spirv: Use scoped barriers for SpvOpControlBarrier
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "nir/nir_deref.h"
33 #include "spirv_info.h"
34
35 #include "util/format/u_format.h"
36 #include "util/u_math.h"
37
38 #include <stdio.h>
39
40 void
41 vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
42 size_t spirv_offset, const char *message)
43 {
44 if (b->options->debug.func) {
45 b->options->debug.func(b->options->debug.private_data,
46 level, spirv_offset, message);
47 }
48
49 #ifndef NDEBUG
50 if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
51 fprintf(stderr, "%s\n", message);
52 #endif
53 }
54
55 void
56 vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
57 size_t spirv_offset, const char *fmt, ...)
58 {
59 va_list args;
60 char *msg;
61
62 va_start(args, fmt);
63 msg = ralloc_vasprintf(NULL, fmt, args);
64 va_end(args);
65
66 vtn_log(b, level, spirv_offset, msg);
67
68 ralloc_free(msg);
69 }
70
71 static void
72 vtn_log_err(struct vtn_builder *b,
73 enum nir_spirv_debug_level level, const char *prefix,
74 const char *file, unsigned line,
75 const char *fmt, va_list args)
76 {
77 char *msg;
78
79 msg = ralloc_strdup(NULL, prefix);
80
81 #ifndef NDEBUG
82 ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
83 #endif
84
85 ralloc_asprintf_append(&msg, " ");
86
87 ralloc_vasprintf_append(&msg, fmt, args);
88
89 ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
90 b->spirv_offset);
91
92 if (b->file) {
93 ralloc_asprintf_append(&msg,
94 "\n in SPIR-V source file %s, line %d, col %d",
95 b->file, b->line, b->col);
96 }
97
98 vtn_log(b, level, b->spirv_offset, msg);
99
100 ralloc_free(msg);
101 }
102
103 static void
104 vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
105 {
106 static int idx = 0;
107
108 char filename[1024];
109 int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
110 path, prefix, idx++);
111 if (len < 0 || len >= sizeof(filename))
112 return;
113
114 FILE *f = fopen(filename, "w");
115 if (f == NULL)
116 return;
117
118 fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
119 fclose(f);
120
121 vtn_info("SPIR-V shader dumped to %s", filename);
122 }
123
124 void
125 _vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
126 const char *fmt, ...)
127 {
128 va_list args;
129
130 va_start(args, fmt);
131 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
132 file, line, fmt, args);
133 va_end(args);
134 }
135
136 void
137 _vtn_err(struct vtn_builder *b, const char *file, unsigned line,
138 const char *fmt, ...)
139 {
140 va_list args;
141
142 va_start(args, fmt);
143 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V ERROR:\n",
144 file, line, fmt, args);
145 va_end(args);
146 }
147
148 void
149 _vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
150 const char *fmt, ...)
