452
453 # 0.0 >= fabs(a)
454 # 0.0 == fabs(a) because fabs(a) must be >= 0
455 # 0.0 == a
456 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
457
458 # -fabs(a) >= 0.0
459 # 0.0 >= fabs(a)
460 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
461
462 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
463 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
464
465 # (a < 0.0) || (a > 1.0)
466 # !(!(a < 0.0) && !(a > 1.0))
467 # !((a >= 0.0) && (a <= 1.0))
468 # !(a == fsat(a))
469 # a != fsat(a)
470 (('ior', ('flt', a, 0.0), ('flt', 1.0, a)), ('fne', a, ('fsat', a)), '!options->lower_fsat'),
471
472 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))),
473 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
474 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
475 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
476
477 # fmin(b2f(a), b)
478 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
479 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
480 # bcsel(a, fmin(1.0, b), fmin(0.0, b))
481 #
482 # Since b is a constant, constant folding will eliminate the fmin and the
483 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f.
484 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
485
486 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
487
488 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
489 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
490 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
491 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
492 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
493 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
494 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
495 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
496 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
497 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
498 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
499 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
500 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
501 (('bcsel', a, True, b), ('ior', a, b)),
502 (('bcsel', a, a, b), ('ior', a, b)),
503 (('bcsel', a, b, False), ('iand', a, b)),
504 (('bcsel', a, b, a), ('iand', a, b)),
505 (('~fmin', a, a), a),
506 (('~fmax', a, a), a),
507 (('imin', a, a), a),
508 (('imax', a, a), a),
509 (('umin', a, a), a),
510 (('umax', a, a), a),
511 (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
512 (('umax', ('umax', a, b), b), ('umax', a, b)),
513 (('imax', ('imax', a, b), b), ('imax', a, b)),
514 (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
515 (('umin', ('umin', a, b), b), ('umin', a, b)),
516 (('imin', ('imin', a, b), b), ('imin', a, b)),
517 (('iand@32', a, ('inot', ('ishr', a, 31))), ('imax', a, 0)),
518
519 # Simplify logic to detect sign of an integer.
520 (('ieq', ('iand', 'a@32', 0x80000000), 0x00000000), ('ige', a, 0)),
521 (('ine', ('iand', 'a@32', 0x80000000), 0x80000000), ('ige', a, 0)),
522 (('ine', ('iand', 'a@32', 0x80000000), 0x00000000), ('ilt', a, 0)),
523 (('ieq', ('iand', 'a@32', 0x80000000), 0x80000000), ('ilt', a, 0)),
524 (('ine', ('ushr', 'a@32', 31), 0), ('ilt', a, 0)),
525 (('ieq', ('ushr', 'a@32', 31), 0), ('ige', a, 0)),
526 (('ieq', ('ushr', 'a@32', 31), 1), ('ilt', a, 0)),
527 (('ine', ('ushr', 'a@32', 31), 1), ('ige', a, 0)),
528 (('ine', ('ishr', 'a@32', 31), 0), ('ilt', a, 0)),
529 (('ieq', ('ishr', 'a@32', 31), 0), ('ige', a, 0)),
530 (('ieq', ('ishr', 'a@32', 31), -1), ('ilt', a, 0)),
531 (('ine', ('ishr', 'a@32', 31), -1), ('ige', a, 0)),
532
533 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
534 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
535 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
536 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
537 (('~fmin', a, ('fabs', a)), a),
538 (('imin', a, ('iabs', a)), a),
539 (('~fmax', a, ('fneg', ('fabs', a))), a),
540 (('imax', a, ('ineg', ('iabs', a))), a),
541 (('fmax', a, ('fabs', a)), ('fabs', a)),
542 (('imax', a, ('iabs', a)), ('iabs', a)),
543 (('fmax', a, ('fneg', a)), ('fabs', a)),
544 (('imax', a, ('ineg', a)), ('iabs', a)),
545 (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
546 (('fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
547 # fmax(fmin(a, 1.0), 0.0) is inexact because it returns 1.0 on NaN, while
548 # fsat(a) returns 0.0.
549 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
550 # fmin(fmax(a, -1.0), 0.0) is inexact because it returns -1.0 on NaN, while
551 # fneg(fsat(fneg(a))) returns -0.0 on NaN.
552 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
553 # fmax(fmin(a, 0.0), -1.0) is inexact because it returns 0.0 on NaN, while
554 # fneg(fsat(fneg(a))) returns -0.0 on NaN. This only matters if
555 # SignedZeroInfNanPreserve is set, but we don't currently have any way of
556 # representing this in the optimizations other than the usual ~.
557 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
558 (('fsat', ('fsign', a)), ('b2f', ('flt', 0.0, a))),
559 (('fsat', ('b2f', a)), ('b2f', a)),
560 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
561 (('fsat', ('fsat', a)), ('fsat', a)),
562 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
563 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
564 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
565 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
566 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
567 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
568 # Both the left and right patterns are "b" when isnan(a), so this is exact.
569 (('fmax', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
570 # The left pattern is 0.0 when isnan(a) (because fmin(fsat(NaN), b) ->
571 # fmin(0.0, b)) while the right one is "b", so this optimization is inexact.
572 (('~fmin', ('fsat', a), '#b@32(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
573
574 # If a in [0,b] then b-a is also in [0,b]. Since b in [0,1], max(b-a, 0) =
575 # fsat(b-a).
576 #
577 # If a > b, then b-a < 0 and max(b-a, 0) = fsat(b-a) = 0
578 #
579 # This should be NaN safe since max(NaN, 0) = fsat(NaN) = 0.
580 (('fmax', ('fadd(is_used_once)', ('fneg', 'a(is_not_negative)'), '#b@32(is_zero_to_one)'), 0.0),
581 ('fsat', ('fadd', ('fneg', a), b)), '!options->lower_fsat'),
582
583 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
584 (('~ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmax', b, c))),
585 (('~ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmin', a, b), c)),
586 (('~ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmin', b, c))),
587 (('~ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmax', a, b), c)),
588 (('~ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmax', b, c))),
589 (('~ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmin', a, b), c)),
590 (('~ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmin', b, c))),
591 (('~ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmax', a, b), c)),
592 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
593 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
594 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
595 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
596 (('~iand', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('fmin', b, c))),
597 (('~iand', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('fmax', a, b), c)),
598 (('~iand', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('fmax', b, c))),
599 (('~iand', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('fmin', a, b), c)),
600
601 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
602 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
603 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
604 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
605 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
606 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
607 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
608 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
609 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
610 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
611 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
612 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
613 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
614 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
615 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
616 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
617
618 # These derive from the previous patterns with the application of b < 0 <=>
619 # 0 < -b. The transformation should be applied if either comparison is
620 # used once as this ensures that the number of comparisons will not
621 # increase. The sources to the ior and iand are not symmetric, so the
622 # rules have to be duplicated to get this behavior.
623 (('~ior', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
624 (('~ior', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
625 (('~ior', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
626 (('~ior', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
627 (('~iand', ('flt(is_used_once)', 0.0, 'a@32'), ('flt', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
628 (('~iand', ('flt', 0.0, 'a@32'), ('flt(is_used_once)', 'b@32', 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
629 (('~iand', ('fge(is_used_once)', 0.0, 'a@32'), ('fge', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
630 (('~iand', ('fge', 0.0, 'a@32'), ('fge(is_used_once)', 'b@32', 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
631
632 # Common pattern like 'if (i == 0 || i == 1 || ...)'
633 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
634 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
635 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
636
637 # The (i2f32, ...) part is an open-coded fsign. When that is combined with
638 # the bcsel, it's basically copysign(1.0, a). There is no copysign in NIR,
639 # so emit an open-coded version of that.
