nir: add callback to nir_remove_dead_variables()
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "nir/nir_deref.h"
33 #include "spirv_info.h"
34
35 #include "util/format/u_format.h"
36 #include "util/u_math.h"
37
38 #include <stdio.h>
39
40 void
41 vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
42 size_t spirv_offset, const char *message)
43 {
44 if (b->options->debug.func) {
45 b->options->debug.func(b->options->debug.private_data,
46 level, spirv_offset, message);
47 }
48
49 #ifndef NDEBUG
50 if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
51 fprintf(stderr, "%s\n", message);
52 #endif
53 }
54
55 void
56 vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
57 size_t spirv_offset, const char *fmt, ...)
58 {
59 va_list args;
60 char *msg;
61
62 va_start(args, fmt);
63 msg = ralloc_vasprintf(NULL, fmt, args);
64 va_end(args);
65
66 vtn_log(b, level, spirv_offset, msg);
67
68 ralloc_free(msg);
69 }
70
71 static void
72 vtn_log_err(struct vtn_builder *b,
73 enum nir_spirv_debug_level level, const char *prefix,
74 const char *file, unsigned line,
75 const char *fmt, va_list args)
76 {
77 char *msg;
78
79 msg = ralloc_strdup(NULL, prefix);
80
81 #ifndef NDEBUG
82 ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
83 #endif
84
85 ralloc_asprintf_append(&msg, " ");
86
87 ralloc_vasprintf_append(&msg, fmt, args);
88
89 ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
90 b->spirv_offset);
91
92 if (b->file) {
93 ralloc_asprintf_append(&msg,
94 "\n in SPIR-V source file %s, line %d, col %d",
95 b->file, b->line, b->col);
96 }
97
98 vtn_log(b, level, b->spirv_offset, msg);
99
100 ralloc_free(msg);
101 }
102
103 static void
104 vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
105 {
106 static int idx = 0;
107
108 char filename[1024];
109 int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
110 path, prefix, idx++);
111 if (len < 0 || len >= sizeof(filename))
112 return;
113
114 FILE *f = fopen(filename, "w");
115 if (f == NULL)
116 return;
117
118 fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
119 fclose(f);
120
121 vtn_info("SPIR-V shader dumped to %s", filename);
122 }
123
124 void
125 _vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
126 const char *fmt, ...)
127 {
128 va_list args;
129
130 va_start(args, fmt);
131 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
132 file, line, fmt, args);
133 va_end(args);
134 }
135
136 void
137 _vtn_err(struct vtn_builder *b, const char *file, unsigned line,
138 const char *fmt, ...)
139 {
140 va_list args;
141
142 va_start(args, fmt);
143 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V ERROR:\n",
144 file, line, fmt, args);
145 va_end(args);
146 }
147
148 void
149 _vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
150 const char *fmt, ...)
151 {
152 va_list args;
153
154 va_start(args, fmt);
155 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
156 file, line, fmt, args);
157 va_end(args);
158
159 const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
160 if (dump_path)
161 vtn_dump_shader(b, dump_path, "fail");
162
163 longjmp(b->fail_jump, 1);
164 }
165
166 static struct vtn_ssa_value *
167 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
168 {
169 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
170 val->type = type;
171
172 if (glsl_type_is_vector_or_scalar(type)) {
173 unsigned num_components = glsl_get_vector_elements(val->type);
174 unsigned bit_size = glsl_get_bit_size(val->type);
175 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
176 } else {
177 unsigned elems = glsl_get_length(val->type);
178 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
179 if (glsl_type_is_matrix(type)) {
180 const struct glsl_type *elem_type =
181 glsl_vector_type(glsl_get_base_type(type),
182 glsl_get_vector_elements(type));
183
184 for (unsigned i = 0; i < elems; i++)
185 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
186 } else if (glsl_type_is_array(type)) {
187 const struct glsl_type *elem_type = glsl_get_array_element(type);
188 for (unsigned i = 0; i < elems; i++)
189 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
190 } else {
191 for (unsigned i = 0; i < elems; i++) {
192 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
193 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
194 }
195 }
196 }
197
198 return val;
199 }
200
201 static struct vtn_ssa_value *
202 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
203 const struct glsl_type *type)
204 {
205 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
206
207 if (entry)
208 return entry->data;
209
210 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
211 val->type = type;
212
213 switch (glsl_get_base_type(type)) {
214 case GLSL_TYPE_INT:
215 case GLSL_TYPE_UINT:
216 case GLSL_TYPE_INT16:
217 case GLSL_TYPE_UINT16:
218 case GLSL_TYPE_UINT8:
219 case GLSL_TYPE_INT8:
220 case GLSL_TYPE_INT64:
221 case GLSL_TYPE_UINT64:
222 case GLSL_TYPE_BOOL:
223 case GLSL_TYPE_FLOAT:
224 case GLSL_TYPE_FLOAT16:
225 case GLSL_TYPE_DOUBLE: {
226 int bit_size = glsl_get_bit_size(type);
227 if (glsl_type_is_vector_or_scalar(type)) {
228 unsigned num_components = glsl_get_vector_elements(val->type);
229 nir_load_const_instr *load =
230 nir_load_const_instr_create(b->shader, num_components, bit_size);
231
232 memcpy(load->value, constant->values,
233 sizeof(nir_const_value) * load->def.num_components);
234
235 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
236 val->def = &load->def;
237 } else {
238 assert(glsl_type_is_matrix(type));
239 unsigned columns = glsl_get_matrix_columns(val->type);
240 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
241 const struct glsl_type *column_type = glsl_get_column_type(val->type);
242 for (unsigned i = 0; i < columns; i++)
243 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
244 column_type);
245 }
246 break;
247 }
248
249 case GLSL_TYPE_ARRAY: {
250 unsigned elems = glsl_get_length(val->type);
251 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
252 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
253 for (unsigned i = 0; i < elems; i++)
254 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
255 elem_type);
256 break;
257 }
258
259 case GLSL_TYPE_STRUCT: {
260 unsigned elems = glsl_get_length(val->type);
261 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
262 for (unsigned i = 0; i < elems; i++) {
263 const struct glsl_type *elem_type =
264 glsl_get_struct_field(val->type, i);
265 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
266 elem_type);
267 }
268 break;
269 }
270
271 default:
272 vtn_fail("bad constant type");
273 }
274
275 return val;
276 }
277
278 struct vtn_ssa_value *
279 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
280 {
281 struct vtn_value *val = vtn_untyped_value(b, value_id);
282 switch (val->value_type) {
283 case vtn_value_type_undef:
284 return vtn_undef_ssa_value(b, val->type->type);
285
286 case vtn_value_type_constant:
287 return vtn_const_ssa_value(b, val->constant, val->type->type);
288
289 case vtn_value_type_ssa:
290 return val->ssa;
291
292 case vtn_value_type_pointer:
293 vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
294 struct vtn_ssa_value *ssa =
295 vtn_create_ssa_value(b, val->pointer->ptr_type->type);
296 ssa->def = vtn_pointer_to_ssa(b, val->pointer);
297 return ssa;
298
299 default:
300 vtn_fail("Invalid type for an SSA value");
301 }
302 }
303
304 static char *
305 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
306 unsigned word_count, unsigned *words_used)
307 {
308 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
309 if (words_used) {
310 /* Ammount of space taken by the string (including the null) */
311 unsigned len = strlen(dup) + 1;
312 *words_used = DIV_ROUND_UP(len, sizeof(*words));
313 }
314 return dup;
315 }
316
317 const uint32_t *
318 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
319 const uint32_t *end, vtn_instruction_handler handler)
320 {
321 b->file = NULL;
322 b->line = -1;
323 b->col = -1;
324
325 const uint32_t *w = start;
326 while (w < end) {
327 SpvOp opcode = w[0] & SpvOpCodeMask;
328 unsigned count = w[0] >> SpvWordCountShift;
329 vtn_assert(count >= 1 && w + count <= end);
330
331 b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
332
333 switch (opcode) {
334 case SpvOpNop:
335 break; /* Do nothing */
336
337 case SpvOpLine:
338 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
339 b->line = w[2];
340 b->col = w[3];
341 break;
342
343 case SpvOpNoLine:
344 b->file = NULL;
345 b->line = -1;
346 b->col = -1;
347 break;
348
349 default:
350 if (!handler(b, opcode, w, count))
351 return w;
352 break;
353 }
354
355 w += count;
356 }
357
358 b->spirv_offset = 0;
359 b->file = NULL;
360 b->line = -1;
361 b->col = -1;
362
363 assert(w == end);
364 return w;
365 }
366
367 static bool
368 vtn_handle_non_semantic_instruction(struct vtn_builder *b, SpvOp ext_opcode,
369 const uint32_t *w, unsigned count)
370 {
371 /* Do nothing. */
372 return true;
373 }
374
375 static void
376 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
377 const uint32_t *w, unsigned count)
378 {
379 const char *ext = (const char *)&w[2];
380 switch (opcode) {
381 case SpvOpExtInstImport: {
382 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
383 if (strcmp(ext, "GLSL.std.450") == 0) {
384 val->ext_handler = vtn_handle_glsl450_instruction;
385 } else if ((strcmp(ext, "SPV_AMD_gcn_shader") == 0)
386 && (b->options && b->options->caps.amd_gcn_shader)) {
387 val->ext_handler = vtn_handle_amd_gcn_shader_instruction;
388 } else if ((strcmp(ext, "SPV_AMD_shader_ballot") == 0)
389 && (b->options && b->options->caps.amd_shader_ballot)) {
390 val->ext_handler = vtn_handle_amd_shader_ballot_instruction;
391 } else if ((strcmp(ext, "SPV_AMD_shader_trinary_minmax") == 0)
392 && (b->options && b->options->caps.amd_trinary_minmax)) {
393 val->ext_handler = vtn_handle_amd_shader_trinary_minmax_instruction;
394 } else if ((strcmp(ext, "SPV_AMD_shader_explicit_vertex_parameter") == 0)
395 && (b->options && b->options->caps.amd_shader_explicit_vertex_parameter)) {
396 val->ext_handler = vtn_handle_amd_shader_explicit_vertex_parameter_instruction;
397 } else if (strcmp(ext, "OpenCL.std") == 0) {
398 val->ext_handler = vtn_handle_opencl_instruction;
399 } else if (strstr(ext, "NonSemantic.") == ext) {
400 val->ext_handler = vtn_handle_non_semantic_instruction;
401 } else {
402 vtn_fail("Unsupported extension: %s", ext);
403 }
404 break;
405 }
406
407 case SpvOpExtInst: {
408 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
409 bool handled = val->ext_handler(b, w[4], w, count);
410 vtn_assert(handled);
411 break;
412 }
413
414 default:
415 vtn_fail_with_opcode("Unhandled opcode", opcode);
416 }
417 }
418
419 static void
420 _foreach_decoration_helper(struct vtn_builder *b,
421 struct vtn_value *base_value,
422 int parent_member,
423 struct vtn_value *value,
424 vtn_decoration_foreach_cb cb, void *data)
425 {
426 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
427 int member;
428 if (dec->scope == VTN_DEC_DECORATION) {
429 member = parent_member;
430 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
431 vtn_fail_if(value->value_type != vtn_value_type_type ||
432 value->type->base_type != vtn_base_type_struct,
433 "OpMemberDecorate and OpGroupMemberDecorate are only "
434 "allowed on OpTypeStruct");
435 /* This means we haven't recursed yet */
436 assert(value == base_value);
437
438 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
439
440 vtn_fail_if(member >= base_value->type->length,
441 "OpMemberDecorate specifies member %d but the "
442 "OpTypeStruct has only %u members",
443 member, base_value->type->length);
444 } else {
445 /* Not a decoration */
446 assert(dec->scope == VTN_DEC_EXECUTION_MODE);
447 continue;
448 }
449
450 if (dec->group) {
451 assert(dec->group->value_type == vtn_value_type_decoration_group);
452 _foreach_decoration_helper(b, base_value, member, dec->group,
453 cb, data);
454 } else {
455 cb(b, base_value, member, dec, data);
456 }
457 }
458 }
459
460 /** Iterates (recursively if needed) over all of the decorations on a value
461 *
462 * This function iterates over all of the decorations applied to a given
463 * value. If it encounters a decoration group, it recurses into the group
464 * and iterates over all of those decorations as well.
465 */
466 void
467 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
468 vtn_decoration_foreach_cb cb, void *data)
469 {
470 _foreach_decoration_helper(b, value, -1, value, cb, data);
471 }
472
473 void
474 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
475 vtn_execution_mode_foreach_cb cb, void *data)
476 {
477 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
478 if (dec->scope != VTN_DEC_EXECUTION_MODE)
479 continue;
480
481 assert(dec->group == NULL);
482 cb(b, value, dec, data);
483 }
484 }
485
486 void
487 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
488 const uint32_t *w, unsigned count)
489 {
490 const uint32_t *w_end = w + count;
491 const uint32_t target = w[1];
492 w += 2;
493
494 switch (opcode) {
495 case SpvOpDecorationGroup:
496 vtn_push_value(b, target, vtn_value_type_decoration_group);
497 break;
498
499 case SpvOpDecorate:
500 case SpvOpDecorateId:
501 case SpvOpMemberDecorate:
502 case SpvOpDecorateString:
503 case SpvOpMemberDecorateString:
504 case SpvOpExecutionMode:
505 case SpvOpExecutionModeId: {
506 struct vtn_value *val = vtn_untyped_value(b, target);
507
508 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
509 switch (opcode) {
510 case SpvOpDecorate:
511 case SpvOpDecorateId:
512 case SpvOpDecorateString:
513 dec->scope = VTN_DEC_DECORATION;
514 break;
515 case SpvOpMemberDecorate:
516 case SpvOpMemberDecorateString:
517 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
518 vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
519 "Member argument of OpMemberDecorate too large");
520 break;
521 case SpvOpExecutionMode:
522 case SpvOpExecutionModeId:
523 dec->scope = VTN_DEC_EXECUTION_MODE;
524 break;
525 default:
526 unreachable("Invalid decoration opcode");
527 }
528 dec->decoration = *(w++);
529 dec->operands = w;
530
531 /* Link into the list */
532 dec->next = val->decoration;
533 val->decoration = dec;
534 break;
535 }
536
537 case SpvOpGroupMemberDecorate:
538 case SpvOpGroupDecorate: {
539 struct vtn_value *group =
540 vtn_value(b, target, vtn_value_type_decoration_group);
541
542 for (; w < w_end; w++) {
543 struct vtn_value *val = vtn_untyped_value(b, *w);
544 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
545
546 dec->group = group;
547 if (opcode == SpvOpGroupDecorate) {
548 dec->scope = VTN_DEC_DECORATION;
549 } else {
550 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
551 vtn_fail_if(dec->scope < 0, /* Check for overflow */
552 "Member argument of OpGroupMemberDecorate too large");
553 }
554
555 /* Link into the list */
556 dec->next = val->decoration;
557 val->decoration = dec;
558 }
559 break;
560 }
561
562 default:
563 unreachable("Unhandled opcode");
564 }
565 }
566
567 struct member_decoration_ctx {
568 unsigned num_fields;
569 struct glsl_struct_field *fields;
570 struct vtn_type *type;
571 };
572
573 /**
574 * Returns true if the given type contains a struct decorated Block or
575 * BufferBlock
576 */
577 bool
578 vtn_type_contains_block(struct vtn_builder *b, struct vtn_type *type)
579 {
580 switch (type->base_type) {
581 case vtn_base_type_array:
582 return vtn_type_contains_block(b, type->array_element);
583 case vtn_base_type_struct:
584 if (type->block || type->buffer_block)
585 return true;
586 for (unsigned i = 0; i < type->length; i++) {
587 if (vtn_type_contains_block(b, type->members[i]))
588 return true;
589 }
590 return false;
591 default:
592 return false;
593 }
594 }
595
596 /** Returns true if two types are "compatible", i.e. you can do an OpLoad,
597 * OpStore, or OpCopyMemory between them without breaking anything.
598 * Technically, the SPIR-V rules require the exact same type ID but this lets
599 * us internally be a bit looser.
600 */
601 bool
602 vtn_types_compatible(struct vtn_builder *b,
603 struct vtn_type *t1, struct vtn_type *t2)
604 {
605 if (t1->id == t2->id)
606 return true;
607
608 if (t1->base_type != t2->base_type)
609 return false;
610
611 switch (t1->base_type) {
612 case vtn_base_type_void:
613 case vtn_base_type_scalar:
614 case vtn_base_type_vector:
615 case vtn_base_type_matrix:
616 case vtn_base_type_image:
617 case vtn_base_type_sampler:
618 case vtn_base_type_sampled_image:
619 return t1->type == t2->type;
620
621 case vtn_base_type_array:
622 return t1->length == t2->length &&
623 vtn_types_compatible(b, t1->array_element, t2->array_element);
624
625 case vtn_base_type_pointer:
626 return vtn_types_compatible(b, t1->deref, t2->deref);
627
628 case vtn_base_type_struct:
629 if (t1->length != t2->length)
630 return false;
631
632 for (unsigned i = 0; i < t1->length; i++) {
633 if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
634 return false;
635 }
636 return true;
637
638 case vtn_base_type_function:
639 /* This case shouldn't get hit since you can't copy around function
640 * types. Just require them to be identical.
641 */
642 return false;
643 }
644
645 vtn_fail("Invalid base type");
646 }
647
648 struct vtn_type *
649 vtn_type_without_array(struct vtn_type *type)
650 {
651 while (type->base_type == vtn_base_type_array)
652 type = type->array_element;
653 return type;
654 }
655
656 /* does a shallow copy of a vtn_type */
657
658 static struct vtn_type *
659 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
660 {
661 struct vtn_type *dest = ralloc(b, struct vtn_type);
662 *dest = *src;
663
664 switch (src->base_type) {
665 case vtn_base_type_void:
666 case vtn_base_type_scalar:
667 case vtn_base_type_vector:
668 case vtn_base_type_matrix:
669 case vtn_base_type_array:
670 case vtn_base_type_pointer:
671 case vtn_base_type_image:
672 case vtn_base_type_sampler:
673 case vtn_base_type_sampled_image:
674 /* Nothing more to do */
675 break;
676
677 case vtn_base_type_struct:
678 dest->members = ralloc_array(b, struct vtn_type *, src->length);
679 memcpy(dest->members, src->members,
680 src->length * sizeof(src->members[0]));
681
682 dest->offsets = ralloc_array(b, unsigned, src->length);
683 memcpy(dest->offsets, src->offsets,
684 src->length * sizeof(src->offsets[0]));
685 break;
686
687 case vtn_base_type_function:
688 dest->params = ralloc_array(b, struct vtn_type *, src->length);
689 memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
690 break;
691 }
692
693 return dest;
694 }
695
696 static struct vtn_type *
697 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
698 {
699 type->members[member] = vtn_type_copy(b, type->members[member]);
700 type = type->members[member];
701
702 /* We may have an array of matrices.... Oh, joy! */
703 while (glsl_type_is_array(type->type)) {
704 type->array_element = vtn_type_copy(b, type->array_element);
705 type = type->array_element;
706 }
707
708 vtn_assert(glsl_type_is_matrix(type->type));
709
710 return type;
711 }
712
713 static void
714 vtn_handle_access_qualifier(struct vtn_builder *b, struct vtn_type *type,
715 int member, enum gl_access_qualifier access)
716 {
717 type->members[member] = vtn_type_copy(b, type->members[member]);
718 type = type->members[member];
719
720 type->access |= access;
721 }
722
723 static void
724 array_stride_decoration_cb(struct vtn_builder *b,
725 struct vtn_value *val, int member,
726 const struct vtn_decoration *dec, void *void_ctx)
727 {
728 struct vtn_type *type = val->type;
729
730 if (dec->decoration == SpvDecorationArrayStride) {
731 if (vtn_type_contains_block(b, type)) {
732 vtn_warn("The ArrayStride decoration cannot be applied to an array "
733 "type which contains a structure type decorated Block "
734 "or BufferBlock");
735 /* Ignore the decoration */
736 } else {
737 vtn_fail_if(dec->operands[0] == 0, "ArrayStride must be non-zero");
738 type->stride = dec->operands[0];
739 }
740 }
741 }
742
743 static void
744 struct_member_decoration_cb(struct vtn_builder *b,
745 UNUSED struct vtn_value *val, int member,
746 const struct vtn_decoration *dec, void *void_ctx)
747 {
748 struct member_decoration_ctx *ctx = void_ctx;
749
750 if (member < 0)
751 return;
752
753 assert(member < ctx->num_fields);
754
755 switch (dec->decoration) {
756 case SpvDecorationRelaxedPrecision:
757 case SpvDecorationUniform:
758 case SpvDecorationUniformId:
759 break; /* FIXME: Do nothing with this for now. */
760 case SpvDecorationNonWritable:
761 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_WRITEABLE);
762 break;
763 case SpvDecorationNonReadable:
764 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_READABLE);
765 break;
766 case SpvDecorationVolatile:
767 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_VOLATILE);
768 break;
769 case SpvDecorationCoherent:
770 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_COHERENT);
771 break;
772 case SpvDecorationNoPerspective:
773 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
774 break;
775 case SpvDecorationFlat:
776 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
777 break;
778 case SpvDecorationExplicitInterpAMD:
779 ctx->fields[member].interpolation = INTERP_MODE_EXPLICIT;
780 break;
781 case SpvDecorationCentroid:
782 ctx->fields[member].centroid = true;
783 break;
784 case SpvDecorationSample:
785 ctx->fields[member].sample = true;
786 break;
787 case SpvDecorationStream:
788 /* This is handled later by var_decoration_cb in vtn_variables.c */
789 break;
790 case SpvDecorationLocation:
791 ctx->fields[member].location = dec->operands[0];
792 break;
793 case SpvDecorationComponent:
794 break; /* FIXME: What should we do with these? */
795 case SpvDecorationBuiltIn:
796 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
797 ctx->type->members[member]->is_builtin = true;
798 ctx->type->members[member]->builtin = dec->operands[0];
799 ctx->type->builtin_block = true;
800 break;
801 case SpvDecorationOffset:
802 ctx->type->offsets[member] = dec->operands[0];
803 ctx->fields[member].offset = dec->operands[0];
804 break;
805 case SpvDecorationMatrixStride:
806 /* Handled as a second pass */
807 break;
808 case SpvDecorationColMajor:
809 break; /* Nothing to do here. Column-major is the default. */
810 case SpvDecorationRowMajor:
811 mutable_matrix_member(b, ctx->type, member)->row_major = true;
812 break;
813
814 case SpvDecorationPatch:
815 break;
816
817 case SpvDecorationSpecId:
818 case SpvDecorationBlock:
819 case SpvDecorationBufferBlock:
820 case SpvDecorationArrayStride:
821 case SpvDecorationGLSLShared:
822 case SpvDecorationGLSLPacked:
823 case SpvDecorationInvariant:
824 case SpvDecorationRestrict:
825 case SpvDecorationAliased:
826 case SpvDecorationConstant:
827 case SpvDecorationIndex:
828 case SpvDecorationBinding:
829 case SpvDecorationDescriptorSet:
830 case SpvDecorationLinkageAttributes:
831 case SpvDecorationNoContraction:
832 case SpvDecorationInputAttachmentIndex:
833 vtn_warn("Decoration not allowed on struct members: %s",
834 spirv_decoration_to_string(dec->decoration));
835 break;
836
837 case SpvDecorationXfbBuffer:
838 case SpvDecorationXfbStride:
839 /* This is handled later by var_decoration_cb in vtn_variables.c */
840 break;
841
842 case SpvDecorationCPacked:
843 if (b->shader->info.stage != MESA_SHADER_KERNEL)
844 vtn_warn("Decoration only allowed for CL-style kernels: %s",
845 spirv_decoration_to_string(dec->decoration));
846 else
847 ctx->type->packed = true;
848 break;
849
850 case SpvDecorationSaturatedConversion:
851 case SpvDecorationFuncParamAttr:
852 case SpvDecorationFPRoundingMode:
853 case SpvDecorationFPFastMathMode:
854 case SpvDecorationAlignment:
855 if (b->shader->info.stage != MESA_SHADER_KERNEL) {
856 vtn_warn("Decoration only allowed for CL-style kernels: %s",
857 spirv_decoration_to_string(dec->decoration));
858 }
859 break;
860
861 case SpvDecorationUserSemantic:
862 case SpvDecorationUserTypeGOOGLE:
863 /* User semantic decorations can safely be ignored by the driver. */
864 break;
865
866 default:
867 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
868 }
869 }
870
871 /** Chases the array type all the way down to the tail and rewrites the
872 * glsl_types to be based off the tail's glsl_type.