151 {
152 va_list args;
153
154 va_start(args, fmt);
155 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
156 file, line, fmt, args);
157 va_end(args);
158
159 const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
160 if (dump_path)
161 vtn_dump_shader(b, dump_path, "fail");
162
163 longjmp(b->fail_jump, 1);
164 }
165
166 static struct vtn_ssa_value *
167 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
168 {
169 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
170 val->type = type;
171
172 if (glsl_type_is_vector_or_scalar(type)) {
173 unsigned num_components = glsl_get_vector_elements(val->type);
174 unsigned bit_size = glsl_get_bit_size(val->type);
175 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
176 } else {
177 unsigned elems = glsl_get_length(val->type);
178 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
179 if (glsl_type_is_matrix(type)) {
180 const struct glsl_type *elem_type =
181 glsl_vector_type(glsl_get_base_type(type),
182 glsl_get_vector_elements(type));
183
184 for (unsigned i = 0; i < elems; i++)
185 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
186 } else if (glsl_type_is_array(type)) {
187 const struct glsl_type *elem_type = glsl_get_array_element(type);
188 for (unsigned i = 0; i < elems; i++)
189 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
190 } else {
191 for (unsigned i = 0; i < elems; i++) {
192 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
193 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
194 }
195 }
196 }
197
198 return val;
199 }
200
201 static struct vtn_ssa_value *
202 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
203 const struct glsl_type *type)
204 {
205 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
206
207 if (entry)
208 return entry->data;
209
210 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
211 val->type = type;
212
213 switch (glsl_get_base_type(type)) {
214 case GLSL_TYPE_INT:
215 case GLSL_TYPE_UINT:
216 case GLSL_TYPE_INT16:
217 case GLSL_TYPE_UINT16:
218 case GLSL_TYPE_UINT8:
219 case GLSL_TYPE_INT8:
220 case GLSL_TYPE_INT64:
221 case GLSL_TYPE_UINT64:
222 case GLSL_TYPE_BOOL:
223 case GLSL_TYPE_FLOAT:
224 case GLSL_TYPE_FLOAT16:
225 case GLSL_TYPE_DOUBLE: {
226 int bit_size = glsl_get_bit_size(type);
227 if (glsl_type_is_vector_or_scalar(type)) {
228 unsigned num_components = glsl_get_vector_elements(val->type);
229 nir_load_const_instr *load =
230 nir_load_const_instr_create(b->shader, num_components, bit_size);
231
232 memcpy(load->value, constant->values,
233 sizeof(nir_const_value) * load->def.num_components);
234
235 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
236 val->def = &load->def;
237 } else {
238 assert(glsl_type_is_matrix(type));
239 unsigned columns = glsl_get_matrix_columns(val->type);
240 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
241 const struct glsl_type *column_type = glsl_get_column_type(val->type);
242 for (unsigned i = 0; i < columns; i++)
243 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
244 column_type);
245 }
246 break;
247 }
248
249 case GLSL_TYPE_ARRAY: {
250 unsigned elems = glsl_get_length(val->type);
251 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
252 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
253 for (unsigned i = 0; i < elems; i++)
254 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
255 elem_type);
256 break;
257 }
258
259 case GLSL_TYPE_STRUCT: {
260 unsigned elems = glsl_get_length(val->type);
261 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
262 for (unsigned i = 0; i < elems; i++) {
263 const struct glsl_type *elem_type =
264 glsl_get_struct_field(val->type, i);
265 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
266 elem_type);
267 }
268 break;
269 }
270
271 default:
272 vtn_fail("bad constant type");
273 }
274
275 return val;
276 }
277
278 struct vtn_ssa_value *
279 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
280 {
281 struct vtn_value *val = vtn_untyped_value(b, value_id);
282 switch (val->value_type) {
283 case vtn_value_type_undef:
284 return vtn_undef_ssa_value(b, val->type->type);
285
286 case vtn_value_type_constant:
287 return vtn_const_ssa_value(b, val->constant, val->type->type);
288
289 case vtn_value_type_ssa:
290 return val->ssa;
291
292 case vtn_value_type_pointer:
293 vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
294 struct vtn_ssa_value *ssa =
295 vtn_create_ssa_value(b, val->pointer->ptr_type->type);
296 ssa->def = vtn_pointer_to_ssa(b, val->pointer);
297 return ssa;
298
299 default:
300 vtn_fail("Invalid type for an SSA value");
301 }
302 }
303
304 static char *
305 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
306 unsigned word_count, unsigned *words_used)
307 {
308 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