640 (('bcsel@32', ('feq', a, 0.0), 1.0, ('i2f32', ('iadd', ('b2i32', ('flt', 0.0, 'a@32')), ('ineg', ('b2i32', ('flt', 'a@32', 0.0)))))),
641 ('ior', 0x3f800000, ('iand', a, 0x80000000))),
642
643 (('ior', a, ('ieq', a, False)), True),
644 (('ior', a, ('inot', a)), -1),
645
646 (('ine', ('ineg', ('b2i32', 'a@1')), ('ineg', ('b2i32', 'b@1'))), ('ine', a, b)),
647 (('b2i32', ('ine', 'a@1', 'b@1')), ('b2i32', ('ixor', a, b))),
648
649 (('iand', ('ieq', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('ior', a, b), 0), '!options->lower_bitops'),
650 (('ior', ('ine', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('ior', a, b), 0), '!options->lower_bitops'),
651
652 # This pattern occurs coutresy of __flt64_nonnan in the soft-fp64 code.
653 # The first part of the iand comes from the !__feq64_nonnan.
654 #
655 # The second pattern is a reformulation of the first based on the relation
656 # (a == 0 || y == 0) <=> umin(a, y) == 0, where b in the first equation
657 # happens to be y == 0.
658 (('iand', ('inot', ('iand', ('ior', ('ieq', a, 0), b), c)), ('ilt', a, 0)),
659 ('iand', ('inot', ('iand', b , c)), ('ilt', a, 0))),
660 (('iand', ('inot', ('iand', ('ieq', ('umin', a, b), 0), c)), ('ilt', a, 0)),
661 ('iand', ('inot', ('iand', ('ieq', b , 0), c)), ('ilt', a, 0))),
662
663 # These patterns can result when (a < b || a < c) => (a < min(b, c))
664 # transformations occur before constant propagation and loop-unrolling.
665 (('~flt', a, ('fmax', b, a)), ('flt', a, b)),
666 (('~flt', ('fmin', a, b), a), ('flt', b, a)),
667 (('~fge', a, ('fmin', b, a)), True),
668 (('~fge', ('fmax', a, b), a), True),
669 (('~flt', a, ('fmin', b, a)), False),
670 (('~flt', ('fmax', a, b), a), False),
671 (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
672 (('~fge', ('fmin', a, b), a), ('fge', b, a)),
673
674 (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
675 (('ilt', ('imin', a, b), a), ('ilt', b, a)),
676 (('ige', a, ('imin', b, a)), True),
677 (('ige', ('imax', a, b), a), True),
678 (('ult', a, ('umax', b, a)), ('ult', a, b)),
679 (('ult', ('umin', a, b), a), ('ult', b, a)),
680 (('uge', a, ('umin', b, a)), True),
681 (('uge', ('umax', a, b), a), True),
682 (('ilt', a, ('imin', b, a)), False),
683 (('ilt', ('imax', a, b), a), False),
684 (('ige', a, ('imax', b, a)), ('ige', a, b)),
685 (('ige', ('imin', a, b), a), ('ige', b, a)),
686 (('ult', a, ('umin', b, a)), False),
687 (('ult', ('umax', a, b), a), False),
688 (('uge', a, ('umax', b, a)), ('uge', a, b)),
689 (('uge', ('umin', a, b), a), ('uge', b, a)),
690 (('ult', a, ('iand', b, a)), False),
691 (('ult', ('ior', a, b), a), False),
692 (('uge', a, ('iand', b, a)), True),
693 (('uge', ('ior', a, b), a), True),
694
695 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
696 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
697 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
698 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
699 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
700 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
701 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
702 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
703 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
704 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
705 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
706 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
707 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
708 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
709 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
710 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
711
712 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
713 # negative.
714 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
715 ('iabs', ('ishr', a, b))),
716 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
717
718 (('fabs', ('slt', a, b)), ('slt', a, b)),
719 (('fabs', ('sge', a, b)), ('sge', a, b)),
720 (('fabs', ('seq', a, b)), ('seq', a, b)),
721 (('fabs', ('sne', a, b)), ('sne', a, b)),
722 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
723 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
724 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
725 (('sne', a, b), ('b2f', ('fne', a, b)), 'options->lower_scmp'),
726 (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
727 (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
728 (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
729 (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
730 (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
731 (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
732 (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
733 (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
734 (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
735 (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
736 (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
737 (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
738 (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
739 (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
740 (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
741 (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
742 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
743 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
744 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
745 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
746 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
747 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
748 (('fne', ('fneg', a), a), ('fne', a, 0.0)),
749 (('feq', ('fneg', a), a), ('feq', a, 0.0)),
750 # Emulating booleans
751 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
752 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
753 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
754 (('iand', 'a@bool32', 1.0), ('b2f', a)),
755 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True).
756 (('ineg', ('b2i32', 'a@32')), a),
757 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
758 # Comparison with the same args. Note that these are not done for
759 # the float versions because NaN always returns false on float
760 # inequalities.
761 (('ilt', a, a), False),
762 (('ige', a, a), True),
763 (('ieq', a, a), True),
764 (('ine', a, a), False),
765 (('ult', a, a), False),
766 (('uge', a, a), True),
767 # Logical and bit operations
768 (('iand', a, a), a),
769 (('iand', a, ~0), a),
770 (('iand', a, 0), 0),
771 (('ior', a, a), a),
772 (('ior', a, 0), a),
773 (('ior', a, True), True),
774 (('ixor', a, a), 0),
775 (('ixor', a, 0), a),
776 (('inot', ('inot', a)), a),
777 (('ior', ('iand', a, b), b), b),
778 (('ior', ('ior', a, b), b), ('ior', a, b)),
779 (('iand', ('ior', a, b), b), b),
780 (('iand', ('iand', a, b), b), ('iand', a, b)),
781 # DeMorgan's Laws
782 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))),
783 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
784 # Shift optimizations
785 (('ishl', 0, a), 0),
786 (('ishl', a, 0), a),
787 (('ishr', 0, a), 0),
788 (('ishr', a, 0), a),
789 (('ushr', 0, a), 0),
790 (('ushr', a, 0), a),
791 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
792 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
793 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
794 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
795 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
796 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
797 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
798 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
799 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
800 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
801 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
802 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
803 # Exponential/logarithmic identities
804 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
805 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
806 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
807 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
808 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
809 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
810 (('~fexp2', ('fmul', ('flog2', a), 0.5)), ('fsqrt', a)),
811 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
812 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
813 (('~fpow', a, 1.0), a),
814 (('~fpow', a, 2.0), ('fmul', a, a)),
815 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
816 (('~fpow', 2.0, a), ('fexp2', a)),
817 (('~fpow', ('fpow', a, 2.2), 0.454545), a),
818 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
819 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
820 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
821 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
822 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
823 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
824 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
825 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
826 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
827 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
828 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
829 # Division and reciprocal
830 (('~fdiv', 1.0, a), ('frcp', a)),
831 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
832 (('~frcp', ('frcp', a)), a),
833 (('~frcp', ('fsqrt', a)), ('frsq', a)),
834 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
835 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
836 # Trig
837 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
838 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
839 # Boolean simplifications
840 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
841 (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
842 (('ieq', a, True), a),
843 (('ine(is_not_used_by_if)', a, True), ('inot', a)),
844 (('ine', a, False), a),
845 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
846 (('bcsel', a, True, False), a),
847 (('bcsel', a, False, True), ('inot', a)),
848 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
849 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
850 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
851 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
852 (('bcsel', True, b, c), b),
853 (('bcsel', False, b, c), c),
854 (('bcsel', a, ('b2f(is_used_once)', 'b@32'), ('b2f', 'c@32')), ('b2f', ('bcsel', a, b, c))),
855
856 (('bcsel', a, b, b), b),
857 (('~fcsel', a, b, b), b),
858
859 # D3D Boolean emulation
860 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
861 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
862 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
863 ('ineg', ('b2i', ('iand', a, b)))),
864 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
865 ('ineg', ('b2i', ('ior', a, b)))),
866 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
867 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
868 (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
869 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
870 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
871 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)),
872
873 # SM5 32-bit shifts are defined to use the 5 least significant bits
874 (('ishl', 'a@32', ('iand', 31, b)), ('ishl', a, b)),
875 (('ishr', 'a@32', ('iand', 31, b)), ('ishr', a, b)),
876 (('ushr', 'a@32', ('iand', 31, b)), ('ushr', a, b)),
877
878 # Conversions
879 (('i2b32', ('b2i', 'a@32')), a),
880 (('f2i', ('ftrunc', a)), ('f2i', a)),
881 (('f2u', ('ftrunc', a)), ('f2u', a)),
882 (('i2b', ('ineg', a)), ('i2b', a)),
883 (('i2b', ('iabs', a)), ('i2b', a)),
884 (('inot', ('f2b1', a)), ('feq', a, 0.0)),
885
886 # The C spec says, "If the value of the integral part cannot be represented
887 # by the integer type, the behavior is undefined." "Undefined" can mean
888 # "the conversion doesn't happen at all."
