f1bbfd511ff11888484f2047ab1f21b56e358214
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "spirv_info.h"
33
34 void
35 _vtn_warn(const char *file, int line, const char *msg, ...)
36 {
37 char *formatted;
38 va_list args;
39
40 va_start(args, msg);
41 formatted = ralloc_vasprintf(NULL, msg, args);
42 va_end(args);
43
44 fprintf(stderr, "%s:%d WARNING: %s\n", file, line, formatted);
45
46 ralloc_free(formatted);
47 }
48
49 static struct vtn_ssa_value *
50 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
51 {
52 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
53 val->type = type;
54
55 if (glsl_type_is_vector_or_scalar(type)) {
56 unsigned num_components = glsl_get_vector_elements(val->type);
57 unsigned bit_size = glsl_get_bit_size(val->type);
58 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
59 } else {
60 unsigned elems = glsl_get_length(val->type);
61 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
62 if (glsl_type_is_matrix(type)) {
63 const struct glsl_type *elem_type =
64 glsl_vector_type(glsl_get_base_type(type),
65 glsl_get_vector_elements(type));
66
67 for (unsigned i = 0; i < elems; i++)
68 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
69 } else if (glsl_type_is_array(type)) {
70 const struct glsl_type *elem_type = glsl_get_array_element(type);
71 for (unsigned i = 0; i < elems; i++)
72 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
73 } else {
74 for (unsigned i = 0; i < elems; i++) {
75 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
76 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
77 }
78 }
79 }
80
81 return val;
82 }
83
84 static struct vtn_ssa_value *
85 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
86 const struct glsl_type *type)
87 {
88 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
89
90 if (entry)
91 return entry->data;
92
93 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
94 val->type = type;
95
96 switch (glsl_get_base_type(type)) {
97 case GLSL_TYPE_INT:
98 case GLSL_TYPE_UINT:
99 case GLSL_TYPE_BOOL:
100 case GLSL_TYPE_FLOAT:
101 case GLSL_TYPE_DOUBLE:
102 if (glsl_type_is_vector_or_scalar(type)) {
103 unsigned num_components = glsl_get_vector_elements(val->type);
104 nir_load_const_instr *load =
105 nir_load_const_instr_create(b->shader, num_components, 32);
106
107 for (unsigned i = 0; i < num_components; i++)
108 load->value.u32[i] = constant->value.u[i];
109
110 nir_instr_insert_before_cf_list(&b->impl->body, &load->instr);
111 val->def = &load->def;
112 } else {
113 assert(glsl_type_is_matrix(type));
114 unsigned rows = glsl_get_vector_elements(val->type);
115 unsigned columns = glsl_get_matrix_columns(val->type);
116 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
117
118 for (unsigned i = 0; i < columns; i++) {
119 struct vtn_ssa_value *col_val = rzalloc(b, struct vtn_ssa_value);
120 col_val->type = glsl_get_column_type(val->type);
121 nir_load_const_instr *load =
122 nir_load_const_instr_create(b->shader, rows, 32);
123
124 for (unsigned j = 0; j < rows; j++)
125 load->value.u32[j] = constant->value.u[rows * i + j];
126
127 nir_instr_insert_before_cf_list(&b->impl->body, &load->instr);
128 col_val->def = &load->def;
129
130 val->elems[i] = col_val;
131 }
132 }
133 break;
134
135 case GLSL_TYPE_ARRAY: {
136 unsigned elems = glsl_get_length(val->type);
137 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
138 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
139 for (unsigned i = 0; i < elems; i++)
140 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
141 elem_type);
142 break;
143 }
144
145 case GLSL_TYPE_STRUCT: {
146 unsigned elems = glsl_get_length(val->type);
147 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
148 for (unsigned i = 0; i < elems; i++) {
149 const struct glsl_type *elem_type =
150 glsl_get_struct_field(val->type, i);
151 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
152 elem_type);
153 }
154 break;
155 }
156
157 default:
158 unreachable("bad constant type");
159 }
160
161 return val;
162 }
163
164 struct vtn_ssa_value *
165 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
166 {
167 struct vtn_value *val = vtn_untyped_value(b, value_id);
168 switch (val->value_type) {
169 case vtn_value_type_undef:
170 return vtn_undef_ssa_value(b, val->type->type);
171
172 case vtn_value_type_constant:
173 return vtn_const_ssa_value(b, val->constant, val->const_type);
174
175 case vtn_value_type_ssa:
176 return val->ssa;
177
178 case vtn_value_type_access_chain:
179 /* This is needed for function parameters */
180 return vtn_variable_load(b, val->access_chain);
181
182 default:
183 unreachable("Invalid type for an SSA value");
184 }
185 }
186
187 static char *
188 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
189 unsigned word_count, unsigned *words_used)
190 {
191 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
192 if (words_used) {
193 /* Ammount of space taken by the string (including the null) */
194 unsigned len = strlen(dup) + 1;
195 *words_used = DIV_ROUND_UP(len, sizeof(*words));
196 }
197 return dup;
198 }
199
200 const uint32_t *
201 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
202 const uint32_t *end, vtn_instruction_handler handler)
203 {
204 b->file = NULL;
205 b->line = -1;
206 b->col = -1;
207
208 const uint32_t *w = start;
209 while (w < end) {
210 SpvOp opcode = w[0] & SpvOpCodeMask;
211 unsigned count = w[0] >> SpvWordCountShift;
212 assert(count >= 1 && w + count <= end);
213
214 switch (opcode) {
215 case SpvOpNop:
216 break; /* Do nothing */
217
218 case SpvOpLine:
219 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
220 b->line = w[2];
221 b->col = w[3];
222 break;
223
224 case SpvOpNoLine:
225 b->file = NULL;
226 b->line = -1;
227 b->col = -1;
228 break;
229
230 default:
231 if (!handler(b, opcode, w, count))
232 return w;
233 break;
234 }
235
236 w += count;
237 }
238 assert(w == end);
239 return w;
240 }
241
242 static void
243 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
244 const uint32_t *w, unsigned count)
245 {
246 switch (opcode) {
247 case SpvOpExtInstImport: {
248 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
249 if (strcmp((const char *)&w[2], "GLSL.std.450") == 0) {
250 val->ext_handler = vtn_handle_glsl450_instruction;
251 } else {
252 assert(!"Unsupported extension");
253 }
254 break;
255 }
256
257 case SpvOpExtInst: {
258 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
259 bool handled = val->ext_handler(b, w[4], w, count);
260 (void)handled;
261 assert(handled);
262 break;
263 }
264
265 default:
266 unreachable("Unhandled opcode");
267 }
268 }
269
270 static void
271 _foreach_decoration_helper(struct vtn_builder *b,
272 struct vtn_value *base_value,
273 int parent_member,
274 struct vtn_value *value,
275 vtn_decoration_foreach_cb cb, void *data)
276 {
277 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
278 int member;
279 if (dec->scope == VTN_DEC_DECORATION) {
280 member = parent_member;
281 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
282 assert(parent_member == -1);
283 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
284 } else {
285 /* Not a decoration */
286 continue;
287 }
288
289 if (dec->group) {
290 assert(dec->group->value_type == vtn_value_type_decoration_group);
291 _foreach_decoration_helper(b, base_value, member, dec->group,
292 cb, data);
293 } else {
294 cb(b, base_value, member, dec, data);
295 }
296 }
297 }
298
299 /** Iterates (recursively if needed) over all of the decorations on a value
300 *
301 * This function iterates over all of the decorations applied to a given
302 * value. If it encounters a decoration group, it recurses into the group
303 * and iterates over all of those decorations as well.
304 */
305 void
306 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
307 vtn_decoration_foreach_cb cb, void *data)
308 {
309 _foreach_decoration_helper(b, value, -1, value, cb, data);
310 }
311
312 void
313 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
314 vtn_execution_mode_foreach_cb cb, void *data)
315 {
316 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
317 if (dec->scope != VTN_DEC_EXECUTION_MODE)
318 continue;
319
320 assert(dec->group == NULL);
321 cb(b, value, dec, data);
322 }
323 }
324
325 static void
326 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
327 const uint32_t *w, unsigned count)
328 {
329 const uint32_t *w_end = w + count;
330 const uint32_t target = w[1];
331 w += 2;
332
333 switch (opcode) {
334 case SpvOpDecorationGroup:
335 vtn_push_value(b, target, vtn_value_type_decoration_group);
336 break;
337
338 case SpvOpDecorate:
339 case SpvOpMemberDecorate:
340 case SpvOpExecutionMode: {
341 struct vtn_value *val = &b->values[target];
342
343 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
344 switch (opcode) {
345 case SpvOpDecorate:
346 dec->scope = VTN_DEC_DECORATION;
347 break;
348 case SpvOpMemberDecorate:
349 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
350 break;
351 case SpvOpExecutionMode:
352 dec->scope = VTN_DEC_EXECUTION_MODE;
353 break;
354 default:
355 unreachable("Invalid decoration opcode");
356 }
357 dec->decoration = *(w++);
358 dec->literals = w;
359
360 /* Link into the list */
361 dec->next = val->decoration;
362 val->decoration = dec;
363 break;
364 }
365
366 case SpvOpGroupMemberDecorate:
367 case SpvOpGroupDecorate: {
368 struct vtn_value *group =
369 vtn_value(b, target, vtn_value_type_decoration_group);
370
371 for (; w < w_end; w++) {
372 struct vtn_value *val = vtn_untyped_value(b, *w);
373 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
374
375 dec->group = group;
376 if (opcode == SpvOpGroupDecorate) {
377 dec->scope = VTN_DEC_DECORATION;
378 } else {
379 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
380 }
381
382 /* Link into the list */
383 dec->next = val->decoration;
384 val->decoration = dec;
385 }
386 break;
387 }
388
389 default:
390 unreachable("Unhandled opcode");
391 }
392 }
393
394 struct member_decoration_ctx {
395 unsigned num_fields;
396 struct glsl_struct_field *fields;
397 struct vtn_type *type;
398 };
399
400 /* does a shallow copy of a vtn_type */
401
402 static struct vtn_type *
403 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
404 {
405 struct vtn_type *dest = ralloc(b, struct vtn_type);
406 dest->type = src->type;
407 dest->is_builtin = src->is_builtin;
408 if (src->is_builtin)
409 dest->builtin = src->builtin;
410
411 if (!glsl_type_is_scalar(src->type)) {
412 switch (glsl_get_base_type(src->type)) {
413 case GLSL_TYPE_INT:
414 case GLSL_TYPE_UINT:
415 case GLSL_TYPE_BOOL:
416 case GLSL_TYPE_FLOAT:
417 case GLSL_TYPE_DOUBLE:
418 case GLSL_TYPE_ARRAY:
419 dest->row_major = src->row_major;
420 dest->stride = src->stride;
421 dest->array_element = src->array_element;
422 break;
423
424 case GLSL_TYPE_STRUCT: {
425 unsigned elems = glsl_get_length(src->type);
426
427 dest->members = ralloc_array(b, struct vtn_type *, elems);
428 memcpy(dest->members, src->members, elems * sizeof(struct vtn_type *));
429
430 dest->offsets = ralloc_array(b, unsigned, elems);
431 memcpy(dest->offsets, src->offsets, elems * sizeof(unsigned));
432 break;
433 }
434
435 default:
436 unreachable("unhandled type");
437 }
438 }
439
440 return dest;
441 }
442
443 static struct vtn_type *
444 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
445 {
446 type->members[member] = vtn_type_copy(b, type->members[member]);
447 type = type->members[member];
448
449 /* We may have an array of matrices.... Oh, joy! */
450 while (glsl_type_is_array(type->type)) {
451 type->array_element = vtn_type_copy(b, type->array_element);
452 type = type->array_element;
453 }
454
455 assert(glsl_type_is_matrix(type->type));
456
457 return type;
458 }
459
460 static void
461 struct_member_decoration_cb(struct vtn_builder *b,
462 struct vtn_value *val, int member,
463 const struct vtn_decoration *dec, void *void_ctx)
464 {
465 struct member_decoration_ctx *ctx = void_ctx;
466
467 if (member < 0)
468 return;
469
470 assert(member < ctx->num_fields);
471
472 switch (dec->decoration) {
473 case SpvDecorationNonWritable:
474 case SpvDecorationNonReadable:
475 case SpvDecorationRelaxedPrecision:
476 case SpvDecorationVolatile:
477 case SpvDecorationCoherent:
478 case SpvDecorationUniform:
479 break; /* FIXME: Do nothing with this for now. */
480 case SpvDecorationNoPerspective:
481 ctx->fields[member].interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
482 break;
483 case SpvDecorationFlat:
484 ctx->fields[member].interpolation = INTERP_QUALIFIER_FLAT;
485 break;
486 case SpvDecorationCentroid:
487 ctx->fields[member].centroid = true;
488 break;
489 case SpvDecorationSample:
490 ctx->fields[member].sample = true;
491 break;
492 case SpvDecorationStream:
