20e03db0d38f1d87166b6736040a6b90c373674d
[mesa.git] / src / compiler / nir / nir_opt_vectorize.c
1 /*
2 * Copyright © 2015 Connor Abbott
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include "nir.h"
26 #include "nir_vla.h"
27 #include "nir_builder.h"
28 #include "util/u_dynarray.h"
29
30 #define HASH(hash, data) _mesa_fnv32_1a_accumulate((hash), (data))
31
32 static uint32_t
33 hash_src(uint32_t hash, const nir_src *src)
34 {
35 assert(src->is_ssa);
36 void *hash_data = nir_src_is_const(*src) ? NULL : src->ssa;
37
38 return HASH(hash, hash_data);
39 }
40
41 static uint32_t
42 hash_alu_src(uint32_t hash, const nir_alu_src *src)
43 {
44 assert(!src->abs && !src->negate);
45
46 /* intentionally don't hash swizzle */
47
48 return hash_src(hash, &src->src);
49 }
50
51 static uint32_t
52 hash_alu(uint32_t hash, const nir_alu_instr *instr)
53 {
54 hash = HASH(hash, instr->op);
55
56 hash = HASH(hash, instr->dest.dest.ssa.bit_size);
57
58 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
59 hash = hash_alu_src(hash, &instr->src[i]);
60
61 return hash;
62 }
63
64 static uint32_t
65 hash_instr(const nir_instr *instr)
66 {
67 uint32_t hash = _mesa_fnv32_1a_offset_bias;
68
69 switch (instr->type) {
70 case nir_instr_type_alu:
71 return hash_alu(hash, nir_instr_as_alu(instr));
72 default:
73 unreachable("bad instruction type");
74 }
75 }
76
77 static bool
78 srcs_equal(const nir_src *src1, const nir_src *src2)
79 {
80 assert(src1->is_ssa);
81 assert(src2->is_ssa);
82
83 return src1->ssa == src2->ssa ||
84 nir_src_is_const(*src1) == nir_src_is_const(*src2);
85 }
86
87 static bool
88 alu_srcs_equal(const nir_alu_src *src1, const nir_alu_src *src2)
89 {
90 assert(!src1->abs);
91 assert(!src1->negate);
92 assert(!src2->abs);
93 assert(!src2->negate);
94
95 return srcs_equal(&src1->src, &src2->src);
96 }
97
98 static bool
99 instrs_equal(const nir_instr *instr1, const nir_instr *instr2)
100 {
101 switch (instr1->type) {
102 case nir_instr_type_alu: {
103 nir_alu_instr *alu1 = nir_instr_as_alu(instr1);
104 nir_alu_instr *alu2 = nir_instr_as_alu(instr2);
105
106 if (alu1->op != alu2->op)
107 return false;
108
109 if (alu1->dest.dest.ssa.bit_size != alu2->dest.dest.ssa.bit_size)
110 return false;
111
112 for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
113 if (!alu_srcs_equal(&alu1->src[i], &alu2->src[i]))
114 return false;
115 }
116
117 return true;
118 }
119
120 default:
121 unreachable("bad instruction type");
122 }
123 }
124
125 static bool
126 instr_can_rewrite(nir_instr *instr)
127 {
128 switch (instr->type) {
129 case nir_instr_type_alu: {
130 nir_alu_instr *alu = nir_instr_as_alu(instr);
131
132 /* Don't try and vectorize mov's. Either they'll be handled by copy
133 * prop, or they're actually necessary and trying to vectorize them
134 * would result in fighting with copy prop.
135 */
136 if (alu->op == nir_op_mov)
137 return false;
138
139 if (nir_op_infos[alu->op].output_size != 0)
140 return false;
141
142 for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
143 if (nir_op_infos[alu->op].input_sizes[i] != 0)
144 return false;
145 }
146
147 return true;
148 }
149
150 /* TODO support phi nodes */
151 default:
152 break;
153 }
154
155 return false;
156 }
157
158 /*
159 * Tries to combine two instructions whose sources are different components of
160 * the same instructions into one vectorized instruction. Note that instr1
161 * should dominate instr2.