873 */
874 static void
875 vtn_array_type_rewrite_glsl_type(struct vtn_type *type)
876 {
877 if (type->base_type != vtn_base_type_array)
878 return;
879
880 vtn_array_type_rewrite_glsl_type(type->array_element);
881
882 type->type = glsl_array_type(type->array_element->type,
883 type->length, type->stride);
884 }
885
886 /* Matrix strides are handled as a separate pass because we need to know
887 * whether the matrix is row-major or not first.
888 */
889 static void
890 struct_member_matrix_stride_cb(struct vtn_builder *b,
891 UNUSED struct vtn_value *val, int member,
892 const struct vtn_decoration *dec,
893 void *void_ctx)
894 {
895 if (dec->decoration != SpvDecorationMatrixStride)
896 return;
897
898 vtn_fail_if(member < 0,
899 "The MatrixStride decoration is only allowed on members "
900 "of OpTypeStruct");
901 vtn_fail_if(dec->operands[0] == 0, "MatrixStride must be non-zero");
902
903 struct member_decoration_ctx *ctx = void_ctx;
904
905 struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
906 if (mat_type->row_major) {
907 mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
908 mat_type->stride = mat_type->array_element->stride;
909 mat_type->array_element->stride = dec->operands[0];
910
911 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
912 dec->operands[0], true);
913 mat_type->array_element->type = glsl_get_column_type(mat_type->type);
914 } else {
915 vtn_assert(mat_type->array_element->stride > 0);
916 mat_type->stride = dec->operands[0];
917
918 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
919 dec->operands[0], false);
920 }
921
922 /* Now that we've replaced the glsl_type with a properly strided matrix
923 * type, rewrite the member type so that it's an array of the proper kind
924 * of glsl_type.
925 */
926 vtn_array_type_rewrite_glsl_type(ctx->type->members[member]);
927 ctx->fields[member].type = ctx->type->members[member]->type;
928 }
929
930 static void
931 struct_block_decoration_cb(struct vtn_builder *b,
932 struct vtn_value *val, int member,
933 const struct vtn_decoration *dec, void *ctx)
934 {
935 if (member != -1)
936 return;
937
938 struct vtn_type *type = val->type;
939 if (dec->decoration == SpvDecorationBlock)
940 type->block = true;
941 else if (dec->decoration == SpvDecorationBufferBlock)
942 type->buffer_block = true;
943 }
944
945 static void
946 type_decoration_cb(struct vtn_builder *b,
947 struct vtn_value *val, int member,
948 const struct vtn_decoration *dec, UNUSED void *ctx)
949 {
950 struct vtn_type *type = val->type;
951
952 if (member != -1) {
953 /* This should have been handled by OpTypeStruct */
954 assert(val->type->base_type == vtn_base_type_struct);
955 assert(member >= 0 && member < val->type->length);
956 return;
957 }
958
959 switch (dec->decoration) {
960 case SpvDecorationArrayStride:
961 vtn_assert(type->base_type == vtn_base_type_array ||
962 type->base_type == vtn_base_type_pointer);
963 break;
964 case SpvDecorationBlock:
965 vtn_assert(type->base_type == vtn_base_type_struct);
966 vtn_assert(type->block);
967 break;
968 case SpvDecorationBufferBlock:
969 vtn_assert(type->base_type == vtn_base_type_struct);
970 vtn_assert(type->buffer_block);
971 break;
972 case SpvDecorationGLSLShared:
973 case SpvDecorationGLSLPacked:
974 /* Ignore these, since we get explicit offsets anyways */
975 break;
976
977 case SpvDecorationRowMajor:
978 case SpvDecorationColMajor:
979 case SpvDecorationMatrixStride:
980 case SpvDecorationBuiltIn:
981 case SpvDecorationNoPerspective:
982 case SpvDecorationFlat:
983 case SpvDecorationPatch:
984 case SpvDecorationCentroid:
985 case SpvDecorationSample:
986 case SpvDecorationExplicitInterpAMD:
987 case SpvDecorationVolatile:
988 case SpvDecorationCoherent:
989 case SpvDecorationNonWritable:
990 case SpvDecorationNonReadable:
991 case SpvDecorationUniform:
992 case SpvDecorationUniformId:
993 case SpvDecorationLocation:
994 case SpvDecorationComponent:
995 case SpvDecorationOffset:
996 case SpvDecorationXfbBuffer:
997 case SpvDecorationXfbStride:
998 case SpvDecorationUserSemantic:
999 vtn_warn("Decoration only allowed for struct members: %s",
1000 spirv_decoration_to_string(dec->decoration));
1001 break;
1002
1003 case SpvDecorationStream:
1004 /* We don't need to do anything here, as stream is filled up when
1005 * aplying the decoration to a variable, just check that if it is not a
1006 * struct member, it should be a struct.
1007 */
1008 vtn_assert(type->base_type == vtn_base_type_struct);
1009 break;
1010
1011 case SpvDecorationRelaxedPrecision:
1012 case SpvDecorationSpecId:
1013 case SpvDecorationInvariant:
1014 case SpvDecorationRestrict:
1015 case SpvDecorationAliased:
1016 case SpvDecorationConstant:
1017 case SpvDecorationIndex:
1018 case SpvDecorationBinding:
1019 case SpvDecorationDescriptorSet:
1020 case SpvDecorationLinkageAttributes:
1021 case SpvDecorationNoContraction:
1022 case SpvDecorationInputAttachmentIndex:
1023 vtn_warn("Decoration not allowed on types: %s",
1024 spirv_decoration_to_string(dec->decoration));
1025 break;
1026
1027 case SpvDecorationCPacked:
1028 if (b->shader->info.stage != MESA_SHADER_KERNEL)
1029 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1030 spirv_decoration_to_string(dec->decoration));
1031 else
1032 type->packed = true;
1033 break;
1034
1035 case SpvDecorationSaturatedConversion:
1036 case SpvDecorationFuncParamAttr:
1037 case SpvDecorationFPRoundingMode:
1038 case SpvDecorationFPFastMathMode:
1039 case SpvDecorationAlignment:
1040 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1041 spirv_decoration_to_string(dec->decoration));
1042 break;
1043
1044 case SpvDecorationUserTypeGOOGLE:
1045 /* User semantic decorations can safely be ignored by the driver. */
1046 break;
1047
1048 default:
1049 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
1050 }
1051 }
1052
1053 static unsigned
1054 translate_image_format(struct vtn_builder *b, SpvImageFormat format)
1055 {
1056 switch (format) {
1057 case SpvImageFormatUnknown: return PIPE_FORMAT_NONE;
1058 case SpvImageFormatRgba32f: return PIPE_FORMAT_R32G32B32A32_FLOAT;
1059 case SpvImageFormatRgba16f: return PIPE_FORMAT_R16G16B16A16_FLOAT;
1060 case SpvImageFormatR32f: return PIPE_FORMAT_R32_FLOAT;
1061 case SpvImageFormatRgba8: return PIPE_FORMAT_R8G8B8A8_UNORM;
1062 case SpvImageFormatRgba8Snorm: return PIPE_FORMAT_R8G8B8A8_SNORM;
1063 case SpvImageFormatRg32f: return PIPE_FORMAT_R32G32_FLOAT;
1064 case SpvImageFormatRg16f: return PIPE_FORMAT_R16G16_FLOAT;
1065 case SpvImageFormatR11fG11fB10f: return PIPE_FORMAT_R11G11B10_FLOAT;
1066 case SpvImageFormatR16f: return PIPE_FORMAT_R16_FLOAT;
1067 case SpvImageFormatRgba16: return PIPE_FORMAT_R16G16B16A16_UNORM;
1068 case SpvImageFormatRgb10A2: return PIPE_FORMAT_R10G10B10A2_UNORM;
1069 case SpvImageFormatRg16: return PIPE_FORMAT_R16G16_UNORM;
1070 case SpvImageFormatRg8: return PIPE_FORMAT_R8G8_UNORM;
1071 case SpvImageFormatR16: return PIPE_FORMAT_R16_UNORM;
1072 case SpvImageFormatR8: return PIPE_FORMAT_R8_UNORM;
1073 case SpvImageFormatRgba16Snorm: return PIPE_FORMAT_R16G16B16A16_SNORM;
1074 case SpvImageFormatRg16Snorm: return PIPE_FORMAT_R16G16_SNORM;
1075 case SpvImageFormatRg8Snorm: return PIPE_FORMAT_R8G8_SNORM;
1076 case SpvImageFormatR16Snorm: return PIPE_FORMAT_R16_SNORM;
1077 case SpvImageFormatR8Snorm: return PIPE_FORMAT_R8_SNORM;
1078 case SpvImageFormatRgba32i: return PIPE_FORMAT_R32G32B32A32_SINT;
1079 case SpvImageFormatRgba16i: return PIPE_FORMAT_R16G16B16A16_SINT;
1080 case SpvImageFormatRgba8i: return PIPE_FORMAT_R8G8B8A8_SINT;
1081 case SpvImageFormatR32i: return PIPE_FORMAT_R32_SINT;
1082 case SpvImageFormatRg32i: return PIPE_FORMAT_R32G32_SINT;
1083 case SpvImageFormatRg16i: return PIPE_FORMAT_R16G16_SINT;
1084 case SpvImageFormatRg8i: return PIPE_FORMAT_R8G8_SINT;
1085 case SpvImageFormatR16i: return PIPE_FORMAT_R16_SINT;
1086 case SpvImageFormatR8i: return PIPE_FORMAT_R8_SINT;
1087 case SpvImageFormatRgba32ui: return PIPE_FORMAT_R32G32B32A32_UINT;
1088 case SpvImageFormatRgba16ui: return PIPE_FORMAT_R16G16B16A16_UINT;
1089 case SpvImageFormatRgba8ui: return PIPE_FORMAT_R8G8B8A8_UINT;
1090 case SpvImageFormatR32ui: return PIPE_FORMAT_R32_UINT;
1091 case SpvImageFormatRgb10a2ui: return PIPE_FORMAT_R10G10B10A2_UINT;
1092 case SpvImageFormatRg32ui: return PIPE_FORMAT_R32G32_UINT;
1093 case SpvImageFormatRg16ui: return PIPE_FORMAT_R16G16_UINT;
1094 case SpvImageFormatRg8ui: return PIPE_FORMAT_R8G8_UINT;
1095 case SpvImageFormatR16ui: return PIPE_FORMAT_R16_UINT;
1096 case SpvImageFormatR8ui: return PIPE_FORMAT_R8_UINT;
1097 default:
1098 vtn_fail("Invalid image format: %s (%u)",
1099 spirv_imageformat_to_string(format), format);
1100 }
1101 }
1102
1103 static void
1104 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
1105 const uint32_t *w, unsigned count)
1106 {
1107 struct vtn_value *val = NULL;
1108
1109 /* In order to properly handle forward declarations, we have to defer
1110 * allocation for pointer types.
1111 */
1112 if (opcode != SpvOpTypePointer && opcode != SpvOpTypeForwardPointer) {
1113 val = vtn_push_value(b, w[1], vtn_value_type_type);
1114 vtn_fail_if(val->type != NULL,
1115 "Only pointers can have forward declarations");
1116 val->type = rzalloc(b, struct vtn_type);
1117 val->type->id = w[1];
1118 }
1119
1120 switch (opcode) {
1121 case SpvOpTypeVoid:
1122 val->type->base_type = vtn_base_type_void;
1123 val->type->type = glsl_void_type();
1124 break;
1125 case SpvOpTypeBool:
1126 val->type->base_type = vtn_base_type_scalar;
1127 val->type->type = glsl_bool_type();
1128 val->type->length = 1;
1129 break;
1130 case SpvOpTypeInt: {
1131 int bit_size = w[2];
1132 const bool signedness = w[3];
1133 val->type->base_type = vtn_base_type_scalar;
1134 switch (bit_size) {
1135 case 64:
1136 val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
1137 break;
1138 case 32:
1139 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
1140 break;
1141 case 16:
1142 val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
1143 break;
1144 case 8:
1145 val->type->type = (signedness ? glsl_int8_t_type() : glsl_uint8_t_type());
1146 break;
1147 default:
1148 vtn_fail("Invalid int bit size: %u", bit_size);
1149 }
1150 val->type->length = 1;
1151 break;
1152 }
1153
1154 case SpvOpTypeFloat: {
1155 int bit_size = w[2];
1156 val->type->base_type = vtn_base_type_scalar;
1157 switch (bit_size) {
1158 case 16:
1159 val->type->type = glsl_float16_t_type();
1160 break;
1161 case 32:
1162 val->type->type = glsl_float_type();
1163 break;
1164 case 64:
1165 val->type->type = glsl_double_type();
1166 break;
1167 default:
1168 vtn_fail("Invalid float bit size: %u", bit_size);
1169 }
1170 val->type->length = 1;
1171 break;
1172 }
1173
1174 case SpvOpTypeVector: {
1175 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1176 unsigned elems = w[3];
1177
1178 vtn_fail_if(base->base_type != vtn_base_type_scalar,
1179 "Base type for OpTypeVector must be a scalar");
1180 vtn_fail_if((elems < 2 || elems > 4) && (elems != 8) && (elems != 16),
1181 "Invalid component count for OpTypeVector");
1182
1183 val->type->base_type = vtn_base_type_vector;
1184 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
1185 val->type->length = elems;
1186 val->type->stride = glsl_type_is_boolean(val->type->type)
1187 ? 4 : glsl_get_bit_size(base->type) / 8;
1188 val->type->array_element = base;
1189 break;
1190 }
1191
1192 case SpvOpTypeMatrix: {
1193 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1194 unsigned columns = w[3];
1195
1196 vtn_fail_if(base->base_type != vtn_base_type_vector,
1197 "Base type for OpTypeMatrix must be a vector");
1198 vtn_fail_if(columns < 2 || columns > 4,
1199 "Invalid column count for OpTypeMatrix");
1200
1201 val->type->base_type = vtn_base_type_matrix;
1202 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
1203 glsl_get_vector_elements(base->type),
1204 columns);
1205 vtn_fail_if(glsl_type_is_error(val->type->type),
1206 "Unsupported base type for OpTypeMatrix");
1207 assert(!glsl_type_is_error(val->type->type));
1208 val->type->length = columns;
1209 val->type->array_element = base;
1210 val->type->row_major = false;
1211 val->type->stride = 0;
1212 break;
1213 }
1214
1215 case SpvOpTypeRuntimeArray:
1216 case SpvOpTypeArray: {
1217 struct vtn_type *array_element =
1218 vtn_value(b, w[2], vtn_value_type_type)->type;
1219
1220 if (opcode == SpvOpTypeRuntimeArray) {
1221 /* A length of 0 is used to denote unsized arrays */
1222 val->type->length = 0;
1223 } else {
1224 val->type->length = vtn_constant_uint(b, w[3]);
1225 }
1226
1227 val->type->base_type = vtn_base_type_array;
1228 val->type->array_element = array_element;
1229 if (b->shader->info.stage == MESA_SHADER_KERNEL)
1230 val->type->stride = glsl_get_cl_size(array_element->type);
1231
1232 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1233 val->type->type = glsl_array_type(array_element->type, val->type->length,
1234 val->type->stride);
1235 break;
1236 }
1237
1238 case SpvOpTypeStruct: {
1239 unsigned num_fields = count - 2;
1240 val->type->base_type = vtn_base_type_struct;
1241 val->type->length = num_fields;
1242 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
1243 val->type->offsets = ralloc_array(b, unsigned, num_fields);
1244 val->type->packed = false;
1245
1246 NIR_VLA(struct glsl_struct_field, fields, count);
1247 for (unsigned i = 0; i < num_fields; i++) {
1248 val->type->members[i] =
1249 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
1250 fields[i] = (struct glsl_struct_field) {
1251 .type = val->type->members[i]->type,
1252 .name = ralloc_asprintf(b, "field%d", i),
1253 .location = -1,
1254 .offset = -1,
1255 };
1256 }
1257
1258 if (b->shader->info.stage == MESA_SHADER_KERNEL) {
1259 unsigned offset = 0;
1260 for (unsigned i = 0; i < num_fields; i++) {
1261 offset = align(offset, glsl_get_cl_alignment(fields[i].type));
1262 fields[i].offset = offset;
1263 offset += glsl_get_cl_size(fields[i].type);
1264 }
1265 }
1266
1267 struct member_decoration_ctx ctx = {
1268 .num_fields = num_fields,
1269 .fields = fields,
1270 .type = val->type
1271 };
1272
1273 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
1274 vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
1275
1276 vtn_foreach_decoration(b, val, struct_block_decoration_cb, NULL);
1277
1278 const char *name = val->name;
1279
1280 if (val->type->block || val->type->buffer_block) {
1281 /* Packing will be ignored since types coming from SPIR-V are
1282 * explicitly laid out.
1283 */
1284 val->type->type = glsl_interface_type(fields, num_fields,
1285 /* packing */ 0, false,
1286 name ? name : "block");
1287 } else {
1288 val->type->type = glsl_struct_type(fields, num_fields,
1289 name ? name : "struct", false);
1290 }
1291 break;
1292 }
1293
1294 case SpvOpTypeFunction: {
1295 val->type->base_type = vtn_base_type_function;
1296 val->type->type = NULL;
1297
1298 val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
1299
1300 const unsigned num_params = count - 3;
1301 val->type->length = num_params;
1302 val->type->params = ralloc_array(b, struct vtn_type *, num_params);
1303 for (unsigned i = 0; i < count - 3; i++) {
1304 val->type->params[i] =
1305 vtn_value(b, w[i + 3], vtn_value_type_type)->type;
1306 }
1307 break;
1308 }
1309
1310 case SpvOpTypePointer:
1311 case SpvOpTypeForwardPointer: {
1312 /* We can't blindly push the value because it might be a forward
1313 * declaration.
1314 */
1315 val = vtn_untyped_value(b, w[1]);
1316
1317 SpvStorageClass storage_class = w[2];
1318
1319 if (val->value_type == vtn_value_type_invalid) {
1320 val->value_type = vtn_value_type_type;
1321 val->type = rzalloc(b, struct vtn_type);
1322 val->type->id = w[1];
1323 val->type->base_type = vtn_base_type_pointer;
1324 val->type->storage_class = storage_class;
1325
1326 /* These can actually be stored to nir_variables and used as SSA
1327 * values so they need a real glsl_type.
1328 */
1329 enum vtn_variable_mode mode = vtn_storage_class_to_mode(
1330 b, storage_class, NULL, NULL);
1331 val->type->type = nir_address_format_to_glsl_type(
1332 vtn_mode_to_address_format(b, mode));
1333 } else {
1334 vtn_fail_if(val->type->storage_class != storage_class,
1335 "The storage classes of an OpTypePointer and any "
1336 "OpTypeForwardPointers that provide forward "
1337 "declarations of it must match.");
1338 }
1339
1340 if (opcode == SpvOpTypePointer) {
1341 vtn_fail_if(val->type->deref != NULL,
1342 "While OpTypeForwardPointer can be used to provide a "
1343 "forward declaration of a pointer, OpTypePointer can "
1344 "only be used once for a given id.");
1345
1346 val->type->deref = vtn_value(b, w[3], vtn_value_type_type)->type;
1347
1348 /* Only certain storage classes use ArrayStride. The others (in
1349 * particular Workgroup) are expected to be laid out by the driver.
1350 */
1351 switch (storage_class) {
1352 case SpvStorageClassUniform:
1353 case SpvStorageClassPushConstant:
1354 case SpvStorageClassStorageBuffer:
1355 case SpvStorageClassPhysicalStorageBuffer:
1356 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1357 break;
1358 default:
1359 /* Nothing to do. */
1360 break;
1361 }
1362
1363 if (b->physical_ptrs) {
1364 switch (storage_class) {
1365 case SpvStorageClassFunction:
1366 case SpvStorageClassWorkgroup:
1367 case SpvStorageClassCrossWorkgroup:
1368 case SpvStorageClassUniformConstant:
1369 val->type->stride = align(glsl_get_cl_size(val->type->deref->type),
1370 glsl_get_cl_alignment(val->type->deref->type));
1371 break;
1372 default:
1373 break;
1374 }
1375 }
1376 }
1377 break;
1378 }
1379
1380 case SpvOpTypeImage: {
1381 val->type->base_type = vtn_base_type_image;
1382
1383 const struct vtn_type *sampled_type =
1384 vtn_value(b, w[2], vtn_value_type_type)->type;
1385
1386 vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
1387 glsl_get_bit_size(sampled_type->type) != 32,
1388 "Sampled type of OpTypeImage must be a 32-bit scalar");
1389
1390 enum glsl_sampler_dim dim;
1391 switch ((SpvDim)w[3]) {
1392 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
1393 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
1394 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
1395 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
1396 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
1397 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
1398 case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
1399 default:
1400 vtn_fail("Invalid SPIR-V image dimensionality: %s (%u)",
1401 spirv_dim_to_string((SpvDim)w[3]), w[3]);
1402 }
1403
1404 /* w[4]: as per Vulkan spec "Validation Rules within a Module",
1405 * The “Depth” operand of OpTypeImage is ignored.
1406 */
1407 bool is_array = w[5];
1408 bool multisampled = w[6];
1409 unsigned sampled = w[7];
1410 SpvImageFormat format = w[8];
1411
1412 if (count > 9)
1413 val->type->access_qualifier = w[9];
1414 else
1415 val->type->access_qualifier = SpvAccessQualifierReadWrite;
1416
1417 if (multisampled) {
1418 if (dim == GLSL_SAMPLER_DIM_2D)
1419 dim = GLSL_SAMPLER_DIM_MS;
1420 else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
1421 dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
1422 else
1423 vtn_fail("Unsupported multisampled image type");
1424 }
1425
1426 val->type->image_format = translate_image_format(b, format);
1427
1428 enum glsl_base_type sampled_base_type =
1429 glsl_get_base_type(sampled_type->type);
1430 if (sampled == 1) {
1431 val->type->sampled = true;
1432 val->type->type = glsl_sampler_type(dim, false, is_array,
1433 sampled_base_type);
1434 } else if (sampled == 2) {
1435 val->type->sampled = false;
1436 val->type->type = glsl_image_type(dim, is_array, sampled_base_type);
1437 } else {
1438 vtn_fail("We need to know if the image will be sampled");
1439 }
1440 break;
1441 }
1442
1443 case SpvOpTypeSampledImage:
1444 val->type->base_type = vtn_base_type_sampled_image;
1445 val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type;
1446 val->type->type = val->type->image->type;
1447 break;
1448
1449 case SpvOpTypeSampler:
1450 /* The actual sampler type here doesn't really matter. It gets
1451 * thrown away the moment you combine it with an image. What really
1452 * matters is that it's a sampler type as opposed to an integer type
1453 * so the backend knows what to do.