309 if (words_used) {
310 /* Ammount of space taken by the string (including the null) */
311 unsigned len = strlen(dup) + 1;
312 *words_used = DIV_ROUND_UP(len, sizeof(*words));
313 }
314 return dup;
315 }
316
317 const uint32_t *
318 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
319 const uint32_t *end, vtn_instruction_handler handler)
320 {
321 b->file = NULL;
322 b->line = -1;
323 b->col = -1;
324
325 const uint32_t *w = start;
326 while (w < end) {
327 SpvOp opcode = w[0] & SpvOpCodeMask;
328 unsigned count = w[0] >> SpvWordCountShift;
329 vtn_assert(count >= 1 && w + count <= end);
330
331 b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
332
333 switch (opcode) {
334 case SpvOpNop:
335 break; /* Do nothing */
336
337 case SpvOpLine:
338 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
339 b->line = w[2];
340 b->col = w[3];
341 break;
342
343 case SpvOpNoLine:
344 b->file = NULL;
345 b->line = -1;
346 b->col = -1;
347 break;
348
349 default:
350 if (!handler(b, opcode, w, count))
351 return w;
352 break;
353 }
354
355 w += count;
356 }
357
358 b->spirv_offset = 0;
359 b->file = NULL;
360 b->line = -1;
361 b->col = -1;
362
363 assert(w == end);
364 return w;
365 }
366
367 static bool
368 vtn_handle_non_semantic_instruction(struct vtn_builder *b, SpvOp ext_opcode,
369 const uint32_t *w, unsigned count)
370 {
371 /* Do nothing. */
372 return true;
373 }
374
375 static void
376 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
377 const uint32_t *w, unsigned count)
378 {
379 const char *ext = (const char *)&w[2];
380 switch (opcode) {
381 case SpvOpExtInstImport: {
382 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
383 if (strcmp(ext, "GLSL.std.450") == 0) {
384 val->ext_handler = vtn_handle_glsl450_instruction;
385 } else if ((strcmp(ext, "SPV_AMD_gcn_shader") == 0)
386 && (b->options && b->options->caps.amd_gcn_shader)) {
387 val->ext_handler = vtn_handle_amd_gcn_shader_instruction;
388 } else if ((strcmp(ext, "SPV_AMD_shader_ballot") == 0)
389 && (b->options && b->options->caps.amd_shader_ballot)) {
390 val->ext_handler = vtn_handle_amd_shader_ballot_instruction;
391 } else if ((strcmp(ext, "SPV_AMD_shader_trinary_minmax") == 0)
392 && (b->options && b->options->caps.amd_trinary_minmax)) {
393 val->ext_handler = vtn_handle_amd_shader_trinary_minmax_instruction;
394 } else if ((strcmp(ext, "SPV_AMD_shader_explicit_vertex_parameter") == 0)
395 && (b->options && b->options->caps.amd_shader_explicit_vertex_parameter)) {
396 val->ext_handler = vtn_handle_amd_shader_explicit_vertex_parameter_instruction;
397 } else if (strcmp(ext, "OpenCL.std") == 0) {
398 val->ext_handler = vtn_handle_opencl_instruction;
399 } else if (strstr(ext, "NonSemantic.") == ext) {
400 val->ext_handler = vtn_handle_non_semantic_instruction;
401 } else {
402 vtn_fail("Unsupported extension: %s", ext);
403 }
404 break;
405 }
406
407 case SpvOpExtInst: {
408 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
409 bool handled = val->ext_handler(b, w[4], w, count);
410 vtn_assert(handled);
411 break;
412 }
413
414 default:
415 vtn_fail_with_opcode("Unhandled opcode", opcode);
416 }
417 }
418
419 static void
420 _foreach_decoration_helper(struct vtn_builder *b,
421 struct vtn_value *base_value,
422 int parent_member,
423 struct vtn_value *value,
424 vtn_decoration_foreach_cb cb, void *data)
425 {
426 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
427 int member;
428 if (dec->scope == VTN_DEC_DECORATION) {
429 member = parent_member;
430 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
431 vtn_fail_if(value->value_type != vtn_value_type_type ||
432 value->type->base_type != vtn_base_type_struct,
433 "OpMemberDecorate and OpGroupMemberDecorate are only "
434 "allowed on OpTypeStruct");
435 /* This means we haven't recursed yet */
436 assert(value == base_value);
437
438 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
439
440 vtn_fail_if(member >= base_value->type->length,
441 "OpMemberDecorate specifies member %d but the "
442 "OpTypeStruct has only %u members",
443 member, base_value->type->length);
444 } else {
445 /* Not a decoration */
446 assert(dec->scope == VTN_DEC_EXECUTION_MODE);
447 continue;
448 }
449
450 if (dec->group) {
451 assert(dec->group->value_type == vtn_value_type_decoration_group);
452 _foreach_decoration_helper(b, base_value, member, dec->group,
453 cb, data);
454 } else {
455 cb(b, base_value, member, dec, data);
456 }
457 }
458 }
459
460 /** Iterates (recursively if needed) over all of the decorations on a value
461 *
462 * This function iterates over all of the decorations applied to a given
463 * value. If it encounters a decoration group, it recurses into the group
464 * and iterates over all of those decorations as well.