162 */
163
164 static nir_instr *
165 instr_try_combine(nir_instr *instr1, nir_instr *instr2)
166 {
167 assert(instr1->type == nir_instr_type_alu);
168 assert(instr2->type == nir_instr_type_alu);
169 nir_alu_instr *alu1 = nir_instr_as_alu(instr1);
170 nir_alu_instr *alu2 = nir_instr_as_alu(instr2);
171
172 assert(alu1->dest.dest.ssa.bit_size == alu2->dest.dest.ssa.bit_size);
173 unsigned alu1_components = alu1->dest.dest.ssa.num_components;
174 unsigned alu2_components = alu2->dest.dest.ssa.num_components;
175 unsigned total_components = alu1_components + alu2_components;
176
177 if (total_components > 4)
178 return NULL;
179
180 nir_builder b;
181 nir_builder_init(&b, nir_cf_node_get_function(&instr1->block->cf_node));
182 b.cursor = nir_after_instr(instr1);
183
184 nir_alu_instr *new_alu = nir_alu_instr_create(b.shader, alu1->op);
185 nir_ssa_dest_init(&new_alu->instr, &new_alu->dest.dest,
186 total_components, alu1->dest.dest.ssa.bit_size, NULL);
187 new_alu->dest.write_mask = (1 << total_components) - 1;
188
189 for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) {
190 /* handle constant merging case */
191 if (alu1->src[i].src.ssa != alu2->src[i].src.ssa) {
192 nir_const_value *c1 = nir_src_as_const_value(alu1->src[i].src);
193 nir_const_value *c2 = nir_src_as_const_value(alu2->src[i].src);
194 assert(c1 && c2);
195 nir_const_value value[4];
196 unsigned bit_size = alu1->src[i].src.ssa->bit_size;
197
198 for (unsigned j = 0; j < total_components; j++) {
199 value[j].u64 = j < alu1_components ?
200 c1[alu1->src[i].swizzle[j]].u64 :
201 c2[alu2->src[i].swizzle[j - alu1_components]].u64;
202 }
203 nir_ssa_def *def = nir_build_imm(&b, total_components, bit_size, value);
204
205 new_alu->src[i].src = nir_src_for_ssa(def);
206 for (unsigned j = 0; j < total_components; j++)
207 new_alu->src[i].swizzle[j] = j;
208 continue;
209 }
210
211 new_alu->src[i].src = alu1->src[i].src;
212
213 for (unsigned j = 0; j < alu1_components; j++)
214 new_alu->src[i].swizzle[j] = alu1->src[i].swizzle[j];
215
216 for (unsigned j = 0; j < alu2_components; j++) {
217 new_alu->src[i].swizzle[j + alu1_components] =
218 alu2->src[i].swizzle[j];
219 }
220 }
221
222 nir_builder_instr_insert(&b, &new_alu->instr);
223
224 unsigned swiz[4] = {0, 1, 2, 3};
225 nir_ssa_def *new_alu1 = nir_swizzle(&b, &new_alu->dest.dest.ssa, swiz,
226 alu1_components);
227
228 for (unsigned i = 0; i < alu2_components; i++)
229 swiz[i] += alu1_components;
230 nir_ssa_def *new_alu2 = nir_swizzle(&b, &new_alu->dest.dest.ssa, swiz,
231 alu2_components);
232
233 nir_foreach_use_safe(src, &alu1->dest.dest.ssa) {
234 if (src->parent_instr->type == nir_instr_type_alu) {
235 /* For ALU instructions, rewrite the source directly to avoid a
236 * round-trip through copy propagation.