493 /* Vulkan only allows one GS stream */
494 assert(dec->literals[0] == 0);
495 break;
496 case SpvDecorationLocation:
497 ctx->fields[member].location = dec->literals[0];
498 break;
499 case SpvDecorationComponent:
500 break; /* FIXME: What should we do with these? */
501 case SpvDecorationBuiltIn:
502 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
503 ctx->type->members[member]->is_builtin = true;
504 ctx->type->members[member]->builtin = dec->literals[0];
505 ctx->type->builtin_block = true;
506 break;
507 case SpvDecorationOffset:
508 ctx->type->offsets[member] = dec->literals[0];
509 break;
510 case SpvDecorationMatrixStride:
511 mutable_matrix_member(b, ctx->type, member)->stride = dec->literals[0];
512 break;
513 case SpvDecorationColMajor:
514 break; /* Nothing to do here. Column-major is the default. */
515 case SpvDecorationRowMajor:
516 mutable_matrix_member(b, ctx->type, member)->row_major = true;
517 break;
518
519 case SpvDecorationPatch:
520 vtn_warn("Tessellation not yet supported");
521 break;
522
523 case SpvDecorationSpecId:
524 case SpvDecorationBlock:
525 case SpvDecorationBufferBlock:
526 case SpvDecorationArrayStride:
527 case SpvDecorationGLSLShared:
528 case SpvDecorationGLSLPacked:
529 case SpvDecorationInvariant:
530 case SpvDecorationRestrict:
531 case SpvDecorationAliased:
532 case SpvDecorationConstant:
533 case SpvDecorationIndex:
534 case SpvDecorationBinding:
535 case SpvDecorationDescriptorSet:
536 case SpvDecorationLinkageAttributes:
537 case SpvDecorationNoContraction:
538 case SpvDecorationInputAttachmentIndex:
539 vtn_warn("Decoration not allowed on struct members: %s",
540 spirv_decoration_to_string(dec->decoration));
541 break;
542
543 case SpvDecorationXfbBuffer:
544 case SpvDecorationXfbStride:
545 vtn_warn("Vulkan does not have transform feedback");
546 break;
547
548 case SpvDecorationCPacked:
549 case SpvDecorationSaturatedConversion:
550 case SpvDecorationFuncParamAttr:
551 case SpvDecorationFPRoundingMode:
552 case SpvDecorationFPFastMathMode:
553 case SpvDecorationAlignment:
554 vtn_warn("Decoraiton only allowed for CL-style kernels: %s",
555 spirv_decoration_to_string(dec->decoration));
556 break;
557 }
558 }
559
560 static void
561 type_decoration_cb(struct vtn_builder *b,
562 struct vtn_value *val, int member,
563 const struct vtn_decoration *dec, void *ctx)
564 {
565 struct vtn_type *type = val->type;
566
567 if (member != -1)
568 return;
569
570 switch (dec->decoration) {
571 case SpvDecorationArrayStride:
572 type->stride = dec->literals[0];
573 break;
574 case SpvDecorationBlock:
575 type->block = true;
576 break;
577 case SpvDecorationBufferBlock:
578 type->buffer_block = true;
579 break;
580 case SpvDecorationGLSLShared:
581 case SpvDecorationGLSLPacked:
582 /* Ignore these, since we get explicit offsets anyways */
583 break;
584
585 case SpvDecorationRowMajor:
586 case SpvDecorationColMajor:
587 case SpvDecorationMatrixStride:
588 case SpvDecorationBuiltIn:
589 case SpvDecorationNoPerspective:
590 case SpvDecorationFlat:
591 case SpvDecorationPatch:
592 case SpvDecorationCentroid:
593 case SpvDecorationSample:
594 case SpvDecorationVolatile:
595 case SpvDecorationCoherent:
596 case SpvDecorationNonWritable:
597 case SpvDecorationNonReadable:
598 case SpvDecorationUniform:
599 case SpvDecorationStream:
600 case SpvDecorationLocation:
601 case SpvDecorationComponent:
602 case SpvDecorationOffset:
603 case SpvDecorationXfbBuffer:
604 case SpvDecorationXfbStride:
605 vtn_warn("Decoraiton only allowed for struct members: %s",
606 spirv_decoration_to_string(dec->decoration));
607 break;
608
609 case SpvDecorationRelaxedPrecision:
610 case SpvDecorationSpecId:
611 case SpvDecorationInvariant:
612 case SpvDecorationRestrict:
613 case SpvDecorationAliased:
614 case SpvDecorationConstant:
615 case SpvDecorationIndex:
616 case SpvDecorationBinding:
617 case SpvDecorationDescriptorSet:
618 case SpvDecorationLinkageAttributes:
619 case SpvDecorationNoContraction:
620 case SpvDecorationInputAttachmentIndex:
621 vtn_warn("Decoraiton not allowed on types: %s",
622 spirv_decoration_to_string(dec->decoration));
623 break;
624
625 case SpvDecorationCPacked:
626 case SpvDecorationSaturatedConversion:
627 case SpvDecorationFuncParamAttr:
628 case SpvDecorationFPRoundingMode:
629 case SpvDecorationFPFastMathMode:
630 case SpvDecorationAlignment:
631 vtn_warn("Decoraiton only allowed for CL-style kernels: %s",
632 spirv_decoration_to_string(dec->decoration));
633 break;
634 }
635 }
636
637 static unsigned
638 translate_image_format(SpvImageFormat format)
639 {
640 switch (format) {
641 case SpvImageFormatUnknown: return 0; /* GL_NONE */
642 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
643 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
644 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
645 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
646 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
647 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
648 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
649 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
650 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
651 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
652 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
653 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
654 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
655 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
656 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
657 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
658 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
659 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
660 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
661 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
662 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
663 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
664 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
665 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
666 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
667 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
668 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
669 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
670 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
671 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
672 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
673 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
674 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
675 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
676 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
677 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
678 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
679 case SpvImageFormatR16ui: return 0x823A; /* GL_RG16UI */
680 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
681 default:
682 assert(!"Invalid image format");
683 return 0;
684 }
685 }
686
687 static void
688 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
689 const uint32_t *w, unsigned count)
690 {
691 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_type);
692
693 val->type = rzalloc(b, struct vtn_type);
694 val->type->is_builtin = false;
695 val->type->val = val;
696
697 switch (opcode) {
698 case SpvOpTypeVoid:
699 val->type->type = glsl_void_type();
700 break;
701 case SpvOpTypeBool:
702 val->type->type = glsl_bool_type();
703 break;
704 case SpvOpTypeInt: {
705 const bool signedness = w[3];
706 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
707 break;
708 }
709 case SpvOpTypeFloat:
710 val->type->type = glsl_float_type();
711 break;
712
713 case SpvOpTypeVector: {
714 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
715 unsigned elems = w[3];
716
717 assert(glsl_type_is_scalar(base->type));
718 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
719
720 /* Vectors implicitly have sizeof(base_type) stride. For now, this
721 * is always 4 bytes. This will have to change if we want to start
722 * supporting doubles or half-floats.
723 */
724 val->type->stride = 4;
725 val->type->array_element = base;
726 break;
727 }
728
729 case SpvOpTypeMatrix: {
730 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
731 unsigned columns = w[3];
732
733 assert(glsl_type_is_vector(base->type));
734 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
735 glsl_get_vector_elements(base->type),
736 columns);
737 assert(!glsl_type_is_error(val->type->type));
738 val->type->array_element = base;
739 val->type->row_major = false;
740 val->type->stride = 0;
741 break;
742 }
743
744 case SpvOpTypeRuntimeArray:
745 case SpvOpTypeArray: {
746 struct vtn_type *array_element =
747 vtn_value(b, w[2], vtn_value_type_type)->type;
748
749 unsigned length;
750 if (opcode == SpvOpTypeRuntimeArray) {
751 /* A length of 0 is used to denote unsized arrays */
752 length = 0;
753 } else {
754 length =
755 vtn_value(b, w[3], vtn_value_type_constant)->constant->value.u[0];
756 }
757
758 val->type->type = glsl_array_type(array_element->type, length);
759 val->type->array_element = array_element;
760 val->type->stride = 0;
761 break;
762 }
763
764 case SpvOpTypeStruct: {
765 unsigned num_fields = count - 2;
766 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
767 val->type->offsets = ralloc_array(b, unsigned, num_fields);
768
769 NIR_VLA(struct glsl_struct_field, fields, count);
770 for (unsigned i = 0; i < num_fields; i++) {
771 val->type->members[i] =
772 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
773 fields[i] = (struct glsl_struct_field) {
774 .type = val->type->members[i]->type,
775 .name = ralloc_asprintf(b, "field%d", i),
776 .location = -1,
777 };
778 }
779
780 struct member_decoration_ctx ctx = {
781 .num_fields = num_fields,
782 .fields = fields,
783 .type = val->type
784 };
785
786 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
787
788 const char *name = val->name ? val->name : "struct";
789
790 val->type->type = glsl_struct_type(fields, num_fields, name);
791 break;
792 }
793
794 case SpvOpTypeFunction: {
795 const struct glsl_type *return_type =
796 vtn_value(b, w[2], vtn_value_type_type)->type->type;
797 NIR_VLA(struct glsl_function_param, params, count - 3);
798 for (unsigned i = 0; i < count - 3; i++) {
799 params[i].type = vtn_value(b, w[i + 3], vtn_value_type_type)->type->type;
800
801 /* FIXME: */
802 params[i].in = true;
803 params[i].out = true;
804 }
805 val->type->type = glsl_function_type(return_type, params, count - 3);
806 break;
807 }
808
809 case SpvOpTypePointer:
810 /* FIXME: For now, we'll just do the really lame thing and return
811 * the same type. The validator should ensure that the proper number
812 * of dereferences happen
813 */
814 val->type = vtn_value(b, w[3], vtn_value_type_type)->type;
815 break;
816
817 case SpvOpTypeImage: {
818 const struct glsl_type *sampled_type =
819 vtn_value(b, w[2], vtn_value_type_type)->type->type;
820
821 assert(glsl_type_is_vector_or_scalar(sampled_type));
822
823 enum glsl_sampler_dim dim;
824 switch ((SpvDim)w[3]) {
825 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
826 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
827 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
828 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
829 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
830 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
831 default:
832 unreachable("Invalid SPIR-V Sampler dimension");
833 }
834
835 bool is_shadow = w[4];
836 bool is_array = w[5];
837 bool multisampled = w[6];
838 unsigned sampled = w[7];
839 SpvImageFormat format = w[8];
840
841 if (count > 9)
842 val->type->access_qualifier = w[9];
843 else
844 val->type->access_qualifier = SpvAccessQualifierReadWrite;
845
846 if (multisampled) {
847 assert(dim == GLSL_SAMPLER_DIM_2D);
848 dim = GLSL_SAMPLER_DIM_MS;
849 }
850
851 val->type->image_format = translate_image_format(format);
852
853 if (sampled == 1) {
854 val->type->type = glsl_sampler_type(dim, is_shadow, is_array,
855 glsl_get_base_type(sampled_type));
856 } else if (sampled == 2) {
857 assert(format);
858 assert(!is_shadow);
859 val->type->type = glsl_image_type(dim, is_array,
860 glsl_get_base_type(sampled_type));
861 } else {
862 assert(!"We need to know if the image will be sampled");
863 }
864 break;
865 }
866
867 case SpvOpTypeSampledImage:
868 val->type = vtn_value(b, w[2], vtn_value_type_type)->type;
869 break;
870
871 case SpvOpTypeSampler:
872 /* The actual sampler type here doesn't really matter. It gets
873 * thrown away the moment you combine it with an image. What really
874 * matters is that it's a sampler type as opposed to an integer type
875 * so the backend knows what to do.