465 */
466 void
467 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
468 vtn_decoration_foreach_cb cb, void *data)
469 {
470 _foreach_decoration_helper(b, value, -1, value, cb, data);
471 }
472
473 void
474 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
475 vtn_execution_mode_foreach_cb cb, void *data)
476 {
477 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
478 if (dec->scope != VTN_DEC_EXECUTION_MODE)
479 continue;
480
481 assert(dec->group == NULL);
482 cb(b, value, dec, data);
483 }
484 }
485
486 void
487 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
488 const uint32_t *w, unsigned count)
489 {
490 const uint32_t *w_end = w + count;
491 const uint32_t target = w[1];
492 w += 2;
493
494 switch (opcode) {
495 case SpvOpDecorationGroup:
496 vtn_push_value(b, target, vtn_value_type_decoration_group);
497 break;
498
499 case SpvOpDecorate:
500 case SpvOpDecorateId:
501 case SpvOpMemberDecorate:
502 case SpvOpDecorateString:
503 case SpvOpMemberDecorateString:
504 case SpvOpExecutionMode:
505 case SpvOpExecutionModeId: {
506 struct vtn_value *val = vtn_untyped_value(b, target);
507
508 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
509 switch (opcode) {
510 case SpvOpDecorate:
511 case SpvOpDecorateId:
512 case SpvOpDecorateString:
513 dec->scope = VTN_DEC_DECORATION;
514 break;
515 case SpvOpMemberDecorate:
516 case SpvOpMemberDecorateString:
517 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
518 vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
519 "Member argument of OpMemberDecorate too large");
520 break;
521 case SpvOpExecutionMode:
522 case SpvOpExecutionModeId:
523 dec->scope = VTN_DEC_EXECUTION_MODE;
524 break;
525 default:
526 unreachable("Invalid decoration opcode");
527 }
528 dec->decoration = *(w++);
529 dec->operands = w;
530
531 /* Link into the list */
532 dec->next = val->decoration;
533 val->decoration = dec;
534 break;
535 }
536
537 case SpvOpGroupMemberDecorate:
538 case SpvOpGroupDecorate: {
539 struct vtn_value *group =
540 vtn_value(b, target, vtn_value_type_decoration_group);
541
542 for (; w < w_end; w++) {
543 struct vtn_value *val = vtn_untyped_value(b, *w);
544 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
545
546 dec->group = group;
547 if (opcode == SpvOpGroupDecorate) {
548 dec->scope = VTN_DEC_DECORATION;
549 } else {
550 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
551 vtn_fail_if(dec->scope < 0, /* Check for overflow */
552 "Member argument of OpGroupMemberDecorate too large");
553 }
554
555 /* Link into the list */
556 dec->next = val->decoration;
557 val->decoration = dec;
558 }
559 break;
560 }
561
562 default:
563 unreachable("Unhandled opcode");
564 }
565 }
566
567 struct member_decoration_ctx {
568 unsigned num_fields;
569 struct glsl_struct_field *fields;
570 struct vtn_type *type;
571 };
572
573 /**
574 * Returns true if the given type contains a struct decorated Block or
575 * BufferBlock
576 */
577 bool
578 vtn_type_contains_block(struct vtn_builder *b, struct vtn_type *type)
579 {
580 switch (type->base_type) {
581 case vtn_base_type_array:
582 return vtn_type_contains_block(b, type->array_element);
583 case vtn_base_type_struct:
584 if (type->block || type->buffer_block)
585 return true;
586 for (unsigned i = 0; i < type->length; i++) {
587 if (vtn_type_contains_block(b, type->members[i]))
588 return true;
589 }
590 return false;
591 default:
592 return false;
593 }
594 }
595
596 /** Returns true if two types are "compatible", i.e. you can do an OpLoad,
597 * OpStore, or OpCopyMemory between them without breaking anything.