1454 */
1455 val->type->base_type = vtn_base_type_sampler;
1456 val->type->type = glsl_bare_sampler_type();
1457 break;
1458
1459 case SpvOpTypeOpaque:
1460 case SpvOpTypeEvent:
1461 case SpvOpTypeDeviceEvent:
1462 case SpvOpTypeReserveId:
1463 case SpvOpTypeQueue:
1464 case SpvOpTypePipe:
1465 default:
1466 vtn_fail_with_opcode("Unhandled opcode", opcode);
1467 }
1468
1469 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
1470
1471 if (val->type->base_type == vtn_base_type_struct &&
1472 (val->type->block || val->type->buffer_block)) {
1473 for (unsigned i = 0; i < val->type->length; i++) {
1474 vtn_fail_if(vtn_type_contains_block(b, val->type->members[i]),
1475 "Block and BufferBlock decorations cannot decorate a "
1476 "structure type that is nested at any level inside "
1477 "another structure type decorated with Block or "
1478 "BufferBlock.");
1479 }
1480 }
1481 }
1482
1483 static nir_constant *
1484 vtn_null_constant(struct vtn_builder *b, struct vtn_type *type)
1485 {
1486 nir_constant *c = rzalloc(b, nir_constant);
1487
1488 switch (type->base_type) {
1489 case vtn_base_type_scalar:
1490 case vtn_base_type_vector:
1491 /* Nothing to do here. It's already initialized to zero */
1492 break;
1493
1494 case vtn_base_type_pointer: {
1495 enum vtn_variable_mode mode = vtn_storage_class_to_mode(
1496 b, type->storage_class, type->deref, NULL);
1497 nir_address_format addr_format = vtn_mode_to_address_format(b, mode);
1498
1499 const nir_const_value *null_value = nir_address_format_null_value(addr_format);
1500 memcpy(c->values, null_value,
1501 sizeof(nir_const_value) * nir_address_format_num_components(addr_format));
1502 break;
1503 }
1504
1505 case vtn_base_type_void:
1506 case vtn_base_type_image:
1507 case vtn_base_type_sampler:
1508 case vtn_base_type_sampled_image:
1509 case vtn_base_type_function:
1510 /* For those we have to return something but it doesn't matter what. */
1511 break;
1512
1513 case vtn_base_type_matrix:
1514 case vtn_base_type_array:
1515 vtn_assert(type->length > 0);
1516 c->num_elements = type->length;
1517 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1518
1519 c->elements[0] = vtn_null_constant(b, type->array_element);
1520 for (unsigned i = 1; i < c->num_elements; i++)
1521 c->elements[i] = c->elements[0];
1522 break;
1523
1524 case vtn_base_type_struct:
1525 c->num_elements = type->length;
1526 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1527 for (unsigned i = 0; i < c->num_elements; i++)
1528 c->elements[i] = vtn_null_constant(b, type->members[i]);
1529 break;
1530
1531 default:
1532 vtn_fail("Invalid type for null constant");
1533 }
1534
1535 return c;
1536 }
1537
1538 static void
1539 spec_constant_decoration_cb(struct vtn_builder *b, UNUSED struct vtn_value *val,
1540 ASSERTED int member,
1541 const struct vtn_decoration *dec, void *data)
1542 {
1543 vtn_assert(member == -1);
1544 if (dec->decoration != SpvDecorationSpecId)
1545 return;
1546
1547 nir_const_value *value = data;
1548 for (unsigned i = 0; i < b->num_specializations; i++) {
1549 if (b->specializations[i].id == dec->operands[0]) {
1550 *value = b->specializations[i].value;
1551 return;
1552 }
1553 }
1554 }
1555
1556 static void
1557 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
1558 struct vtn_value *val,
1559 ASSERTED int member,
1560 const struct vtn_decoration *dec,
1561 UNUSED void *data)
1562 {
1563 vtn_assert(member == -1);
1564 if (dec->decoration != SpvDecorationBuiltIn ||
1565 dec->operands[0] != SpvBuiltInWorkgroupSize)
1566 return;
1567
1568 vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
1569 b->workgroup_size_builtin = val;
1570 }
1571
1572 static void
1573 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
1574 const uint32_t *w, unsigned count)
1575 {
1576 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
1577 val->constant = rzalloc(b, nir_constant);
1578 switch (opcode) {
1579 case SpvOpConstantTrue:
1580 case SpvOpConstantFalse:
1581 case SpvOpSpecConstantTrue:
1582 case SpvOpSpecConstantFalse: {
1583 vtn_fail_if(val->type->type != glsl_bool_type(),
1584 "Result type of %s must be OpTypeBool",
1585 spirv_op_to_string(opcode));
1586
1587 bool bval = (opcode == SpvOpConstantTrue ||
1588 opcode == SpvOpSpecConstantTrue);
1589
1590 nir_const_value u32val = nir_const_value_for_uint(bval, 32);
1591
1592 if (opcode == SpvOpSpecConstantTrue ||
1593 opcode == SpvOpSpecConstantFalse)
1594 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &u32val);
1595
1596 val->constant->values[0].b = u32val.u32 != 0;
1597 break;
1598 }
1599
1600 case SpvOpConstant:
1601 case SpvOpSpecConstant: {
1602 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1603 "Result type of %s must be a scalar",
1604 spirv_op_to_string(opcode));
1605 int bit_size = glsl_get_bit_size(val->type->type);
1606 switch (bit_size) {
1607 case 64:
1608 val->constant->values[0].u64 = vtn_u64_literal(&w[3]);
1609 break;
1610 case 32:
1611 val->constant->values[0].u32 = w[3];
1612 break;
1613 case 16:
1614 val->constant->values[0].u16 = w[3];
1615 break;
1616 case 8:
1617 val->constant->values[0].u8 = w[3];
1618 break;
1619 default:
1620 vtn_fail("Unsupported SpvOpConstant bit size: %u", bit_size);
1621 }
1622
1623 if (opcode == SpvOpSpecConstant)
1624 vtn_foreach_decoration(b, val, spec_constant_decoration_cb,
1625 &val->constant->values[0]);
1626 break;
1627 }
1628
1629 case SpvOpSpecConstantComposite:
1630 case SpvOpConstantComposite: {
1631 unsigned elem_count = count - 3;
1632 vtn_fail_if(elem_count != val->type->length,
1633 "%s has %u constituents, expected %u",
1634 spirv_op_to_string(opcode), elem_count, val->type->length);
1635
1636 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1637 for (unsigned i = 0; i < elem_count; i++) {
1638 struct vtn_value *val = vtn_untyped_value(b, w[i + 3]);
1639
1640 if (val->value_type == vtn_value_type_constant) {
1641 elems[i] = val->constant;
1642 } else {
1643 vtn_fail_if(val->value_type != vtn_value_type_undef,
1644 "only constants or undefs allowed for "
1645 "SpvOpConstantComposite");
1646 /* to make it easier, just insert a NULL constant for now */
1647 elems[i] = vtn_null_constant(b, val->type);
1648 }
1649 }
1650
1651 switch (val->type->base_type) {
1652 case vtn_base_type_vector: {
1653 assert(glsl_type_is_vector(val->type->type));
1654 for (unsigned i = 0; i < elem_count; i++)
1655 val->constant->values[i] = elems[i]->values[0];
1656 break;
1657 }
1658
1659 case vtn_base_type_matrix:
1660 case vtn_base_type_struct:
1661 case vtn_base_type_array:
1662 ralloc_steal(val->constant, elems);
1663 val->constant->num_elements = elem_count;
1664 val->constant->elements = elems;
1665 break;
1666
1667 default:
1668 vtn_fail("Result type of %s must be a composite type",
1669 spirv_op_to_string(opcode));
1670 }
1671 break;
1672 }
1673
1674 case SpvOpSpecConstantOp: {
1675 nir_const_value u32op = nir_const_value_for_uint(w[3], 32);
1676 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &u32op);
1677 SpvOp opcode = u32op.u32;
1678 switch (opcode) {
1679 case SpvOpVectorShuffle: {
1680 struct vtn_value *v0 = &b->values[w[4]];
1681 struct vtn_value *v1 = &b->values[w[5]];
1682
1683 vtn_assert(v0->value_type == vtn_value_type_constant ||
1684 v0->value_type == vtn_value_type_undef);
1685 vtn_assert(v1->value_type == vtn_value_type_constant ||
1686 v1->value_type == vtn_value_type_undef);
1687
1688 unsigned len0 = glsl_get_vector_elements(v0->type->type);
1689 unsigned len1 = glsl_get_vector_elements(v1->type->type);
1690
1691 vtn_assert(len0 + len1 < 16);
1692
1693 unsigned bit_size = glsl_get_bit_size(val->type->type);
1694 unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
1695 unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
1696
1697 vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
1698 (void)bit_size0; (void)bit_size1;
1699
1700 nir_const_value undef = { .u64 = 0xdeadbeefdeadbeef };
1701 nir_const_value combined[NIR_MAX_VEC_COMPONENTS * 2];
1702
1703 if (v0->value_type == vtn_value_type_constant) {
1704 for (unsigned i = 0; i < len0; i++)
1705 combined[i] = v0->constant->values[i];
1706 }
1707 if (v1->value_type == vtn_value_type_constant) {
1708 for (unsigned i = 0; i < len1; i++)
1709 combined[len0 + i] = v1->constant->values[i];
1710 }
1711
1712 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1713 uint32_t comp = w[i + 6];
1714 if (comp == (uint32_t)-1) {
1715 /* If component is not used, set the value to a known constant
1716 * to detect if it is wrongly used.
1717 */
1718 val->constant->values[j] = undef;
1719 } else {
1720 vtn_fail_if(comp >= len0 + len1,
1721 "All Component literals must either be FFFFFFFF "
1722 "or in [0, N - 1] (inclusive).");
1723 val->constant->values[j] = combined[comp];
1724 }
1725 }
1726 break;
1727 }
1728
1729 case SpvOpCompositeExtract:
1730 case SpvOpCompositeInsert: {
1731 struct vtn_value *comp;
1732 unsigned deref_start;
1733 struct nir_constant **c;
1734 if (opcode == SpvOpCompositeExtract) {
1735 comp = vtn_value(b, w[4], vtn_value_type_constant);
1736 deref_start = 5;
1737 c = &comp->constant;
1738 } else {
1739 comp = vtn_value(b, w[5], vtn_value_type_constant);
1740 deref_start = 6;
1741 val->constant = nir_constant_clone(comp->constant,
1742 (nir_variable *)b);
1743 c = &val->constant;
1744 }
1745
1746 int elem = -1;
1747 const struct vtn_type *type = comp->type;
1748 for (unsigned i = deref_start; i < count; i++) {
1749 vtn_fail_if(w[i] > type->length,
1750 "%uth index of %s is %u but the type has only "
1751 "%u elements", i - deref_start,
1752 spirv_op_to_string(opcode), w[i], type->length);
1753
1754 switch (type->base_type) {
1755 case vtn_base_type_vector:
1756 elem = w[i];
1757 type = type->array_element;
1758 break;
1759
1760 case vtn_base_type_matrix:
1761 case vtn_base_type_array:
1762 c = &(*c)->elements[w[i]];
1763 type = type->array_element;
1764 break;
1765
1766 case vtn_base_type_struct:
1767 c = &(*c)->elements[w[i]];
1768 type = type->members[w[i]];
1769 break;
1770
1771 default:
1772 vtn_fail("%s must only index into composite types",
1773 spirv_op_to_string(opcode));
1774 }
1775 }
1776
1777 if (opcode == SpvOpCompositeExtract) {
1778 if (elem == -1) {
1779 val->constant = *c;
1780 } else {
1781 unsigned num_components = type->length;
1782 for (unsigned i = 0; i < num_components; i++)
1783 val->constant->values[i] = (*c)->values[elem + i];
1784 }
1785 } else {
1786 struct vtn_value *insert =
1787 vtn_value(b, w[4], vtn_value_type_constant);
1788 vtn_assert(insert->type == type);
1789 if (elem == -1) {
1790 *c = insert->constant;
1791 } else {
1792 unsigned num_components = type->length;
1793 for (unsigned i = 0; i < num_components; i++)
1794 (*c)->values[elem + i] = insert->constant->values[i];
1795 }
1796 }
1797 break;
1798 }
1799
1800 default: {
1801 bool swap;
1802 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
1803 nir_alu_type src_alu_type = dst_alu_type;
1804 unsigned num_components = glsl_get_vector_elements(val->type->type);
1805 unsigned bit_size;
1806
1807 vtn_assert(count <= 7);
1808
1809 switch (opcode) {
1810 case SpvOpSConvert:
1811 case SpvOpFConvert:
1812 case SpvOpUConvert:
1813 /* We have a source in a conversion */
1814 src_alu_type =
1815 nir_get_nir_type_for_glsl_type(
1816 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1817 /* We use the bitsize of the conversion source to evaluate the opcode later */
1818 bit_size = glsl_get_bit_size(
1819 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1820 break;
1821 default:
1822 bit_size = glsl_get_bit_size(val->type->type);
1823 };
1824
1825 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
1826 nir_alu_type_get_type_size(src_alu_type),
1827 nir_alu_type_get_type_size(dst_alu_type));
1828 nir_const_value src[3][NIR_MAX_VEC_COMPONENTS];
1829
1830 for (unsigned i = 0; i < count - 4; i++) {
1831 struct vtn_value *src_val =
1832 vtn_value(b, w[4 + i], vtn_value_type_constant);
1833
1834 /* If this is an unsized source, pull the bit size from the
1835 * source; otherwise, we'll use the bit size from the destination.
1836 */
1837 if (!nir_alu_type_get_type_size(nir_op_infos[op].input_types[i]))
1838 bit_size = glsl_get_bit_size(src_val->type->type);
1839
1840 unsigned src_comps = nir_op_infos[op].input_sizes[i] ?
1841 nir_op_infos[op].input_sizes[i] :
1842 num_components;
1843
1844 unsigned j = swap ? 1 - i : i;
1845 for (unsigned c = 0; c < src_comps; c++)
1846 src[j][c] = src_val->constant->values[c];
1847 }
1848
1849 /* fix up fixed size sources */
1850 switch (op) {
1851 case nir_op_ishl:
1852 case nir_op_ishr:
1853 case nir_op_ushr: {
1854 if (bit_size == 32)
1855 break;
1856 for (unsigned i = 0; i < num_components; ++i) {
1857 switch (bit_size) {
1858 case 64: src[1][i].u32 = src[1][i].u64; break;
1859 case 16: src[1][i].u32 = src[1][i].u16; break;
1860 case 8: src[1][i].u32 = src[1][i].u8; break;
1861 }
1862 }
1863 break;
1864 }
1865 default:
1866 break;
1867 }
1868
1869 nir_const_value *srcs[3] = {
1870 src[0], src[1], src[2],
1871 };
1872 nir_eval_const_opcode(op, val->constant->values,
1873 num_components, bit_size, srcs,
1874 b->shader->info.float_controls_execution_mode);
1875 break;
1876 } /* default */
1877 }
1878 break;
1879 }
1880
1881 case SpvOpConstantNull:
1882 val->constant = vtn_null_constant(b, val->type);
1883 break;
1884
1885 case SpvOpConstantSampler:
1886 vtn_fail("OpConstantSampler requires Kernel Capability");
1887 break;
1888
1889 default:
1890 vtn_fail_with_opcode("Unhandled opcode", opcode);
1891 }
1892
1893 /* Now that we have the value, update the workgroup size if needed */
1894 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1895 }
1896
1897 SpvMemorySemanticsMask
1898 vtn_storage_class_to_memory_semantics(SpvStorageClass sc)
1899 {
1900 switch (sc) {
1901 case SpvStorageClassStorageBuffer:
1902 case SpvStorageClassPhysicalStorageBuffer:
1903 return SpvMemorySemanticsUniformMemoryMask;
1904 case SpvStorageClassWorkgroup:
1905 return SpvMemorySemanticsWorkgroupMemoryMask;
1906 default:
1907 return SpvMemorySemanticsMaskNone;
1908 }
1909 }
1910
1911 static void
1912 vtn_split_barrier_semantics(struct vtn_builder *b,
1913 SpvMemorySemanticsMask semantics,
1914 SpvMemorySemanticsMask *before,
1915 SpvMemorySemanticsMask *after)
1916 {
1917 /* For memory semantics embedded in operations, we split them into up to
1918 * two barriers, to be added before and after the operation. This is less
1919 * strict than if we propagated until the final backend stage, but still
1920 * result in correct execution.
1921 *
1922 * A further improvement could be pipe this information (and use!) into the
1923 * next compiler layers, at the expense of making the handling of barriers
1924 * more complicated.
1925 */
1926
1927 *before = SpvMemorySemanticsMaskNone;
1928 *after = SpvMemorySemanticsMaskNone;
1929
1930 SpvMemorySemanticsMask order_semantics =
1931 semantics & (SpvMemorySemanticsAcquireMask |
1932 SpvMemorySemanticsReleaseMask |
1933 SpvMemorySemanticsAcquireReleaseMask |
1934 SpvMemorySemanticsSequentiallyConsistentMask);
1935
1936 if (util_bitcount(order_semantics) > 1) {
1937 /* Old GLSLang versions incorrectly set all the ordering bits. This was
1938 * fixed in c51287d744fb6e7e9ccc09f6f8451e6c64b1dad6 of glslang repo,
1939 * and it is in GLSLang since revision "SPIRV99.1321" (from Jul-2016).
1940 */
1941 vtn_warn("Multiple memory ordering semantics specified, "
1942 "assuming AcquireRelease.");
1943 order_semantics = SpvMemorySemanticsAcquireReleaseMask;
1944 }
1945
1946 const SpvMemorySemanticsMask av_vis_semantics =
1947 semantics & (SpvMemorySemanticsMakeAvailableMask |
1948 SpvMemorySemanticsMakeVisibleMask);
1949
1950 const SpvMemorySemanticsMask storage_semantics =
1951 semantics & (SpvMemorySemanticsUniformMemoryMask |
1952 SpvMemorySemanticsSubgroupMemoryMask |
1953 SpvMemorySemanticsWorkgroupMemoryMask |
1954 SpvMemorySemanticsCrossWorkgroupMemoryMask |
1955 SpvMemorySemanticsAtomicCounterMemoryMask |
1956 SpvMemorySemanticsImageMemoryMask |
1957 SpvMemorySemanticsOutputMemoryMask);
1958
1959 const SpvMemorySemanticsMask other_semantics =
1960 semantics & ~(order_semantics | av_vis_semantics | storage_semantics);
1961
1962 if (other_semantics)
1963 vtn_warn("Ignoring unhandled memory semantics: %u\n", other_semantics);
1964
1965 /* SequentiallyConsistent is treated as AcquireRelease. */
1966
1967 /* The RELEASE barrier happens BEFORE the operation, and it is usually
1968 * associated with a Store. All the write operations with a matching
1969 * semantics will not be reordered after the Store.
1970 */
1971 if (order_semantics & (SpvMemorySemanticsReleaseMask |
1972 SpvMemorySemanticsAcquireReleaseMask |
1973 SpvMemorySemanticsSequentiallyConsistentMask)) {
1974 *before |= SpvMemorySemanticsReleaseMask | storage_semantics;
1975 }
1976
1977 /* The ACQUIRE barrier happens AFTER the operation, and it is usually
1978 * associated with a Load. All the operations with a matching semantics
1979 * will not be reordered before the Load.
1980 */
1981 if (order_semantics & (SpvMemorySemanticsAcquireMask |
1982 SpvMemorySemanticsAcquireReleaseMask |
1983 SpvMemorySemanticsSequentiallyConsistentMask)) {
1984 *after |= SpvMemorySemanticsAcquireMask | storage_semantics;
1985 }
1986
1987 if (av_vis_semantics & SpvMemorySemanticsMakeVisibleMask)
1988 *before |= SpvMemorySemanticsMakeVisibleMask | storage_semantics;
1989
1990 if (av_vis_semantics & SpvMemorySemanticsMakeAvailableMask)
1991 *after |= SpvMemorySemanticsMakeAvailableMask | storage_semantics;
1992 }
1993
1994 static void
1995 vtn_emit_scoped_memory_barrier(struct vtn_builder *b, SpvScope scope,
1996 SpvMemorySemanticsMask semantics)
1997 {
1998 nir_memory_semantics nir_semantics = 0;
1999
2000 SpvMemorySemanticsMask order_semantics =
2001 semantics & (SpvMemorySemanticsAcquireMask |
2002 SpvMemorySemanticsReleaseMask |
2003 SpvMemorySemanticsAcquireReleaseMask |
2004 SpvMemorySemanticsSequentiallyConsistentMask);
2005
2006 if (util_bitcount(order_semantics) > 1) {
2007 /* Old GLSLang versions incorrectly set all the ordering bits. This was
2008 * fixed in c51287d744fb6e7e9ccc09f6f8451e6c64b1dad6 of glslang repo,
2009 * and it is in GLSLang since revision "SPIRV99.1321" (from Jul-2016).
2010 */
2011 vtn_warn("Multiple memory ordering semantics bits specified, "
2012 "assuming AcquireRelease.");
2013 order_semantics = SpvMemorySemanticsAcquireReleaseMask;
2014 }
2015
2016 switch (order_semantics) {
2017 case 0:
2018 /* Not an ordering barrier. */
2019 break;
2020
2021 case SpvMemorySemanticsAcquireMask:
2022 nir_semantics = NIR_MEMORY_ACQUIRE;
2023 break;
2024
2025 case SpvMemorySemanticsReleaseMask:
2026 nir_semantics = NIR_MEMORY_RELEASE;
2027 break;
2028
2029 case SpvMemorySemanticsSequentiallyConsistentMask:
2030 /* Fall through. Treated as AcquireRelease in Vulkan. */
2031 case SpvMemorySemanticsAcquireReleaseMask:
2032 nir_semantics = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE;
2033 break;
2034
2035 default:
2036 unreachable("Invalid memory order semantics");
2037 }
2038
2039 if (semantics & SpvMemorySemanticsMakeAvailableMask) {
2040 vtn_fail_if(!b->options->caps.vk_memory_model,
2041 "To use MakeAvailable memory semantics the VulkanMemoryModel "
2042 "capability must be declared.");
2043 nir_semantics |= NIR_MEMORY_MAKE_AVAILABLE;
2044 }
2045
2046 if (semantics & SpvMemorySemanticsMakeVisibleMask) {
2047 vtn_fail_if(!b->options->caps.vk_memory_model,
2048 "To use MakeVisible memory semantics the VulkanMemoryModel "
2049 "capability must be declared.");
2050 nir_semantics |= NIR_MEMORY_MAKE_VISIBLE;
2051 }
2052
2053 /* Vulkan Environment for SPIR-V says "SubgroupMemory, CrossWorkgroupMemory,
2054 * and AtomicCounterMemory are ignored".
2055 */
2056 semantics &= ~(SpvMemorySemanticsSubgroupMemoryMask |
2057 SpvMemorySemanticsCrossWorkgroupMemoryMask |
2058 SpvMemorySemanticsAtomicCounterMemoryMask);
2059
2060 /* TODO: Consider adding nir_var_mem_image mode to NIR so it can be used
2061 * for SpvMemorySemanticsImageMemoryMask.