889 (('~i2f32', ('f2i32', 'a@32')), ('ftrunc', a)),
890
891 # Ironically, mark these as imprecise because removing the conversions may
892 # preserve more precision than doing the conversions (e.g.,
893 # uint(float(0x81818181u)) == 0x81818200).
894 (('~f2i32', ('i2f', 'a@32')), a),
895 (('~f2i32', ('u2f', 'a@32')), a),
896 (('~f2u32', ('i2f', 'a@32')), a),
897 (('~f2u32', ('u2f', 'a@32')), a),
898
899 # Conversions from 16 bits to 32 bits and back can always be removed
900 (('f2f16', ('f2f32', 'a@16')), a),
901 (('f2fmp', ('f2f32', 'a@16')), a),
902 (('i2i16', ('i2i32', 'a@16')), a),
903 (('i2imp', ('i2i32', 'a@16')), a),
904 (('u2u16', ('u2u32', 'a@16')), a),
905 (('u2ump', ('u2u32', 'a@16')), a),
906 (('f2f16', ('b2f32', 'a@1')), ('b2f16', a)),
907 (('f2fmp', ('b2f32', 'a@1')), ('b2f16', a)),
908 (('i2i16', ('b2i32', 'a@1')), ('b2i16', a)),
909 (('i2imp', ('b2i32', 'a@1')), ('b2i16', a)),
910 (('u2u16', ('b2i32', 'a@1')), ('b2i16', a)),
911 (('u2ump', ('b2i32', 'a@1')), ('b2i16', a)),
912 # Conversions to 16 bits would be lossy so they should only be removed if
913 # the instruction was generated by the precision lowering pass.
914 (('f2f32', ('f2fmp', 'a@32')), a),
915 (('i2i32', ('i2imp', 'a@32')), a),
916 (('u2u32', ('u2ump', 'a@32')), a),
917
918 (('ffloor', 'a(is_integral)'), a),
919 (('fceil', 'a(is_integral)'), a),
920 (('ftrunc', 'a(is_integral)'), a),
921 # fract(x) = x - floor(x), so fract(NaN) = NaN
922 (('~ffract', 'a(is_integral)'), 0.0),
923 (('fabs', 'a(is_not_negative)'), a),
924 (('iabs', 'a(is_not_negative)'), a),
925 (('fsat', 'a(is_not_positive)'), 0.0),
926
927 # Section 5.4.1 (Conversion and Scalar Constructors) of the GLSL 4.60 spec
928 # says:
929 #
930 # It is undefined to convert a negative floating-point value to an
931 # uint.
932 #
933 # Assuming that (uint)some_float behaves like (uint)(int)some_float allows
934 # some optimizations in the i965 backend to proceed.
935 (('ige', ('f2u', a), b), ('ige', ('f2i', a), b)),
936 (('ige', b, ('f2u', a)), ('ige', b, ('f2i', a))),
937 (('ilt', ('f2u', a), b), ('ilt', ('f2i', a), b)),
938 (('ilt', b, ('f2u', a)), ('ilt', b, ('f2i', a))),
939
940 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
941
942 # The result of the multiply must be in [-1, 0], so the result of the ffma
943 # must be in [0, 1].
944 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
945 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
946 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
947 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
948
949 (('fne', 'a(is_not_zero)', 0.0), True),
950 (('feq', 'a(is_not_zero)', 0.0), False),
951
952 # In this chart, + means value > 0 and - means value < 0.
953 #
954 # + >= + -> unknown 0 >= + -> false - >= + -> false
955 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false
956 # + >= - -> true 0 >= - -> true - >= - -> unknown
957 #
958 # Using grouping conceptually similar to a Karnaugh map...
959 #
960 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
961 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
962 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
963 #
964 # The flt / ilt cases just invert the expected result.
965 #
966 # The results expecting true, must be marked imprecise. The results
967 # expecting false are fine because NaN compared >= or < anything is false.
968
969 (('~fge', 'a(is_not_negative)', 'b(is_not_positive)'), True),
970 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
971 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
972
973 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
974 (('~flt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
975 (('~flt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
976
977 (('ine', 'a(is_not_zero)', 0), True),
978 (('ieq', 'a(is_not_zero)', 0), False),
979
980 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
981 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False),
982 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False),
983
984 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
985 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True),
986 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True),
987
988 (('ult', 0, 'a(is_gt_zero)'), True),
989 (('ult', a, 0), False),
990
991 # Packing and then unpacking does nothing
992 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
993 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
994 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
995 ('unpack_64_2x32_split_y', a)), a),
996
997 # Comparing two halves of an unpack separately. While this optimization
998 # should be correct for non-constant values, it's less obvious that it's
999 # useful in that case. For constant values, the pack will fold and we're
1000 # guaranteed to reduce the whole tree to one instruction.