876 */
877 val->type->type = glsl_bare_sampler_type();
878 break;
879
880 case SpvOpTypeOpaque:
881 case SpvOpTypeEvent:
882 case SpvOpTypeDeviceEvent:
883 case SpvOpTypeReserveId:
884 case SpvOpTypeQueue:
885 case SpvOpTypePipe:
886 default:
887 unreachable("Unhandled opcode");
888 }
889
890 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
891 }
892
893 static nir_constant *
894 vtn_null_constant(struct vtn_builder *b, const struct glsl_type *type)
895 {
896 nir_constant *c = rzalloc(b, nir_constant);
897
898 switch (glsl_get_base_type(type)) {
899 case GLSL_TYPE_INT:
900 case GLSL_TYPE_UINT:
901 case GLSL_TYPE_BOOL:
902 case GLSL_TYPE_FLOAT:
903 case GLSL_TYPE_DOUBLE:
904 /* Nothing to do here. It's already initialized to zero */
905 break;
906
907 case GLSL_TYPE_ARRAY:
908 assert(glsl_get_length(type) > 0);
909 c->num_elements = glsl_get_length(type);
910 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
911
912 c->elements[0] = vtn_null_constant(b, glsl_get_array_element(type));
913 for (unsigned i = 1; i < c->num_elements; i++)
914 c->elements[i] = c->elements[0];
915 break;
916
917 case GLSL_TYPE_STRUCT:
918 c->num_elements = glsl_get_length(type);
919 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
920
921 for (unsigned i = 0; i < c->num_elements; i++) {
922 c->elements[i] = vtn_null_constant(b, glsl_get_struct_field(type, i));
923 }
924 break;
925
926 default:
927 unreachable("Invalid type for null constant");
928 }
929
930 return c;
931 }
932
933 static void
934 spec_constant_deocoration_cb(struct vtn_builder *b, struct vtn_value *v,
935 int member, const struct vtn_decoration *dec,
936 void *data)
937 {
938 assert(member == -1);
939 if (dec->decoration != SpvDecorationSpecId)
940 return;
941
942 uint32_t *const_value = data;
943
944 for (unsigned i = 0; i < b->num_specializations; i++) {
945 if (b->specializations[i].id == dec->literals[0]) {
946 *const_value = b->specializations[i].data;
947 return;
948 }
949 }
950 }
951
952 static uint32_t
953 get_specialization(struct vtn_builder *b, struct vtn_value *val,
954 uint32_t const_value)
955 {
956 vtn_foreach_decoration(b, val, spec_constant_deocoration_cb, &const_value);
957 return const_value;
958 }
959
960 static void
961 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
962 struct vtn_value *val,
963 int member,
964 const struct vtn_decoration *dec,
965 void *data)
966 {
967 assert(member == -1);
968 if (dec->decoration != SpvDecorationBuiltIn ||
969 dec->literals[0] != SpvBuiltInWorkgroupSize)
970 return;
971
972 assert(val->const_type == glsl_vector_type(GLSL_TYPE_UINT, 3));
973
974 b->shader->info.cs.local_size[0] = val->constant->value.u[0];
975 b->shader->info.cs.local_size[1] = val->constant->value.u[1];
976 b->shader->info.cs.local_size[2] = val->constant->value.u[2];
977 }
978
979 static void
980 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
981 const uint32_t *w, unsigned count)
982 {
983 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
984 val->const_type = vtn_value(b, w[1], vtn_value_type_type)->type->type;
985 val->constant = rzalloc(b, nir_constant);
986 switch (opcode) {
987 case SpvOpConstantTrue:
988 assert(val->const_type == glsl_bool_type());
989 val->constant->value.u[0] = NIR_TRUE;
990 break;
991 case SpvOpConstantFalse:
992 assert(val->const_type == glsl_bool_type());
993 val->constant->value.u[0] = NIR_FALSE;
994 break;
995
996 case SpvOpSpecConstantTrue:
997 case SpvOpSpecConstantFalse: {
998 assert(val->const_type == glsl_bool_type());
999 uint32_t int_val =
1000 get_specialization(b, val, (opcode == SpvOpSpecConstantTrue));
1001 val->constant->value.u[0] = int_val ? NIR_TRUE : NIR_FALSE;
1002 break;
1003 }
1004
1005 case SpvOpConstant:
1006 assert(glsl_type_is_scalar(val->const_type));
1007 val->constant->value.u[0] = w[3];
1008 break;
1009 case SpvOpSpecConstant:
1010 assert(glsl_type_is_scalar(val->const_type));
1011 val->constant->value.u[0] = get_specialization(b, val, w[3]);
1012 break;
1013 case SpvOpSpecConstantComposite:
1014 case SpvOpConstantComposite: {
1015 unsigned elem_count = count - 3;
1016 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1017 for (unsigned i = 0; i < elem_count; i++)
1018 elems[i] = vtn_value(b, w[i + 3], vtn_value_type_constant)->constant;
1019
1020 switch (glsl_get_base_type(val->const_type)) {
1021 case GLSL_TYPE_UINT:
1022 case GLSL_TYPE_INT:
1023 case GLSL_TYPE_FLOAT:
1024 case GLSL_TYPE_BOOL:
1025 if (glsl_type_is_matrix(val->const_type)) {
1026 unsigned rows = glsl_get_vector_elements(val->const_type);
1027 assert(glsl_get_matrix_columns(val->const_type) == elem_count);
1028 for (unsigned i = 0; i < elem_count; i++)
1029 for (unsigned j = 0; j < rows; j++)
1030 val->constant->value.u[rows * i + j] = elems[i]->value.u[j];
1031 } else {
1032 assert(glsl_type_is_vector(val->const_type));
1033 assert(glsl_get_vector_elements(val->const_type) == elem_count);
1034 for (unsigned i = 0; i < elem_count; i++)
1035 val->constant->value.u[i] = elems[i]->value.u[0];
1036 }
1037 ralloc_free(elems);
1038 break;
1039
1040 case GLSL_TYPE_STRUCT:
1041 case GLSL_TYPE_ARRAY:
1042 ralloc_steal(val->constant, elems);
1043 val->constant->num_elements = elem_count;
1044 val->constant->elements = elems;
1045 break;
1046
1047 default:
1048 unreachable("Unsupported type for constants");
1049 }
1050 break;
1051 }
1052
1053 case SpvOpSpecConstantOp: {
1054 SpvOp opcode = get_specialization(b, val, w[3]);
1055 switch (opcode) {
1056 case SpvOpVectorShuffle: {
1057 struct vtn_value *v0 = vtn_value(b, w[4], vtn_value_type_constant);
1058 struct vtn_value *v1 = vtn_value(b, w[5], vtn_value_type_constant);
1059 unsigned len0 = glsl_get_vector_elements(v0->const_type);
1060 unsigned len1 = glsl_get_vector_elements(v1->const_type);
1061
1062 uint32_t u[8];
1063 for (unsigned i = 0; i < len0; i++)
1064 u[i] = v0->constant->value.u[i];
1065 for (unsigned i = 0; i < len1; i++)
1066 u[len0 + i] = v1->constant->value.u[i];
1067
1068 for (unsigned i = 0; i < count - 6; i++) {
1069 uint32_t comp = w[i + 6];
1070 if (comp == (uint32_t)-1) {
1071 val->constant->value.u[i] = 0xdeadbeef;
1072 } else {
1073 val->constant->value.u[i] = u[comp];
1074 }
1075 }
1076 break;
1077 }
1078
1079 case SpvOpCompositeExtract:
1080 case SpvOpCompositeInsert: {
1081 struct vtn_value *comp;
1082 unsigned deref_start;
1083 struct nir_constant **c;
1084 if (opcode == SpvOpCompositeExtract) {
1085 comp = vtn_value(b, w[4], vtn_value_type_constant);
1086 deref_start = 5;
1087 c = &comp->constant;
1088 } else {
1089 comp = vtn_value(b, w[5], vtn_value_type_constant);
1090 deref_start = 6;
1091 val->constant = nir_constant_clone(comp->constant,
1092 (nir_variable *)b);
1093 c = &val->constant;
1094 }
1095
1096 int elem = -1;
1097 const struct glsl_type *type = comp->const_type;
1098 for (unsigned i = deref_start; i < count; i++) {
1099 switch (glsl_get_base_type(type)) {
1100 case GLSL_TYPE_UINT:
1101 case GLSL_TYPE_INT:
1102 case GLSL_TYPE_FLOAT:
1103 case GLSL_TYPE_BOOL:
1104 /* If we hit this granularity, we're picking off an element */
1105 if (elem < 0)
1106 elem = 0;
1107
1108 if (glsl_type_is_matrix(type)) {
1109 elem += w[i] * glsl_get_vector_elements(type);
1110 type = glsl_get_column_type(type);
1111 } else {
1112 assert(glsl_type_is_vector(type));
1113 elem += w[i];
1114 type = glsl_scalar_type(glsl_get_base_type(type));
1115 }
1116 continue;
1117
1118 case GLSL_TYPE_ARRAY:
1119 c = &(*c)->elements[w[i]];
1120 type = glsl_get_array_element(type);
1121 continue;
1122
1123 case GLSL_TYPE_STRUCT:
1124 c = &(*c)->elements[w[i]];
1125 type = glsl_get_struct_field(type, w[i]);
1126 continue;
1127
1128 default:
1129 unreachable("Invalid constant type");
1130 }
1131 }
1132
1133 if (opcode == SpvOpCompositeExtract) {
1134 if (elem == -1) {
1135 val->constant = *c;
1136 } else {
1137 unsigned num_components = glsl_get_vector_elements(type);
1138 for (unsigned i = 0; i < num_components; i++)
1139 val->constant->value.u[i] = (*c)->value.u[elem + i];
1140 }
1141 } else {
1142 struct vtn_value *insert =
1143 vtn_value(b, w[4], vtn_value_type_constant);
1144 assert(insert->const_type == type);
1145 if (elem == -1) {
1146 *c = insert->constant;
1147 } else {
1148 unsigned num_components = glsl_get_vector_elements(type);
1149 for (unsigned i = 0; i < num_components; i++)
1150 (*c)->value.u[elem + i] = insert->constant->value.u[i];
1151 }
1152 }
1153 break;
1154 }
1155
1156 default: {
1157 bool swap;
1158 nir_op op = vtn_nir_alu_op_for_spirv_opcode(opcode, &swap);
1159
1160 unsigned num_components = glsl_get_vector_elements(val->const_type);
1161 unsigned bit_size =
1162 glsl_get_bit_size(val->const_type);
1163
1164 nir_const_value src[4];
1165 assert(count <= 7);
1166 for (unsigned i = 0; i < count - 4; i++) {
1167 nir_constant *c =
1168 vtn_value(b, w[4 + i], vtn_value_type_constant)->constant;
1169
1170 unsigned j = swap ? 1 - i : i;
1171 assert(bit_size == 32);
1172 for (unsigned k = 0; k < num_components; k++)
1173 src[j].u32[k] = c->value.u[k];
1174 }
1175
1176 nir_const_value res = nir_eval_const_opcode(op, num_components,
1177 bit_size, src);
1178
1179 for (unsigned k = 0; k < num_components; k++)
1180 val->constant->value.u[k] = res.u32[k];
1181
1182 break;
1183 } /* default */
1184 }
1185 break;
1186 }
1187
1188 case SpvOpConstantNull:
1189 val->constant = vtn_null_constant(b, val->const_type);
1190 break;
1191
1192 case SpvOpConstantSampler:
1193 assert(!"OpConstantSampler requires Kernel Capability");
1194 break;
1195
1196 default:
1197 unreachable("Unhandled opcode");
1198 }
1199
1200 /* Now that we have the value, update the workgroup size if needed */
1201 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1202 }
1203
1204 static void
1205 vtn_handle_function_call(struct vtn_builder *b, SpvOp opcode,
1206 const uint32_t *w, unsigned count)
1207 {
1208 struct nir_function *callee =
1209 vtn_value(b, w[3], vtn_value_type_function)->func->impl->function;
1210
1211 nir_call_instr *call = nir_call_instr_create(b->nb.shader, callee);
1212 for (unsigned i = 0; i < call->num_params; i++) {
1213 unsigned arg_id = w[4 + i];
1214 struct vtn_value *arg = vtn_untyped_value(b, arg_id);