2062 */
2063
2064 nir_variable_mode modes = 0;
2065 if (semantics & (SpvMemorySemanticsUniformMemoryMask |
2066 SpvMemorySemanticsImageMemoryMask)) {
2067 modes |= nir_var_uniform |
2068 nir_var_mem_ubo |
2069 nir_var_mem_ssbo |
2070 nir_var_mem_global;
2071 }
2072 if (semantics & SpvMemorySemanticsWorkgroupMemoryMask)
2073 modes |= nir_var_mem_shared;
2074 if (semantics & SpvMemorySemanticsOutputMemoryMask) {
2075 modes |= nir_var_shader_out;
2076 }
2077
2078 /* No barrier to add. */
2079 if (nir_semantics == 0 || modes == 0)
2080 return;
2081
2082 nir_scope nir_scope;
2083 switch (scope) {
2084 case SpvScopeDevice:
2085 vtn_fail_if(b->options->caps.vk_memory_model &&
2086 !b->options->caps.vk_memory_model_device_scope,
2087 "If the Vulkan memory model is declared and any instruction "
2088 "uses Device scope, the VulkanMemoryModelDeviceScope "
2089 "capability must be declared.");
2090 nir_scope = NIR_SCOPE_DEVICE;
2091 break;
2092
2093 case SpvScopeQueueFamily:
2094 vtn_fail_if(!b->options->caps.vk_memory_model,
2095 "To use Queue Family scope, the VulkanMemoryModel capability "
2096 "must be declared.");
2097 nir_scope = NIR_SCOPE_QUEUE_FAMILY;
2098 break;
2099
2100 case SpvScopeWorkgroup:
2101 nir_scope = NIR_SCOPE_WORKGROUP;
2102 break;
2103
2104 case SpvScopeSubgroup:
2105 nir_scope = NIR_SCOPE_SUBGROUP;
2106 break;
2107
2108 case SpvScopeInvocation:
2109 nir_scope = NIR_SCOPE_INVOCATION;
2110 break;
2111
2112 default:
2113 vtn_fail("Invalid memory scope");
2114 }
2115
2116 nir_intrinsic_instr *intrin =
2117 nir_intrinsic_instr_create(b->shader, nir_intrinsic_scoped_memory_barrier);
2118 nir_intrinsic_set_memory_semantics(intrin, nir_semantics);
2119
2120 nir_intrinsic_set_memory_modes(intrin, modes);
2121 nir_intrinsic_set_memory_scope(intrin, nir_scope);
2122 nir_builder_instr_insert(&b->nb, &intrin->instr);
2123 }
2124
2125 struct vtn_ssa_value *
2126 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
2127 {
2128 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
2129 val->type = type;
2130
2131 if (!glsl_type_is_vector_or_scalar(type)) {
2132 unsigned elems = glsl_get_length(type);
2133 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
2134 for (unsigned i = 0; i < elems; i++) {
2135 const struct glsl_type *child_type;
2136
2137 switch (glsl_get_base_type(type)) {
2138 case GLSL_TYPE_INT:
2139 case GLSL_TYPE_UINT:
2140 case GLSL_TYPE_INT16:
2141 case GLSL_TYPE_UINT16:
2142 case GLSL_TYPE_UINT8:
2143 case GLSL_TYPE_INT8:
2144 case GLSL_TYPE_INT64:
2145 case GLSL_TYPE_UINT64:
2146 case GLSL_TYPE_BOOL:
2147 case GLSL_TYPE_FLOAT:
2148 case GLSL_TYPE_FLOAT16:
2149 case GLSL_TYPE_DOUBLE:
2150 child_type = glsl_get_column_type(type);
2151 break;
2152 case GLSL_TYPE_ARRAY:
2153 child_type = glsl_get_array_element(type);
2154 break;
2155 case GLSL_TYPE_STRUCT:
2156 case GLSL_TYPE_INTERFACE:
2157 child_type = glsl_get_struct_field(type, i);
2158 break;
2159 default:
2160 vtn_fail("unkown base type");
2161 }
2162
2163 val->elems[i] = vtn_create_ssa_value(b, child_type);
2164 }
2165 }
2166
2167 return val;
2168 }
2169
2170 static nir_tex_src
2171 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
2172 {
2173 nir_tex_src src;
2174 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
2175 src.src_type = type;
2176 return src;
2177 }
2178
2179 static uint32_t
2180 image_operand_arg(struct vtn_builder *b, const uint32_t *w, uint32_t count,
2181 uint32_t mask_idx, SpvImageOperandsMask op)
2182 {
2183 static const SpvImageOperandsMask ops_with_arg =
2184 SpvImageOperandsBiasMask |
2185 SpvImageOperandsLodMask |
2186 SpvImageOperandsGradMask |
2187 SpvImageOperandsConstOffsetMask |
2188 SpvImageOperandsOffsetMask |
2189 SpvImageOperandsConstOffsetsMask |
2190 SpvImageOperandsSampleMask |
2191 SpvImageOperandsMinLodMask |
2192 SpvImageOperandsMakeTexelAvailableMask |
2193 SpvImageOperandsMakeTexelVisibleMask;
2194
2195 assert(util_bitcount(op) == 1);
2196 assert(w[mask_idx] & op);
2197 assert(op & ops_with_arg);
2198
2199 uint32_t idx = util_bitcount(w[mask_idx] & (op - 1) & ops_with_arg) + 1;
2200
2201 /* Adjust indices for operands with two arguments. */
2202 static const SpvImageOperandsMask ops_with_two_args =
2203 SpvImageOperandsGradMask;
2204 idx += util_bitcount(w[mask_idx] & (op - 1) & ops_with_two_args);
2205
2206 idx += mask_idx;
2207
2208 vtn_fail_if(idx + (op & ops_with_two_args ? 1 : 0) >= count,
2209 "Image op claims to have %s but does not enough "
2210 "following operands", spirv_imageoperands_to_string(op));
2211
2212 return idx;
2213 }
2214
2215 static void
2216 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
2217 const uint32_t *w, unsigned count)
2218 {
2219 if (opcode == SpvOpSampledImage) {
2220 struct vtn_value *val =
2221 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
2222 val->sampled_image = ralloc(b, struct vtn_sampled_image);
2223 val->sampled_image->image =
2224 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2225 val->sampled_image->sampler =
2226 vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
2227 return;
2228 } else if (opcode == SpvOpImage) {
2229 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
2230 if (src_val->value_type == vtn_value_type_sampled_image) {
2231 vtn_push_value_pointer(b, w[2], src_val->sampled_image->image);
2232 } else {
2233 vtn_assert(src_val->value_type == vtn_value_type_pointer);
2234 vtn_push_value_pointer(b, w[2], src_val->pointer);
2235 }
2236 return;
2237 }
2238
2239 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
2240
2241 struct vtn_pointer *image = NULL, *sampler = NULL;
2242 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
2243 if (sampled_val->value_type == vtn_value_type_sampled_image) {
2244 image = sampled_val->sampled_image->image;
2245 sampler = sampled_val->sampled_image->sampler;
2246 } else {
2247 vtn_assert(sampled_val->value_type == vtn_value_type_pointer);
2248 image = sampled_val->pointer;
2249 }
2250
2251 nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image);
2252 nir_deref_instr *sampler_deref =
2253 sampler ? vtn_pointer_to_deref(b, sampler) : NULL;
2254
2255 const struct glsl_type *image_type = sampled_val->type->type;
2256 const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
2257 const bool is_array = glsl_sampler_type_is_array(image_type);
2258 nir_alu_type dest_type = nir_type_invalid;
2259
2260 /* Figure out the base texture operation */
2261 nir_texop texop;
2262 switch (opcode) {
2263 case SpvOpImageSampleImplicitLod:
2264 case SpvOpImageSampleDrefImplicitLod:
2265 case SpvOpImageSampleProjImplicitLod:
2266 case SpvOpImageSampleProjDrefImplicitLod:
2267 texop = nir_texop_tex;
2268 break;
2269
2270 case SpvOpImageSampleExplicitLod:
2271 case SpvOpImageSampleDrefExplicitLod:
2272 case SpvOpImageSampleProjExplicitLod:
2273 case SpvOpImageSampleProjDrefExplicitLod:
2274 texop = nir_texop_txl;
2275 break;
2276
2277 case SpvOpImageFetch:
2278 if (sampler_dim == GLSL_SAMPLER_DIM_MS) {
2279 texop = nir_texop_txf_ms;
2280 } else {
2281 texop = nir_texop_txf;
2282 }
2283 break;
2284
2285 case SpvOpImageGather:
2286 case SpvOpImageDrefGather:
2287 texop = nir_texop_tg4;
2288 break;
2289
2290 case SpvOpImageQuerySizeLod:
2291 case SpvOpImageQuerySize:
2292 texop = nir_texop_txs;
2293 dest_type = nir_type_int;
2294 break;
2295
2296 case SpvOpImageQueryLod:
2297 texop = nir_texop_lod;
2298 dest_type = nir_type_float;
2299 break;
2300
2301 case SpvOpImageQueryLevels:
2302 texop = nir_texop_query_levels;
2303 dest_type = nir_type_int;
2304 break;
2305
2306 case SpvOpImageQuerySamples:
2307 texop = nir_texop_texture_samples;
2308 dest_type = nir_type_int;
2309 break;
2310
2311 case SpvOpFragmentFetchAMD:
2312 texop = nir_texop_fragment_fetch;
2313 break;
2314
2315 case SpvOpFragmentMaskFetchAMD:
2316 texop = nir_texop_fragment_mask_fetch;
2317 break;
2318
2319 default:
2320 vtn_fail_with_opcode("Unhandled opcode", opcode);
2321 }
2322
2323 nir_tex_src srcs[10]; /* 10 should be enough */
2324 nir_tex_src *p = srcs;
2325
2326 p->src = nir_src_for_ssa(&image_deref->dest.ssa);
2327 p->src_type = nir_tex_src_texture_deref;
2328 p++;
2329
2330 switch (texop) {
2331 case nir_texop_tex:
2332 case nir_texop_txb:
2333 case nir_texop_txl:
2334 case nir_texop_txd:
2335 case nir_texop_tg4:
2336 case nir_texop_lod:
2337 vtn_fail_if(sampler == NULL,
2338 "%s requires an image of type OpTypeSampledImage",
2339 spirv_op_to_string(opcode));
2340 p->src = nir_src_for_ssa(&sampler_deref->dest.ssa);
2341 p->src_type = nir_tex_src_sampler_deref;
2342 p++;
2343 break;
2344 case nir_texop_txf:
2345 case nir_texop_txf_ms:
2346 case nir_texop_txs:
2347 case nir_texop_query_levels:
2348 case nir_texop_texture_samples:
2349 case nir_texop_samples_identical:
2350 case nir_texop_fragment_fetch:
2351 case nir_texop_fragment_mask_fetch:
2352 /* These don't */
2353 break;
2354 case nir_texop_txf_ms_fb:
2355 vtn_fail("unexpected nir_texop_txf_ms_fb");
2356 break;
2357 case nir_texop_txf_ms_mcs:
2358 vtn_fail("unexpected nir_texop_txf_ms_mcs");
2359 case nir_texop_tex_prefetch:
2360 vtn_fail("unexpected nir_texop_tex_prefetch");
2361 }
2362
2363 unsigned idx = 4;
2364
2365 struct nir_ssa_def *coord;
2366 unsigned coord_components;
2367 switch (opcode) {
2368 case SpvOpImageSampleImplicitLod:
2369 case SpvOpImageSampleExplicitLod:
2370 case SpvOpImageSampleDrefImplicitLod:
2371 case SpvOpImageSampleDrefExplicitLod:
2372 case SpvOpImageSampleProjImplicitLod:
2373 case SpvOpImageSampleProjExplicitLod:
2374 case SpvOpImageSampleProjDrefImplicitLod:
2375 case SpvOpImageSampleProjDrefExplicitLod:
2376 case SpvOpImageFetch:
2377 case SpvOpImageGather:
2378 case SpvOpImageDrefGather:
2379 case SpvOpImageQueryLod:
2380 case SpvOpFragmentFetchAMD:
2381 case SpvOpFragmentMaskFetchAMD: {
2382 /* All these types have the coordinate as their first real argument */
2383 coord_components = glsl_get_sampler_dim_coordinate_components(sampler_dim);
2384
2385 if (is_array && texop != nir_texop_lod)
2386 coord_components++;
2387
2388 coord = vtn_ssa_value(b, w[idx++])->def;
2389 p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
2390 (1 << coord_components) - 1));
2391 p->src_type = nir_tex_src_coord;
2392 p++;
2393 break;
2394 }
2395
2396 default:
2397 coord = NULL;
2398 coord_components = 0;
2399 break;
2400 }
2401
2402 switch (opcode) {
2403 case SpvOpImageSampleProjImplicitLod:
2404 case SpvOpImageSampleProjExplicitLod:
2405 case SpvOpImageSampleProjDrefImplicitLod:
2406 case SpvOpImageSampleProjDrefExplicitLod:
2407 /* These have the projector as the last coordinate component */
2408 p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
2409 p->src_type = nir_tex_src_projector;
2410 p++;
2411 break;
2412
2413 default:
2414 break;
2415 }
2416
2417 bool is_shadow = false;
2418 unsigned gather_component = 0;
2419 switch (opcode) {
2420 case SpvOpImageSampleDrefImplicitLod:
2421 case SpvOpImageSampleDrefExplicitLod:
2422 case SpvOpImageSampleProjDrefImplicitLod:
2423 case SpvOpImageSampleProjDrefExplicitLod:
2424 case SpvOpImageDrefGather:
2425 /* These all have an explicit depth value as their next source */
2426 is_shadow = true;
2427 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
2428 break;
2429
2430 case SpvOpImageGather:
2431 /* This has a component as its next source */
2432 gather_component = vtn_constant_uint(b, w[idx++]);
2433 break;
2434
2435 default:
2436 break;
2437 }
2438
2439 /* For OpImageQuerySizeLod, we always have an LOD */
2440 if (opcode == SpvOpImageQuerySizeLod)
2441 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2442
2443 /* For OpFragmentFetchAMD, we always have a multisample index */
2444 if (opcode == SpvOpFragmentFetchAMD)
2445 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
2446
2447 /* Now we need to handle some number of optional arguments */
2448 struct vtn_value *gather_offsets = NULL;
2449 if (idx < count) {
2450 uint32_t operands = w[idx];
2451
2452 if (operands & SpvImageOperandsBiasMask) {
2453 vtn_assert(texop == nir_texop_tex ||
2454 texop == nir_texop_tg4);
2455 if (texop == nir_texop_tex)
2456 texop = nir_texop_txb;
2457 uint32_t arg = image_operand_arg(b, w, count, idx,
2458 SpvImageOperandsBiasMask);
2459 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_bias);
2460 }
2461
2462 if (operands & SpvImageOperandsLodMask) {
2463 vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
2464 texop == nir_texop_txs || texop == nir_texop_tg4);
2465 uint32_t arg = image_operand_arg(b, w, count, idx,
2466 SpvImageOperandsLodMask);
2467 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_lod);
2468 }
2469
2470 if (operands & SpvImageOperandsGradMask) {
2471 vtn_assert(texop == nir_texop_txl);
2472 texop = nir_texop_txd;
2473 uint32_t arg = image_operand_arg(b, w, count, idx,
2474 SpvImageOperandsGradMask);
2475 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_ddx);
2476 (*p++) = vtn_tex_src(b, w[arg + 1], nir_tex_src_ddy);
2477 }
2478
2479 vtn_fail_if(util_bitcount(operands & (SpvImageOperandsConstOffsetsMask |
2480 SpvImageOperandsOffsetMask |
2481 SpvImageOperandsConstOffsetMask)) > 1,
2482 "At most one of the ConstOffset, Offset, and ConstOffsets "
2483 "image operands can be used on a given instruction.");
2484
2485 if (operands & SpvImageOperandsOffsetMask) {
2486 uint32_t arg = image_operand_arg(b, w, count, idx,
2487 SpvImageOperandsOffsetMask);
2488 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_offset);
2489 }
2490
2491 if (operands & SpvImageOperandsConstOffsetMask) {
2492 uint32_t arg = image_operand_arg(b, w, count, idx,
2493 SpvImageOperandsConstOffsetMask);
2494 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_offset);
2495 }
2496
2497 if (operands & SpvImageOperandsConstOffsetsMask) {
2498 vtn_assert(texop == nir_texop_tg4);
2499 uint32_t arg = image_operand_arg(b, w, count, idx,
2500 SpvImageOperandsConstOffsetsMask);
2501 gather_offsets = vtn_value(b, w[arg], vtn_value_type_constant);
2502 }
2503
2504 if (operands & SpvImageOperandsSampleMask) {
2505 vtn_assert(texop == nir_texop_txf_ms);
2506 uint32_t arg = image_operand_arg(b, w, count, idx,
2507 SpvImageOperandsSampleMask);
2508 texop = nir_texop_txf_ms;
2509 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_ms_index);
2510 }
2511
2512 if (operands & SpvImageOperandsMinLodMask) {
2513 vtn_assert(texop == nir_texop_tex ||
2514 texop == nir_texop_txb ||
2515 texop == nir_texop_txd);
2516 uint32_t arg = image_operand_arg(b, w, count, idx,
2517 SpvImageOperandsMinLodMask);
2518 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_min_lod);
2519 }
2520 }
2521
2522 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
2523 instr->op = texop;
2524
2525 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
2526
2527 instr->coord_components = coord_components;
2528 instr->sampler_dim = sampler_dim;
2529 instr->is_array = is_array;
2530 instr->is_shadow = is_shadow;
2531 instr->is_new_style_shadow =
2532 is_shadow && glsl_get_components(ret_type->type) == 1;
2533 instr->component = gather_component;
2534
2535 if (image && (image->access & ACCESS_NON_UNIFORM))
2536 instr->texture_non_uniform = true;
2537
2538 if (sampler && (sampler->access & ACCESS_NON_UNIFORM))
2539 instr->sampler_non_uniform = true;
2540
2541 /* for non-query ops, get dest_type from sampler type */
2542 if (dest_type == nir_type_invalid) {
2543 switch (glsl_get_sampler_result_type(image_type)) {
2544 case GLSL_TYPE_FLOAT: dest_type = nir_type_float; break;
2545 case GLSL_TYPE_INT: dest_type = nir_type_int; break;
2546 case GLSL_TYPE_UINT: dest_type = nir_type_uint; break;
2547 case GLSL_TYPE_BOOL: dest_type = nir_type_bool; break;
2548 default:
2549 vtn_fail("Invalid base type for sampler result");
2550 }
2551 }
2552
2553 instr->dest_type = dest_type;
2554
2555 nir_ssa_dest_init(&instr->instr, &instr->dest,
2556 nir_tex_instr_dest_size(instr), 32, NULL);
2557
2558 vtn_assert(glsl_get_vector_elements(ret_type->type) ==
2559 nir_tex_instr_dest_size(instr));
2560
2561 if (gather_offsets) {
2562 vtn_fail_if(gather_offsets->type->base_type != vtn_base_type_array ||
2563 gather_offsets->type->length != 4,
2564 "ConstOffsets must be an array of size four of vectors "
2565 "of two integer components");
2566
2567 struct vtn_type *vec_type = gather_offsets->type->array_element;
2568 vtn_fail_if(vec_type->base_type != vtn_base_type_vector ||
2569 vec_type->length != 2 ||
2570 !glsl_type_is_integer(vec_type->type),
2571 "ConstOffsets must be an array of size four of vectors "
2572 "of two integer components");
2573
2574 unsigned bit_size = glsl_get_bit_size(vec_type->type);
2575 for (uint32_t i = 0; i < 4; i++) {
2576 const nir_const_value *cvec =
2577 gather_offsets->constant->elements[i]->values;
2578 for (uint32_t j = 0; j < 2; j++) {
2579 switch (bit_size) {
2580 case 8: instr->tg4_offsets[i][j] = cvec[j].i8; break;
2581 case 16: instr->tg4_offsets[i][j] = cvec[j].i16; break;
2582 case 32: instr->tg4_offsets[i][j] = cvec[j].i32; break;
2583 case 64: instr->tg4_offsets[i][j] = cvec[j].i64; break;
2584 default:
2585 vtn_fail("Unsupported bit size: %u", bit_size);
2586 }
2587 }
2588 }
2589 }
2590
2591 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, ret_type->type);
2592 ssa->def = &instr->dest.ssa;
2593 vtn_push_ssa(b, w[2], ret_type, ssa);
2594
2595 nir_builder_instr_insert(&b->nb, &instr->instr);
2596 }
2597
2598 static void
2599 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
2600 const uint32_t *w, nir_src *src)
2601 {
2602 switch (opcode) {
2603 case SpvOpAtomicIIncrement:
2604 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
2605 break;
2606
2607 case SpvOpAtomicIDecrement:
2608 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
2609 break;
2610
2611 case SpvOpAtomicISub:
2612 src[0] =
2613 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
2614 break;
2615
2616 case SpvOpAtomicCompareExchange:
2617 case SpvOpAtomicCompareExchangeWeak:
2618 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
2619 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
2620 break;
2621
2622 case SpvOpAtomicExchange:
2623 case SpvOpAtomicIAdd:
2624 case SpvOpAtomicSMin:
2625 case SpvOpAtomicUMin:
2626 case SpvOpAtomicSMax:
2627 case SpvOpAtomicUMax:
2628 case SpvOpAtomicAnd:
2629 case SpvOpAtomicOr:
2630 case SpvOpAtomicXor:
2631 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
2632 break;
2633
2634 default:
2635 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2636 }
2637 }
2638
2639 static nir_ssa_def *
2640 get_image_coord(struct vtn_builder *b, uint32_t value)
2641 {
2642 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
2643
2644 /* The image_load_store intrinsics assume a 4-dim coordinate */
2645 unsigned dim = glsl_get_vector_elements(coord->type);
2646 unsigned swizzle[4];
2647 for (unsigned i = 0; i < 4; i++)
2648 swizzle[i] = MIN2(i, dim - 1);
2649
2650 return nir_swizzle(&b->nb, coord->def, swizzle, 4);
2651 }
2652
2653 static nir_ssa_def *
2654 expand_to_vec4(nir_builder *b, nir_ssa_def *value)
2655 {
2656 if (value->num_components == 4)
2657 return value;
2658
2659 unsigned swiz[4];
2660 for (unsigned i = 0; i < 4; i++)
2661 swiz[i] = i < value->num_components ? i : 0;
2662 return nir_swizzle(b, value, swiz, 4);
2663 }
2664
2665 static void
2666 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
2667 const uint32_t *w, unsigned count)
2668 {
2669 /* Just get this one out of the way */
2670 if (opcode == SpvOpImageTexelPointer) {
2671 struct vtn_value *val =
2672 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
2673 val->image = ralloc(b, struct vtn_image_pointer);
2674
2675 val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2676 val->image->coord = get_image_coord(b, w[4]);
2677 val->image->sample = vtn_ssa_value(b, w[5])->def;
2678 val->image->lod = nir_imm_int(&b->nb, 0);
2679 return;
2680 }
2681
2682 struct vtn_image_pointer image;
2683 SpvScope scope = SpvScopeInvocation;
2684 SpvMemorySemanticsMask semantics = 0;
2685
2686 switch (opcode) {
2687 case SpvOpAtomicExchange:
2688 case SpvOpAtomicCompareExchange:
2689 case SpvOpAtomicCompareExchangeWeak:
2690 case SpvOpAtomicIIncrement:
2691 case SpvOpAtomicIDecrement:
2692 case SpvOpAtomicIAdd:
2693 case SpvOpAtomicISub:
2694 case SpvOpAtomicLoad:
2695 case SpvOpAtomicSMin:
2696 case SpvOpAtomicUMin:
2697 case SpvOpAtomicSMax:
2698 case SpvOpAtomicUMax:
2699 case SpvOpAtomicAnd:
2700 case SpvOpAtomicOr:
2701 case SpvOpAtomicXor:
2702 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
2703 scope = vtn_constant_uint(b, w[4]);
2704 semantics = vtn_constant_uint(b, w[5]);
2705 break;
2706
2707 case SpvOpAtomicStore:
2708 image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
2709 scope = vtn_constant_uint(b, w[2]);
2710 semantics = vtn_constant_uint(b, w[3]);
2711 break;
2712
2713 case SpvOpImageQuerySize:
2714 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2715 image.coord = NULL;
2716 image.sample = NULL;
2717 image.lod = NULL;
2718 break;
2719
2720 case SpvOpImageRead: {
2721 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2722 image.coord = get_image_coord(b, w[4]);
2723
2724 const SpvImageOperandsMask operands =
2725 count > 5 ? w[5] : SpvImageOperandsMaskNone;
2726
2727 if (operands & SpvImageOperandsSampleMask) {
2728 uint32_t arg = image_operand_arg(b, w, count, 5,
2729 SpvImageOperandsSampleMask);
2730 image.sample = vtn_ssa_value(b, w[arg])->def;
2731 } else {
2732 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2733 }
2734
2735 if (operands & SpvImageOperandsMakeTexelVisibleMask) {
2736 vtn_fail_if((operands & SpvImageOperandsNonPrivateTexelMask) == 0,
2737 "MakeTexelVisible requires NonPrivateTexel to also be set.");
2738 uint32_t arg = image_operand_arg(b, w, count, 5,
2739 SpvImageOperandsMakeTexelVisibleMask);
2740 semantics = SpvMemorySemanticsMakeVisibleMask;
2741 scope = vtn_constant_uint(b, w[arg]);
2742 }
2743
2744 if (operands & SpvImageOperandsLodMask) {
2745 uint32_t arg = image_operand_arg(b, w, count, 5,
2746 SpvImageOperandsLodMask);
2747 image.lod = vtn_ssa_value(b, w[arg])->def;
2748 } else {
2749 image.lod = nir_imm_int(&b->nb, 0);
2750 }
2751
2752 /* TODO: Volatile. */
2753
2754 break;
2755 }
2756
2757 case SpvOpImageWrite: {
2758 image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2759 image.coord = get_image_coord(b, w[2]);
2760
2761 /* texel = w[3] */
2762
2763 const SpvImageOperandsMask operands =
2764 count > 4 ? w[4] : SpvImageOperandsMaskNone;
2765
2766 if (operands & SpvImageOperandsSampleMask) {
2767 uint32_t arg = image_operand_arg(b, w, count, 4,
2768 SpvImageOperandsSampleMask);
2769 image.sample = vtn_ssa_value(b, w[arg])->def;
2770 } else {
2771 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2772 }
2773
2774 if (operands & SpvImageOperandsMakeTexelAvailableMask) {
2775 vtn_fail_if((operands & SpvImageOperandsNonPrivateTexelMask) == 0,
2776 "MakeTexelAvailable requires NonPrivateTexel to also be set.");
2777 uint32_t arg = image_operand_arg(b, w, count, 4,
2778 SpvImageOperandsMakeTexelAvailableMask);
2779 semantics = SpvMemorySemanticsMakeAvailableMask;
2780 scope = vtn_constant_uint(b, w[arg]);
2781 }
2782
2783 if (operands & SpvImageOperandsLodMask) {
2784 uint32_t arg = image_operand_arg(b, w, count, 4,
2785 SpvImageOperandsLodMask);
2786 image.lod = vtn_ssa_value(b, w[arg])->def;
2787 } else {
2788 image.lod = nir_imm_int(&b->nb, 0);
2789 }
2790
2791 /* TODO: Volatile. */
2792
2793 break;
2794 }
2795
2796 default:
2797 vtn_fail_with_opcode("Invalid image opcode", opcode);
2798 }
2799
2800 nir_intrinsic_op op;
2801 switch (opcode) {
2802 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_deref_##N; break;
2803 OP(ImageQuerySize, size)
2804 OP(ImageRead, load)
2805 OP(ImageWrite, store)
2806 OP(AtomicLoad, load)
2807 OP(AtomicStore, store)
2808 OP(AtomicExchange, atomic_exchange)
2809 OP(AtomicCompareExchange, atomic_comp_swap)
2810 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2811 OP(AtomicIIncrement, atomic_add)
2812 OP(AtomicIDecrement, atomic_add)
2813 OP(AtomicIAdd, atomic_add)
2814 OP(AtomicISub, atomic_add)
2815 OP(AtomicSMin, atomic_imin)
2816 OP(AtomicUMin, atomic_umin)
2817 OP(AtomicSMax, atomic_imax)
2818 OP(AtomicUMax, atomic_umax)
2819 OP(AtomicAnd, atomic_and)
2820 OP(AtomicOr, atomic_or)
2821 OP(AtomicXor, atomic_xor)
2822 #undef OP
2823 default:
2824 vtn_fail_with_opcode("Invalid image opcode", opcode);
2825 }
2826
2827 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2828
2829 nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image.image);
2830 intrin->src[0] = nir_src_for_ssa(&image_deref->dest.ssa);
2831
2832 /* ImageQuerySize doesn't take any extra parameters */
2833 if (opcode != SpvOpImageQuerySize) {
2834 /* The image coordinate is always 4 components but we may not have that
2835 * many. Swizzle to compensate.