1001 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
1002 ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
1003 ('ieq', a, ('pack_32_2x16_split', b, c))),
1004
1005 # Byte extraction
1006 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
1007 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
1008 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
1009 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
1010 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
1011 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
1012 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1013
1014 (('ubfe', a, 0, 8), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1015 (('ubfe', a, 8, 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
1016 (('ubfe', a, 16, 8), ('extract_u8', a, 2), '!options->lower_extract_byte'),
1017 (('ubfe', a, 24, 8), ('extract_u8', a, 3), '!options->lower_extract_byte'),
1018 (('ibfe', a, 0, 8), ('extract_i8', a, 0), '!options->lower_extract_byte'),
1019 (('ibfe', a, 8, 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
1020 (('ibfe', a, 16, 8), ('extract_i8', a, 2), '!options->lower_extract_byte'),
1021 (('ibfe', a, 24, 8), ('extract_i8', a, 3), '!options->lower_extract_byte'),
1022
1023 # Word extraction
1024 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1025 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1026 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1027 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1028 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
1029
1030 (('ubfe', a, 0, 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1031 (('ubfe', a, 16, 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1032 (('ibfe', a, 0, 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1033 (('ibfe', a, 16, 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1034
1035 # Useless masking before unpacking
1036 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
1037 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
1038 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
1039 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
1040 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
1041 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
1042
1043 (('unpack_half_2x16_split_x', ('extract_u16', a, 0)), ('unpack_half_2x16_split_x', a)),
1044 (('unpack_half_2x16_split_x', ('extract_u16', a, 1)), ('unpack_half_2x16_split_y', a)),
1045 (('unpack_32_2x16_split_x', ('extract_u16', a, 0)), ('unpack_32_2x16_split_x', a)),
1046 (('unpack_32_2x16_split_x', ('extract_u16', a, 1)), ('unpack_32_2x16_split_y', a)),
1047
1048 # Optimize half packing
1049 (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))),
1050 (('ushr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))),
1051
1052 (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1053 ('pack_half_2x16', ('vec2', a, b))),
1054 (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1055 ('pack_half_2x16', ('vec2', a, b))),
1056
1057 (('ishl', ('pack_half_2x16_split', a, 0), 16), ('pack_half_2x16_split', 0, a)),
1058 (('ushr', ('pack_half_2x16_split', 0, a), 16), ('pack_half_2x16_split', a, 0)),
1059 (('extract_u16', ('pack_half_2x16_split', 0, a), 1), ('pack_half_2x16_split', a, 0)),
1060
1061 (('iadd', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1062 (('ior', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1063 ])
1064
1065 # After the ('extract_u8', a, 0) pattern, above, triggers, there will be
1066 # patterns like those below.
1067 for op in ('ushr', 'ishr'):
1068 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))])
1069 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
1070 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
1071
1072 optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
1073
1074 # After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
1075 # patterns like those below.
1076 for op in ('extract_u8', 'extract_i8'):
1077 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))])
1078 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
1079 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
1080
1081 optimizations.extend([
1082 # Subtracts
1083 (('ussub_4x8', a, 0), a),
1084 (('ussub_4x8', a, ~0), 0),
1085 # Lower all Subtractions first - they can get recombined later
1086 (('fsub', a, b), ('fadd', a, ('fneg', b))),
1087 (('isub', a, b), ('iadd', a, ('ineg', b))),
1088 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1089 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow.
1090 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1091
1092 # Propagate negation up multiplication chains
1093 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
1094 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
1095
1096 # Propagate constants up multiplication chains
1097 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
1098 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
1099 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
1100 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
1101
1102 # Reassociate constants in add/mul chains so they can be folded together.
1103 # For now, we mostly only handle cases where the constants are separated by
1104 # a single non-constant. We could do better eventually.
1105 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
1106 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
1107 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)),
1108 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
1109 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
1110 (('iand', '#a', ('iand', 'b(is_not_const)', '#c')), ('iand', ('iand', a, c), b)),
1111 (('ior', '#a', ('ior', 'b(is_not_const)', '#c')), ('ior', ('ior', a, c), b)),
1112 (('ixor', '#a', ('ixor', 'b(is_not_const)', '#c')), ('ixor', ('ixor', a, c), b)),
1113
1114 # Drop mul-div by the same value when there's no wrapping.
1115 (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
1116
1117 # By definition...
1118 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
1119 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1120 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1121
1122 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1123 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1124 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1125
1126 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1127
1128 (('fmin3@64', a, b, c), ('fmin@64', a, ('fmin@64', b, c))),
1129 (('fmax3@64', a, b, c), ('fmax@64', a, ('fmax@64', b, c))),
1130 (('fmed3@64', a, b, c), ('fmax@64', ('fmin@64', ('fmax@64', a, b), c), ('fmin@64', a, b))),
1131
1132 # Misc. lowering
1133 (('fmod', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1134 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1135 (('uadd_carry@32', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1136 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1137
1138 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1139 ('bcsel', ('ult', 31, 'bits'), 'insert',
1140 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1141 'options->lower_bitfield_insert'),
1142 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1143 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1144 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1145 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1146 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1147 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1148 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1149 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1150
1151 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1152 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_add_sat'),
1153 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_add_sat'),
1154 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1155
1156 # int64_t sum = a + b;
1157 #
1158 # if (a < 0 && b < 0 && a < sum)
1159 # sum = INT64_MIN;
1160 # } else if (a >= 0 && b >= 0 && sum < a)
1161 # sum = INT64_MAX;
1162 # }
1163 #
1164 # A couple optimizations are applied.
1165 #
1166 # 1. a < sum => sum >= 0. This replacement works because it is known that
1167 # a < 0 and b < 0, so sum should also be < 0 unless there was
1168 # underflow.
1169 #
1170 # 2. sum < a => sum < 0. This replacement works because it is known that
1171 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1172 # overflow.
1173 #
1174 # 3. Invert the second if-condition and swap the order of parameters for
1175 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1176 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1177 #
1178 # On Intel Gen11, this saves ~11 instructions.
1179 (('iadd_sat@64', a, b), ('bcsel',
1180 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1181 0x8000000000000000,
1182 ('bcsel',
1183 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1184 ('iadd', a, b),
1185 0x7fffffffffffffff)),
1186 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1187
1188 # int64_t sum = a - b;
1189 #
1190 # if (a < 0 && b >= 0 && a < sum)
1191 # sum = INT64_MIN;
1192 # } else if (a >= 0 && b < 0 && a >= sum)
1193 # sum = INT64_MAX;
1194 # }
1195 #
1196 # Optimizations similar to the iadd_sat case are applied here.
1197 (('isub_sat@64', a, b), ('bcsel',
1198 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1199 0x8000000000000000,
1200 ('bcsel',
1201 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1202 ('isub', a, b),
1203 0x7fffffffffffffff)),
1204 '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1205
1206 # These are done here instead of in the backend because the int64 lowering
1207 # pass will make a mess of the patterns. The first patterns are
1208 # conditioned on nir_lower_minmax64 because it was not clear that it was
1209 # always an improvement on platforms that have real int64 support. No
1210 # shaders in shader-db hit this, so it was hard to say one way or the
1211 # other.
1212 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1213 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1214 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1215 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1216 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1217 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1218
1219 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1220 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1221 # 0u < uint(a) <=> uint(a) != 0u
1222 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1223
1224 # Alternative lowering that doesn't rely on bfi.
1225 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1226 ('bcsel', ('ult', 31, 'bits'),
1227 'insert',
1228 (('ior',
1229 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1230 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1231 'options->lower_bitfield_insert_to_shifts'),
1232
1233 # Alternative lowering that uses bitfield_select.
1234 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1235 ('bcsel', ('ult', 31, 'bits'), 'insert',
1236 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1237 'options->lower_bitfield_insert_to_bitfield_select'),
1238
1239 (('ibitfield_extract', 'value', 'offset', 'bits'),
1240 ('bcsel', ('ult', 31, 'bits'), 'value',
1241 ('ibfe', 'value', 'offset', 'bits')),
1242 'options->lower_bitfield_extract'),
1243
1244 (('ubitfield_extract', 'value', 'offset', 'bits'),
1245 ('bcsel', ('ult', 31, 'bits'), 'value',
1246 ('ubfe', 'value', 'offset', 'bits')),
1247 'options->lower_bitfield_extract'),
1248
1249 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1250 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1251 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1252 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1253 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1254 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1255 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1256
1257 # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says:
1258 #
1259 # If bits is zero, the result will be zero.
1260 #
1261 # These patterns prevent other patterns from generating invalid results
1262 # when count is zero.