598 * Technically, the SPIR-V rules require the exact same type ID but this lets
599 * us internally be a bit looser.
600 */
601 bool
602 vtn_types_compatible(struct vtn_builder *b,
603 struct vtn_type *t1, struct vtn_type *t2)
604 {
605 if (t1->id == t2->id)
606 return true;
607
608 if (t1->base_type != t2->base_type)
609 return false;
610
611 switch (t1->base_type) {
612 case vtn_base_type_void:
613 case vtn_base_type_scalar:
614 case vtn_base_type_vector:
615 case vtn_base_type_matrix:
616 case vtn_base_type_image:
617 case vtn_base_type_sampler:
618 case vtn_base_type_sampled_image:
619 return t1->type == t2->type;
620
621 case vtn_base_type_array:
622 return t1->length == t2->length &&
623 vtn_types_compatible(b, t1->array_element, t2->array_element);
624
625 case vtn_base_type_pointer:
626 return vtn_types_compatible(b, t1->deref, t2->deref);
627
628 case vtn_base_type_struct:
629 if (t1->length != t2->length)
630 return false;
631
632 for (unsigned i = 0; i < t1->length; i++) {
633 if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
634 return false;
635 }
636 return true;
637
638 case vtn_base_type_function:
639 /* This case shouldn't get hit since you can't copy around function
640 * types. Just require them to be identical.
641 */
642 return false;
643 }
644
645 vtn_fail("Invalid base type");
646 }
647
648 struct vtn_type *
649 vtn_type_without_array(struct vtn_type *type)
650 {
651 while (type->base_type == vtn_base_type_array)
652 type = type->array_element;
653 return type;
654 }
655
656 /* does a shallow copy of a vtn_type */
657
658 static struct vtn_type *
659 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
660 {
661 struct vtn_type *dest = ralloc(b, struct vtn_type);
662 *dest = *src;
663
664 switch (src->base_type) {
665 case vtn_base_type_void:
666 case vtn_base_type_scalar:
667 case vtn_base_type_vector:
668 case vtn_base_type_matrix:
669 case vtn_base_type_array:
670 case vtn_base_type_pointer:
671 case vtn_base_type_image:
672 case vtn_base_type_sampler:
673 case vtn_base_type_sampled_image:
674 /* Nothing more to do */
675 break;
676
677 case vtn_base_type_struct:
678 dest->members = ralloc_array(b, struct vtn_type *, src->length);
679 memcpy(dest->members, src->members,
680 src->length * sizeof(src->members[0]));
681
682 dest->offsets = ralloc_array(b, unsigned, src->length);
683 memcpy(dest->offsets, src->offsets,
684 src->length * sizeof(src->offsets[0]));
685 break;
686
687 case vtn_base_type_function:
688 dest->params = ralloc_array(b, struct vtn_type *, src->length);
689 memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
690 break;
691 }
692
693 return dest;
694 }
695
696 static struct vtn_type *
697 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
698 {
699 type->members[member] = vtn_type_copy(b, type->members[member]);
700 type = type->members[member];
701
702 /* We may have an array of matrices.... Oh, joy! */
703 while (glsl_type_is_array(type->type)) {
704 type->array_element = vtn_type_copy(b, type->array_element);
705 type = type->array_element;
706 }
707
708 vtn_assert(glsl_type_is_matrix(type->type));
709
710 return type;
711 }
712
713 static void
714 vtn_handle_access_qualifier(struct vtn_builder *b, struct vtn_type *type,
715 int member, enum gl_access_qualifier access)
716 {
717 type->members[member] = vtn_type_copy(b, type->members[member]);