2836 */
2837 intrin->src[1] = nir_src_for_ssa(expand_to_vec4(&b->nb, image.coord));
2838 intrin->src[2] = nir_src_for_ssa(image.sample);
2839 }
2840
2841 nir_intrinsic_set_access(intrin, image.image->access);
2842
2843 switch (opcode) {
2844 case SpvOpAtomicLoad:
2845 case SpvOpImageQuerySize:
2846 case SpvOpImageRead:
2847 if (opcode == SpvOpImageRead || opcode == SpvOpAtomicLoad) {
2848 /* Only OpImageRead can support a lod parameter if
2849 * SPV_AMD_shader_image_load_store_lod is used but the current NIR
2850 * intrinsics definition for atomics requires us to set it for
2851 * OpAtomicLoad.
2852 */
2853 intrin->src[3] = nir_src_for_ssa(image.lod);
2854 }
2855 break;
2856 case SpvOpAtomicStore:
2857 case SpvOpImageWrite: {
2858 const uint32_t value_id = opcode == SpvOpAtomicStore ? w[4] : w[3];
2859 nir_ssa_def *value = vtn_ssa_value(b, value_id)->def;
2860 /* nir_intrinsic_image_deref_store always takes a vec4 value */
2861 assert(op == nir_intrinsic_image_deref_store);
2862 intrin->num_components = 4;
2863 intrin->src[3] = nir_src_for_ssa(expand_to_vec4(&b->nb, value));
2864 /* Only OpImageWrite can support a lod parameter if
2865 * SPV_AMD_shader_image_load_store_lod is used but the current NIR
2866 * intrinsics definition for atomics requires us to set it for
2867 * OpAtomicStore.
2868 */
2869 intrin->src[4] = nir_src_for_ssa(image.lod);
2870 break;
2871 }
2872
2873 case SpvOpAtomicCompareExchange:
2874 case SpvOpAtomicCompareExchangeWeak:
2875 case SpvOpAtomicIIncrement:
2876 case SpvOpAtomicIDecrement:
2877 case SpvOpAtomicExchange:
2878 case SpvOpAtomicIAdd:
2879 case SpvOpAtomicISub:
2880 case SpvOpAtomicSMin:
2881 case SpvOpAtomicUMin:
2882 case SpvOpAtomicSMax:
2883 case SpvOpAtomicUMax:
2884 case SpvOpAtomicAnd:
2885 case SpvOpAtomicOr:
2886 case SpvOpAtomicXor:
2887 fill_common_atomic_sources(b, opcode, w, &intrin->src[3]);
2888 break;
2889
2890 default:
2891 vtn_fail_with_opcode("Invalid image opcode", opcode);
2892 }
2893
2894 /* Image operations implicitly have the Image storage memory semantics. */
2895 semantics |= SpvMemorySemanticsImageMemoryMask;
2896
2897 SpvMemorySemanticsMask before_semantics;
2898 SpvMemorySemanticsMask after_semantics;
2899 vtn_split_barrier_semantics(b, semantics, &before_semantics, &after_semantics);
2900
2901 if (before_semantics)
2902 vtn_emit_memory_barrier(b, scope, before_semantics);
2903
2904 if (opcode != SpvOpImageWrite && opcode != SpvOpAtomicStore) {
2905 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2906
2907 unsigned dest_components = glsl_get_vector_elements(type->type);
2908 intrin->num_components = nir_intrinsic_infos[op].dest_components;
2909 if (intrin->num_components == 0)
2910 intrin->num_components = dest_components;
2911
2912 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
2913 intrin->num_components, 32, NULL);
2914
2915 nir_builder_instr_insert(&b->nb, &intrin->instr);
2916
2917 nir_ssa_def *result = &intrin->dest.ssa;
2918 if (intrin->num_components != dest_components)
2919 result = nir_channels(&b->nb, result, (1 << dest_components) - 1);
2920
2921 struct vtn_value *val =
2922 vtn_push_ssa(b, w[2], type, vtn_create_ssa_value(b, type->type));
2923 val->ssa->def = result;
2924 } else {
2925 nir_builder_instr_insert(&b->nb, &intrin->instr);
2926 }
2927
2928 if (after_semantics)
2929 vtn_emit_memory_barrier(b, scope, after_semantics);
2930 }
2931
2932 static nir_intrinsic_op
2933 get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2934 {
2935 switch (opcode) {
2936 case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
2937 case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
2938 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
2939 OP(AtomicExchange, atomic_exchange)
2940 OP(AtomicCompareExchange, atomic_comp_swap)
2941 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2942 OP(AtomicIIncrement, atomic_add)
2943 OP(AtomicIDecrement, atomic_add)
2944 OP(AtomicIAdd, atomic_add)
2945 OP(AtomicISub, atomic_add)
2946 OP(AtomicSMin, atomic_imin)
2947 OP(AtomicUMin, atomic_umin)
2948 OP(AtomicSMax, atomic_imax)
2949 OP(AtomicUMax, atomic_umax)
2950 OP(AtomicAnd, atomic_and)
2951 OP(AtomicOr, atomic_or)
2952 OP(AtomicXor, atomic_xor)
2953 #undef OP
2954 default:
2955 vtn_fail_with_opcode("Invalid SSBO atomic", opcode);
2956 }
2957 }
2958
2959 static nir_intrinsic_op
2960 get_uniform_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2961 {
2962 switch (opcode) {
2963 #define OP(S, N) case SpvOp##S: return nir_intrinsic_atomic_counter_ ##N;
2964 OP(AtomicLoad, read_deref)
2965 OP(AtomicExchange, exchange)
2966 OP(AtomicCompareExchange, comp_swap)
2967 OP(AtomicCompareExchangeWeak, comp_swap)
2968 OP(AtomicIIncrement, inc_deref)
2969 OP(AtomicIDecrement, post_dec_deref)
2970 OP(AtomicIAdd, add_deref)
2971 OP(AtomicISub, add_deref)
2972 OP(AtomicUMin, min_deref)
2973 OP(AtomicUMax, max_deref)
2974 OP(AtomicAnd, and_deref)
2975 OP(AtomicOr, or_deref)
2976 OP(AtomicXor, xor_deref)
2977 #undef OP
2978 default:
2979 /* We left the following out: AtomicStore, AtomicSMin and
2980 * AtomicSmax. Right now there are not nir intrinsics for them. At this
2981 * moment Atomic Counter support is needed for ARB_spirv support, so is
2982 * only need to support GLSL Atomic Counters that are uints and don't
2983 * allow direct storage.
2984 */
2985 vtn_fail("Invalid uniform atomic");
2986 }
2987 }
2988
2989 static nir_intrinsic_op
2990 get_deref_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2991 {
2992 switch (opcode) {
2993 case SpvOpAtomicLoad: return nir_intrinsic_load_deref;
2994 case SpvOpAtomicStore: return nir_intrinsic_store_deref;
2995 #define OP(S, N) case SpvOp##S: return nir_intrinsic_deref_##N;
2996 OP(AtomicExchange, atomic_exchange)
2997 OP(AtomicCompareExchange, atomic_comp_swap)
2998 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2999 OP(AtomicIIncrement, atomic_add)
3000 OP(AtomicIDecrement, atomic_add)
3001 OP(AtomicIAdd, atomic_add)
3002 OP(AtomicISub, atomic_add)
3003 OP(AtomicSMin, atomic_imin)
3004 OP(AtomicUMin, atomic_umin)
3005 OP(AtomicSMax, atomic_imax)
3006 OP(AtomicUMax, atomic_umax)
3007 OP(AtomicAnd, atomic_and)
3008 OP(AtomicOr, atomic_or)
3009 OP(AtomicXor, atomic_xor)
3010 #undef OP
3011 default:
3012 vtn_fail_with_opcode("Invalid shared atomic", opcode);
3013 }
3014 }
3015
3016 /*
3017 * Handles shared atomics, ssbo atomics and atomic counters.
3018 */
3019 static void
3020 vtn_handle_atomics(struct vtn_builder *b, SpvOp opcode,
3021 const uint32_t *w, UNUSED unsigned count)
3022 {
3023 struct vtn_pointer *ptr;
3024 nir_intrinsic_instr *atomic;
3025
3026 SpvScope scope = SpvScopeInvocation;
3027 SpvMemorySemanticsMask semantics = 0;
3028
3029 switch (opcode) {
3030 case SpvOpAtomicLoad:
3031 case SpvOpAtomicExchange:
3032 case SpvOpAtomicCompareExchange:
3033 case SpvOpAtomicCompareExchangeWeak:
3034 case SpvOpAtomicIIncrement:
3035 case SpvOpAtomicIDecrement:
3036 case SpvOpAtomicIAdd:
3037 case SpvOpAtomicISub:
3038 case SpvOpAtomicSMin:
3039 case SpvOpAtomicUMin:
3040 case SpvOpAtomicSMax:
3041 case SpvOpAtomicUMax:
3042 case SpvOpAtomicAnd:
3043 case SpvOpAtomicOr:
3044 case SpvOpAtomicXor:
3045 ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
3046 scope = vtn_constant_uint(b, w[4]);
3047 semantics = vtn_constant_uint(b, w[5]);
3048 break;
3049
3050 case SpvOpAtomicStore:
3051 ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
3052 scope = vtn_constant_uint(b, w[2]);
3053 semantics = vtn_constant_uint(b, w[3]);
3054 break;
3055
3056 default:
3057 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
3058 }
3059
3060 /* uniform as "atomic counter uniform" */
3061 if (ptr->mode == vtn_variable_mode_uniform) {
3062 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
3063 const struct glsl_type *deref_type = deref->type;
3064 nir_intrinsic_op op = get_uniform_nir_atomic_op(b, opcode);
3065 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
3066 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
3067
3068 /* SSBO needs to initialize index/offset. In this case we don't need to,
3069 * as that info is already stored on the ptr->var->var nir_variable (see
3070 * vtn_create_variable)
3071 */
3072
3073 switch (opcode) {
3074 case SpvOpAtomicLoad:
3075 atomic->num_components = glsl_get_vector_elements(deref_type);
3076 break;
3077
3078 case SpvOpAtomicStore:
3079 atomic->num_components = glsl_get_vector_elements(deref_type);
3080 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
3081 break;
3082
3083 case SpvOpAtomicExchange:
3084 case SpvOpAtomicCompareExchange:
3085 case SpvOpAtomicCompareExchangeWeak:
3086 case SpvOpAtomicIIncrement:
3087 case SpvOpAtomicIDecrement:
3088 case SpvOpAtomicIAdd:
3089 case SpvOpAtomicISub:
3090 case SpvOpAtomicSMin:
3091 case SpvOpAtomicUMin:
3092 case SpvOpAtomicSMax:
3093 case SpvOpAtomicUMax:
3094 case SpvOpAtomicAnd:
3095 case SpvOpAtomicOr:
3096 case SpvOpAtomicXor:
3097 /* Nothing: we don't need to call fill_common_atomic_sources here, as
3098 * atomic counter uniforms doesn't have sources
3099 */
3100 break;
3101
3102 default:
3103 unreachable("Invalid SPIR-V atomic");
3104
3105 }
3106 } else if (vtn_pointer_uses_ssa_offset(b, ptr)) {
3107 nir_ssa_def *offset, *index;
3108 offset = vtn_pointer_to_offset(b, ptr, &index);
3109
3110 assert(ptr->mode == vtn_variable_mode_ssbo);
3111
3112 nir_intrinsic_op op = get_ssbo_nir_atomic_op(b, opcode);
3113 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
3114
3115 int src = 0;
3116 switch (opcode) {
3117 case SpvOpAtomicLoad:
3118 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
3119 nir_intrinsic_set_align(atomic, 4, 0);
3120 if (ptr->mode == vtn_variable_mode_ssbo)
3121 atomic->src[src++] = nir_src_for_ssa(index);
3122 atomic->src[src++] = nir_src_for_ssa(offset);
3123 break;
3124
3125 case SpvOpAtomicStore:
3126 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
3127 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
3128 nir_intrinsic_set_align(atomic, 4, 0);
3129 atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
3130 if (ptr->mode == vtn_variable_mode_ssbo)
3131 atomic->src[src++] = nir_src_for_ssa(index);
3132 atomic->src[src++] = nir_src_for_ssa(offset);
3133 break;
3134
3135 case SpvOpAtomicExchange:
3136 case SpvOpAtomicCompareExchange:
3137 case SpvOpAtomicCompareExchangeWeak:
3138 case SpvOpAtomicIIncrement:
3139 case SpvOpAtomicIDecrement:
3140 case SpvOpAtomicIAdd:
3141 case SpvOpAtomicISub:
3142 case SpvOpAtomicSMin:
3143 case SpvOpAtomicUMin:
3144 case SpvOpAtomicSMax:
3145 case SpvOpAtomicUMax:
3146 case SpvOpAtomicAnd:
3147 case SpvOpAtomicOr:
3148 case SpvOpAtomicXor:
3149 if (ptr->mode == vtn_variable_mode_ssbo)
3150 atomic->src[src++] = nir_src_for_ssa(index);
3151 atomic->src[src++] = nir_src_for_ssa(offset);
3152 fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
3153 break;
3154
3155 default:
3156 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
3157 }
3158 } else {
3159 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
3160 const struct glsl_type *deref_type = deref->type;
3161 nir_intrinsic_op op = get_deref_nir_atomic_op(b, opcode);
3162 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
3163 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
3164
3165 switch (opcode) {
3166 case SpvOpAtomicLoad:
3167 atomic->num_components = glsl_get_vector_elements(deref_type);
3168 break;
3169
3170 case SpvOpAtomicStore:
3171 atomic->num_components = glsl_get_vector_elements(deref_type);
3172 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
3173 atomic->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
3174 break;
3175
3176 case SpvOpAtomicExchange:
3177 case SpvOpAtomicCompareExchange:
3178 case SpvOpAtomicCompareExchangeWeak:
3179 case SpvOpAtomicIIncrement:
3180 case SpvOpAtomicIDecrement:
3181 case SpvOpAtomicIAdd:
3182 case SpvOpAtomicISub:
3183 case SpvOpAtomicSMin:
3184 case SpvOpAtomicUMin:
3185 case SpvOpAtomicSMax:
3186 case SpvOpAtomicUMax:
3187 case SpvOpAtomicAnd:
3188 case SpvOpAtomicOr:
3189 case SpvOpAtomicXor:
3190 fill_common_atomic_sources(b, opcode, w, &atomic->src[1]);
3191 break;
3192
3193 default:
3194 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
3195 }
3196 }
3197
3198 /* Atomic ordering operations will implicitly apply to the atomic operation
3199 * storage class, so include that too.
3200 */
3201 semantics |= vtn_storage_class_to_memory_semantics(ptr->ptr_type->storage_class);
3202
3203 SpvMemorySemanticsMask before_semantics;
3204 SpvMemorySemanticsMask after_semantics;
3205 vtn_split_barrier_semantics(b, semantics, &before_semantics, &after_semantics);
3206
3207 if (before_semantics)
3208 vtn_emit_memory_barrier(b, scope, before_semantics);
3209
3210 if (opcode != SpvOpAtomicStore) {
3211 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
3212
3213 nir_ssa_dest_init(&atomic->instr, &atomic->dest,
3214 glsl_get_vector_elements(type->type),
3215 glsl_get_bit_size(type->type), NULL);
3216
3217 struct vtn_ssa_value *ssa = rzalloc(b, struct vtn_ssa_value);
3218 ssa->def = &atomic->dest.ssa;
3219 ssa->type = type->type;
3220 vtn_push_ssa(b, w[2], type, ssa);
3221 }
3222
3223 nir_builder_instr_insert(&b->nb, &atomic->instr);
3224
3225 if (after_semantics)
3226 vtn_emit_memory_barrier(b, scope, after_semantics);
3227 }
3228
3229 static nir_alu_instr *
3230 create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
3231 {
3232 nir_op op = nir_op_vec(num_components);
3233 nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
3234 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
3235 bit_size, NULL);
3236 vec->dest.write_mask = (1 << num_components) - 1;
3237
3238 return vec;
3239 }
3240
3241 struct vtn_ssa_value *
3242 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
3243 {
3244 if (src->transposed)
3245 return src->transposed;
3246
3247 struct vtn_ssa_value *dest =
3248 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
3249
3250 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
3251 nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
3252 glsl_get_bit_size(src->type));
3253 if (glsl_type_is_vector_or_scalar(src->type)) {
3254 vec->src[0].src = nir_src_for_ssa(src->def);
3255 vec->src[0].swizzle[0] = i;
3256 } else {
3257 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
3258 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
3259 vec->src[j].swizzle[0] = i;
3260 }
3261 }
3262 nir_builder_instr_insert(&b->nb, &vec->instr);
3263 dest->elems[i]->def = &vec->dest.dest.ssa;
3264 }
3265
3266 dest->transposed = src;
3267
3268 return dest;
3269 }
3270
3271 static nir_ssa_def *
3272 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
3273 nir_ssa_def *src0, nir_ssa_def *src1,
3274 const uint32_t *indices)
3275 {
3276 nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
3277
3278 for (unsigned i = 0; i < num_components; i++) {
3279 uint32_t index = indices[i];
3280 if (index == 0xffffffff) {
3281 vec->src[i].src =
3282 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
3283 } else if (index < src0->num_components) {
3284 vec->src[i].src = nir_src_for_ssa(src0);
3285 vec->src[i].swizzle[0] = index;
3286 } else {
3287 vec->src[i].src = nir_src_for_ssa(src1);
3288 vec->src[i].swizzle[0] = index - src0->num_components;
3289 }
3290 }
3291
3292 nir_builder_instr_insert(&b->nb, &vec->instr);
3293
3294 return &vec->dest.dest.ssa;
3295 }
3296
3297 /*
3298 * Concatentates a number of vectors/scalars together to produce a vector
3299 */
3300 static nir_ssa_def *
3301 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
3302 unsigned num_srcs, nir_ssa_def **srcs)
3303 {
3304 nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
3305
3306 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3307 *
3308 * "When constructing a vector, there must be at least two Constituent
3309 * operands."
3310 */
3311 vtn_assert(num_srcs >= 2);
3312
3313 unsigned dest_idx = 0;
3314 for (unsigned i = 0; i < num_srcs; i++) {
3315 nir_ssa_def *src = srcs[i];
3316 vtn_assert(dest_idx + src->num_components <= num_components);
3317 for (unsigned j = 0; j < src->num_components; j++) {
3318 vec->src[dest_idx].src = nir_src_for_ssa(src);
3319 vec->src[dest_idx].swizzle[0] = j;
3320 dest_idx++;
3321 }
3322 }
3323
3324 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3325 *
3326 * "When constructing a vector, the total number of components in all
3327 * the operands must equal the number of components in Result Type."
3328 */
3329 vtn_assert(dest_idx == num_components);
3330
3331 nir_builder_instr_insert(&b->nb, &vec->instr);
3332
3333 return &vec->dest.dest.ssa;
3334 }
3335
3336 static struct vtn_ssa_value *
3337 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
3338 {
3339 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
3340 dest->type = src->type;
3341
3342 if (glsl_type_is_vector_or_scalar(src->type)) {
3343 dest->def = src->def;
3344 } else {
3345 unsigned elems = glsl_get_length(src->type);
3346
3347 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
3348 for (unsigned i = 0; i < elems; i++)
3349 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
3350 }
3351
3352 return dest;
3353 }
3354
3355 static struct vtn_ssa_value *
3356 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
3357 struct vtn_ssa_value *insert, const uint32_t *indices,
3358 unsigned num_indices)
3359 {
3360 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
3361
3362 struct vtn_ssa_value *cur = dest;
3363 unsigned i;
3364 for (i = 0; i < num_indices - 1; i++) {
3365 /* If we got a vector here, that means the next index will be trying to
3366 * dereference a scalar.
3367 */
3368 vtn_fail_if(glsl_type_is_vector_or_scalar(cur->type),
3369 "OpCompositeInsert has too many indices.");
3370 vtn_fail_if(indices[i] >= glsl_get_length(cur->type),
3371 "All indices in an OpCompositeInsert must be in-bounds");
3372 cur = cur->elems[indices[i]];
3373 }
3374
3375 if (glsl_type_is_vector_or_scalar(cur->type)) {
3376 vtn_fail_if(indices[i] >= glsl_get_vector_elements(cur->type),
3377 "All indices in an OpCompositeInsert must be in-bounds");
3378
3379 /* According to the SPIR-V spec, OpCompositeInsert may work down to
3380 * the component granularity. In that case, the last index will be
3381 * the index to insert the scalar into the vector.
3382 */
3383
3384 cur->def = nir_vector_insert_imm(&b->nb, cur->def, insert->def, indices[i]);
3385 } else {
3386 vtn_fail_if(indices[i] >= glsl_get_length(cur->type),
3387 "All indices in an OpCompositeInsert must be in-bounds");
3388 cur->elems[indices[i]] = insert;
3389 }
3390
3391 return dest;
3392 }
3393
3394 static struct vtn_ssa_value *
3395 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
3396 const uint32_t *indices, unsigned num_indices)
3397 {
3398 struct vtn_ssa_value *cur = src;
3399 for (unsigned i = 0; i < num_indices; i++) {
3400 if (glsl_type_is_vector_or_scalar(cur->type)) {
3401 vtn_assert(i == num_indices - 1);
3402 vtn_fail_if(indices[i] >= glsl_get_vector_elements(cur->type),
3403 "All indices in an OpCompositeExtract must be in-bounds");
3404
3405 /* According to the SPIR-V spec, OpCompositeExtract may work down to
3406 * the component granularity. The last index will be the index of the
3407 * vector to extract.