1263 (('ubfe', a, b, 0), 0),
1264 (('ibfe', a, b, 0), 0),
1265
1266 (('ubfe', a, 0, '#b'), ('iand', a, ('ushr', 0xffffffff, ('ineg', b)))),
1267
1268 (('b2i32', ('i2b', ('ubfe', a, b, 1))), ('ubfe', a, b, 1)),
1269 (('b2i32', ('i2b', ('ibfe', a, b, 1))), ('ubfe', a, b, 1)), # ubfe in the replacement is correct
1270 (('ine', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1271 (('ieq', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1272 (('ine', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1273 (('ieq', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1274
1275 (('ibitfield_extract', 'value', 'offset', 'bits'),
1276 ('bcsel', ('ieq', 0, 'bits'),
1277 0,
1278 ('ishr',
1279 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1280 ('isub', 32, 'bits'))),
1281 'options->lower_bitfield_extract_to_shifts'),
1282
1283 (('ubitfield_extract', 'value', 'offset', 'bits'),
1284 ('iand',
1285 ('ushr', 'value', 'offset'),
1286 ('bcsel', ('ieq', 'bits', 32),
1287 0xffffffff,
1288 ('isub', ('ishl', 1, 'bits'), 1))),
1289 'options->lower_bitfield_extract_to_shifts'),
1290
1291 (('ifind_msb', 'value'),
1292 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1293 'options->lower_ifind_msb'),
1294
1295 (('find_lsb', 'value'),
1296 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1297 'options->lower_find_lsb'),
1298
1299 (('extract_i8', a, 'b@32'),
1300 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1301 'options->lower_extract_byte'),
1302
1303 (('extract_u8', a, 'b@32'),
1304 ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1305 'options->lower_extract_byte'),
1306
1307 (('extract_i16', a, 'b@32'),
1308 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1309 'options->lower_extract_word'),
1310
1311 (('extract_u16', a, 'b@32'),
1312 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1313 'options->lower_extract_word'),
1314
1315 (('pack_unorm_2x16', 'v'),
1316 ('pack_uvec2_to_uint',
1317 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1318 'options->lower_pack_unorm_2x16'),
1319
1320 (('pack_unorm_4x8', 'v'),
1321 ('pack_uvec4_to_uint',
1322 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1323 'options->lower_pack_unorm_4x8'),
1324
1325 (('pack_snorm_2x16', 'v'),
1326 ('pack_uvec2_to_uint',
1327 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1328 'options->lower_pack_snorm_2x16'),
1329
1330 (('pack_snorm_4x8', 'v'),
1331 ('pack_uvec4_to_uint',
1332 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1333 'options->lower_pack_snorm_4x8'),
1334
1335 (('unpack_unorm_2x16', 'v'),
1336 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1337 ('extract_u16', 'v', 1))),
1338 65535.0),
1339 'options->lower_unpack_unorm_2x16'),
1340
1341 (('unpack_unorm_4x8', 'v'),
1342 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1343 ('extract_u8', 'v', 1),
1344 ('extract_u8', 'v', 2),
1345 ('extract_u8', 'v', 3))),
1346 255.0),
1347 'options->lower_unpack_unorm_4x8'),
1348
1349 (('unpack_snorm_2x16', 'v'),
1350 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1351 ('extract_i16', 'v', 1))),
1352 32767.0))),
1353 'options->lower_unpack_snorm_2x16'),
1354
1355 (('unpack_snorm_4x8', 'v'),
1356 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1357 ('extract_i8', 'v', 1),
1358 ('extract_i8', 'v', 2),
1359 ('extract_i8', 'v', 3))),
1360 127.0))),
1361 'options->lower_unpack_snorm_4x8'),
1362
1363 (('pack_half_2x16_split', 'a@32', 'b@32'),
1364 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1365 'options->lower_pack_split'),
1366
1367 (('unpack_half_2x16_split_x', 'a@32'),
1368 ('f2f32', ('u2u16', a)),
1369 'options->lower_pack_split'),
1370
1371 (('unpack_half_2x16_split_y', 'a@32'),
1372 ('f2f32', ('u2u16', ('ushr', a, 16))),
1373 'options->lower_pack_split'),
1374
1375 (('pack_32_2x16_split', 'a@16', 'b@16'),
1376 ('ior', ('ishl', ('u2u32', b), 16), ('u2u32', a)),
1377 'options->lower_pack_split'),
1378
1379 (('unpack_32_2x16_split_x', 'a@32'),
1380 ('u2u16', a),
1381 'options->lower_pack_split'),
1382
1383 (('unpack_32_2x16_split_y', 'a@32'),
1384 ('u2u16', ('ushr', 'a', 16)),
1385 'options->lower_pack_split'),
1386
1387 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1388 (('fsign', a), ('fsub', ('b2f', ('flt', 0.0, a)), ('b2f', ('flt', a, 0.0))), 'options->lower_fsign'),
1389
1390 # Address/offset calculations:
1391 # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1392 # rule converts everyone else to imul:
1393 (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1394
1395 (('umul24', a, b),
1396 ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)),
1397 '!options->has_umul24'),
1398 (('umad24', a, b, c),
1399 ('iadd', ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)), c),
1400 '!options->has_umad24'),
1401
1402 (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1403 (('imad24_ir3', a, 0, c), (c)),
1404 (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1405
1406 # if first two srcs are const, crack apart the imad so constant folding
1407 # can clean up the imul:
1408 # TODO ffma should probably get a similar rule:
1409 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1410
1411 # These will turn 24b address/offset calc back into 32b shifts, but
1412 # it should be safe to get back some of the bits of precision that we
1413 # already decided were no necessary:
1414 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1415 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1416 (('imul24', a, 0), (0)),
1417 ])
1418
1419 # bit_size dependent lowerings
1420 for bit_size in [8, 16, 32, 64]:
1421 # convenience constants
1422 intmax = (1 << (bit_size - 1)) - 1
1423 intmin = 1 << (bit_size - 1)
1424
1425 optimizations += [
1426 (('iadd_sat@' + str(bit_size), a, b),
1427 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1428 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_add_sat'),
1429 (('isub_sat@' + str(bit_size), a, b),
1430 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1431 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_add_sat'),
1432 ]
1433
1434 invert = OrderedDict([('feq', 'fne'), ('fne', 'feq')])
1435
1436 for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1437 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1438 ('iand', (invert[left], a, b), (invert[right], c, d))))
1439 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1440 ('ior', (invert[left], a, b), (invert[right], c, d))))
1441
1442 # Optimize x2bN(b2x(x)) -> x
1443 for size in type_sizes('bool'):
1444 aN = 'a@' + str(size)
1445 f2bN = 'f2b' + str(size)
1446 i2bN = 'i2b' + str(size)
1447 optimizations.append(((f2bN, ('b2f', aN)), a))
1448 optimizations.append(((i2bN, ('b2i', aN)), a))
1449
1450 # Optimize x2yN(b2x(x)) -> b2y
1451 for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1452 if x != 'f' and y != 'f' and x != y:
1453 continue
1454
1455 b2x = 'b2f' if x == 'f' else 'b2i'
1456 b2y = 'b2f' if y == 'f' else 'b2i'
1457 x2yN = '{}2{}'.format(x, y)
1458 optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1459
1460 # Optimize away x2xN(a@N)
1461 for t in ['int', 'uint', 'float', 'bool']:
1462 for N in type_sizes(t):
1463 x2xN = '{0}2{0}{1}'.format(t[0], N)
1464 aN = 'a@{0}'.format(N)
1465 optimizations.append(((x2xN, aN), a))
1466
1467 # Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1468 # In particular, we can optimize away everything except upcast of downcast and
1469 # upcasts where the type differs from the other cast
1470 for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1471 if N < M:
1472 # The outer cast is a down-cast. It doesn't matter what the size of the
1473 # argument of the inner cast is because we'll never been in the upcast
1474 # of downcast case. Regardless of types, we'll always end up with y2yN
1475 # in the end.