718 type = type->members[member];
719
720 type->access |= access;
721 }
722
723 static void
724 array_stride_decoration_cb(struct vtn_builder *b,
725 struct vtn_value *val, int member,
726 const struct vtn_decoration *dec, void *void_ctx)
727 {
728 struct vtn_type *type = val->type;
729
730 if (dec->decoration == SpvDecorationArrayStride) {
731 if (vtn_type_contains_block(b, type)) {
732 vtn_warn("The ArrayStride decoration cannot be applied to an array "
733 "type which contains a structure type decorated Block "
734 "or BufferBlock");
735 /* Ignore the decoration */
736 } else {
737 vtn_fail_if(dec->operands[0] == 0, "ArrayStride must be non-zero");
738 type->stride = dec->operands[0];
739 }
740 }
741 }
742
743 static void
744 struct_member_decoration_cb(struct vtn_builder *b,
745 UNUSED struct vtn_value *val, int member,
746 const struct vtn_decoration *dec, void *void_ctx)
747 {
748 struct member_decoration_ctx *ctx = void_ctx;
749
750 if (member < 0)
751 return;
752
753 assert(member < ctx->num_fields);
754
755 switch (dec->decoration) {
756 case SpvDecorationRelaxedPrecision:
757 case SpvDecorationUniform:
758 case SpvDecorationUniformId:
759 break; /* FIXME: Do nothing with this for now. */
760 case SpvDecorationNonWritable:
761 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_WRITEABLE);
762 break;
763 case SpvDecorationNonReadable:
764 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_READABLE);
765 break;
766 case SpvDecorationVolatile:
767 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_VOLATILE);
768 break;
769 case SpvDecorationCoherent:
770 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_COHERENT);
771 break;
772 case SpvDecorationNoPerspective:
773 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
774 break;
775 case SpvDecorationFlat:
776 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
777 break;
778 case SpvDecorationExplicitInterpAMD:
779 ctx->fields[member].interpolation = INTERP_MODE_EXPLICIT;
780 break;
781 case SpvDecorationCentroid:
782 ctx->fields[member].centroid = true;
783 break;
784 case SpvDecorationSample:
785 ctx->fields[member].sample = true;
786 break;
787 case SpvDecorationStream:
788 /* This is handled later by var_decoration_cb in vtn_variables.c */
789 break;
790 case SpvDecorationLocation:
791 ctx->fields[member].location = dec->operands[0];
792 break;
793 case SpvDecorationComponent:
794 break; /* FIXME: What should we do with these? */
795 case SpvDecorationBuiltIn:
796 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
797 ctx->type->members[member]->is_builtin = true;
798 ctx->type->members[member]->builtin = dec->operands[0];
799 ctx->type->builtin_block = true;
800 break;
801 case SpvDecorationOffset:
802 ctx->type->offsets[member] = dec->operands[0];
803 ctx->fields[member].offset = dec->operands[0];
804 break;
805 case SpvDecorationMatrixStride:
806 /* Handled as a second pass */
807 break;
808 case SpvDecorationColMajor:
809 break; /* Nothing to do here. Column-major is the default. */
810 case SpvDecorationRowMajor:
811 mutable_matrix_member(b, ctx->type, member)->row_major = true;
812 break;
813
814 case SpvDecorationPatch:
815 break;
816
817 case SpvDecorationSpecId:
818 case SpvDecorationBlock:
819 case SpvDecorationBufferBlock:
820 case SpvDecorationArrayStride:
821 case SpvDecorationGLSLShared:
822 case SpvDecorationGLSLPacked:
823 case SpvDecorationInvariant:
824 case SpvDecorationRestrict:
825 case SpvDecorationAliased:
826 case SpvDecorationConstant:
827 case SpvDecorationIndex:
828 case SpvDecorationBinding:
829 case SpvDecorationDescriptorSet:
830 case SpvDecorationLinkageAttributes:
831 case SpvDecorationNoContraction:
832 case SpvDecorationInputAttachmentIndex:
833 vtn_warn("Decoration not allowed on struct members: %s",
834 spirv_decoration_to_string(dec->decoration));
835 break;
836
837 case SpvDecorationXfbBuffer:
838 case SpvDecorationXfbStride:
839 /* This is handled later by var_decoration_cb in vtn_variables.c */
840 break;
841
842 case SpvDecorationCPacked:
843 if (b->shader->info.stage != MESA_SHADER_KERNEL)
844 vtn_warn("Decoration only allowed for CL-style kernels: %s",
845 spirv_decoration_to_string(dec->decoration));
846 else
847 ctx->type->packed = true;
848 break;
849
850 case SpvDecorationSaturatedConversion:
851 case SpvDecorationFuncParamAttr:
852 case SpvDecorationFPRoundingMode:
853 case SpvDecorationFPFastMathMode:
854 case SpvDecorationAlignment:
855 if (b->shader->info.stage != MESA_SHADER_KERNEL) {
856 vtn_warn("Decoration only allowed for CL-style kernels: %s",
857 spirv_decoration_to_string(dec->decoration));
858 }
859 break;
860
861 case SpvDecorationUserSemantic:
862 case SpvDecorationUserTypeGOOGLE:
863 /* User semantic decorations can safely be ignored by the driver. */
864 break;
865
866 default:
867 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
868 }
869 }
870
871 /** Chases the array type all the way down to the tail and rewrites the
872 * glsl_types to be based off the tail's glsl_type.
873 */
874 static void
875 vtn_array_type_rewrite_glsl_type(struct vtn_type *type)
876 {
877 if (type->base_type != vtn_base_type_array)
878 return;
879
880 vtn_array_type_rewrite_glsl_type(type->array_element);
881
882 type->type = glsl_array_type(type->array_element->type,
883 type->length, type->stride);
884 }
885
886 /* Matrix strides are handled as a separate pass because we need to know
887 * whether the matrix is row-major or not first.
888 */
889 static void
890 struct_member_matrix_stride_cb(struct vtn_builder *b,
891 UNUSED struct vtn_value *val, int member,
892 const struct vtn_decoration *dec,
893 void *void_ctx)
894 {
895 if (dec->decoration != SpvDecorationMatrixStride)
896 return;
897
898 vtn_fail_if(member < 0,
899 "The MatrixStride decoration is only allowed on members "
900 "of OpTypeStruct");
901 vtn_fail_if(dec->operands[0] == 0, "MatrixStride must be non-zero");
902
903 struct member_decoration_ctx *ctx = void_ctx;
904
905 struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
906 if (mat_type->row_major) {
907 mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
908 mat_type->stride = mat_type->array_element->stride;
909 mat_type->array_element->stride = dec->operands[0];
910
911 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
912 dec->operands[0], true);
913 mat_type->array_element->type = glsl_get_column_type(mat_type->type);
914 } else {
915 vtn_assert(mat_type->array_element->stride > 0);
916 mat_type->stride = dec->operands[0];
917
918 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
919 dec->operands[0], false);
920 }
921
922 /* Now that we've replaced the glsl_type with a properly strided matrix
923 * type, rewrite the member type so that it's an array of the proper kind
924 * of glsl_type.