1215 if (arg->value_type == vtn_value_type_access_chain) {
1216 nir_deref_var *d = vtn_access_chain_to_deref(b, arg->access_chain);
1217 call->params[i] = nir_deref_as_var(nir_copy_deref(call, &d->deref));
1218 } else {
1219 struct vtn_ssa_value *arg_ssa = vtn_ssa_value(b, arg_id);
1220
1221 /* Make a temporary to store the argument in */
1222 nir_variable *tmp =
1223 nir_local_variable_create(b->impl, arg_ssa->type, "arg_tmp");
1224 call->params[i] = nir_deref_var_create(call, tmp);
1225
1226 vtn_local_store(b, arg_ssa, call->params[i]);
1227 }
1228 }
1229
1230 nir_variable *out_tmp = NULL;
1231 if (!glsl_type_is_void(callee->return_type)) {
1232 out_tmp = nir_local_variable_create(b->impl, callee->return_type,
1233 "out_tmp");
1234 call->return_deref = nir_deref_var_create(call, out_tmp);
1235 }
1236
1237 nir_builder_instr_insert(&b->nb, &call->instr);
1238
1239 if (glsl_type_is_void(callee->return_type)) {
1240 vtn_push_value(b, w[2], vtn_value_type_undef);
1241 } else {
1242 struct vtn_value *retval = vtn_push_value(b, w[2], vtn_value_type_ssa);
1243 retval->ssa = vtn_local_load(b, call->return_deref);
1244 }
1245 }
1246
1247 struct vtn_ssa_value *
1248 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
1249 {
1250 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
1251 val->type = type;
1252
1253 if (!glsl_type_is_vector_or_scalar(type)) {
1254 unsigned elems = glsl_get_length(type);
1255 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
1256 for (unsigned i = 0; i < elems; i++) {
1257 const struct glsl_type *child_type;
1258
1259 switch (glsl_get_base_type(type)) {
1260 case GLSL_TYPE_INT:
1261 case GLSL_TYPE_UINT:
1262 case GLSL_TYPE_BOOL:
1263 case GLSL_TYPE_FLOAT:
1264 case GLSL_TYPE_DOUBLE:
1265 child_type = glsl_get_column_type(type);
1266 break;
1267 case GLSL_TYPE_ARRAY:
1268 child_type = glsl_get_array_element(type);
1269 break;
1270 case GLSL_TYPE_STRUCT:
1271 child_type = glsl_get_struct_field(type, i);
1272 break;
1273 default:
1274 unreachable("unkown base type");
1275 }
1276
1277 val->elems[i] = vtn_create_ssa_value(b, child_type);
1278 }
1279 }
1280
1281 return val;
1282 }
1283
1284 static nir_tex_src
1285 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
1286 {
1287 nir_tex_src src;
1288 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
1289 src.src_type = type;
1290 return src;
1291 }
1292
1293 static void
1294 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
1295 const uint32_t *w, unsigned count)
1296 {
1297 if (opcode == SpvOpSampledImage) {
1298 struct vtn_value *val =
1299 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
1300 val->sampled_image = ralloc(b, struct vtn_sampled_image);
1301 val->sampled_image->image =
1302 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1303 val->sampled_image->sampler =
1304 vtn_value(b, w[4], vtn_value_type_access_chain)->access_chain;
1305 return;
1306 } else if (opcode == SpvOpImage) {
1307 struct vtn_value *val =
1308 vtn_push_value(b, w[2], vtn_value_type_access_chain);
1309 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
1310 if (src_val->value_type == vtn_value_type_sampled_image) {
1311 val->access_chain = src_val->sampled_image->image;
1312 } else {
1313 assert(src_val->value_type == vtn_value_type_access_chain);
1314 val->access_chain = src_val->access_chain;
1315 }
1316 return;
1317 }
1318
1319 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
1320 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
1321
1322 struct vtn_sampled_image sampled;
1323 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
1324 if (sampled_val->value_type == vtn_value_type_sampled_image) {
1325 sampled = *sampled_val->sampled_image;
1326 } else {
1327 assert(sampled_val->value_type == vtn_value_type_access_chain);
1328 sampled.image = NULL;
1329 sampled.sampler = sampled_val->access_chain;
1330 }
1331
1332 const struct glsl_type *image_type;
1333 if (sampled.image) {
1334 image_type = sampled.image->var->var->interface_type;
1335 } else {
1336 image_type = sampled.sampler->var->var->interface_type;
1337 }
1338
1339 nir_tex_src srcs[8]; /* 8 should be enough */
1340 nir_tex_src *p = srcs;
1341
1342 unsigned idx = 4;
1343
1344 bool has_coord = false;
1345 switch (opcode) {
1346 case SpvOpImageSampleImplicitLod:
1347 case SpvOpImageSampleExplicitLod:
1348 case SpvOpImageSampleDrefImplicitLod:
1349 case SpvOpImageSampleDrefExplicitLod:
1350 case SpvOpImageSampleProjImplicitLod:
1351 case SpvOpImageSampleProjExplicitLod:
1352 case SpvOpImageSampleProjDrefImplicitLod:
1353 case SpvOpImageSampleProjDrefExplicitLod:
1354 case SpvOpImageFetch:
1355 case SpvOpImageGather:
1356 case SpvOpImageDrefGather:
1357 case SpvOpImageQueryLod: {
1358 /* All these types have the coordinate as their first real argument */
1359 struct vtn_ssa_value *coord = vtn_ssa_value(b, w[idx++]);
1360 has_coord = true;
1361 p->src = nir_src_for_ssa(coord->def);
1362 p->src_type = nir_tex_src_coord;
1363 p++;
1364 break;
1365 }
1366
1367 default:
1368 break;
1369 }
1370
1371 /* These all have an explicit depth value as their next source */
1372 switch (opcode) {
1373 case SpvOpImageSampleDrefImplicitLod:
1374 case SpvOpImageSampleDrefExplicitLod:
1375 case SpvOpImageSampleProjDrefImplicitLod:
1376 case SpvOpImageSampleProjDrefExplicitLod:
1377 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparitor);
1378 break;
1379 default:
1380 break;
1381 }
1382
1383 /* For OpImageQuerySizeLod, we always have an LOD */
1384 if (opcode == SpvOpImageQuerySizeLod)
1385 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
1386
1387 /* Figure out the base texture operation */
1388 nir_texop texop;
1389 switch (opcode) {
1390 case SpvOpImageSampleImplicitLod:
1391 case SpvOpImageSampleDrefImplicitLod:
1392 case SpvOpImageSampleProjImplicitLod:
1393 case SpvOpImageSampleProjDrefImplicitLod:
1394 texop = nir_texop_tex;
1395 break;
1396
1397 case SpvOpImageSampleExplicitLod:
1398 case SpvOpImageSampleDrefExplicitLod:
1399 case SpvOpImageSampleProjExplicitLod:
1400 case SpvOpImageSampleProjDrefExplicitLod:
1401 texop = nir_texop_txl;
1402 break;
1403
1404 case SpvOpImageFetch:
1405 if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
1406 texop = nir_texop_txf_ms;
1407 } else {
1408 texop = nir_texop_txf;
1409 }
1410 break;
1411
1412 case SpvOpImageGather:
1413 case SpvOpImageDrefGather:
1414 texop = nir_texop_tg4;
1415 break;
1416
1417 case SpvOpImageQuerySizeLod:
1418 case SpvOpImageQuerySize:
1419 texop = nir_texop_txs;
1420 break;
1421
1422 case SpvOpImageQueryLod:
1423 texop = nir_texop_lod;
1424 break;
1425
1426 case SpvOpImageQueryLevels:
1427 texop = nir_texop_query_levels;
1428 break;
1429
1430 case SpvOpImageQuerySamples:
1431 default:
1432 unreachable("Unhandled opcode");
1433 }
1434
1435 /* Now we need to handle some number of optional arguments */
1436 if (idx < count) {
1437 uint32_t operands = w[idx++];
1438
1439 if (operands & SpvImageOperandsBiasMask) {
1440 assert(texop == nir_texop_tex);
1441 texop = nir_texop_txb;
1442 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
1443 }
1444
1445 if (operands & SpvImageOperandsLodMask) {
1446 assert(texop == nir_texop_txl || texop == nir_texop_txf ||
1447 texop == nir_texop_txf_ms || texop == nir_texop_txs);
1448 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
1449 }
1450
1451 if (operands & SpvImageOperandsGradMask) {
1452 assert(texop == nir_texop_tex);
1453 texop = nir_texop_txd;
1454 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
1455 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
1456 }
1457
1458 if (operands & SpvImageOperandsOffsetMask ||
1459 operands & SpvImageOperandsConstOffsetMask)
1460 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
1461
1462 if (operands & SpvImageOperandsConstOffsetsMask)
1463 assert(!"Constant offsets to texture gather not yet implemented");
1464
1465 if (operands & SpvImageOperandsSampleMask) {
1466 assert(texop == nir_texop_txf_ms);
1467 texop = nir_texop_txf_ms;
1468 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
1469 }
1470 }
1471 /* We should have now consumed exactly all of the arguments */
1472 assert(idx == count);
1473
1474 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
1475 instr->op = texop;
1476
1477 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
1478
1479 instr->sampler_dim = glsl_get_sampler_dim(image_type);
1480 instr->is_array = glsl_sampler_type_is_array(image_type);
1481 instr->is_shadow = glsl_sampler_type_is_shadow(image_type);
1482 instr->is_new_style_shadow = instr->is_shadow;
1483
1484 if (has_coord) {
1485 switch (instr->sampler_dim) {
1486 case GLSL_SAMPLER_DIM_1D:
1487 case GLSL_SAMPLER_DIM_BUF:
1488 instr->coord_components = 1;
1489 break;
1490 case GLSL_SAMPLER_DIM_2D:
1491 case GLSL_SAMPLER_DIM_RECT:
1492 case GLSL_SAMPLER_DIM_MS:
1493 instr->coord_components = 2;
1494 break;
1495 case GLSL_SAMPLER_DIM_3D:
1496 case GLSL_SAMPLER_DIM_CUBE:
1497 instr->coord_components = 3;
1498 break;
1499 default:
1500 assert("Invalid sampler type");
1501 }
1502
1503 if (instr->is_array)
1504 instr->coord_components++;
1505 } else {
1506 instr->coord_components = 0;
1507 }
1508
1509 switch (glsl_get_sampler_result_type(image_type)) {
1510 case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break;
1511 case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break;
1512 case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break;
1513 case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break;
1514 default:
1515 unreachable("Invalid base type for sampler result");
1516 }
1517
1518 nir_deref_var *sampler = vtn_access_chain_to_deref(b, sampled.sampler);
1519 if (sampled.image) {
1520 nir_deref_var *image = vtn_access_chain_to_deref(b, sampled.image);
1521 instr->texture = nir_deref_as_var(nir_copy_deref(instr, &image->deref));
1522 } else {
1523 instr->texture = nir_deref_as_var(nir_copy_deref(instr, &sampler->deref));
1524 }
1525
1526 switch (instr->op) {
1527 case nir_texop_tex:
1528 case nir_texop_txb:
1529 case nir_texop_txl:
1530 case nir_texop_txd:
1531 /* These operations require a sampler */
1532 instr->sampler = nir_deref_as_var(nir_copy_deref(instr, &sampler->deref));
1533 break;
1534 case nir_texop_txf:
1535 case nir_texop_txf_ms:
1536 case nir_texop_txs:
1537 case nir_texop_lod:
1538 case nir_texop_tg4:
1539 case nir_texop_query_levels:
1540 case nir_texop_texture_samples:
1541 case nir_texop_samples_identical:
1542 /* These don't */
1543 instr->sampler = NULL;
1544 break;
1545 case nir_texop_txf_ms_mcs:
1546 unreachable("unexpected nir_texop_txf_ms_mcs");
1547 }
1548
1549 nir_ssa_dest_init(&instr->instr, &instr->dest,
1550 nir_tex_instr_dest_size(instr), 32, NULL);
1551
1552 assert(glsl_get_vector_elements(ret_type->type) ==
1553 nir_tex_instr_dest_size(instr));
1554
1555 val->ssa = vtn_create_ssa_value(b, ret_type->type);
1556 val->ssa->def = &instr->dest.ssa;
1557
1558 nir_builder_instr_insert(&b->nb, &instr->instr);
1559 }
1560
1561 static nir_ssa_def *
1562 get_image_coord(struct vtn_builder *b, uint32_t value)
1563 {
1564 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
1565
1566 /* The image_load_store intrinsics assume a 4-dim coordinate */
1567 unsigned dim = glsl_get_vector_elements(coord->type);
1568 unsigned swizzle[4];
1569 for (unsigned i = 0; i < 4; i++)
1570 swizzle[i] = MIN2(i, dim - 1);
1571
1572 return nir_swizzle(&b->nb, coord->def, swizzle, 4, false);
1573 }
1574
1575 static void
1576 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
1577 const uint32_t *w, unsigned count)
1578 {
1579 /* Just get this one out of the way */
1580 if (opcode == SpvOpImageTexelPointer) {
1581 struct vtn_value *val =
1582 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
1583 val->image = ralloc(b, struct vtn_image_pointer);
1584
1585 val->image->image =
1586 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1587 val->image->coord = get_image_coord(b, w[4]);
1588 val->image->sample = vtn_ssa_value(b, w[5])->def;
1589 return;
1590 }
1591
1592 struct vtn_image_pointer image;
1593
1594 switch (opcode) {
1595 case SpvOpAtomicExchange:
1596 case SpvOpAtomicCompareExchange:
1597 case SpvOpAtomicCompareExchangeWeak:
1598 case SpvOpAtomicIIncrement:
1599 case SpvOpAtomicIDecrement:
1600 case SpvOpAtomicIAdd:
1601 case SpvOpAtomicISub:
1602 case SpvOpAtomicSMin:
1603 case SpvOpAtomicUMin:
1604 case SpvOpAtomicSMax:
1605 case SpvOpAtomicUMax:
1606 case SpvOpAtomicAnd:
1607 case SpvOpAtomicOr:
1608 case SpvOpAtomicXor:
1609 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
1610 break;
1611
1612 case SpvOpImageQuerySize:
1613 image.image =
1614 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1615 image.coord = NULL;
1616 image.sample = NULL;
1617 break;
1618
1619 case SpvOpImageRead:
1620 image.image =
1621 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1622 image.coord = get_image_coord(b, w[4]);
1623
1624 if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
1625 assert(w[5] == SpvImageOperandsSampleMask);
1626 image.sample = vtn_ssa_value(b, w[6])->def;
1627 } else {
1628 image.sample = nir_ssa_undef(&b->nb, 1, 32);
1629 }
1630 break;
1631
1632 case SpvOpImageWrite:
1633 image.image =
1634 vtn_value(b, w[1], vtn_value_type_access_chain)->access_chain;
1635 image.coord = get_image_coord(b, w[2]);
1636
1637 /* texel = w[3] */
1638
1639 if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
1640 assert(w[4] == SpvImageOperandsSampleMask);
1641 image.sample = vtn_ssa_value(b, w[5])->def;
1642 } else {
1643 image.sample = nir_ssa_undef(&b->nb, 1, 32);
1644 }
1645 break;
1646
1647 default:
1648 unreachable("Invalid image opcode");
1649 }
1650
1651 nir_intrinsic_op op;
1652 switch (opcode) {
1653 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_##N; break;
1654 OP(ImageQuerySize, size)
1655 OP(ImageRead, load)
1656 OP(ImageWrite, store)
1657 OP(AtomicExchange, atomic_exchange)
1658 OP(AtomicCompareExchange, atomic_comp_swap)
1659 OP(AtomicIIncrement, atomic_add)
1660 OP(AtomicIDecrement, atomic_add)
1661 OP(AtomicIAdd, atomic_add)
1662 OP(AtomicISub, atomic_add)
1663 OP(AtomicSMin, atomic_min)
1664 OP(AtomicUMin, atomic_min)
1665 OP(AtomicSMax, atomic_max)
1666 OP(AtomicUMax, atomic_max)
1667 OP(AtomicAnd, atomic_and)
1668 OP(AtomicOr, atomic_or)
1669 OP(AtomicXor, atomic_xor)
1670 #undef OP
1671 default:
1672 unreachable("Invalid image opcode");
1673 }
1674
1675 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
1676
1677 nir_deref_var *image_deref = vtn_access_chain_to_deref(b, image.image);
1678 intrin->variables[0] =
1679 nir_deref_as_var(nir_copy_deref(&intrin->instr, &image_deref->deref));
1680
1681 /* ImageQuerySize doesn't take any extra parameters */
1682 if (opcode != SpvOpImageQuerySize) {
1683 /* The image coordinate is always 4 components but we may not have that
1684 * many. Swizzle to compensate.
1685 */
1686 unsigned swiz[4];
1687 for (unsigned i = 0; i < 4; i++)
1688 swiz[i] = i < image.coord->num_components ? i : 0;
1689 intrin->src[0] = nir_src_for_ssa(nir_swizzle(&b->nb, image.coord,
1690 swiz, 4, false));
1691 intrin->src[1] = nir_src_for_ssa(image.sample);
1692 }
1693
1694 switch (opcode) {
1695 case SpvOpImageQuerySize:
1696 case SpvOpImageRead:
1697 break;
1698 case SpvOpImageWrite:
1699 intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[3])->def);
1700 break;
1701 case SpvOpAtomicIIncrement:
1702 intrin->src[2] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
1703 break;
1704 case SpvOpAtomicIDecrement:
1705 intrin->src[2] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
1706 break;
1707
1708 case SpvOpAtomicExchange:
1709 case SpvOpAtomicIAdd:
1710 case SpvOpAtomicSMin:
1711 case SpvOpAtomicUMin:
1712 case SpvOpAtomicSMax:
1713 case SpvOpAtomicUMax:
1714 case SpvOpAtomicAnd:
1715 case SpvOpAtomicOr:
1716 case SpvOpAtomicXor:
1717 intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
1718 break;
1719
1720 case SpvOpAtomicCompareExchange:
1721 intrin->src[2] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
1722 intrin->src[3] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
1723 break;
1724
1725 case SpvOpAtomicISub:
1726 intrin->src[2] = nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
1727 break;
1728
1729 default:
1730 unreachable("Invalid image opcode");
1731 }
1732
1733 if (opcode != SpvOpImageWrite) {
1734 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
1735 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
1736 nir_ssa_dest_init(&intrin->instr, &intrin->dest, 4, 32, NULL);
1737
1738 nir_builder_instr_insert(&b->nb, &intrin->instr);
1739
1740 /* The image intrinsics always return 4 channels but we may not want
1741 * that many. Emit a mov to trim it down.
1742 */
1743 unsigned swiz[4] = {0, 1, 2, 3};
1744 val->ssa = vtn_create_ssa_value(b, type->type);
1745 val->ssa->def = nir_swizzle(&b->nb, &intrin->dest.ssa, swiz,
1746 glsl_get_vector_elements(type->type), false);
1747 } else {
1748 nir_builder_instr_insert(&b->nb, &intrin->instr);
1749 }
1750 }
1751
1752 static nir_intrinsic_op
1753 get_ssbo_nir_atomic_op(SpvOp opcode)
1754 {
1755 switch (opcode) {
1756 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
1757 OP(AtomicExchange, atomic_exchange)
1758 OP(AtomicCompareExchange, atomic_comp_swap)
1759 OP(AtomicIIncrement, atomic_add)
1760 OP(AtomicIDecrement, atomic_add)
1761 OP(AtomicIAdd, atomic_add)
1762 OP(AtomicISub, atomic_add)
1763 OP(AtomicSMin, atomic_imin)
1764 OP(AtomicUMin, atomic_umin)
1765 OP(AtomicSMax, atomic_imax)
1766 OP(AtomicUMax, atomic_umax)
1767 OP(AtomicAnd, atomic_and)
1768 OP(AtomicOr, atomic_or)
1769 OP(AtomicXor, atomic_xor)
1770 #undef OP
1771 default:
1772 unreachable("Invalid SSBO atomic");
1773 }
1774 }
1775
1776 static nir_intrinsic_op
1777 get_shared_nir_atomic_op(SpvOp opcode)
1778 {
1779 switch (opcode) {
1780 #define OP(S, N) case SpvOp##S: return nir_intrinsic_var_##N;
1781 OP(AtomicExchange, atomic_exchange)
1782 OP(AtomicCompareExchange, atomic_comp_swap)
1783 OP(AtomicIIncrement, atomic_add)
1784 OP(AtomicIDecrement, atomic_add)
1785 OP(AtomicIAdd, atomic_add)
1786 OP(AtomicISub, atomic_add)
1787 OP(AtomicSMin, atomic_imin)
1788 OP(AtomicUMin, atomic_umin)
1789 OP(AtomicSMax, atomic_imax)
1790 OP(AtomicUMax, atomic_umax)
1791 OP(AtomicAnd, atomic_and)
1792 OP(AtomicOr, atomic_or)
1793 OP(AtomicXor, atomic_xor)
1794 #undef OP
1795 default:
1796 unreachable("Invalid shared atomic");
1797 }
1798 }
1799
1800 static void
1801 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
1802 const uint32_t *w, nir_src *src)
1803 {
1804 switch (opcode) {
1805 case SpvOpAtomicIIncrement:
1806 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
1807 break;
1808
1809 case SpvOpAtomicIDecrement:
1810 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
1811 break;
1812
1813 case SpvOpAtomicISub:
1814 src[0] =
1815 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
1816 break;
1817
1818 case SpvOpAtomicCompareExchange:
1819 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
1820 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
1821 break;
1822 /* Fall through */
1823
1824 case SpvOpAtomicExchange:
1825 case SpvOpAtomicIAdd:
1826 case SpvOpAtomicSMin:
1827 case SpvOpAtomicUMin:
1828 case SpvOpAtomicSMax:
1829 case SpvOpAtomicUMax:
1830 case SpvOpAtomicAnd:
1831 case SpvOpAtomicOr:
1832 case SpvOpAtomicXor:
1833 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
1834 break;
1835
1836 default:
1837 unreachable("Invalid SPIR-V atomic");
1838 }
1839 }
1840
1841 static void
1842 vtn_handle_ssbo_or_shared_atomic(struct vtn_builder *b, SpvOp opcode,
1843 const uint32_t *w, unsigned count)
1844 {
1845 struct vtn_access_chain *chain =
1846 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
1847 nir_intrinsic_instr *atomic;
1848
1849 /*
1850 SpvScope scope = w[4];
1851 SpvMemorySemanticsMask semantics = w[5];
1852 */
1853
1854 if (chain->var->mode == vtn_variable_mode_workgroup) {
1855 nir_deref *deref = &vtn_access_chain_to_deref(b, chain)->deref;
1856 nir_intrinsic_op op = get_shared_nir_atomic_op(opcode);
1857 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
1858 atomic->variables[0] = nir_deref_as_var(nir_copy_deref(atomic, deref));
1859 fill_common_atomic_sources(b, opcode, w, &atomic->src[0]);
1860 } else {
1861 assert(chain->var->mode == vtn_variable_mode_ssbo);
1862 struct vtn_type *type;
1863 nir_ssa_def *offset, *index;
1864 offset = vtn_access_chain_to_offset(b, chain, &index, &type, NULL, false);