1476 for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1477 x2xN = '{0}2{0}{1}'.format(x, N)
1478 y2yM = '{0}2{0}{1}'.format(y, M)
1479 y2yN = '{0}2{0}{1}'.format(y, N)
1480 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1481 elif N > M:
1482 # If the outer cast is an up-cast, we have to be more careful about the
1483 # size of the argument of the inner cast and with types. In this case,
1484 # the type is always the type of type up-cast which is given by the
1485 # outer cast.
1486 for P in type_sizes('uint'):
1487 # We can't optimize away up-cast of down-cast.
1488 if M < P:
1489 continue
1490
1491 # Because we're doing down-cast of down-cast, the types always have
1492 # to match between the two casts
1493 for x in ['i', 'u']:
1494 x2xN = '{0}2{0}{1}'.format(x, N)
1495 x2xM = '{0}2{0}{1}'.format(x, M)
1496 aP = 'a@{0}'.format(P)
1497 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1498 else:
1499 # The N == M case is handled by other optimizations
1500 pass
1501
1502 # Downcast operations should be able to see through pack
1503 for t in ['i', 'u']:
1504 for N in [8, 16, 32]:
1505 x2xN = '{0}2{0}{1}'.format(t, N)
1506 optimizations += [
1507 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1508 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1509 ]
1510
1511 # Optimize comparisons with up-casts
1512 for t in ['int', 'uint', 'float']:
1513 for N, M in itertools.product(type_sizes(t), repeat=2):
1514 if N == 1 or N >= M:
1515 continue
1516
1517 cond = 'true'
1518 if N == 8:
1519 cond = 'options->support_8bit_alu'
1520 elif N == 16:
1521 cond = 'options->support_16bit_alu'
1522 x2xM = '{0}2{0}{1}'.format(t[0], M)
1523 x2xN = '{0}2{0}{1}'.format(t[0], N)
1524 aN = 'a@' + str(N)
1525 bN = 'b@' + str(N)
1526 xeq = 'feq' if t == 'float' else 'ieq'
1527 xne = 'fne' if t == 'float' else 'ine'
1528 xge = '{0}ge'.format(t[0])
1529 xlt = '{0}lt'.format(t[0])
1530
1531 # Up-casts are lossless so for correctly signed comparisons of
1532 # up-casted values we can do the comparison at the largest of the two
1533 # original sizes and drop one or both of the casts. (We have
1534 # optimizations to drop the no-op casts which this may generate.)
1535 for P in type_sizes(t):
1536 if P == 1 or P > N:
1537 continue
1538
1539 bP = 'b@' + str(P)
1540 optimizations += [
1541 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b)), cond),
1542 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b)), cond),
1543 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b)), cond),
1544 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b)), cond),
1545 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a), cond),
1546 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a), cond),
1547 ]
1548
1549 # The next bit doesn't work on floats because the range checks would
1550 # get way too complicated.
1551 if t in ['int', 'uint']:
1552 if t == 'int':
1553 xN_min = -(1 << (N - 1))
1554 xN_max = (1 << (N - 1)) - 1
1555 elif t == 'uint':
1556 xN_min = 0
1557 xN_max = (1 << N) - 1
1558 else:
1559 assert False
1560
1561 # If we're up-casting and comparing to a constant, we can unfold
1562 # the comparison into a comparison with the shrunk down constant
1563 # and a check that the constant fits in the smaller bit size.
1564 optimizations += [
1565 ((xeq, (x2xM, aN), '#b'),
1566 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b)), cond),
1567 ((xne, (x2xM, aN), '#b'),
1568 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b)), cond),
1569 ((xlt, (x2xM, aN), '#b'),
1570 ('iand', (xlt, xN_min, b),
1571 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b)))), cond),
1572 ((xlt, '#a', (x2xM, bN)),
1573 ('iand', (xlt, a, xN_max),
1574 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b))), cond),
1575 ((xge, (x2xM, aN), '#b'),
1576 ('iand', (xge, xN_max, b),
1577 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b)))), cond),
1578 ((xge, '#a', (x2xM, bN)),
1579 ('iand', (xge, a, xN_min),
1580 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b))), cond),
1581 ]
1582
1583 def fexp2i(exp, bits):
1584 # Generate an expression which constructs value 2.0^exp or 0.0.
1585 #
1586 # We assume that exp is already in a valid range:
1587 #
1588 # * [-15, 15] for 16-bit float
1589 # * [-127, 127] for 32-bit float
1590 # * [-1023, 1023] for 16-bit float
1591 #
1592 # If exp is the lowest value in the valid range, a value of 0.0 is
1593 # constructed. Otherwise, the value 2.0^exp is constructed.
1594 if bits == 16:
1595 return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
1596 elif bits == 32:
1597 return ('ishl', ('iadd', exp, 127), 23)
1598 elif bits == 64:
1599 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
1600 else:
1601 assert False
1602
1603 def ldexp(f, exp, bits):
1604 # The maximum possible range for a normal exponent is [-126, 127] and,
1605 # throwing in denormals, you get a maximum range of [-149, 127]. This
1606 # means that we can potentially have a swing of +-276. If you start with
1607 # FLT_MAX, you actually have to do ldexp(FLT_MAX, -278) to get it to flush
1608 # all the way to zero. The GLSL spec only requires that we handle a subset
1609 # of this range. From version 4.60 of the spec:
1610 #
1611 # "If exp is greater than +128 (single-precision) or +1024
1612 # (double-precision), the value returned is undefined. If exp is less
1613 # than -126 (single-precision) or -1022 (double-precision), the value
1614 # returned may be flushed to zero. Additionally, splitting the value
1615 # into a significand and exponent using frexp() and then reconstructing
1616 # a floating-point value using ldexp() should yield the original input
1617 # for zero and all finite non-denormalized values."
1618 #
1619 # The SPIR-V spec has similar language.
1620 #
1621 # In order to handle the maximum value +128 using the fexp2i() helper
1622 # above, we have to split the exponent in half and do two multiply
1623 # operations.
1624 #
1625 # First, we clamp exp to a reasonable range. Specifically, we clamp to
1626 # twice the full range that is valid for the fexp2i() function above. If
1627 # exp/2 is the bottom value of that range, the fexp2i() expression will
1628 # yield 0.0f which, when multiplied by f, will flush it to zero which is
1629 # allowed by the GLSL and SPIR-V specs for low exponent values. If the
1630 # value is clamped from above, then it must have been above the supported
1631 # range of the GLSL built-in and therefore any return value is acceptable.
1632 if bits == 16:
1633 exp = ('imin', ('imax', exp, -30), 30)
1634 elif bits == 32:
1635 exp = ('imin', ('imax', exp, -254), 254)
1636 elif bits == 64:
1637 exp = ('imin', ('imax', exp, -2046), 2046)
1638 else:
1639 assert False
1640
1641 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
1642 # (We use ishr which isn't the same for -1, but the -1 case still works
1643 # since we use exp-exp/2 as the second exponent.) While the spec
1644 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
1645 # work with denormals and doesn't allow for the full swing in exponents
1646 # that you can get with normalized values. Instead, we create two powers
1647 # of two and multiply by them each in turn. That way the effective range
1648 # of our exponent is doubled.