3408 */
3409
3410 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
3411 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
3412 ret->def = nir_channel(&b->nb, cur->def, indices[i]);
3413 return ret;
3414 } else {
3415 vtn_fail_if(indices[i] >= glsl_get_length(cur->type),
3416 "All indices in an OpCompositeExtract must be in-bounds");
3417 cur = cur->elems[indices[i]];
3418 }
3419 }
3420
3421 return cur;
3422 }
3423
3424 static void
3425 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
3426 const uint32_t *w, unsigned count)
3427 {
3428 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
3429 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, type->type);
3430
3431 switch (opcode) {
3432 case SpvOpVectorExtractDynamic:
3433 ssa->def = nir_vector_extract(&b->nb, vtn_ssa_value(b, w[3])->def,
3434 vtn_ssa_value(b, w[4])->def);
3435 break;
3436
3437 case SpvOpVectorInsertDynamic:
3438 ssa->def = nir_vector_insert(&b->nb, vtn_ssa_value(b, w[3])->def,
3439 vtn_ssa_value(b, w[4])->def,
3440 vtn_ssa_value(b, w[5])->def);
3441 break;
3442
3443 case SpvOpVectorShuffle:
3444 ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type->type),
3445 vtn_ssa_value(b, w[3])->def,
3446 vtn_ssa_value(b, w[4])->def,
3447 w + 5);
3448 break;
3449
3450 case SpvOpCompositeConstruct: {
3451 unsigned elems = count - 3;
3452 assume(elems >= 1);
3453 if (glsl_type_is_vector_or_scalar(type->type)) {
3454 nir_ssa_def *srcs[NIR_MAX_VEC_COMPONENTS];
3455 for (unsigned i = 0; i < elems; i++)
3456 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
3457 ssa->def =
3458 vtn_vector_construct(b, glsl_get_vector_elements(type->type),
3459 elems, srcs);
3460 } else {
3461 ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
3462 for (unsigned i = 0; i < elems; i++)
3463 ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
3464 }
3465 break;
3466 }
3467 case SpvOpCompositeExtract:
3468 ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
3469 w + 4, count - 4);
3470 break;
3471
3472 case SpvOpCompositeInsert:
3473 ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
3474 vtn_ssa_value(b, w[3]),
3475 w + 5, count - 5);
3476 break;
3477
3478 case SpvOpCopyLogical:
3479 ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
3480 break;
3481 case SpvOpCopyObject:
3482 vtn_copy_value(b, w[3], w[2]);
3483 return;
3484
3485 default:
3486 vtn_fail_with_opcode("unknown composite operation", opcode);
3487 }
3488
3489 vtn_push_ssa(b, w[2], type, ssa);
3490 }
3491
3492 static void
3493 vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op)
3494 {
3495 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
3496 nir_builder_instr_insert(&b->nb, &intrin->instr);
3497 }
3498
3499 void
3500 vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope,
3501 SpvMemorySemanticsMask semantics)
3502 {
3503 if (b->shader->options->use_scoped_memory_barrier) {
3504 vtn_emit_scoped_memory_barrier(b, scope, semantics);
3505 return;
3506 }
3507
3508 static const SpvMemorySemanticsMask all_memory_semantics =
3509 SpvMemorySemanticsUniformMemoryMask |
3510 SpvMemorySemanticsWorkgroupMemoryMask |
3511 SpvMemorySemanticsAtomicCounterMemoryMask |
3512 SpvMemorySemanticsImageMemoryMask |
3513 SpvMemorySemanticsOutputMemoryMask;
3514
3515 /* If we're not actually doing a memory barrier, bail */
3516 if (!(semantics & all_memory_semantics))
3517 return;
3518
3519 /* GL and Vulkan don't have these */
3520 vtn_assert(scope != SpvScopeCrossDevice);
3521
3522 if (scope == SpvScopeSubgroup)
3523 return; /* Nothing to do here */
3524
3525 if (scope == SpvScopeWorkgroup) {
3526 vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier);
3527 return;
3528 }
3529
3530 /* There's only two scopes thing left */
3531 vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice);
3532
3533 /* Map the GLSL memoryBarrier() construct to the corresponding NIR one. */
3534 static const SpvMemorySemanticsMask glsl_memory_barrier =
3535 SpvMemorySemanticsUniformMemoryMask |
3536 SpvMemorySemanticsWorkgroupMemoryMask |
3537 SpvMemorySemanticsImageMemoryMask;
3538 if ((semantics & glsl_memory_barrier) == glsl_memory_barrier) {
3539 vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
3540 semantics &= ~(glsl_memory_barrier | SpvMemorySemanticsAtomicCounterMemoryMask);
3541 }
3542
3543 /* Issue a bunch of more specific barriers */
3544 uint32_t bits = semantics;
3545 while (bits) {
3546 SpvMemorySemanticsMask semantic = 1 << u_bit_scan(&bits);
3547 switch (semantic) {
3548 case SpvMemorySemanticsUniformMemoryMask:
3549 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer);
3550 break;
3551 case SpvMemorySemanticsWorkgroupMemoryMask:
3552 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared);
3553 break;
3554 case SpvMemorySemanticsAtomicCounterMemoryMask:
3555 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter);
3556 break;
3557 case SpvMemorySemanticsImageMemoryMask:
3558 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image);
3559 break;
3560 case SpvMemorySemanticsOutputMemoryMask:
3561 if (b->nb.shader->info.stage == MESA_SHADER_TESS_CTRL)
3562 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_tcs_patch);
3563 break;
3564 default:
3565 break;;
3566 }
3567 }
3568 }
3569
3570 static void
3571 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
3572 const uint32_t *w, UNUSED unsigned count)
3573 {
3574 switch (opcode) {
3575 case SpvOpEmitVertex:
3576 case SpvOpEmitStreamVertex:
3577 case SpvOpEndPrimitive:
3578 case SpvOpEndStreamPrimitive: {
3579 nir_intrinsic_op intrinsic_op;
3580 switch (opcode) {
3581 case SpvOpEmitVertex:
3582 case SpvOpEmitStreamVertex:
3583 intrinsic_op = nir_intrinsic_emit_vertex;
3584 break;
3585 case SpvOpEndPrimitive:
3586 case SpvOpEndStreamPrimitive:
3587 intrinsic_op = nir_intrinsic_end_primitive;
3588 break;
3589 default:
3590 unreachable("Invalid opcode");
3591 }
3592
3593 nir_intrinsic_instr *intrin =
3594 nir_intrinsic_instr_create(b->shader, intrinsic_op);
3595
3596 switch (opcode) {
3597 case SpvOpEmitStreamVertex:
3598 case SpvOpEndStreamPrimitive: {
3599 unsigned stream = vtn_constant_uint(b, w[1]);
3600 nir_intrinsic_set_stream_id(intrin, stream);
3601 break;
3602 }
3603
3604 default:
3605 break;
3606 }
3607
3608 nir_builder_instr_insert(&b->nb, &intrin->instr);
3609 break;
3610 }
3611
3612 case SpvOpMemoryBarrier: {
3613 SpvScope scope = vtn_constant_uint(b, w[1]);
3614 SpvMemorySemanticsMask semantics = vtn_constant_uint(b, w[2]);
3615 vtn_emit_memory_barrier(b, scope, semantics);
3616 return;
3617 }
3618
3619 case SpvOpControlBarrier: {
3620 SpvScope execution_scope = vtn_constant_uint(b, w[1]);
3621 SpvScope memory_scope = vtn_constant_uint(b, w[2]);
3622 SpvMemorySemanticsMask memory_semantics = vtn_constant_uint(b, w[3]);
3623
3624 /* GLSLang, prior to commit 8297936dd6eb3, emitted OpControlBarrier with
3625 * memory semantics of None for GLSL barrier().
3626 * And before that, prior to c3f1cdfa, emitted the OpControlBarrier with
3627 * Device instead of Workgroup for execution scope.
3628 */
3629 if (b->wa_glslang_cs_barrier &&
3630 b->nb.shader->info.stage == MESA_SHADER_COMPUTE &&
3631 (execution_scope == SpvScopeWorkgroup ||
3632 execution_scope == SpvScopeDevice) &&
3633 memory_semantics == SpvMemorySemanticsMaskNone) {
3634 execution_scope = SpvScopeWorkgroup;
3635 memory_scope = SpvScopeWorkgroup;
3636 memory_semantics = SpvMemorySemanticsAcquireReleaseMask |
3637 SpvMemorySemanticsWorkgroupMemoryMask;
3638 }
3639
3640 /* From the SPIR-V spec:
3641 *
3642 * "When used with the TessellationControl execution model, it also
3643 * implicitly synchronizes the Output Storage Class: Writes to Output
3644 * variables performed by any invocation executed prior to a
3645 * OpControlBarrier will be visible to any other invocation after
3646 * return from that OpControlBarrier."
3647 */
3648 if (b->nb.shader->info.stage == MESA_SHADER_TESS_CTRL) {
3649 memory_semantics &= ~(SpvMemorySemanticsAcquireMask |
3650 SpvMemorySemanticsReleaseMask |
3651 SpvMemorySemanticsAcquireReleaseMask |
3652 SpvMemorySemanticsSequentiallyConsistentMask);
3653 memory_semantics |= SpvMemorySemanticsAcquireReleaseMask |
3654 SpvMemorySemanticsOutputMemoryMask;
3655 }
3656
3657 vtn_emit_memory_barrier(b, memory_scope, memory_semantics);
3658
3659 if (execution_scope == SpvScopeWorkgroup)
3660 vtn_emit_barrier(b, nir_intrinsic_control_barrier);
3661 break;
3662 }
3663
3664 default:
3665 unreachable("unknown barrier instruction");
3666 }
3667 }
3668
3669 static unsigned
3670 gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
3671 SpvExecutionMode mode)
3672 {
3673 switch (mode) {
3674 case SpvExecutionModeInputPoints:
3675 case SpvExecutionModeOutputPoints:
3676 return 0; /* GL_POINTS */
3677 case SpvExecutionModeInputLines:
3678 return 1; /* GL_LINES */
3679 case SpvExecutionModeInputLinesAdjacency:
3680 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
3681 case SpvExecutionModeTriangles:
3682 return 4; /* GL_TRIANGLES */
3683 case SpvExecutionModeInputTrianglesAdjacency:
3684 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
3685 case SpvExecutionModeQuads:
3686 return 7; /* GL_QUADS */
3687 case SpvExecutionModeIsolines:
3688 return 0x8E7A; /* GL_ISOLINES */
3689 case SpvExecutionModeOutputLineStrip:
3690 return 3; /* GL_LINE_STRIP */
3691 case SpvExecutionModeOutputTriangleStrip:
3692 return 5; /* GL_TRIANGLE_STRIP */
3693 default:
3694 vtn_fail("Invalid primitive type: %s (%u)",
3695 spirv_executionmode_to_string(mode), mode);
3696 }
3697 }
3698
3699 static unsigned
3700 vertices_in_from_spv_execution_mode(struct vtn_builder *b,
3701 SpvExecutionMode mode)
3702 {
3703 switch (mode) {
3704 case SpvExecutionModeInputPoints:
3705 return 1;
3706 case SpvExecutionModeInputLines:
3707 return 2;
3708 case SpvExecutionModeInputLinesAdjacency:
3709 return 4;
3710 case SpvExecutionModeTriangles:
3711 return 3;
3712 case SpvExecutionModeInputTrianglesAdjacency:
3713 return 6;
3714 default:
3715 vtn_fail("Invalid GS input mode: %s (%u)",
3716 spirv_executionmode_to_string(mode), mode);
3717 }
3718 }
3719
3720 static gl_shader_stage
3721 stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
3722 {
3723 switch (model) {
3724 case SpvExecutionModelVertex:
3725 return MESA_SHADER_VERTEX;
3726 case SpvExecutionModelTessellationControl:
3727 return MESA_SHADER_TESS_CTRL;
3728 case SpvExecutionModelTessellationEvaluation:
3729 return MESA_SHADER_TESS_EVAL;
3730 case SpvExecutionModelGeometry:
3731 return MESA_SHADER_GEOMETRY;
3732 case SpvExecutionModelFragment:
3733 return MESA_SHADER_FRAGMENT;
3734 case SpvExecutionModelGLCompute:
3735 return MESA_SHADER_COMPUTE;
3736 case SpvExecutionModelKernel:
3737 return MESA_SHADER_KERNEL;
3738 default:
3739 vtn_fail("Unsupported execution model: %s (%u)",
3740 spirv_executionmodel_to_string(model), model);
3741 }
3742 }
3743
3744 #define spv_check_supported(name, cap) do { \
3745 if (!(b->options && b->options->caps.name)) \
3746 vtn_warn("Unsupported SPIR-V capability: %s (%u)", \
3747 spirv_capability_to_string(cap), cap); \
3748 } while(0)
3749
3750
3751 void
3752 vtn_handle_entry_point(struct vtn_builder *b, const uint32_t *w,
3753 unsigned count)
3754 {
3755 struct vtn_value *entry_point = &b->values[w[2]];
3756 /* Let this be a name label regardless */
3757 unsigned name_words;
3758 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
3759
3760 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
3761 stage_for_execution_model(b, w[1]) != b->entry_point_stage)
3762 return;
3763
3764 vtn_assert(b->entry_point == NULL);
3765 b->entry_point = entry_point;
3766 }
3767
3768 static bool
3769 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
3770 const uint32_t *w, unsigned count)
3771 {
3772 switch (opcode) {
3773 case SpvOpSource: {
3774 const char *lang;
3775 switch (w[1]) {
3776 default:
3777 case SpvSourceLanguageUnknown: lang = "unknown"; break;
3778 case SpvSourceLanguageESSL: lang = "ESSL"; break;
3779 case SpvSourceLanguageGLSL: lang = "GLSL"; break;
3780 case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
3781 case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
3782 case SpvSourceLanguageHLSL: lang = "HLSL"; break;
3783 }
3784
3785 uint32_t version = w[2];
3786
3787 const char *file =
3788 (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
3789
3790 vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
3791 break;
3792 }
3793
3794 case SpvOpSourceExtension:
3795 case SpvOpSourceContinued:
3796 case SpvOpExtension:
3797 case SpvOpModuleProcessed:
3798 /* Unhandled, but these are for debug so that's ok. */
3799 break;
3800
3801 case SpvOpCapability: {
3802 SpvCapability cap = w[1];
3803 switch (cap) {
3804 case SpvCapabilityMatrix:
3805 case SpvCapabilityShader:
3806 case SpvCapabilityGeometry:
3807 case SpvCapabilityGeometryPointSize:
3808 case SpvCapabilityUniformBufferArrayDynamicIndexing:
3809 case SpvCapabilitySampledImageArrayDynamicIndexing:
3810 case SpvCapabilityStorageBufferArrayDynamicIndexing:
3811 case SpvCapabilityStorageImageArrayDynamicIndexing:
3812 case SpvCapabilityImageRect:
3813 case SpvCapabilitySampledRect:
3814 case SpvCapabilitySampled1D:
3815 case SpvCapabilityImage1D:
3816 case SpvCapabilitySampledCubeArray:
3817 case SpvCapabilityImageCubeArray:
3818 case SpvCapabilitySampledBuffer:
3819 case SpvCapabilityImageBuffer:
3820 case SpvCapabilityImageQuery:
3821 case SpvCapabilityDerivativeControl:
3822 case SpvCapabilityInterpolationFunction:
3823 case SpvCapabilityMultiViewport:
3824 case SpvCapabilitySampleRateShading:
3825 case SpvCapabilityClipDistance:
3826 case SpvCapabilityCullDistance:
3827 case SpvCapabilityInputAttachment:
3828 case SpvCapabilityImageGatherExtended:
3829 case SpvCapabilityStorageImageExtendedFormats:
3830 case SpvCapabilityVector16:
3831 break;
3832
3833 case SpvCapabilityLinkage:
3834 case SpvCapabilityFloat16Buffer:
3835 case SpvCapabilitySparseResidency:
3836 vtn_warn("Unsupported SPIR-V capability: %s",
3837 spirv_capability_to_string(cap));
3838 break;
3839
3840 case SpvCapabilityMinLod:
3841 spv_check_supported(min_lod, cap);
3842 break;
3843
3844 case SpvCapabilityAtomicStorage:
3845 spv_check_supported(atomic_storage, cap);
3846 break;
3847
3848 case SpvCapabilityFloat64:
3849 spv_check_supported(float64, cap);
3850 break;
3851 case SpvCapabilityInt64:
3852 spv_check_supported(int64, cap);
3853 break;
3854 case SpvCapabilityInt16:
3855 spv_check_supported(int16, cap);
3856 break;
3857 case SpvCapabilityInt8:
3858 spv_check_supported(int8, cap);
3859 break;
3860
3861 case SpvCapabilityTransformFeedback:
3862 spv_check_supported(transform_feedback, cap);
3863 break;
3864
3865 case SpvCapabilityGeometryStreams:
3866 spv_check_supported(geometry_streams, cap);
3867 break;
3868
3869 case SpvCapabilityInt64Atomics:
3870 spv_check_supported(int64_atomics, cap);
3871 break;
3872
3873 case SpvCapabilityStorageImageMultisample:
3874 spv_check_supported(storage_image_ms, cap);
3875 break;
3876
3877 case SpvCapabilityAddresses:
3878 spv_check_supported(address, cap);
3879 break;
3880
3881 case SpvCapabilityKernel:
3882 spv_check_supported(kernel, cap);
3883 break;
3884
3885 case SpvCapabilityImageBasic:
3886 case SpvCapabilityImageReadWrite:
3887 case SpvCapabilityImageMipmap:
3888 case SpvCapabilityPipes:
3889 case SpvCapabilityDeviceEnqueue:
3890 case SpvCapabilityLiteralSampler:
3891 case SpvCapabilityGenericPointer:
3892 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
3893 spirv_capability_to_string(cap));
3894 break;
3895
3896 case SpvCapabilityImageMSArray:
3897 spv_check_supported(image_ms_array, cap);
3898 break;
3899
3900 case SpvCapabilityTessellation:
3901 case SpvCapabilityTessellationPointSize:
3902 spv_check_supported(tessellation, cap);
3903 break;
3904
3905 case SpvCapabilityDrawParameters:
3906 spv_check_supported(draw_parameters, cap);
3907 break;
3908
3909 case SpvCapabilityStorageImageReadWithoutFormat:
3910 spv_check_supported(image_read_without_format, cap);
3911 break;
3912
3913 case SpvCapabilityStorageImageWriteWithoutFormat:
3914 spv_check_supported(image_write_without_format, cap);
3915 break;
3916
3917 case SpvCapabilityDeviceGroup:
3918 spv_check_supported(device_group, cap);
3919 break;
3920
3921 case SpvCapabilityMultiView:
3922 spv_check_supported(multiview, cap);
3923 break;
3924
3925 case SpvCapabilityGroupNonUniform:
3926 spv_check_supported(subgroup_basic, cap);
3927 break;
3928
3929 case SpvCapabilitySubgroupVoteKHR:
3930 case SpvCapabilityGroupNonUniformVote:
3931 spv_check_supported(subgroup_vote, cap);
3932 break;
3933
3934 case SpvCapabilitySubgroupBallotKHR:
3935 case SpvCapabilityGroupNonUniformBallot:
3936 spv_check_supported(subgroup_ballot, cap);
3937 break;
3938
3939 case SpvCapabilityGroupNonUniformShuffle:
3940 case SpvCapabilityGroupNonUniformShuffleRelative:
3941 spv_check_supported(subgroup_shuffle, cap);
3942 break;
3943
3944 case SpvCapabilityGroupNonUniformQuad:
3945 spv_check_supported(subgroup_quad, cap);
3946 break;
3947
3948 case SpvCapabilityGroupNonUniformArithmetic:
3949 case SpvCapabilityGroupNonUniformClustered:
3950 spv_check_supported(subgroup_arithmetic, cap);
3951 break;
3952
3953 case SpvCapabilityGroups:
3954 spv_check_supported(amd_shader_ballot, cap);
3955 break;
3956
3957 case SpvCapabilityVariablePointersStorageBuffer:
3958 case SpvCapabilityVariablePointers:
3959 spv_check_supported(variable_pointers, cap);
3960 b->variable_pointers = true;
3961 break;
3962
3963 case SpvCapabilityStorageUniformBufferBlock16:
3964 case SpvCapabilityStorageUniform16:
3965 case SpvCapabilityStoragePushConstant16:
3966 case SpvCapabilityStorageInputOutput16:
3967 spv_check_supported(storage_16bit, cap);
3968 break;
3969
3970 case SpvCapabilityShaderLayer:
3971 case SpvCapabilityShaderViewportIndex:
3972 case SpvCapabilityShaderViewportIndexLayerEXT:
3973 spv_check_supported(shader_viewport_index_layer, cap);
3974 break;
3975
3976 case SpvCapabilityStorageBuffer8BitAccess:
3977 case SpvCapabilityUniformAndStorageBuffer8BitAccess:
3978 case SpvCapabilityStoragePushConstant8:
3979 spv_check_supported(storage_8bit, cap);
3980 break;
3981
3982 case SpvCapabilityShaderNonUniformEXT:
3983 spv_check_supported(descriptor_indexing, cap);
3984 break;
3985
3986 case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT:
3987 case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT:
3988 case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT:
3989 spv_check_supported(descriptor_array_dynamic_indexing, cap);
3990 break;
3991
3992 case SpvCapabilityUniformBufferArrayNonUniformIndexingEXT:
3993 case SpvCapabilitySampledImageArrayNonUniformIndexingEXT:
3994 case SpvCapabilityStorageBufferArrayNonUniformIndexingEXT:
3995 case SpvCapabilityStorageImageArrayNonUniformIndexingEXT:
3996 case SpvCapabilityInputAttachmentArrayNonUniformIndexingEXT:
3997 case SpvCapabilityUniformTexelBufferArrayNonUniformIndexingEXT:
3998 case SpvCapabilityStorageTexelBufferArrayNonUniformIndexingEXT:
3999 spv_check_supported(descriptor_array_non_uniform_indexing, cap);
4000 break;
4001
4002 case SpvCapabilityRuntimeDescriptorArrayEXT:
4003 spv_check_supported(runtime_descriptor_array, cap);
4004 break;
4005
4006 case SpvCapabilityStencilExportEXT:
4007 spv_check_supported(stencil_export, cap);
4008 break;
4009
4010 case SpvCapabilitySampleMaskPostDepthCoverage:
4011 spv_check_supported(post_depth_coverage, cap);
4012 break;
4013
4014 case SpvCapabilityDenormFlushToZero:
4015 case SpvCapabilityDenormPreserve:
4016 case SpvCapabilitySignedZeroInfNanPreserve:
4017 case SpvCapabilityRoundingModeRTE:
4018 case SpvCapabilityRoundingModeRTZ:
4019 spv_check_supported(float_controls, cap);
4020 break;
4021
4022 case SpvCapabilityPhysicalStorageBufferAddresses:
4023 spv_check_supported(physical_storage_buffer_address, cap);
4024 break;
4025
4026 case SpvCapabilityComputeDerivativeGroupQuadsNV:
4027 case SpvCapabilityComputeDerivativeGroupLinearNV:
4028 spv_check_supported(derivative_group, cap);
4029 break;
4030
4031 case SpvCapabilityFloat16:
4032 spv_check_supported(float16, cap);
4033 break;
4034
4035 case SpvCapabilityFragmentShaderSampleInterlockEXT:
4036 spv_check_supported(fragment_shader_sample_interlock, cap);
4037 break;
4038
4039 case SpvCapabilityFragmentShaderPixelInterlockEXT:
4040 spv_check_supported(fragment_shader_pixel_interlock, cap);
4041 break;
4042
4043 case SpvCapabilityDemoteToHelperInvocationEXT:
4044 spv_check_supported(demote_to_helper_invocation, cap);
4045 break;
4046
4047 case SpvCapabilityShaderClockKHR:
4048 spv_check_supported(shader_clock, cap);
4049 break;
4050
4051 case SpvCapabilityVulkanMemoryModel:
4052 spv_check_supported(vk_memory_model, cap);
4053 break;
4054
4055 case SpvCapabilityVulkanMemoryModelDeviceScope:
4056 spv_check_supported(vk_memory_model_device_scope, cap);
4057 break;
4058
4059 case SpvCapabilityImageReadWriteLodAMD:
4060 spv_check_supported(amd_image_read_write_lod, cap);
4061 break;
4062
4063 case SpvCapabilityIntegerFunctions2INTEL:
4064 spv_check_supported(integer_functions2, cap);
4065 break;
4066
4067 case SpvCapabilityFragmentMaskAMD:
4068 spv_check_supported(amd_fragment_mask, cap);
4069 break;
4070
4071 case SpvCapabilityImageGatherBiasLodAMD:
4072 spv_check_supported(amd_image_gather_bias_lod, cap);
4073 break;
4074
4075 default:
4076 vtn_fail("Unhandled capability: %s (%u)",
4077 spirv_capability_to_string(cap), cap);
4078 }
4079 break;
4080 }
4081
4082 case SpvOpExtInstImport:
4083 vtn_handle_extension(b, opcode, w, count);
4084 break;
4085
4086 case SpvOpMemoryModel:
4087 switch (w[1]) {
4088 case SpvAddressingModelPhysical32:
4089 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
4090 "AddressingModelPhysical32 only supported for kernels");
4091 b->shader->info.cs.ptr_size = 32;
4092 b->physical_ptrs = true;
4093 b->options->shared_addr_format = nir_address_format_32bit_global;
4094 b->options->global_addr_format = nir_address_format_32bit_global;
4095 b->options->temp_addr_format = nir_address_format_32bit_global;
4096 break;
4097 case SpvAddressingModelPhysical64:
4098 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
4099 "AddressingModelPhysical64 only supported for kernels");
4100 b->shader->info.cs.ptr_size = 64;
4101 b->physical_ptrs = true;
4102 b->options->shared_addr_format = nir_address_format_64bit_global;
4103 b->options->global_addr_format = nir_address_format_64bit_global;
4104 b->options->temp_addr_format = nir_address_format_64bit_global;
4105 break;
4106 case SpvAddressingModelLogical:
4107 vtn_fail_if(b->shader->info.stage == MESA_SHADER_KERNEL,
4108 "AddressingModelLogical only supported for shaders");
4109 b->physical_ptrs = false;
4110 break;
4111 case SpvAddressingModelPhysicalStorageBuffer64:
4112 vtn_fail_if(!b->options ||
4113 !b->options->caps.physical_storage_buffer_address,
4114 "AddressingModelPhysicalStorageBuffer64 not supported");
4115 break;
4116 default:
4117 vtn_fail("Unknown addressing model: %s (%u)",
4118 spirv_addressingmodel_to_string(w[1]), w[1]);
4119 break;
4120 }
4121
4122 switch (w[2]) {
4123 case SpvMemoryModelSimple:
4124 case SpvMemoryModelGLSL450:
4125 case SpvMemoryModelOpenCL:
4126 break;
4127 case SpvMemoryModelVulkan:
4128 vtn_fail_if(!b->options->caps.vk_memory_model,
4129 "Vulkan memory model is unsupported by this driver");
4130 break;
4131 default:
4132 vtn_fail("Unsupported memory model: %s",
4133 spirv_memorymodel_to_string(w[2]));
4134 break;
4135 }
4136 break;
4137
4138 case SpvOpEntryPoint:
4139 vtn_handle_entry_point(b, w, count);
4140 break;
4141
4142 case SpvOpString:
4143 vtn_push_value(b, w[1], vtn_value_type_string)->str =
4144 vtn_string_literal(b, &w[2], count - 2, NULL);
4145 break;
4146
4147 case SpvOpName:
4148 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
4149 break;
4150
4151 case SpvOpMemberName:
4152 /* TODO */
4153 break;
4154
4155 case SpvOpExecutionMode:
4156 case SpvOpExecutionModeId:
4157 case SpvOpDecorationGroup:
4158 case SpvOpDecorate:
4159 case SpvOpDecorateId:
4160 case SpvOpMemberDecorate:
4161 case SpvOpGroupDecorate:
4162 case SpvOpGroupMemberDecorate:
4163 case SpvOpDecorateString:
4164 case SpvOpMemberDecorateString:
4165 vtn_handle_decoration(b, opcode, w, count);
4166 break;
4167
4168 case SpvOpExtInst: {
4169 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
4170 if (val->ext_handler == vtn_handle_non_semantic_instruction) {
4171 /* NonSemantic extended instructions are acceptable in preamble. */
4172 vtn_handle_non_semantic_instruction(b, w[4], w, count);
4173 return true;
4174 } else {
4175 return false; /* End of preamble. */
4176 }
4177 }
4178
4179 default:
4180 return false; /* End of preamble */
4181 }
4182
4183 return true;
4184 }
4185
4186 static void
4187 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
4188 const struct vtn_decoration *mode, UNUSED void *data)
4189 {
4190 vtn_assert(b->entry_point == entry_point);
4191
4192 switch(mode->exec_mode) {
4193 case SpvExecutionModeOriginUpperLeft:
4194 case SpvExecutionModeOriginLowerLeft:
4195 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4196 b->shader->info.fs.origin_upper_left =
4197 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
4198 break;
4199
4200 case SpvExecutionModeEarlyFragmentTests:
4201 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4202 b->shader->info.fs.early_fragment_tests = true;
4203 break;
4204
4205 case SpvExecutionModePostDepthCoverage:
4206 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4207 b->shader->info.fs.post_depth_coverage = true;
4208 break;
4209
4210 case SpvExecutionModeInvocations:
4211 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
4212 b->shader->info.gs.invocations = MAX2(1, mode->operands[0]);
4213 break;
4214
4215 case SpvExecutionModeDepthReplacing:
4216 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4217 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
4218 break;
4219 case SpvExecutionModeDepthGreater:
4220 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4221 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
4222 break;
4223 case SpvExecutionModeDepthLess:
4224 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4225 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
4226 break;
4227 case SpvExecutionModeDepthUnchanged:
4228 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4229 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
4230 break;
4231
4232 case SpvExecutionModeLocalSize:
4233 vtn_assert(gl_shader_stage_is_compute(b->shader->info.stage));
4234 b->shader->info.cs.local_size[0] = mode->operands[0];
4235 b->shader->info.cs.local_size[1] = mode->operands[1];
4236 b->shader->info.cs.local_size[2] = mode->operands[2];
4237 break;
4238
4239 case SpvExecutionModeLocalSizeId:
4240 b->shader->info.cs.local_size[0] = vtn_constant_uint(b, mode->operands[0]);
4241 b->shader->info.cs.local_size[1] = vtn_constant_uint(b, mode->operands[1]);
4242 b->shader->info.cs.local_size[2] = vtn_constant_uint(b, mode->operands[2]);
4243 break;
4244
4245 case SpvExecutionModeLocalSizeHint:
4246 case SpvExecutionModeLocalSizeHintId:
4247 break; /* Nothing to do with this */
4248
4249 case SpvExecutionModeOutputVertices:
4250 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4251 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4252 b->shader->info.tess.tcs_vertices_out = mode->operands[0];
4253 } else {
4254 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
4255 b->shader->info.gs.vertices_out = mode->operands[0];
4256 }
4257 break;
4258
4259 case SpvExecutionModeInputPoints:
4260 case SpvExecutionModeInputLines:
4261 case SpvExecutionModeInputLinesAdjacency:
4262 case SpvExecutionModeTriangles:
4263 case SpvExecutionModeInputTrianglesAdjacency:
4264 case SpvExecutionModeQuads:
4265 case SpvExecutionModeIsolines:
4266 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4267 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4268 b->shader->info.tess.primitive_mode =
4269 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
4270 } else {
4271 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
4272 b->shader->info.gs.vertices_in =
4273 vertices_in_from_spv_execution_mode(b, mode->exec_mode);
4274 b->shader->info.gs.input_primitive =
4275 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
4276 }
4277 break;
4278
4279 case SpvExecutionModeOutputPoints:
4280 case SpvExecutionModeOutputLineStrip:
4281 case SpvExecutionModeOutputTriangleStrip:
4282 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
4283 b->shader->info.gs.output_primitive =
4284 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
4285 break;
4286
4287 case SpvExecutionModeSpacingEqual:
4288 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4289 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4290 b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
4291 break;
4292 case SpvExecutionModeSpacingFractionalEven:
4293 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4294 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4295 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
4296 break;
4297 case SpvExecutionModeSpacingFractionalOdd:
4298 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4299 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4300 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
4301 break;
4302 case SpvExecutionModeVertexOrderCw:
4303 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4304 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4305 b->shader->info.tess.ccw = false;
4306 break;
4307 case SpvExecutionModeVertexOrderCcw:
4308 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4309 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4310 b->shader->info.tess.ccw = true;
4311 break;
4312 case SpvExecutionModePointMode:
4313 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4314 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4315 b->shader->info.tess.point_mode = true;
4316 break;
4317
4318 case SpvExecutionModePixelCenterInteger:
4319 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4320 b->shader->info.fs.pixel_center_integer = true;
4321 break;
4322
4323 case SpvExecutionModeXfb:
4324 b->shader->info.has_transform_feedback_varyings = true;
4325 break;
4326
4327 case SpvExecutionModeVecTypeHint:
4328 break; /* OpenCL */
4329
4330 case SpvExecutionModeContractionOff:
4331 if (b->shader->info.stage != MESA_SHADER_KERNEL)
4332 vtn_warn("ExectionMode only allowed for CL-style kernels: %s",
4333 spirv_executionmode_to_string(mode->exec_mode));
4334 else
4335 b->exact = true;
4336 break;
4337
4338 case SpvExecutionModeStencilRefReplacingEXT:
4339 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4340 break;
4341
4342 case SpvExecutionModeDerivativeGroupQuadsNV:
4343 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
4344 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_QUADS;
4345 break;
4346
4347 case SpvExecutionModeDerivativeGroupLinearNV:
4348 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
4349 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_LINEAR;
4350 break;
4351
4352 case SpvExecutionModePixelInterlockOrderedEXT:
4353 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4354 b->shader->info.fs.pixel_interlock_ordered = true;
4355 break;
4356
4357 case SpvExecutionModePixelInterlockUnorderedEXT:
4358 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4359 b->shader->info.fs.pixel_interlock_unordered = true;
4360 break;
4361
4362 case SpvExecutionModeSampleInterlockOrderedEXT:
4363 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4364 b->shader->info.fs.sample_interlock_ordered = true;
4365 break;
4366
4367 case SpvExecutionModeSampleInterlockUnorderedEXT:
4368 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4369 b->shader->info.fs.sample_interlock_unordered = true;
4370 break;
4371
4372 case SpvExecutionModeDenormPreserve:
4373 case SpvExecutionModeDenormFlushToZero:
4374 case SpvExecutionModeSignedZeroInfNanPreserve:
4375 case SpvExecutionModeRoundingModeRTE:
4376 case SpvExecutionModeRoundingModeRTZ:
4377 /* Already handled in vtn_handle_rounding_mode_in_execution_mode() */
4378 break;
4379
4380 default:
4381 vtn_fail("Unhandled execution mode: %s (%u)",
4382 spirv_executionmode_to_string(mode->exec_mode),
4383 mode->exec_mode);
4384 }
4385 }
4386
4387 static void
4388 vtn_handle_rounding_mode_in_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
4389 const struct vtn_decoration *mode, void *data)
4390 {
4391 vtn_assert(b->entry_point == entry_point);
4392
4393 unsigned execution_mode = 0;
4394
4395 switch(mode->exec_mode) {
4396 case SpvExecutionModeDenormPreserve:
4397 switch (mode->operands[0]) {
4398 case 16: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP16; break;
4399 case 32: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP32; break;
4400 case 64: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP64; break;
4401 default: vtn_fail("Floating point type not supported");
4402 }
4403 break;
4404 case SpvExecutionModeDenormFlushToZero:
4405 switch (mode->operands[0]) {
4406 case 16: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16; break;
4407 case 32: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32; break;
4408 case 64: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64; break;
4409 default: vtn_fail("Floating point type not supported");
4410 }
4411 break;
4412 case SpvExecutionModeSignedZeroInfNanPreserve:
4413 switch (mode->operands[0]) {
4414 case 16: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16; break;
4415 case 32: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32; break;
4416 case 64: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64; break;
4417 default: vtn_fail("Floating point type not supported");
4418 }
4419 break;
4420 case SpvExecutionModeRoundingModeRTE:
4421 switch (mode->operands[0]) {
4422 case 16: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16; break;
4423 case 32: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32; break;
4424 case 64: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64; break;
4425 default: vtn_fail("Floating point type not supported");
4426 }
4427 break;
4428 case SpvExecutionModeRoundingModeRTZ:
4429 switch (mode->operands[0]) {
4430 case 16: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16; break;
4431 case 32: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32; break;
4432 case 64: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64; break;
4433 default: vtn_fail("Floating point type not supported");
4434 }
4435 break;
4436
4437 default:
4438 break;
4439 }
4440
4441 b->shader->info.float_controls_execution_mode |= execution_mode;
4442 }
4443
4444 static bool
4445 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
4446 const uint32_t *w, unsigned count)
4447 {
4448 vtn_set_instruction_result_type(b, opcode, w, count);
4449
4450 switch (opcode) {
4451 case SpvOpSource:
4452 case SpvOpSourceContinued:
4453 case SpvOpSourceExtension:
4454 case SpvOpExtension:
4455 case SpvOpCapability:
4456 case SpvOpExtInstImport:
4457 case SpvOpMemoryModel:
4458 case SpvOpEntryPoint:
4459 case SpvOpExecutionMode:
4460 case SpvOpString:
4461 case SpvOpName:
4462 case SpvOpMemberName:
4463 case SpvOpDecorationGroup:
4464 case SpvOpDecorate:
4465 case SpvOpDecorateId:
4466 case SpvOpMemberDecorate:
4467 case SpvOpGroupDecorate:
4468 case SpvOpGroupMemberDecorate:
4469 case SpvOpDecorateString:
4470 case SpvOpMemberDecorateString:
4471 vtn_fail("Invalid opcode types and variables section");
4472 break;
4473
4474 case SpvOpTypeVoid:
4475 case SpvOpTypeBool:
4476 case SpvOpTypeInt:
4477 case SpvOpTypeFloat:
4478 case SpvOpTypeVector:
4479 case SpvOpTypeMatrix:
4480 case SpvOpTypeImage:
4481 case SpvOpTypeSampler:
4482 case SpvOpTypeSampledImage:
4483 case SpvOpTypeArray:
4484 case SpvOpTypeRuntimeArray:
4485 case SpvOpTypeStruct:
4486 case SpvOpTypeOpaque:
4487 case SpvOpTypePointer:
4488 case SpvOpTypeForwardPointer:
4489 case SpvOpTypeFunction:
4490 case SpvOpTypeEvent:
4491 case SpvOpTypeDeviceEvent:
4492 case SpvOpTypeReserveId:
4493 case SpvOpTypeQueue:
4494 case SpvOpTypePipe:
4495 vtn_handle_type(b, opcode, w, count);
4496 break;
4497
4498 case SpvOpConstantTrue:
4499 case SpvOpConstantFalse:
4500 case SpvOpConstant:
4501 case SpvOpConstantComposite:
4502 case SpvOpConstantSampler:
4503 case SpvOpConstantNull:
4504 case SpvOpSpecConstantTrue:
4505 case SpvOpSpecConstantFalse:
4506 case SpvOpSpecConstant:
4507 case SpvOpSpecConstantComposite:
4508 case SpvOpSpecConstantOp:
4509 vtn_handle_constant(b, opcode, w, count);
4510 break;
4511
4512 case SpvOpUndef:
4513 case SpvOpVariable:
4514 vtn_handle_variables(b, opcode, w, count);
4515 break;
4516
4517 case SpvOpExtInst: {
4518 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
4519 /* NonSemantic extended instructions are acceptable in preamble, others
4520 * will indicate the end of preamble.
4521 */
4522 return val->ext_handler == vtn_handle_non_semantic_instruction;
4523 }
4524
4525 default:
4526 return false; /* End of preamble */
4527 }
4528
4529 return true;
4530 }
4531
4532 static struct vtn_ssa_value *
4533 vtn_nir_select(struct vtn_builder *b, struct vtn_ssa_value *src0,
4534 struct vtn_ssa_value *src1, struct vtn_ssa_value *src2)
4535 {
4536 struct vtn_ssa_value *dest = rzalloc(b, struct vtn_ssa_value);
4537 dest->type = src1->type;
4538
4539 if (glsl_type_is_vector_or_scalar(src1->type)) {
4540 dest->def = nir_bcsel(&b->nb, src0->def, src1->def, src2->def);
4541 } else {
4542 unsigned elems = glsl_get_length(src1->type);
4543
4544 dest->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
4545 for (unsigned i = 0; i < elems; i++) {
4546 dest->elems[i] = vtn_nir_select(b, src0,
4547 src1->elems[i], src2->elems[i]);
4548 }
4549 }
4550
4551 return dest;
4552 }
4553
4554 static void
4555 vtn_handle_select(struct vtn_builder *b, SpvOp opcode,
4556 const uint32_t *w, unsigned count)
4557 {
4558 /* Handle OpSelect up-front here because it needs to be able to handle
4559 * pointers and not just regular vectors and scalars.
4560 */
4561 struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
4562 struct vtn_value *cond_val = vtn_untyped_value(b, w[3]);
4563 struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
4564 struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
4565
4566 vtn_fail_if(obj1_val->type != res_val->type ||
4567 obj2_val->type != res_val->type,
4568 "Object types must match the result type in OpSelect");
4569
4570 vtn_fail_if((cond_val->type->base_type != vtn_base_type_scalar &&
4571 cond_val->type->base_type != vtn_base_type_vector) ||
4572 !glsl_type_is_boolean(cond_val->type->type),
4573 "OpSelect must have either a vector of booleans or "
4574 "a boolean as Condition type");
4575
4576 vtn_fail_if(cond_val->type->base_type == vtn_base_type_vector &&
4577 (res_val->type->base_type != vtn_base_type_vector ||
4578 res_val->type->length != cond_val->type->length),
4579 "When Condition type in OpSelect is a vector, the Result "
4580 "type must be a vector of the same length");
4581
4582 switch (res_val->type->base_type) {
4583 case vtn_base_type_scalar:
4584 case vtn_base_type_vector:
4585 case vtn_base_type_matrix:
4586 case vtn_base_type_array:
4587 case vtn_base_type_struct:
4588 /* OK. */
4589 break;
4590 case vtn_base_type_pointer:
4591 /* We need to have actual storage for pointer types. */
4592 vtn_fail_if(res_val->type->type == NULL,
4593 "Invalid pointer result type for OpSelect");
4594 break;
4595 default:
4596 vtn_fail("Result type of OpSelect must be a scalar, composite, or pointer");
4597 }
4598
4599 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
4600 struct vtn_ssa_value *ssa = vtn_nir_select(b,
4601 vtn_ssa_value(b, w[3]), vtn_ssa_value(b, w[4]), vtn_ssa_value(b, w[5]));
4602
4603 vtn_push_ssa(b, w[2], res_type, ssa);
4604 }
4605
4606 static void
4607 vtn_handle_ptr(struct vtn_builder *b, SpvOp opcode,
4608 const uint32_t *w, unsigned count)
4609 {
4610 struct vtn_type *type1 = vtn_untyped_value(b, w[3])->type;
4611 struct vtn_type *type2 = vtn_untyped_value(b, w[4])->type;
4612 vtn_fail_if(type1->base_type != vtn_base_type_pointer ||
4613 type2->base_type != vtn_base_type_pointer,
4614 "%s operands must have pointer types",
4615 spirv_op_to_string(opcode));
4616 vtn_fail_if(type1->storage_class != type2->storage_class,
4617 "%s operands must have the same storage class",
4618 spirv_op_to_string(opcode));
4619
4620 struct vtn_type *vtn_type =
4621 vtn_value(b, w[1], vtn_value_type_type)->type;
4622 const struct glsl_type *type = vtn_type->type;
4623
4624 nir_address_format addr_format = vtn_mode_to_address_format(
4625 b, vtn_storage_class_to_mode(b, type1->storage_class, NULL, NULL));
4626
4627 nir_ssa_def *def;
4628
4629 switch (opcode) {
4630 case SpvOpPtrDiff: {
4631 /* OpPtrDiff returns the difference in number of elements (not byte offset). */
4632 unsigned elem_size, elem_align;
4633 glsl_get_natural_size_align_bytes(type1->deref->type,
4634 &elem_size, &elem_align);
4635
4636 def = nir_build_addr_isub(&b->nb,
4637 vtn_ssa_value(b, w[3])->def,
4638 vtn_ssa_value(b, w[4])->def,
4639 addr_format);
4640 def = nir_idiv(&b->nb, def, nir_imm_intN_t(&b->nb, elem_size, def->bit_size));
4641 def = nir_i2i(&b->nb, def, glsl_get_bit_size(type));
4642 break;
4643 }
4644
4645 case SpvOpPtrEqual:
4646 case SpvOpPtrNotEqual: {
4647 def = nir_build_addr_ieq(&b->nb,
4648 vtn_ssa_value(b, w[3])->def,
4649 vtn_ssa_value(b, w[4])->def,
4650 addr_format);
4651 if (opcode == SpvOpPtrNotEqual)
4652 def = nir_inot(&b->nb, def);
4653 break;
4654 }
4655
4656 default:
4657 unreachable("Invalid ptr operation");
4658 }
4659
4660 struct vtn_ssa_value *ssa_value = vtn_create_ssa_value(b, type);
4661 ssa_value->def = def;
4662 vtn_push_ssa(b, w[2], vtn_type, ssa_value);
4663 }
4664
4665 static bool
4666 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
4667 const uint32_t *w, unsigned count)
4668 {
4669 switch (opcode) {
4670 case SpvOpLabel:
4671 break;
4672
4673 case SpvOpLoopMerge:
4674 case SpvOpSelectionMerge:
4675 /* This is handled by cfg pre-pass and walk_blocks */
4676 break;
4677
4678 case SpvOpUndef: {
4679 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
4680 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