237 */
238
239 nir_instr_rewrite_src(src->parent_instr, src,
240 nir_src_for_ssa(&new_alu->dest.dest.ssa));
241 } else {
242 nir_instr_rewrite_src(src->parent_instr, src,
243 nir_src_for_ssa(new_alu1));
244 }
245 }
246
247 nir_foreach_if_use_safe(src, &alu1->dest.dest.ssa) {
248 nir_if_rewrite_condition(src->parent_if, nir_src_for_ssa(new_alu1));
249 }
250
251 assert(list_is_empty(&alu1->dest.dest.ssa.uses));
252 assert(list_is_empty(&alu1->dest.dest.ssa.if_uses));
253
254 nir_foreach_use_safe(src, &alu2->dest.dest.ssa) {
255 if (src->parent_instr->type == nir_instr_type_alu) {
256 /* For ALU instructions, rewrite the source directly to avoid a
257 * round-trip through copy propagation.
258 */
259
260 nir_alu_instr *use = nir_instr_as_alu(src->parent_instr);
261
262 unsigned src_index = 5;
263 for (unsigned i = 0; i < nir_op_infos[use->op].num_inputs; i++) {
264 if (&use->src[i].src == src) {
265 src_index = i;
266 break;
267 }
268 }
269 assert(src_index != 5);
270
271 nir_instr_rewrite_src(src->parent_instr, src,
272 nir_src_for_ssa(&new_alu->dest.dest.ssa));
273
274 for (unsigned i = 0;
275 i < nir_ssa_alu_instr_src_components(use, src_index); i++) {
276 use->src[src_index].swizzle[i] += alu1_components;
277 }
278 } else {
279 nir_instr_rewrite_src(src->parent_instr, src,
280 nir_src_for_ssa(new_alu2));
281 }
282 }
283
284 nir_foreach_if_use_safe(src, &alu2->dest.dest.ssa) {
285 nir_if_rewrite_condition(src->parent_if, nir_src_for_ssa(new_alu2));
286 }
287
288 assert(list_is_empty(&alu2->dest.dest.ssa.uses));
289 assert(list_is_empty(&alu2->dest.dest.ssa.if_uses));
290
291 nir_instr_remove(instr1);
292 nir_instr_remove(instr2);
293
294 return &new_alu->instr;
295 }
296
297 /*
298 * Use an array to represent a stack of instructions that are equivalent.
299 *
300 * We push and pop instructions off the stack in dominance order. The first
301 * element dominates the second element which dominates the third, etc. When
302 * trying to add to the stack, first we try and combine the instruction with
303 * each of the instructions on the stack and, if successful, replace the
304 * instruction on the stack with the newly-combined instruction.
305 */
306
307 static struct util_dynarray *
308 vec_instr_stack_create(void *mem_ctx)
309 {
310 struct util_dynarray *stack = ralloc(mem_ctx, struct util_dynarray);
311 util_dynarray_init(stack, mem_ctx);
312 return stack;
313 }
314
315 /* returns true if we were able to successfully replace the instruction */
316
317 static bool
318 vec_instr_stack_push(struct util_dynarray *stack, nir_instr *instr)
319 {
320 /* Walk the stack from child to parent to make live ranges shorter by
321 * matching the closest thing we can
322 */
323 util_dynarray_foreach_reverse(stack, nir_instr *, stack_instr) {
324 nir_instr *new_instr = instr_try_combine(*stack_instr, instr);
325 if (new_instr) {
326 *stack_instr = new_instr;
327 return true;
328 }
329 }
330
331 util_dynarray_append(stack, nir_instr *, instr);
332 return false;
333 }
334
335 static void
336 vec_instr_stack_pop(struct util_dynarray *stack, nir_instr *instr)
337 {
338 ASSERTED nir_instr *last = util_dynarray_pop(stack, nir_instr *);
339 assert(last == instr);
340 }
341
342 static bool
343 cmp_func(const void *data1, const void *data2)
344 {
345 const struct util_dynarray *arr1 = data1;
346 const struct util_dynarray *arr2 = data2;
347
348 const nir_instr *instr1 = *(nir_instr **)util_dynarray_begin(arr1);
349 const nir_instr *instr2 = *(nir_instr **)util_dynarray_begin(arr2);
350
351 return instrs_equal(instr1, instr2);