1649 pow2_1 = fexp2i(('ishr', exp, 1), bits)
1650 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
1651 return ('fmul', ('fmul', f, pow2_1), pow2_2)
1652
1653 optimizations += [
1654 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
1655 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
1656 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
1657 ]
1658
1659 # Unreal Engine 4 demo applications open-codes bitfieldReverse()
1660 def bitfield_reverse(u):
1661 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
1662 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
1663 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
1664 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
1665 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
1666
1667 return step5
1668
1669 optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
1670
1671 # For any float comparison operation, "cmp", if you have "a == a && a cmp b"
1672 # then the "a == a" is redundant because it's equivalent to "a is not NaN"
1673 # and, if a is a NaN then the second comparison will fail anyway.
1674 for op in ['flt', 'fge', 'feq']:
1675 optimizations += [
1676 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
1677 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
1678 ]
1679
1680 # Add optimizations to handle the case where the result of a ternary is
1681 # compared to a constant. This way we can take things like
1682 #
1683 # (a ? 0 : 1) > 0
1684 #
1685 # and turn it into
1686 #
1687 # a ? (0 > 0) : (1 > 0)
1688 #
1689 # which constant folding will eat for lunch. The resulting ternary will
1690 # further get cleaned up by the boolean reductions above and we will be
1691 # left with just the original variable "a".
1692 for op in ['flt', 'fge', 'feq', 'fne',
1693 'ilt', 'ige', 'ieq', 'ine', 'ult', 'uge']:
1694 optimizations += [
1695 ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
1696 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
1697 ((op, '#d', ('bcsel', a, '#b', '#c')),
1698 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
1699 ]
1700
1701
1702 # For example, this converts things like
1703 #
1704 # 1 + mix(0, a - 1, condition)
1705 #
1706 # into
1707 #
1708 # mix(1, (a-1)+1, condition)
1709 #
1710 # Other optimizations will rearrange the constants.
1711 for op in ['fadd', 'fmul', 'iadd', 'imul']:
1712 optimizations += [
1713 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
1714 ]
1715
1716 # For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
1717 # states:
1718 #
1719 # If neither layout qualifier is specified, derivatives in compute shaders
1720 # return zero, which is consistent with the handling of built-in texture
1721 # functions like texture() in GLSL 4.50 compute shaders.
1722 for op in ['fddx', 'fddx_fine', 'fddx_coarse',
1723 'fddy', 'fddy_fine', 'fddy_coarse']:
1724 optimizations += [
1725 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
1726 ]
1727
1728 # Some optimizations for ir3-specific instructions.
1729 optimizations += [
1730 # 'al * bl': If either 'al' or 'bl' is zero, return zero.
1731 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
1732 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
1733 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
1734 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
1735 ]
1736
1737 # These kinds of sequences can occur after nir_opt_peephole_select.
1738 #
1739 # NOTE: fadd is not handled here because that gets in the way of ffma
1740 # generation in the i965 driver. Instead, fadd and ffma are handled in
1741 # late_optimizations.
1742
1743 for op in ['flrp']:
1744 optimizations += [
1745 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1746 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1747 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1748 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1749 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1750 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
1751 ]
1752
1753 for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
1754 optimizations += [
1755 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1756 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1757 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1758 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
1759 ]
1760
1761 for op in ['fpow']:
1762 optimizations += [
1763 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1764 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1765 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
1766 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
1767 ]
1768
1769 for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos']:
1770 optimizations += [
1771 (('bcsel', a, (op + '(is_used_once)', b), (op, c)), (op, ('bcsel', a, b, c))),
1772 (('bcsel', a, (op, b), (op + '(is_used_once)', c)), (op, ('bcsel', a, b, c))),
1773 ]
1774
1775 # This section contains "late" optimizations that should be run before
1776 # creating ffmas and calling regular optimizations for the final time.
1777 # Optimizations should go here if they help code generation and conflict
1778 # with the regular optimizations.
1779 before_ffma_optimizations = [
1780 # Propagate constants down multiplication chains
1781 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
1782 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
1783 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
1784 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
1785
1786 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
1787 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
1788 (('~fadd', ('fneg', a), a), 0.0),
1789 (('iadd', ('ineg', a), a), 0),
1790 (('iadd', ('ineg', a), ('iadd', a, b)), b),
1791 (('iadd', a, ('iadd', ('ineg', a), b)), b),
1792 (('~fadd', ('fneg', a), ('fadd', a, b)), b),
1793 (('~fadd', a, ('fadd', ('fneg', a), b)), b),
1794
1795 (('~flrp@32', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)),
1796 (('~flrp@32', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)),
1797 (('~flrp@32', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
1798 ]
1799
1800 # This section contains "late" optimizations that should be run after the
1801 # regular optimizations have finished. Optimizations should go here if
1802 # they help code generation but do not necessarily produce code that is
1803 # more easily optimizable.
1804 late_optimizations = [
1805 # Most of these optimizations aren't quite safe when you get infinity or
1806 # Nan involved but the first one should be fine.
1807 (('flt', ('fadd', a, b), 0.0), ('flt', a, ('fneg', b))),
1808 (('flt', ('fneg', ('fadd', a, b)), 0.0), ('flt', ('fneg', a), b)),
1809 (('~fge', ('fadd', a, b), 0.0), ('fge', a, ('fneg', b))),
1810 (('~fge', ('fneg', ('fadd', a, b)), 0.0), ('fge', ('fneg', a), b)),
1811 (('~feq', ('fadd', a, b), 0.0), ('feq', a, ('fneg', b))),
1812 (('~fne', ('fadd', a, b), 0.0), ('fne', a, ('fneg', b))),
1813
1814 # nir_lower_to_source_mods will collapse this, but its existence during the
1815 # optimization loop can prevent other optimizations.
1816 (('fneg', ('fneg', a)), a),
1817
1818 # Subtractions get lowered during optimization, so we need to recombine them
1819 (('fadd', 'a', ('fneg', 'b')), ('fsub', 'a', 'b'), '!options->lower_sub'),
1820 (('iadd', 'a', ('ineg', 'b')), ('isub', 'a', 'b'), '!options->lower_sub'),
1821 (('fneg', a), ('fsub', 0.0, a), 'options->lower_negate'),
1822 (('ineg', a), ('isub', 0, a), 'options->lower_negate'),
1823
1824 # These are duplicated from the main optimizations table. The late
1825 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
1826 # new patterns like these. The patterns that compare with zero are removed
1827 # because they are unlikely to be created in by anything in
1828 # late_optimizations.
1829 (('flt', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('flt', a, b)),
1830 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
1831 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
1832 (('fge', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('fge', b, a)),
1833 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
1834 (('fne', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fne', a, b)),
1835
1836 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
1837 (('flt', ('fsat(is_used_once)', a), 1.0), ('flt', a, 1.0)),
1838
1839 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
1840
1841 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
1842 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
1843 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
1844 (('fne', ('fneg', a), ('fneg', b)), ('fne', b, a)),
1845 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
1846 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
1847 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
1848 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
1849 (('fne', ('fneg', a), -1.0), ('fne', 1.0, a)),
1850 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
1851
1852 (('ior', a, a), a),
1853 (('iand', a, a), a),
1854
1855 (('iand', ('ine(is_used_once)', 'a@32', 0), ('ine', 'b@32', 0)), ('ine', ('umin', a, b), 0)),
1856 (('ior', ('ieq(is_used_once)', 'a@32', 0), ('ieq', 'b@32', 0)), ('ieq', ('umin', a, b), 0)),
1857
1858 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
1859
1860 (('fdot2', a, b), ('fdot_replicated2', a, b), 'options->fdot_replicates'),
1861 (('fdot3', a, b), ('fdot_replicated3', a, b), 'options->fdot_replicates'),
1862 (('fdot4', a, b), ('fdot_replicated4', a, b), 'options->fdot_replicates'),
1863 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
1864
1865 (('~flrp@32', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1866 (('~flrp@64', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
1867
1868 (('~fadd@32', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp32'),
1869 (('~fadd@64', 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp64'),
1870
1871 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
1872 # particular operation is common for expanding values stored in a texture
1873 # from [0,1] to [-1,1].