1865
1866 nir_intrinsic_op op = get_ssbo_nir_atomic_op(opcode);
1867
1868 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
1869 atomic->src[0] = nir_src_for_ssa(index);
1870 atomic->src[1] = nir_src_for_ssa(offset);
1871 fill_common_atomic_sources(b, opcode, w, &atomic->src[2]);
1872 }
1873
1874 nir_ssa_dest_init(&atomic->instr, &atomic->dest, 1, 32, NULL);
1875
1876 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
1877 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
1878 val->ssa = rzalloc(b, struct vtn_ssa_value);
1879 val->ssa->def = &atomic->dest.ssa;
1880 val->ssa->type = type->type;
1881
1882 nir_builder_instr_insert(&b->nb, &atomic->instr);
1883 }
1884
1885 static nir_alu_instr *
1886 create_vec(nir_shader *shader, unsigned num_components, unsigned bit_size)
1887 {
1888 nir_op op;
1889 switch (num_components) {
1890 case 1: op = nir_op_fmov; break;
1891 case 2: op = nir_op_vec2; break;
1892 case 3: op = nir_op_vec3; break;
1893 case 4: op = nir_op_vec4; break;
1894 default: unreachable("bad vector size");
1895 }
1896
1897 nir_alu_instr *vec = nir_alu_instr_create(shader, op);
1898 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
1899 bit_size, NULL);
1900 vec->dest.write_mask = (1 << num_components) - 1;
1901
1902 return vec;
1903 }
1904
1905 struct vtn_ssa_value *
1906 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
1907 {
1908 if (src->transposed)
1909 return src->transposed;
1910
1911 struct vtn_ssa_value *dest =
1912 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
1913
1914 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
1915 nir_alu_instr *vec = create_vec(b->shader,
1916 glsl_get_matrix_columns(src->type),
1917 glsl_get_bit_size(src->type));
1918 if (glsl_type_is_vector_or_scalar(src->type)) {
1919 vec->src[0].src = nir_src_for_ssa(src->def);
1920 vec->src[0].swizzle[0] = i;
1921 } else {
1922 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
1923 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
1924 vec->src[j].swizzle[0] = i;
1925 }
1926 }
1927 nir_builder_instr_insert(&b->nb, &vec->instr);
1928 dest->elems[i]->def = &vec->dest.dest.ssa;
1929 }
1930
1931 dest->transposed = src;
1932
1933 return dest;
1934 }
1935
1936 nir_ssa_def *
1937 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
1938 {
1939 unsigned swiz[4] = { index };
1940 return nir_swizzle(&b->nb, src, swiz, 1, true);
1941 }
1942
1943 nir_ssa_def *
1944 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
1945 unsigned index)
1946 {
1947 nir_alu_instr *vec = create_vec(b->shader, src->num_components,
1948 src->bit_size);
1949
1950 for (unsigned i = 0; i < src->num_components; i++) {
1951 if (i == index) {
1952 vec->src[i].src = nir_src_for_ssa(insert);
1953 } else {
1954 vec->src[i].src = nir_src_for_ssa(src);
1955 vec->src[i].swizzle[0] = i;
1956 }
1957 }
1958
1959 nir_builder_instr_insert(&b->nb, &vec->instr);
1960
1961 return &vec->dest.dest.ssa;
1962 }
1963
1964 nir_ssa_def *
1965 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
1966 nir_ssa_def *index)
1967 {
1968 nir_ssa_def *dest = vtn_vector_extract(b, src, 0);
1969 for (unsigned i = 1; i < src->num_components; i++)
1970 dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
1971 vtn_vector_extract(b, src, i), dest);
1972
1973 return dest;
1974 }
1975
1976 nir_ssa_def *
1977 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
1978 nir_ssa_def *insert, nir_ssa_def *index)
1979 {
1980 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
1981 for (unsigned i = 1; i < src->num_components; i++)
1982 dest = nir_bcsel(&b->nb, nir_ieq(&b->nb, index, nir_imm_int(&b->nb, i)),
1983 vtn_vector_insert(b, src, insert, i), dest);
1984
1985 return dest;
1986 }
1987
1988 static nir_ssa_def *
1989 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
1990 nir_ssa_def *src0, nir_ssa_def *src1,
1991 const uint32_t *indices)
1992 {
1993 nir_alu_instr *vec = create_vec(b->shader, num_components, src0->bit_size);
1994
1995 for (unsigned i = 0; i < num_components; i++) {
1996 uint32_t index = indices[i];
1997 if (index == 0xffffffff) {
1998 vec->src[i].src =
1999 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
2000 } else if (index < src0->num_components) {
2001 vec->src[i].src = nir_src_for_ssa(src0);
2002 vec->src[i].swizzle[0] = index;
2003 } else {
2004 vec->src[i].src = nir_src_for_ssa(src1);
2005 vec->src[i].swizzle[0] = index - src0->num_components;
2006 }
2007 }
2008
2009 nir_builder_instr_insert(&b->nb, &vec->instr);
2010
2011 return &vec->dest.dest.ssa;
2012 }
2013
2014 /*
2015 * Concatentates a number of vectors/scalars together to produce a vector
2016 */
2017 static nir_ssa_def *
2018 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
2019 unsigned num_srcs, nir_ssa_def **srcs)
2020 {
2021 nir_alu_instr *vec = create_vec(b->shader, num_components,
2022 srcs[0]->bit_size);
2023
2024 unsigned dest_idx = 0;
2025 for (unsigned i = 0; i < num_srcs; i++) {
2026 nir_ssa_def *src = srcs[i];
2027 for (unsigned j = 0; j < src->num_components; j++) {
2028 vec->src[dest_idx].src = nir_src_for_ssa(src);
2029 vec->src[dest_idx].swizzle[0] = j;
2030 dest_idx++;
2031 }
2032 }
2033
2034 nir_builder_instr_insert(&b->nb, &vec->instr);
2035
2036 return &vec->dest.dest.ssa;
2037 }
2038
2039 static struct vtn_ssa_value *
2040 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
2041 {
2042 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
2043 dest->type = src->type;
2044
2045 if (glsl_type_is_vector_or_scalar(src->type)) {
2046 dest->def = src->def;
2047 } else {
2048 unsigned elems = glsl_get_length(src->type);
2049
2050 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
2051 for (unsigned i = 0; i < elems; i++)
2052 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
2053 }
2054
2055 return dest;
2056 }
2057
2058 static struct vtn_ssa_value *
2059 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
2060 struct vtn_ssa_value *insert, const uint32_t *indices,
2061 unsigned num_indices)
2062 {
2063 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
2064
2065 struct vtn_ssa_value *cur = dest;
2066 unsigned i;
2067 for (i = 0; i < num_indices - 1; i++) {
2068 cur = cur->elems[indices[i]];
2069 }
2070
2071 if (glsl_type_is_vector_or_scalar(cur->type)) {
2072 /* According to the SPIR-V spec, OpCompositeInsert may work down to
2073 * the component granularity. In that case, the last index will be
2074 * the index to insert the scalar into the vector.
2075 */
2076
2077 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
2078 } else {
2079 cur->elems[indices[i]] = insert;
2080 }
2081
2082 return dest;
2083 }
2084
2085 static struct vtn_ssa_value *
2086 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
2087 const uint32_t *indices, unsigned num_indices)
2088 {
2089 struct vtn_ssa_value *cur = src;
2090 for (unsigned i = 0; i < num_indices; i++) {
2091 if (glsl_type_is_vector_or_scalar(cur->type)) {
2092 assert(i == num_indices - 1);
2093 /* According to the SPIR-V spec, OpCompositeExtract may work down to
2094 * the component granularity. The last index will be the index of the
2095 * vector to extract.
2096 */
2097
2098 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
2099 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
2100 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
2101 return ret;
2102 } else {
2103 cur = cur->elems[indices[i]];
2104 }
2105 }
2106
2107 return cur;
2108 }
2109
2110 static void
2111 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
2112 const uint32_t *w, unsigned count)
2113 {
2114 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2115 const struct glsl_type *type =
2116 vtn_value(b, w[1], vtn_value_type_type)->type->type;
2117 val->ssa = vtn_create_ssa_value(b, type);
2118
2119 switch (opcode) {
2120 case SpvOpVectorExtractDynamic:
2121 val->ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
2122 vtn_ssa_value(b, w[4])->def);
2123 break;
2124
2125 case SpvOpVectorInsertDynamic:
2126 val->ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
2127 vtn_ssa_value(b, w[4])->def,
2128 vtn_ssa_value(b, w[5])->def);
2129 break;
2130
2131 case SpvOpVectorShuffle:
2132 val->ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type),
2133 vtn_ssa_value(b, w[3])->def,
2134 vtn_ssa_value(b, w[4])->def,
2135 w + 5);
2136 break;
2137
2138 case SpvOpCompositeConstruct: {
2139 unsigned elems = count - 3;
2140 if (glsl_type_is_vector_or_scalar(type)) {
2141 nir_ssa_def *srcs[4];
2142 for (unsigned i = 0; i < elems; i++)
2143 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
2144 val->ssa->def =
2145 vtn_vector_construct(b, glsl_get_vector_elements(type),
2146 elems, srcs);
2147 } else {
2148 val->ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
2149 for (unsigned i = 0; i < elems; i++)
2150 val->ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
2151 }
2152 break;
2153 }
2154 case SpvOpCompositeExtract:
2155 val->ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
2156 w + 4, count - 4);
2157 break;
2158
2159 case SpvOpCompositeInsert:
2160 val->ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
2161 vtn_ssa_value(b, w[3]),
2162 w + 5, count - 5);
2163 break;
2164
2165 case SpvOpCopyObject:
2166 val->ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
2167 break;
2168
2169 default:
2170 unreachable("unknown composite operation");
2171 }
2172 }
2173
2174 static void
2175 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
2176 const uint32_t *w, unsigned count)
2177 {
2178 nir_intrinsic_op intrinsic_op;
2179 switch (opcode) {
2180 case SpvOpEmitVertex:
2181 case SpvOpEmitStreamVertex:
2182 intrinsic_op = nir_intrinsic_emit_vertex;
2183 break;
2184 case SpvOpEndPrimitive:
2185 case SpvOpEndStreamPrimitive:
2186 intrinsic_op = nir_intrinsic_end_primitive;
2187 break;
2188 case SpvOpMemoryBarrier:
2189 intrinsic_op = nir_intrinsic_memory_barrier;
2190 break;
2191 case SpvOpControlBarrier:
2192 intrinsic_op = nir_intrinsic_barrier;
2193 break;
2194 default:
2195 unreachable("unknown barrier instruction");
2196 }
2197
2198 nir_intrinsic_instr *intrin =
2199 nir_intrinsic_instr_create(b->shader, intrinsic_op);
2200