4681 break;
4682 }
4683
4684 case SpvOpExtInst:
4685 vtn_handle_extension(b, opcode, w, count);
4686 break;
4687
4688 case SpvOpVariable:
4689 case SpvOpLoad:
4690 case SpvOpStore:
4691 case SpvOpCopyMemory:
4692 case SpvOpCopyMemorySized:
4693 case SpvOpAccessChain:
4694 case SpvOpPtrAccessChain:
4695 case SpvOpInBoundsAccessChain:
4696 case SpvOpInBoundsPtrAccessChain:
4697 case SpvOpArrayLength:
4698 case SpvOpConvertPtrToU:
4699 case SpvOpConvertUToPtr:
4700 vtn_handle_variables(b, opcode, w, count);
4701 break;
4702
4703 case SpvOpFunctionCall:
4704 vtn_handle_function_call(b, opcode, w, count);
4705 break;
4706
4707 case SpvOpSampledImage:
4708 case SpvOpImage:
4709 case SpvOpImageSampleImplicitLod:
4710 case SpvOpImageSampleExplicitLod:
4711 case SpvOpImageSampleDrefImplicitLod:
4712 case SpvOpImageSampleDrefExplicitLod:
4713 case SpvOpImageSampleProjImplicitLod:
4714 case SpvOpImageSampleProjExplicitLod:
4715 case SpvOpImageSampleProjDrefImplicitLod:
4716 case SpvOpImageSampleProjDrefExplicitLod:
4717 case SpvOpImageFetch:
4718 case SpvOpImageGather:
4719 case SpvOpImageDrefGather:
4720 case SpvOpImageQuerySizeLod:
4721 case SpvOpImageQueryLod:
4722 case SpvOpImageQueryLevels:
4723 case SpvOpImageQuerySamples:
4724 vtn_handle_texture(b, opcode, w, count);
4725 break;
4726
4727 case SpvOpImageRead:
4728 case SpvOpImageWrite:
4729 case SpvOpImageTexelPointer:
4730 vtn_handle_image(b, opcode, w, count);
4731 break;
4732
4733 case SpvOpImageQuerySize: {
4734 struct vtn_pointer *image =
4735 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
4736 if (glsl_type_is_image(image->type->type)) {
4737 vtn_handle_image(b, opcode, w, count);
4738 } else {
4739 vtn_assert(glsl_type_is_sampler(image->type->type));
4740 vtn_handle_texture(b, opcode, w, count);
4741 }
4742 break;
4743 }
4744
4745 case SpvOpFragmentMaskFetchAMD:
4746 case SpvOpFragmentFetchAMD:
4747 vtn_handle_texture(b, opcode, w, count);
4748 break;
4749
4750 case SpvOpAtomicLoad:
4751 case SpvOpAtomicExchange:
4752 case SpvOpAtomicCompareExchange:
4753 case SpvOpAtomicCompareExchangeWeak:
4754 case SpvOpAtomicIIncrement:
4755 case SpvOpAtomicIDecrement:
4756 case SpvOpAtomicIAdd:
4757 case SpvOpAtomicISub:
4758 case SpvOpAtomicSMin:
4759 case SpvOpAtomicUMin:
4760 case SpvOpAtomicSMax:
4761 case SpvOpAtomicUMax:
4762 case SpvOpAtomicAnd:
4763 case SpvOpAtomicOr:
4764 case SpvOpAtomicXor: {
4765 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
4766 if (pointer->value_type == vtn_value_type_image_pointer) {
4767 vtn_handle_image(b, opcode, w, count);
4768 } else {
4769 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4770 vtn_handle_atomics(b, opcode, w, count);
4771 }
4772 break;
4773 }
4774
4775 case SpvOpAtomicStore: {
4776 struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
4777 if (pointer->value_type == vtn_value_type_image_pointer) {
4778 vtn_handle_image(b, opcode, w, count);
4779 } else {
4780 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4781 vtn_handle_atomics(b, opcode, w, count);
4782 }
4783 break;
4784 }
4785
4786 case SpvOpSelect:
4787 vtn_handle_select(b, opcode, w, count);
4788 break;
4789
4790 case SpvOpSNegate:
4791 case SpvOpFNegate:
4792 case SpvOpNot:
4793 case SpvOpAny:
4794 case SpvOpAll:
4795 case SpvOpConvertFToU:
4796 case SpvOpConvertFToS:
4797 case SpvOpConvertSToF:
4798 case SpvOpConvertUToF:
4799 case SpvOpUConvert:
4800 case SpvOpSConvert:
4801 case SpvOpFConvert:
4802 case SpvOpQuantizeToF16:
4803 case SpvOpPtrCastToGeneric:
4804 case SpvOpGenericCastToPtr:
4805 case SpvOpIsNan:
4806 case SpvOpIsInf:
4807 case SpvOpIsFinite:
4808 case SpvOpIsNormal:
4809 case SpvOpSignBitSet:
4810 case SpvOpLessOrGreater:
4811 case SpvOpOrdered:
4812 case SpvOpUnordered:
4813 case SpvOpIAdd:
4814 case SpvOpFAdd:
4815 case SpvOpISub:
4816 case SpvOpFSub:
4817 case SpvOpIMul:
4818 case SpvOpFMul:
4819 case SpvOpUDiv:
4820 case SpvOpSDiv:
4821 case SpvOpFDiv:
4822 case SpvOpUMod:
4823 case SpvOpSRem:
4824 case SpvOpSMod:
4825 case SpvOpFRem:
4826 case SpvOpFMod:
4827 case SpvOpVectorTimesScalar:
4828 case SpvOpDot:
4829 case SpvOpIAddCarry:
4830 case SpvOpISubBorrow:
4831 case SpvOpUMulExtended:
4832 case SpvOpSMulExtended:
4833 case SpvOpShiftRightLogical:
4834 case SpvOpShiftRightArithmetic:
4835 case SpvOpShiftLeftLogical:
4836 case SpvOpLogicalEqual:
4837 case SpvOpLogicalNotEqual:
4838 case SpvOpLogicalOr:
4839 case SpvOpLogicalAnd:
4840 case SpvOpLogicalNot:
4841 case SpvOpBitwiseOr:
4842 case SpvOpBitwiseXor:
4843 case SpvOpBitwiseAnd:
4844 case SpvOpIEqual:
4845 case SpvOpFOrdEqual:
4846 case SpvOpFUnordEqual:
4847 case SpvOpINotEqual:
4848 case SpvOpFOrdNotEqual:
4849 case SpvOpFUnordNotEqual:
4850 case SpvOpULessThan:
4851 case SpvOpSLessThan:
4852 case SpvOpFOrdLessThan:
4853 case SpvOpFUnordLessThan:
4854 case SpvOpUGreaterThan:
4855 case SpvOpSGreaterThan:
4856 case SpvOpFOrdGreaterThan:
4857 case SpvOpFUnordGreaterThan:
4858 case SpvOpULessThanEqual:
4859 case SpvOpSLessThanEqual:
4860 case SpvOpFOrdLessThanEqual:
4861 case SpvOpFUnordLessThanEqual:
4862 case SpvOpUGreaterThanEqual:
4863 case SpvOpSGreaterThanEqual:
4864 case SpvOpFOrdGreaterThanEqual:
4865 case SpvOpFUnordGreaterThanEqual:
4866 case SpvOpDPdx:
4867 case SpvOpDPdy:
4868 case SpvOpFwidth:
4869 case SpvOpDPdxFine:
4870 case SpvOpDPdyFine:
4871 case SpvOpFwidthFine:
4872 case SpvOpDPdxCoarse:
4873 case SpvOpDPdyCoarse:
4874 case SpvOpFwidthCoarse:
4875 case SpvOpBitFieldInsert:
4876 case SpvOpBitFieldSExtract:
4877 case SpvOpBitFieldUExtract:
4878 case SpvOpBitReverse:
4879 case SpvOpBitCount:
4880 case SpvOpTranspose:
4881 case SpvOpOuterProduct:
4882 case SpvOpMatrixTimesScalar:
4883 case SpvOpVectorTimesMatrix:
4884 case SpvOpMatrixTimesVector:
4885 case SpvOpMatrixTimesMatrix:
4886 case SpvOpUCountLeadingZerosINTEL:
4887 case SpvOpUCountTrailingZerosINTEL:
4888 case SpvOpAbsISubINTEL:
4889 case SpvOpAbsUSubINTEL:
4890 case SpvOpIAddSatINTEL:
4891 case SpvOpUAddSatINTEL:
4892 case SpvOpIAverageINTEL:
4893 case SpvOpUAverageINTEL:
4894 case SpvOpIAverageRoundedINTEL:
4895 case SpvOpUAverageRoundedINTEL:
4896 case SpvOpISubSatINTEL:
4897 case SpvOpUSubSatINTEL:
4898 case SpvOpIMul32x16INTEL:
4899 case SpvOpUMul32x16INTEL:
4900 vtn_handle_alu(b, opcode, w, count);
4901 break;
4902
4903 case SpvOpBitcast:
4904 vtn_handle_bitcast(b, w, count);
4905 break;
4906
4907 case SpvOpVectorExtractDynamic:
4908 case SpvOpVectorInsertDynamic:
4909 case SpvOpVectorShuffle:
4910 case SpvOpCompositeConstruct:
4911 case SpvOpCompositeExtract:
4912 case SpvOpCompositeInsert:
4913 case SpvOpCopyLogical:
4914 case SpvOpCopyObject:
4915 vtn_handle_composite(b, opcode, w, count);
4916 break;
4917
4918 case SpvOpEmitVertex:
4919 case SpvOpEndPrimitive:
4920 case SpvOpEmitStreamVertex:
4921 case SpvOpEndStreamPrimitive:
4922 case SpvOpControlBarrier:
4923 case SpvOpMemoryBarrier:
4924 vtn_handle_barrier(b, opcode, w, count);
4925 break;
4926
4927 case SpvOpGroupNonUniformElect:
4928 case SpvOpGroupNonUniformAll:
4929 case SpvOpGroupNonUniformAny:
4930 case SpvOpGroupNonUniformAllEqual:
4931 case SpvOpGroupNonUniformBroadcast:
4932 case SpvOpGroupNonUniformBroadcastFirst:
4933 case SpvOpGroupNonUniformBallot:
4934 case SpvOpGroupNonUniformInverseBallot:
4935 case SpvOpGroupNonUniformBallotBitExtract:
4936 case SpvOpGroupNonUniformBallotBitCount:
4937 case SpvOpGroupNonUniformBallotFindLSB:
4938 case SpvOpGroupNonUniformBallotFindMSB:
4939 case SpvOpGroupNonUniformShuffle:
4940 case SpvOpGroupNonUniformShuffleXor:
4941 case SpvOpGroupNonUniformShuffleUp:
4942 case SpvOpGroupNonUniformShuffleDown:
4943 case SpvOpGroupNonUniformIAdd:
4944 case SpvOpGroupNonUniformFAdd:
4945 case SpvOpGroupNonUniformIMul:
4946 case SpvOpGroupNonUniformFMul:
4947 case SpvOpGroupNonUniformSMin:
4948 case SpvOpGroupNonUniformUMin:
4949 case SpvOpGroupNonUniformFMin:
4950 case SpvOpGroupNonUniformSMax:
4951 case SpvOpGroupNonUniformUMax:
4952 case SpvOpGroupNonUniformFMax:
4953 case SpvOpGroupNonUniformBitwiseAnd:
4954 case SpvOpGroupNonUniformBitwiseOr:
4955 case SpvOpGroupNonUniformBitwiseXor:
4956 case SpvOpGroupNonUniformLogicalAnd:
4957 case SpvOpGroupNonUniformLogicalOr:
4958 case SpvOpGroupNonUniformLogicalXor:
4959 case SpvOpGroupNonUniformQuadBroadcast:
4960 case SpvOpGroupNonUniformQuadSwap:
4961 case SpvOpGroupAll:
4962 case SpvOpGroupAny:
4963 case SpvOpGroupBroadcast:
4964 case SpvOpGroupIAdd:
4965 case SpvOpGroupFAdd:
4966 case SpvOpGroupFMin:
4967 case SpvOpGroupUMin:
4968 case SpvOpGroupSMin:
4969 case SpvOpGroupFMax:
4970 case SpvOpGroupUMax:
4971 case SpvOpGroupSMax:
4972 case SpvOpSubgroupBallotKHR:
4973 case SpvOpSubgroupFirstInvocationKHR:
4974 case SpvOpSubgroupReadInvocationKHR:
4975 case SpvOpSubgroupAllKHR:
4976 case SpvOpSubgroupAnyKHR:
4977 case SpvOpSubgroupAllEqualKHR:
4978 case SpvOpGroupIAddNonUniformAMD:
4979 case SpvOpGroupFAddNonUniformAMD:
4980 case SpvOpGroupFMinNonUniformAMD:
4981 case SpvOpGroupUMinNonUniformAMD:
4982 case SpvOpGroupSMinNonUniformAMD:
4983 case SpvOpGroupFMaxNonUniformAMD:
4984 case SpvOpGroupUMaxNonUniformAMD:
4985 case SpvOpGroupSMaxNonUniformAMD:
4986 vtn_handle_subgroup(b, opcode, w, count);
4987 break;
4988
4989 case SpvOpPtrDiff:
4990 case SpvOpPtrEqual:
4991 case SpvOpPtrNotEqual:
4992 vtn_handle_ptr(b, opcode, w, count);
4993 break;
4994
4995 case SpvOpBeginInvocationInterlockEXT:
4996 vtn_emit_barrier(b, nir_intrinsic_begin_invocation_interlock);
4997 break;
4998
4999 case SpvOpEndInvocationInterlockEXT:
5000 vtn_emit_barrier(b, nir_intrinsic_end_invocation_interlock);
5001 break;
5002
5003 case SpvOpDemoteToHelperInvocationEXT: {
5004 nir_intrinsic_instr *intrin =
5005 nir_intrinsic_instr_create(b->shader, nir_intrinsic_demote);
5006 nir_builder_instr_insert(&b->nb, &intrin->instr);
5007 break;
5008 }
5009
5010 case SpvOpIsHelperInvocationEXT: {
5011 nir_intrinsic_instr *intrin =
5012 nir_intrinsic_instr_create(b->shader, nir_intrinsic_is_helper_invocation);
5013 nir_ssa_dest_init(&intrin->instr, &intrin->dest, 1, 1, NULL);
5014 nir_builder_instr_insert(&b->nb, &intrin->instr);
5015
5016 struct vtn_type *res_type =
5017 vtn_value(b, w[1], vtn_value_type_type)->type;
5018 struct vtn_ssa_value *val = vtn_create_ssa_value(b, res_type->type);
5019 val->def = &intrin->dest.ssa;
5020
5021 vtn_push_ssa(b, w[2], res_type, val);
5022 break;
5023 }
5024
5025 case SpvOpReadClockKHR: {
5026 SpvScope scope = vtn_constant_uint(b, w[3]);
5027 nir_scope nir_scope;
5028
5029 switch (scope) {
5030 case SpvScopeDevice:
5031 nir_scope = NIR_SCOPE_DEVICE;
5032 break;
5033 case SpvScopeSubgroup:
5034 nir_scope = NIR_SCOPE_SUBGROUP;
5035 break;
5036 default:
5037 vtn_fail("invalid read clock scope");
5038 }
5039
5040 /* Operation supports two result types: uvec2 and uint64_t. The NIR
5041 * intrinsic gives uvec2, so pack the result for the other case.
5042 */
5043 nir_intrinsic_instr *intrin =
5044 nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_shader_clock);
5045 nir_ssa_dest_init(&intrin->instr, &intrin->dest, 2, 32, NULL);
5046 nir_intrinsic_set_memory_scope(intrin, nir_scope);
5047 nir_builder_instr_insert(&b->nb, &intrin->instr);
5048
5049 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
5050 const struct glsl_type *dest_type = type->type;
5051 nir_ssa_def *result;
5052
5053 if (glsl_type_is_vector(dest_type)) {
5054 assert(dest_type == glsl_vector_type(GLSL_TYPE_UINT, 2));
5055 result = &intrin->dest.ssa;
5056 } else {
5057 assert(glsl_type_is_scalar(dest_type));
5058 assert(glsl_get_base_type(dest_type) == GLSL_TYPE_UINT64);
5059 result = nir_pack_64_2x32(&b->nb, &intrin->dest.ssa);
5060 }
5061
5062 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
5063 val->type = type;
5064 val->ssa = vtn_create_ssa_value(b, dest_type);
5065 val->ssa->def = result;
5066 break;
5067 }
5068
5069 case SpvOpLifetimeStart:
5070 case SpvOpLifetimeStop:
5071 break;
5072
5073 default:
5074 vtn_fail_with_opcode("Unhandled opcode", opcode);
5075 }
5076
5077 return true;
5078 }
5079
5080 struct vtn_builder*
5081 vtn_create_builder(const uint32_t *words, size_t word_count,
5082 gl_shader_stage stage, const char *entry_point_name,
5083 const struct spirv_to_nir_options *options)
5084 {
5085 /* Initialize the vtn_builder object */
5086 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
5087 struct spirv_to_nir_options *dup_options =
5088 ralloc(b, struct spirv_to_nir_options);
5089 *dup_options = *options;
5090
5091 b->spirv = words;
5092 b->spirv_word_count = word_count;
5093 b->file = NULL;
5094 b->line = -1;
5095 b->col = -1;
5096 list_inithead(&b->functions);
5097 b->entry_point_stage = stage;
5098 b->entry_point_name = entry_point_name;
5099 b->options = dup_options;
5100
5101 /*
5102 * Handle the SPIR-V header (first 5 dwords).
5103 * Can't use vtx_assert() as the setjmp(3) target isn't initialized yet.
5104 */
5105 if (word_count <= 5)
5106 goto fail;
5107
5108 if (words[0] != SpvMagicNumber) {
5109 vtn_err("words[0] was 0x%x, want 0x%x", words[0], SpvMagicNumber);
5110 goto fail;
5111 }
5112 if (words[1] < 0x10000) {
5113 vtn_err("words[1] was 0x%x, want >= 0x10000", words[1]);
5114 goto fail;
5115 }
5116
5117 uint16_t generator_id = words[2] >> 16;
5118 uint16_t generator_version = words[2];
5119
5120 /* The first GLSLang version bump actually 1.5 years after #179 was fixed
5121 * but this should at least let us shut the workaround off for modern
5122 * versions of GLSLang.
5123 */
5124 b->wa_glslang_179 = (generator_id == 8 && generator_version == 1);
5125
5126 /* In GLSLang commit 8297936dd6eb3, their handling of barrier() was fixed
5127 * to provide correct memory semantics on compute shader barrier()
5128 * commands. Prior to that, we need to fix them up ourselves. This
5129 * GLSLang fix caused them to bump to generator version 3.
5130 */
5131 b->wa_glslang_cs_barrier = (generator_id == 8 && generator_version < 3);
5132
5133 /* words[2] == generator magic */
5134 unsigned value_id_bound = words[3];
5135 if (words[4] != 0) {
5136 vtn_err("words[4] was %u, want 0", words[4]);
5137 goto fail;
5138 }
5139
5140 b->value_id_bound = value_id_bound;
5141 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
5142
5143 return b;
5144 fail:
5145 ralloc_free(b);
5146 return NULL;
5147 }
5148
5149 static nir_function *
5150 vtn_emit_kernel_entry_point_wrapper(struct vtn_builder *b,
5151 nir_function *entry_point)
5152 {
5153 vtn_assert(entry_point == b->entry_point->func->impl->function);
5154 vtn_fail_if(!entry_point->name, "entry points are required to have a name");
5155 const char *func_name =
5156 ralloc_asprintf(b->shader, "__wrapped_%s", entry_point->name);
5157
5158 /* we shouldn't have any inputs yet */
5159 vtn_assert(!entry_point->shader->num_inputs);
5160 vtn_assert(b->shader->info.stage == MESA_SHADER_KERNEL);
5161
5162 nir_function *main_entry_point = nir_function_create(b->shader, func_name);
5163 main_entry_point->impl = nir_function_impl_create(main_entry_point);
5164 nir_builder_init(&b->nb, main_entry_point->impl);
5165 b->nb.cursor = nir_after_cf_list(&main_entry_point->impl->body);
5166 b->func_param_idx = 0;
5167
5168 nir_call_instr *call = nir_call_instr_create(b->nb.shader, entry_point);
5169
5170 for (unsigned i = 0; i < entry_point->num_params; ++i) {
5171 struct vtn_type *param_type = b->entry_point->func->type->params[i];
5172
5173 /* consider all pointers to function memory to be parameters passed
5174 * by value
5175 */
5176 bool is_by_val = param_type->base_type == vtn_base_type_pointer &&
5177 param_type->storage_class == SpvStorageClassFunction;
5178
5179 /* input variable */
5180 nir_variable *in_var = rzalloc(b->nb.shader, nir_variable);
5181 in_var->data.mode = nir_var_shader_in;
5182 in_var->data.read_only = true;
5183 in_var->data.location = i;
5184
5185 if (is_by_val)
5186 in_var->type = param_type->deref->type;
5187 else
5188 in_var->type = param_type->type;
5189
5190 nir_shader_add_variable(b->nb.shader, in_var);
5191 b->nb.shader->num_inputs++;
5192
5193 /* we have to copy the entire variable into function memory */
5194 if (is_by_val) {
5195 nir_variable *copy_var =
5196 nir_local_variable_create(main_entry_point->impl, in_var->type,
5197 "copy_in");
5198 nir_copy_var(&b->nb, copy_var, in_var);
5199 call->params[i] =
5200 nir_src_for_ssa(&nir_build_deref_var(&b->nb, copy_var)->dest.ssa);
5201 } else {
5202 call->params[i] = nir_src_for_ssa(nir_load_var(&b->nb, in_var));
5203 }
5204 }
5205
5206 nir_builder_instr_insert(&b->nb, &call->instr);
5207
5208 return main_entry_point;
5209 }
5210
5211 nir_shader *
5212 spirv_to_nir(const uint32_t *words, size_t word_count,
5213 struct nir_spirv_specialization *spec, unsigned num_spec,
5214 gl_shader_stage stage, const char *entry_point_name,
5215 const struct spirv_to_nir_options *options,
5216 const nir_shader_compiler_options *nir_options)
5217
5218 {
5219 const uint32_t *word_end = words + word_count;
5220
5221 struct vtn_builder *b = vtn_create_builder(words, word_count,
5222 stage, entry_point_name,
5223 options);
5224
5225 if (b == NULL)
5226 return NULL;
5227
5228 /* See also _vtn_fail() */
5229 if (setjmp(b->fail_jump)) {
5230 ralloc_free(b);
5231 return NULL;
5232 }
5233
5234 /* Skip the SPIR-V header, handled at vtn_create_builder */
5235 words+= 5;
5236
5237 b->shader = nir_shader_create(b, stage, nir_options, NULL);
5238
5239 /* Handle all the preamble instructions */
5240 words = vtn_foreach_instruction(b, words, word_end,
5241 vtn_handle_preamble_instruction);
5242
5243 if (b->entry_point == NULL) {
5244 vtn_fail("Entry point not found");
5245 ralloc_free(b);
5246 return NULL;
5247 }
5248
5249 /* Set shader info defaults */
5250 if (stage == MESA_SHADER_GEOMETRY)
5251 b->shader->info.gs.invocations = 1;
5252
5253 /* Parse rounding mode execution modes. This has to happen earlier than
5254 * other changes in the execution modes since they can affect, for example,
5255 * the result of the floating point constants.
5256 */
5257 vtn_foreach_execution_mode(b, b->entry_point,
5258 vtn_handle_rounding_mode_in_execution_mode, NULL);
5259
5260 b->specializations = spec;
5261 b->num_specializations = num_spec;
5262
5263 /* Handle all variable, type, and constant instructions */
5264 words = vtn_foreach_instruction(b, words, word_end,
5265 vtn_handle_variable_or_type_instruction);
5266
5267 /* Parse execution modes */
5268 vtn_foreach_execution_mode(b, b->entry_point,
5269 vtn_handle_execution_mode, NULL);
5270
5271 if (b->workgroup_size_builtin) {
5272 vtn_assert(b->workgroup_size_builtin->type->type ==
5273 glsl_vector_type(GLSL_TYPE_UINT, 3));
5274
5275 nir_const_value *const_size =
5276 b->workgroup_size_builtin->constant->values;
5277
5278 b->shader->info.cs.local_size[0] = const_size[0].u32;
5279 b->shader->info.cs.local_size[1] = const_size[1].u32;
5280 b->shader->info.cs.local_size[2] = const_size[2].u32;
5281 }
5282
5283 /* Set types on all vtn_values */
5284 vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
5285
5286 vtn_build_cfg(b, words, word_end);
5287
5288 assert(b->entry_point->value_type == vtn_value_type_function);
5289 b->entry_point->func->referenced = true;
5290
5291 bool progress;
5292 do {
5293 progress = false;
5294 vtn_foreach_cf_node(node, &b->functions) {
5295 struct vtn_function *func = vtn_cf_node_as_function(node);
5296 if (func->referenced && !func->emitted) {
5297 b->const_table = _mesa_pointer_hash_table_create(b);
5298
5299 vtn_function_emit(b, func, vtn_handle_body_instruction);
5300 progress = true;
5301 }
5302 }
5303 } while (progress);
5304
5305 vtn_assert(b->entry_point->value_type == vtn_value_type_function);
5306 nir_function *entry_point = b->entry_point->func->impl->function;
5307 vtn_assert(entry_point);
5308
5309 /* post process entry_points with input params */
5310 if (entry_point->num_params && b->shader->info.stage == MESA_SHADER_KERNEL)
5311 entry_point = vtn_emit_kernel_entry_point_wrapper(b, entry_point);
5312
5313 entry_point->is_entrypoint = true;
5314
5315 /* When multiple shader stages exist in the same SPIR-V module, we
5316 * generate input and output variables for every stage, in the same
5317 * NIR program. These dead variables can be invalid NIR. For example,
5318 * TCS outputs must be per-vertex arrays (or decorated 'patch'), while
5319 * VS output variables wouldn't be.
5320 *
5321 * To ensure we have valid NIR, we eliminate any dead inputs and outputs
5322 * right away. In order to do so, we must lower any constant initializers
5323 * on outputs so nir_remove_dead_variables sees that they're written to.
5324 */
5325 nir_lower_variable_initializers(b->shader, nir_var_shader_out);
5326 nir_remove_dead_variables(b->shader,
5327 nir_var_shader_in | nir_var_shader_out, NULL);
5328
5329 /* We sometimes generate bogus derefs that, while never used, give the
5330 * validator a bit of heartburn. Run dead code to get rid of them.
5331 */
5332 nir_opt_dce(b->shader);
5333
5334 /* Unparent the shader from the vtn_builder before we delete the builder */
5335 ralloc_steal(NULL, b->shader);
5336
5337 nir_shader *shader = b->shader;
5338 ralloc_free(b);
5339
5340 return shader;
5341 }