1874 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1875 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1876 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1877 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1878 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'),
1879 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'),
1880 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'),
1881 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
1882
1883 # flrp(a, b, a)
1884 # a*(1-a) + b*a
1885 # a + -a*a + a*b (1)
1886 # a + a*(b - a)
1887 # Option 1: ffma(a, (b-a), a)
1888 #
1889 # Alternately, after (1):
1890 # a*(1+b) + -a*a
1891 # a*((1+b) + -a)
1892 #
1893 # Let b=1
1894 #
1895 # Option 2: ffma(a, 2, -(a*a))
1896 # Option 3: ffma(a, 2, (-a)*a)
1897 # Option 4: ffma(a, -a, (2*a)
1898 # Option 5: a * (2 - a)
1899 #
1900 # There are a lot of other possible combinations.
1901 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
1902 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1903 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1904 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1905 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
1906
1907 # we do these late so that we don't get in the way of creating ffmas
1908 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
1909 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
1910
1911 (('bcsel', a, 0, ('b2f32', ('inot', 'b@bool'))), ('b2f32', ('inot', ('ior', a, b)))),
1912
1913 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
1914 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why.
1915 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
1916 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
1917
1918 # Things that look like DPH in the source shader may get expanded to
1919 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
1920 # to NIR. After FFMA is generated, this can look like:
1921 #
1922 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
1923 #
1924 # Reassociate the last addition into the first multiplication.
1925 #
1926 # Some shaders do not use 'invariant' in vertex and (possibly) geometry
1927 # shader stages on some outputs that are intended to be invariant. For
1928 # various reasons, this optimization may not be fully applied in all
1929 # shaders used for different rendering passes of the same geometry. This
1930 # can result in Z-fighting artifacts (at best). For now, disable this
1931 # optimization in these stages. See bugzilla #111490. In tessellation
1932 # stages applications seem to use 'precise' when necessary, so allow the
1933 # optimization in those stages.
1934 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
1935 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1936 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
1937 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
1938
1939 # Convert *2*mp instructions to concrete *2*16 instructions. At this point
1940 # any conversions that could have been removed will have been removed in
1941 # nir_opt_algebraic so any remaining ones are required.
1942 (('f2fmp', a), ('f2f16', a)),
1943 (('i2imp', a), ('i2i16', a)),
1944 (('u2ump', a), ('u2u16', a)),
1945
1946 # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says:
1947 #
1948 # If bits is zero, the result will be zero.
1949 #
1950 # These prevent the next two lowerings generating incorrect results when
1951 # count is zero.
1952 (('ubfe', a, b, 0), 0),
1953 (('ibfe', a, b, 0), 0),
1954
1955 # On Intel GPUs, BFE is a 3-source instruction. Like all 3-source
1956 # instructions on Intel GPUs, it cannot have an immediate values as
1957 # sources. There are also limitations on source register strides. As a
1958 # result, it is very easy for 3-source instruction combined with either
1959 # loads of immediate values or copies from weird register strides to be
1960 # more expensive than the primitive instructions it represents.
1961 (('ubfe', a, '#b', '#c'), ('iand', ('ushr', 0xffffffff, ('ineg', c)), ('ushr', a, b)), 'options->lower_bfe_with_two_constants'),
1962
1963 # b is the lowest order bit to be extracted and c is the number of bits to
1964 # extract. The inner shift removes the bits above b + c by shifting left
1965 # 32 - (b + c). ishl only sees the low 5 bits of the shift count, which is
1966 # -(b + c). The outer shift moves the bit that was at b to bit zero.
1967 # After the first shift, that bit is now at b + (32 - (b + c)) or 32 - c.
1968 # This means that it must be shifted right by 32 - c or -c bits.
1969 (('ibfe', a, '#b', '#c'), ('ishr', ('ishl', a, ('ineg', ('iadd', b, c))), ('ineg', c)), 'options->lower_bfe_with_two_constants'),
1970
1971 # Clean up no-op shifts that may result from the bfe lowerings.
1972 (('ishl', a, 0), a),
1973 (('ishl', a, -32), a),
1974 (('ishr', a, 0), a),
1975 (('ishr', a, -32), a),
1976 (('ushr', a, 0), a),
1977 ]
1978
1979 for op in ['fadd']:
1980 late_optimizations += [
1981 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
1982 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
1983 ]
1984
1985 for op in ['ffma']:
1986 late_optimizations += [
1987 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1988 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
1989
1990 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1991 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
1992 ]
1993
1994 distribute_src_mods = [
1995 # Try to remove some spurious negations rather than pushing them down.
1996 (('fmul', ('fneg', a), ('fneg', b)), ('fmul', a, b)),
1997 (('ffma', ('fneg', a), ('fneg', b), c), ('ffma', a, b, c)),
1998 (('fdot_replicated2', ('fneg', a), ('fneg', b)), ('fdot_replicated2', a, b)),
1999 (('fdot_replicated3', ('fneg', a), ('fneg', b)), ('fdot_replicated3', a, b)),
2000 (('fdot_replicated4', ('fneg', a), ('fneg', b)), ('fdot_replicated4', a, b)),
2001 (('fneg', ('fneg', a)), a),
2002
2003 (('fneg', ('ffma(is_used_once)', a, b, c)), ('ffma', ('fneg', a), b, ('fneg', c))),
2004 (('fneg', ('flrp(is_used_once)', a, b, c)), ('flrp', ('fneg', a), ('fneg', b), c)),
2005 (('fneg', ('fadd(is_used_once)', a, b)), ('fadd', ('fneg', a), ('fneg', b))),
2006
2007 # Note that fmin <-> fmax. I don't think there is a way to distribute
2008 # fabs() into fmin or fmax.
2009 (('fneg', ('fmin(is_used_once)', a, b)), ('fmax', ('fneg', a), ('fneg', b))),
2010 (('fneg', ('fmax(is_used_once)', a, b)), ('fmin', ('fneg', a), ('fneg', b))),
2011
2012 # fdph works mostly like fdot, but to get the correct result, the negation
2013 # must be applied to the second source.
2014 (('fneg', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', a, ('fneg', b))),
2015 (('fabs', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', ('fabs', a), ('fabs', b))),
2016
2017 (('fneg', ('fsign(is_used_once)', a)), ('fsign', ('fneg', a))),
2018 (('fabs', ('fsign(is_used_once)', a)), ('fsign', ('fabs', a))),
2019 ]
2020
2021 for op in ['fmul', 'fdot_replicated2', 'fdot_replicated3', 'fdot_replicated4']:
2022 distribute_src_mods.extend([
2023 (('fneg', (op + '(is_used_once)', a, b)), (op, ('fneg', a), b)),
2024 (('fabs', (op + '(is_used_once)', a, b)), (op, ('fabs', a), ('fabs', b))),
2025 ])
2026
2027 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
2028 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
2029 before_ffma_optimizations).render())
2030 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
2031 late_optimizations).render())
2032 print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_distribute_src_mods",
2033 distribute_src_mods).render())