2201 if (opcode == SpvOpEmitStreamVertex || opcode == SpvOpEndStreamPrimitive)
2202 nir_intrinsic_set_stream_id(intrin, w[1]);
2203
2204 nir_builder_instr_insert(&b->nb, &intrin->instr);
2205 }
2206
2207 static unsigned
2208 gl_primitive_from_spv_execution_mode(SpvExecutionMode mode)
2209 {
2210 switch (mode) {
2211 case SpvExecutionModeInputPoints:
2212 case SpvExecutionModeOutputPoints:
2213 return 0; /* GL_POINTS */
2214 case SpvExecutionModeInputLines:
2215 return 1; /* GL_LINES */
2216 case SpvExecutionModeInputLinesAdjacency:
2217 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
2218 case SpvExecutionModeTriangles:
2219 return 4; /* GL_TRIANGLES */
2220 case SpvExecutionModeInputTrianglesAdjacency:
2221 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
2222 case SpvExecutionModeQuads:
2223 return 7; /* GL_QUADS */
2224 case SpvExecutionModeIsolines:
2225 return 0x8E7A; /* GL_ISOLINES */
2226 case SpvExecutionModeOutputLineStrip:
2227 return 3; /* GL_LINE_STRIP */
2228 case SpvExecutionModeOutputTriangleStrip:
2229 return 5; /* GL_TRIANGLE_STRIP */
2230 default:
2231 assert(!"Invalid primitive type");
2232 return 4;
2233 }
2234 }
2235
2236 static unsigned
2237 vertices_in_from_spv_execution_mode(SpvExecutionMode mode)
2238 {
2239 switch (mode) {
2240 case SpvExecutionModeInputPoints:
2241 return 1;
2242 case SpvExecutionModeInputLines:
2243 return 2;
2244 case SpvExecutionModeInputLinesAdjacency:
2245 return 4;
2246 case SpvExecutionModeTriangles:
2247 return 3;
2248 case SpvExecutionModeInputTrianglesAdjacency:
2249 return 6;
2250 default:
2251 assert(!"Invalid GS input mode");
2252 return 0;
2253 }
2254 }
2255
2256 static gl_shader_stage
2257 stage_for_execution_model(SpvExecutionModel model)
2258 {
2259 switch (model) {
2260 case SpvExecutionModelVertex:
2261 return MESA_SHADER_VERTEX;
2262 case SpvExecutionModelTessellationControl:
2263 return MESA_SHADER_TESS_CTRL;
2264 case SpvExecutionModelTessellationEvaluation:
2265 return MESA_SHADER_TESS_EVAL;
2266 case SpvExecutionModelGeometry:
2267 return MESA_SHADER_GEOMETRY;
2268 case SpvExecutionModelFragment:
2269 return MESA_SHADER_FRAGMENT;
2270 case SpvExecutionModelGLCompute:
2271 return MESA_SHADER_COMPUTE;
2272 default:
2273 unreachable("Unsupported execution model");
2274 }
2275 }
2276
2277 static bool
2278 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
2279 const uint32_t *w, unsigned count)
2280 {
2281 switch (opcode) {
2282 case SpvOpSource:
2283 case SpvOpSourceExtension:
2284 case SpvOpSourceContinued:
2285 case SpvOpExtension:
2286 /* Unhandled, but these are for debug so that's ok. */
2287 break;
2288
2289 case SpvOpCapability: {
2290 SpvCapability cap = w[1];
2291 switch (cap) {
2292 case SpvCapabilityMatrix:
2293 case SpvCapabilityShader:
2294 case SpvCapabilityGeometry:
2295 case SpvCapabilityGeometryPointSize:
2296 case SpvCapabilityUniformBufferArrayDynamicIndexing:
2297 case SpvCapabilitySampledImageArrayDynamicIndexing:
2298 case SpvCapabilityStorageBufferArrayDynamicIndexing:
2299 case SpvCapabilityStorageImageArrayDynamicIndexing:
2300 case SpvCapabilityImageRect:
2301 case SpvCapabilitySampledRect:
2302 case SpvCapabilitySampled1D:
2303 case SpvCapabilityImage1D:
2304 case SpvCapabilitySampledCubeArray:
2305 case SpvCapabilitySampledBuffer:
2306 case SpvCapabilityImageBuffer:
2307 case SpvCapabilityImageQuery:
2308 case SpvCapabilityDerivativeControl:
2309 case SpvCapabilityInterpolationFunction:
2310 case SpvCapabilityMultiViewport:
2311 break;
2312
2313 case SpvCapabilityClipDistance:
2314 case SpvCapabilityCullDistance:
2315 case SpvCapabilityGeometryStreams:
2316 case SpvCapabilityTessellation:
2317 case SpvCapabilityTessellationPointSize:
2318 case SpvCapabilityLinkage:
2319 case SpvCapabilityVector16:
2320 case SpvCapabilityFloat16Buffer:
2321 case SpvCapabilityFloat16:
2322 case SpvCapabilityFloat64:
2323 case SpvCapabilityInt64:
2324 case SpvCapabilityInt64Atomics:
2325 case SpvCapabilityAtomicStorage:
2326 case SpvCapabilityInt16:
2327 case SpvCapabilityImageGatherExtended:
2328 case SpvCapabilityStorageImageMultisample:
2329 case SpvCapabilityImageCubeArray:
2330 case SpvCapabilitySampleRateShading:
2331 case SpvCapabilityInt8:
2332 case SpvCapabilityInputAttachment:
2333 case SpvCapabilitySparseResidency:
2334 case SpvCapabilityMinLod:
2335 case SpvCapabilityImageMSArray:
2336 case SpvCapabilityStorageImageExtendedFormats:
2337 case SpvCapabilityTransformFeedback:
2338 case SpvCapabilityStorageImageReadWithoutFormat:
2339 case SpvCapabilityStorageImageWriteWithoutFormat:
2340 vtn_warn("Unsupported SPIR-V capability: %s",
2341 spirv_capability_to_string(cap));
2342 break;
2343
2344 case SpvCapabilityAddresses:
2345 case SpvCapabilityKernel:
2346 case SpvCapabilityImageBasic:
2347 case SpvCapabilityImageReadWrite:
2348 case SpvCapabilityImageMipmap:
2349 case SpvCapabilityPipes:
2350 case SpvCapabilityGroups:
2351 case SpvCapabilityDeviceEnqueue:
2352 case SpvCapabilityLiteralSampler:
2353 case SpvCapabilityGenericPointer:
2354 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
2355 spirv_capability_to_string(cap));
2356 break;
2357 }
2358 break;
2359 }
2360
2361 case SpvOpExtInstImport:
2362 vtn_handle_extension(b, opcode, w, count);
2363 break;
2364
2365 case SpvOpMemoryModel:
2366 assert(w[1] == SpvAddressingModelLogical);
2367 assert(w[2] == SpvMemoryModelGLSL450);
2368 break;
2369
2370 case SpvOpEntryPoint: {
2371 struct vtn_value *entry_point = &b->values[w[2]];
2372 /* Let this be a name label regardless */
2373 unsigned name_words;
2374 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
2375
2376 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
2377 stage_for_execution_model(w[1]) != b->entry_point_stage)
2378 break;
2379
2380 assert(b->entry_point == NULL);
2381 b->entry_point = entry_point;
2382 break;
2383 }
2384
2385 case SpvOpString:
2386 vtn_push_value(b, w[1], vtn_value_type_string)->str =
2387 vtn_string_literal(b, &w[2], count - 2, NULL);
2388 break;
2389
2390 case SpvOpName:
2391 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
2392 break;
2393
2394 case SpvOpMemberName:
2395 /* TODO */
2396 break;
2397
2398 case SpvOpExecutionMode:
2399 case SpvOpDecorationGroup:
2400 case SpvOpDecorate:
2401 case SpvOpMemberDecorate:
2402 case SpvOpGroupDecorate:
2403 case SpvOpGroupMemberDecorate:
2404 vtn_handle_decoration(b, opcode, w, count);
2405 break;
2406
2407 default:
2408 return false; /* End of preamble */
2409 }
2410
2411 return true;
2412 }
2413
2414 static void
2415 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
2416 const struct vtn_decoration *mode, void *data)
2417 {
2418 assert(b->entry_point == entry_point);
2419
2420 switch(mode->exec_mode) {
2421 case SpvExecutionModeOriginUpperLeft:
2422 case SpvExecutionModeOriginLowerLeft:
2423 b->origin_upper_left =
2424 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
2425 break;
2426
2427 case SpvExecutionModeEarlyFragmentTests:
2428 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2429 b->shader->info.fs.early_fragment_tests = true;
2430 break;
2431
2432 case SpvExecutionModeInvocations:
2433 assert(b->shader->stage == MESA_SHADER_GEOMETRY);
2434 b->shader->info.gs.invocations = MAX2(1, mode->literals[0]);
2435 break;
2436
2437 case SpvExecutionModeDepthReplacing:
2438 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2439 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
2440 break;
2441 case SpvExecutionModeDepthGreater:
2442 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2443 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
2444 break;
2445 case SpvExecutionModeDepthLess:
2446 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2447 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
2448 break;
2449 case SpvExecutionModeDepthUnchanged:
2450 assert(b->shader->stage == MESA_SHADER_FRAGMENT);
2451 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
2452 break;
2453
2454 case SpvExecutionModeLocalSize:
2455 assert(b->shader->stage == MESA_SHADER_COMPUTE);
2456 b->shader->info.cs.local_size[0] = mode->literals[0];
2457 b->shader->info.cs.local_size[1] = mode->literals[1];
2458 b->shader->info.cs.local_size[2] = mode->literals[2];
2459 break;
2460 case SpvExecutionModeLocalSizeHint:
2461 break; /* Nothing do do with this */
2462
2463 case SpvExecutionModeOutputVertices:
2464 assert(b->shader->stage == MESA_SHADER_GEOMETRY);
2465 b->shader->info.gs.vertices_out = mode->literals[0];
2466 break;
2467
2468 case SpvExecutionModeInputPoints:
2469 case SpvExecutionModeInputLines:
2470 case SpvExecutionModeInputLinesAdjacency:
2471 case SpvExecutionModeTriangles:
2472 case SpvExecutionModeInputTrianglesAdjacency:
2473 case SpvExecutionModeQuads:
2474 case SpvExecutionModeIsolines:
2475 if (b->shader->stage == MESA_SHADER_GEOMETRY) {
2476 b->shader->info.gs.vertices_in =
2477 vertices_in_from_spv_execution_mode(mode->exec_mode);
2478 } else {
2479 assert(!"Tesselation shaders not yet supported");
2480 }
2481 break;
2482
2483 case SpvExecutionModeOutputPoints:
2484 case SpvExecutionModeOutputLineStrip:
2485 case SpvExecutionModeOutputTriangleStrip:
2486 assert(b->shader->stage == MESA_SHADER_GEOMETRY);
2487 b->shader->info.gs.output_primitive =
2488 gl_primitive_from_spv_execution_mode(mode->exec_mode);
2489 break;
2490
2491 case SpvExecutionModeSpacingEqual:
2492 case SpvExecutionModeSpacingFractionalEven:
2493 case SpvExecutionModeSpacingFractionalOdd:
2494 case SpvExecutionModeVertexOrderCw:
2495 case SpvExecutionModeVertexOrderCcw:
2496 case SpvExecutionModePointMode:
2497 assert(!"TODO: Add tessellation metadata");
2498 break;
2499
2500 case SpvExecutionModePixelCenterInteger:
2501 b->pixel_center_integer = true;
2502 break;
2503
2504 case SpvExecutionModeXfb:
2505 assert(!"Unhandled execution mode");
2506 break;
2507
2508 case SpvExecutionModeVecTypeHint:
2509 case SpvExecutionModeContractionOff:
2510 break; /* OpenCL */
2511 }
2512 }
2513
2514 static bool
2515 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
2516 const uint32_t *w, unsigned count)
2517 {
2518 switch (opcode) {
2519 case SpvOpSource:
2520 case SpvOpSourceContinued:
2521 case SpvOpSourceExtension:
2522 case SpvOpExtension:
2523 case SpvOpCapability:
2524 case SpvOpExtInstImport:
2525 case SpvOpMemoryModel:
2526 case SpvOpEntryPoint:
2527 case SpvOpExecutionMode:
2528 case SpvOpString:
2529 case SpvOpName:
2530 case SpvOpMemberName:
2531 case SpvOpDecorationGroup:
2532 case SpvOpDecorate:
2533 case SpvOpMemberDecorate:
2534 case SpvOpGroupDecorate:
2535 case SpvOpGroupMemberDecorate:
2536 assert(!"Invalid opcode types and variables section");
2537 break;
2538
2539 case SpvOpTypeVoid:
2540 case SpvOpTypeBool:
2541 case SpvOpTypeInt:
2542 case SpvOpTypeFloat:
2543 case SpvOpTypeVector:
2544 case SpvOpTypeMatrix:
2545 case SpvOpTypeImage:
2546 case SpvOpTypeSampler:
2547 case SpvOpTypeSampledImage:
2548 case SpvOpTypeArray:
2549 case SpvOpTypeRuntimeArray:
2550 case SpvOpTypeStruct:
2551 case SpvOpTypeOpaque:
2552 case SpvOpTypePointer:
2553 case SpvOpTypeFunction:
2554 case SpvOpTypeEvent:
2555 case SpvOpTypeDeviceEvent:
2556 case SpvOpTypeReserveId:
2557 case SpvOpTypeQueue:
2558 case SpvOpTypePipe:
2559 vtn_handle_type(b, opcode, w, count);
2560 break;
2561
2562 case SpvOpConstantTrue:
2563 case SpvOpConstantFalse:
2564 case SpvOpConstant:
2565 case SpvOpConstantComposite:
2566 case SpvOpConstantSampler:
2567 case SpvOpConstantNull:
2568 case SpvOpSpecConstantTrue:
2569 case SpvOpSpecConstantFalse:
2570 case SpvOpSpecConstant:
2571 case SpvOpSpecConstantComposite:
2572 case SpvOpSpecConstantOp:
2573 vtn_handle_constant(b, opcode, w, count);
2574 break;
2575
2576 case SpvOpVariable:
2577 vtn_handle_variables(b, opcode, w, count);
2578 break;
2579
2580 default:
2581 return false; /* End of preamble */
2582 }
2583
2584 return true;
2585 }
2586
2587 static bool
2588 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
2589 const uint32_t *w, unsigned count)
2590 {
2591 switch (opcode) {
2592 case SpvOpLabel:
2593 break;
2594
2595 case SpvOpLoopMerge:
2596 case SpvOpSelectionMerge:
2597 /* This is handled by cfg pre-pass and walk_blocks */
2598 break;
2599
2600 case SpvOpUndef: {
2601 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
2602 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
2603 break;
2604 }
2605
2606 case SpvOpExtInst:
2607 vtn_handle_extension(b, opcode, w, count);
2608 break;
2609
2610 case SpvOpVariable:
2611 case SpvOpLoad:
2612 case SpvOpStore:
2613 case SpvOpCopyMemory:
2614 case SpvOpCopyMemorySized:
2615 case SpvOpAccessChain:
2616 case SpvOpInBoundsAccessChain:
2617 case SpvOpArrayLength:
2618 vtn_handle_variables(b, opcode, w, count);
2619 break;
2620
2621 case SpvOpFunctionCall:
2622 vtn_handle_function_call(b, opcode, w, count);
2623 break;
2624
2625 case SpvOpSampledImage:
2626 case SpvOpImage:
2627 case SpvOpImageSampleImplicitLod:
2628 case SpvOpImageSampleExplicitLod:
2629 case SpvOpImageSampleDrefImplicitLod:
2630 case SpvOpImageSampleDrefExplicitLod:
2631 case SpvOpImageSampleProjImplicitLod:
2632 case SpvOpImageSampleProjExplicitLod:
2633 case SpvOpImageSampleProjDrefImplicitLod:
2634 case SpvOpImageSampleProjDrefExplicitLod:
2635 case SpvOpImageFetch:
2636 case SpvOpImageGather:
2637 case SpvOpImageDrefGather:
2638 case SpvOpImageQuerySizeLod:
2639 case SpvOpImageQueryLod:
2640 case SpvOpImageQueryLevels:
2641 case SpvOpImageQuerySamples:
2642 vtn_handle_texture(b, opcode, w, count);
2643 break;
2644
2645 case SpvOpImageRead:
2646 case SpvOpImageWrite:
2647 case SpvOpImageTexelPointer:
2648 vtn_handle_image(b, opcode, w, count);
2649 break;
2650
2651 case SpvOpImageQuerySize: {
2652 struct vtn_access_chain *image =
2653 vtn_value(b, w[3], vtn_value_type_access_chain)->access_chain;
2654 if (glsl_type_is_image(image->var->var->interface_type)) {
2655 vtn_handle_image(b, opcode, w, count);
2656 } else {
2657 vtn_handle_texture(b, opcode, w, count);
2658 }
2659 break;
2660 }
2661
2662 case SpvOpAtomicExchange:
2663 case SpvOpAtomicCompareExchange:
2664 case SpvOpAtomicCompareExchangeWeak:
2665 case SpvOpAtomicIIncrement:
2666 case SpvOpAtomicIDecrement:
2667 case SpvOpAtomicIAdd:
2668 case SpvOpAtomicISub:
2669 case SpvOpAtomicSMin:
2670 case SpvOpAtomicUMin:
2671 case SpvOpAtomicSMax:
2672 case SpvOpAtomicUMax:
2673 case SpvOpAtomicAnd:
2674 case SpvOpAtomicOr:
2675 case SpvOpAtomicXor: {
2676 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
2677 if (pointer->value_type == vtn_value_type_image_pointer) {
2678 vtn_handle_image(b, opcode, w, count);
2679 } else {
2680 assert(pointer->value_type == vtn_value_type_access_chain);
2681 vtn_handle_ssbo_or_shared_atomic(b, opcode, w, count);
2682 }
2683 break;
2684 }
2685
2686 case SpvOpSNegate:
2687 case SpvOpFNegate:
2688 case SpvOpNot:
2689 case SpvOpAny:
2690 case SpvOpAll:
2691 case SpvOpConvertFToU:
2692 case SpvOpConvertFToS:
2693 case SpvOpConvertSToF:
2694 case SpvOpConvertUToF:
2695 case SpvOpUConvert:
2696 case SpvOpSConvert:
2697 case SpvOpFConvert:
2698 case SpvOpQuantizeToF16:
2699 case SpvOpConvertPtrToU:
2700 case SpvOpConvertUToPtr:
2701 case SpvOpPtrCastToGeneric:
2702 case SpvOpGenericCastToPtr:
2703 case SpvOpBitcast:
2704 case SpvOpIsNan:
2705 case SpvOpIsInf:
2706 case SpvOpIsFinite:
2707 case SpvOpIsNormal:
2708 case SpvOpSignBitSet:
2709 case SpvOpLessOrGreater:
2710 case SpvOpOrdered:
2711 case SpvOpUnordered:
2712 case SpvOpIAdd:
2713 case SpvOpFAdd:
2714 case SpvOpISub:
2715 case SpvOpFSub:
2716 case SpvOpIMul:
2717 case SpvOpFMul:
2718 case SpvOpUDiv:
2719 case SpvOpSDiv:
2720 case SpvOpFDiv:
2721 case SpvOpUMod:
2722 case SpvOpSRem:
2723 case SpvOpSMod:
2724 case SpvOpFRem:
2725 case SpvOpFMod:
2726 case SpvOpVectorTimesScalar:
2727 case SpvOpDot:
2728 case SpvOpIAddCarry:
2729 case SpvOpISubBorrow:
2730 case SpvOpUMulExtended:
2731 case SpvOpSMulExtended:
2732 case SpvOpShiftRightLogical:
2733 case SpvOpShiftRightArithmetic:
2734 case SpvOpShiftLeftLogical:
2735 case SpvOpLogicalEqual:
2736 case SpvOpLogicalNotEqual:
2737 case SpvOpLogicalOr:
2738 case SpvOpLogicalAnd:
2739 case SpvOpLogicalNot:
2740 case SpvOpBitwiseOr:
2741 case SpvOpBitwiseXor:
2742 case SpvOpBitwiseAnd:
2743 case SpvOpSelect:
2744 case SpvOpIEqual:
2745 case SpvOpFOrdEqual:
2746 case SpvOpFUnordEqual:
2747 case SpvOpINotEqual:
2748 case SpvOpFOrdNotEqual:
2749 case SpvOpFUnordNotEqual:
2750 case SpvOpULessThan:
2751 case SpvOpSLessThan:
2752 case SpvOpFOrdLessThan:
2753 case SpvOpFUnordLessThan:
2754 case SpvOpUGreaterThan:
2755 case SpvOpSGreaterThan:
2756 case SpvOpFOrdGreaterThan:
2757 case SpvOpFUnordGreaterThan:
2758 case SpvOpULessThanEqual:
2759 case SpvOpSLessThanEqual:
2760 case SpvOpFOrdLessThanEqual:
2761 case SpvOpFUnordLessThanEqual:
2762 case SpvOpUGreaterThanEqual:
2763 case SpvOpSGreaterThanEqual:
2764 case SpvOpFOrdGreaterThanEqual:
2765 case SpvOpFUnordGreaterThanEqual:
2766 case SpvOpDPdx:
2767 case SpvOpDPdy:
2768 case SpvOpFwidth:
2769 case SpvOpDPdxFine:
2770 case SpvOpDPdyFine:
2771 case SpvOpFwidthFine:
2772 case SpvOpDPdxCoarse:
2773 case SpvOpDPdyCoarse:
2774 case SpvOpFwidthCoarse:
2775 case SpvOpBitFieldInsert:
2776 case SpvOpBitFieldSExtract:
2777 case SpvOpBitFieldUExtract:
2778 case SpvOpBitReverse:
2779 case SpvOpBitCount:
2780 case SpvOpTranspose:
2781 case SpvOpOuterProduct:
2782 case SpvOpMatrixTimesScalar:
2783 case SpvOpVectorTimesMatrix:
2784 case SpvOpMatrixTimesVector:
2785 case SpvOpMatrixTimesMatrix:
2786 vtn_handle_alu(b, opcode, w, count);
2787 break;
2788
2789 case SpvOpVectorExtractDynamic:
2790 case SpvOpVectorInsertDynamic:
2791 case SpvOpVectorShuffle:
2792 case SpvOpCompositeConstruct:
2793 case SpvOpCompositeExtract:
2794 case SpvOpCompositeInsert:
2795 case SpvOpCopyObject:
2796 vtn_handle_composite(b, opcode, w, count);
2797 break;
2798
2799 case SpvOpEmitVertex:
2800 case SpvOpEndPrimitive:
2801 case SpvOpEmitStreamVertex:
2802 case SpvOpEndStreamPrimitive:
2803 case SpvOpControlBarrier:
2804 case SpvOpMemoryBarrier:
2805 vtn_handle_barrier(b, opcode, w, count);
2806 break;
2807
2808 default:
2809 unreachable("Unhandled opcode");
2810 }
2811
2812 return true;
2813 }
2814
2815 nir_function *
2816 spirv_to_nir(const uint32_t *words, size_t word_count,
2817 struct nir_spirv_specialization *spec, unsigned num_spec,
2818 gl_shader_stage stage, const char *entry_point_name,
2819 const nir_shader_compiler_options *options)
2820 {
2821 const uint32_t *word_end = words + word_count;
2822
2823 /* Handle the SPIR-V header (first 4 dwords) */
2824 assert(word_count > 5);
2825
2826 assert(words[0] == SpvMagicNumber);
2827 assert(words[1] >= 0x10000);
2828 /* words[2] == generator magic */
2829 unsigned value_id_bound = words[3];
2830 assert(words[4] == 0);
2831
2832 words+= 5;
2833
2834 /* Initialize the stn_builder object */
2835 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
2836 b->value_id_bound = value_id_bound;
2837 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
2838 exec_list_make_empty(&b->functions);
2839 b->entry_point_stage = stage;
2840 b->entry_point_name = entry_point_name;
2841
2842 /* Handle all the preamble instructions */
2843 words = vtn_foreach_instruction(b, words, word_end,
2844 vtn_handle_preamble_instruction);
2845
2846 if (b->entry_point == NULL) {
2847 assert(!"Entry point not found");
2848 ralloc_free(b);
2849 return NULL;
2850 }
2851
2852 b->shader = nir_shader_create(NULL, stage, options);
2853
2854 /* Set shader info defaults */
2855 b->shader->info.gs.invocations = 1;
2856
2857 /* Parse execution modes */
2858 vtn_foreach_execution_mode(b, b->entry_point,
2859 vtn_handle_execution_mode, NULL);
2860
2861 b->specializations = spec;
2862 b->num_specializations = num_spec;
2863
2864 /* Handle all variable, type, and constant instructions */
2865 words = vtn_foreach_instruction(b, words, word_end,
2866 vtn_handle_variable_or_type_instruction);
2867
2868 vtn_build_cfg(b, words, word_end);
2869
2870 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
2871 b->impl = func->impl;
2872 b->const_table = _mesa_hash_table_create(b, _mesa_hash_pointer,
2873 _mesa_key_pointer_equal);
2874
2875 vtn_function_emit(b, func, vtn_handle_body_instruction);
2876 }
2877
2878 assert(b->entry_point->value_type == vtn_value_type_function);
2879 nir_function *entry_point = b->entry_point->func->impl->function;
2880 assert(entry_point);
2881
2882 ralloc_free(b);
2883
2884 return entry_point;
2885 }