352 }
353
354 static uint32_t
355 hash_stack(const void *data)
356 {
357 const struct util_dynarray *stack = data;
358 const nir_instr *first = *(nir_instr **)util_dynarray_begin(stack);
359 return hash_instr(first);
360 }
361
362 static struct set *
363 vec_instr_set_create(void)
364 {
365 return _mesa_set_create(NULL, hash_stack, cmp_func);
366 }
367
368 static void
369 vec_instr_set_destroy(struct set *instr_set)
370 {
371 _mesa_set_destroy(instr_set, NULL);
372 }
373
374 static bool
375 vec_instr_set_add_or_rewrite(struct set *instr_set, nir_instr *instr)
376 {
377 if (!instr_can_rewrite(instr))
378 return false;
379
380 struct util_dynarray *new_stack = vec_instr_stack_create(instr_set);
381 vec_instr_stack_push(new_stack, instr);
382
383 struct set_entry *entry = _mesa_set_search(instr_set, new_stack);
384
385 if (entry) {
386 ralloc_free(new_stack);
387 struct util_dynarray *stack = (struct util_dynarray *) entry->key;
388 return vec_instr_stack_push(stack, instr);
389 }
390
391 _mesa_set_add(instr_set, new_stack);
392 return false;
393 }
394
395 static void
396 vec_instr_set_remove(struct set *instr_set, nir_instr *instr)
397 {
398 if (!instr_can_rewrite(instr))
399 return;
400
401 /*
402 * It's pretty unfortunate that we have to do this, but it's a side effect
403 * of the hash set interfaces. The hash set assumes that we're only
404 * interested in storing one equivalent element at a time, and if we try to
405 * insert a duplicate element it will remove the original. We could hack up
406 * the comparison function to "know" which input is an instruction we
407 * passed in and which is an array that's part of the entry, but that
408 * wouldn't work because we need to pass an array to _mesa_set_add() in
409 * vec_instr_add_or_rewrite() above, and _mesa_set_add() will call our
410 * comparison function as well.
411 */
412 struct util_dynarray *temp = vec_instr_stack_create(instr_set);
413 vec_instr_stack_push(temp, instr);
414 struct set_entry *entry = _mesa_set_search(instr_set, temp);
415 ralloc_free(temp);
416
417 if (entry) {
418 struct util_dynarray *stack = (struct util_dynarray *) entry->key;
419
420 if (util_dynarray_num_elements(stack, nir_instr *) > 1)
421 vec_instr_stack_pop(stack, instr);
422 else
423 _mesa_set_remove(instr_set, entry);
424 }
425 }
426
427 static bool
428 vectorize_block(nir_block *block, struct set *instr_set)
429 {
430 bool progress = false;
431
432 nir_foreach_instr_safe(instr, block) {
433 if (vec_instr_set_add_or_rewrite(instr_set, instr))
434 progress = true;
435 }
436
437 for (unsigned i = 0; i < block->num_dom_children; i++) {
438 nir_block *child = block->dom_children[i];
439 progress |= vectorize_block(child, instr_set);
440 }
441
442 nir_foreach_instr_reverse(instr, block)
443 vec_instr_set_remove(instr_set, instr);
444
445 return progress;
446 }
447
448 static bool
449 nir_opt_vectorize_impl(nir_function_impl *impl)
450 {
451 struct set *instr_set = vec_instr_set_create();
452
453 nir_metadata_require(impl, nir_metadata_dominance);
454
455 bool progress = vectorize_block(nir_start_block(impl), instr_set);
456
457 if (progress)
458 nir_metadata_preserve(impl, nir_metadata_block_index |
459 nir_metadata_dominance);
460
461 vec_instr_set_destroy(instr_set);
462 return progress;
463 }
464
465 bool
466 nir_opt_vectorize(nir_shader *shader)
467 {
468 bool progress = false;
469
470 nir_foreach_function(function, shader) {
471 if (function->impl)
472 progress |= nir_opt_vectorize_impl(function->impl);
473 }
474
475 return progress;
476 }