925 */
926 vtn_array_type_rewrite_glsl_type(ctx->type->members[member]);
927 ctx->fields[member].type = ctx->type->members[member]->type;
928 }
929
930 static void
931 struct_block_decoration_cb(struct vtn_builder *b,
932 struct vtn_value *val, int member,
933 const struct vtn_decoration *dec, void *ctx)
934 {
935 if (member != -1)
936 return;
937
938 struct vtn_type *type = val->type;
939 if (dec->decoration == SpvDecorationBlock)
940 type->block = true;
941 else if (dec->decoration == SpvDecorationBufferBlock)
942 type->buffer_block = true;
943 }
944
945 static void
946 type_decoration_cb(struct vtn_builder *b,
947 struct vtn_value *val, int member,
948 const struct vtn_decoration *dec, UNUSED void *ctx)
949 {
950 struct vtn_type *type = val->type;
951
952 if (member != -1) {
953 /* This should have been handled by OpTypeStruct */
954 assert(val->type->base_type == vtn_base_type_struct);
955 assert(member >= 0 && member < val->type->length);
956 return;
957 }
958
959 switch (dec->decoration) {
960 case SpvDecorationArrayStride:
961 vtn_assert(type->base_type == vtn_base_type_array ||
962 type->base_type == vtn_base_type_pointer);
963 break;
964 case SpvDecorationBlock:
965 vtn_assert(type->base_type == vtn_base_type_struct);
966 vtn_assert(type->block);
967 break;
968 case SpvDecorationBufferBlock:
969 vtn_assert(type->base_type == vtn_base_type_struct);
970 vtn_assert(type->buffer_block);
971 break;
972 case SpvDecorationGLSLShared:
973 case SpvDecorationGLSLPacked:
974 /* Ignore these, since we get explicit offsets anyways */
975 break;
976
977 case SpvDecorationRowMajor:
978 case SpvDecorationColMajor:
979 case SpvDecorationMatrixStride:
980 case SpvDecorationBuiltIn:
981 case SpvDecorationNoPerspective:
982 case SpvDecorationFlat:
983 case SpvDecorationPatch:
984 case SpvDecorationCentroid:
985 case SpvDecorationSample:
986 case SpvDecorationExplicitInterpAMD:
987 case SpvDecorationVolatile:
988 case SpvDecorationCoherent:
989 case SpvDecorationNonWritable:
990 case SpvDecorationNonReadable:
991 case SpvDecorationUniform:
992 case SpvDecorationUniformId:
993 case SpvDecorationLocation:
994 case SpvDecorationComponent:
995 case SpvDecorationOffset:
996 case SpvDecorationXfbBuffer:
997 case SpvDecorationXfbStride:
998 case SpvDecorationUserSemantic:
999 vtn_warn("Decoration only allowed for struct members: %s",
1000 spirv_decoration_to_string(dec->decoration));
1001 break;
1002
1003 case SpvDecorationStream:
1004 /* We don't need to do anything here, as stream is filled up when
1005 * aplying the decoration to a variable, just check that if it is not a
1006 * struct member, it should be a struct.
1007 */
1008 vtn_assert(type->base_type == vtn_base_type_struct);
1009 break;
1010
1011 case SpvDecorationRelaxedPrecision:
1012 case SpvDecorationSpecId:
1013 case SpvDecorationInvariant:
1014 case SpvDecorationRestrict:
1015 case SpvDecorationAliased:
1016 case SpvDecorationConstant:
1017 case SpvDecorationIndex:
1018 case SpvDecorationBinding:
1019 case SpvDecorationDescriptorSet:
1020 case SpvDecorationLinkageAttributes:
1021 case SpvDecorationNoContraction:
1022 case SpvDecorationInputAttachmentIndex:
1023 vtn_warn("Decoration not allowed on types: %s",
1024 spirv_decoration_to_string(dec->decoration));
1025 break;
1026
1027 case SpvDecorationCPacked:
1028 if (b->shader->info.stage != MESA_SHADER_KERNEL)
1029 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1030 spirv_decoration_to_string(dec->decoration));
1031 else
1032 type->packed = true;
1033 break;
1034
1035 case SpvDecorationSaturatedConversion:
1036 case SpvDecorationFuncParamAttr:
1037 case SpvDecorationFPRoundingMode:
1038 case SpvDecorationFPFastMathMode:
1039 case SpvDecorationAlignment:
1040 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1041 spirv_decoration_to_string(dec->decoration));
1042 break;
1043
1044 case SpvDecorationUserTypeGOOGLE:
1045 /* User semantic decorations can safely be ignored by the driver. */
1046 break;
1047
1048 default:
1049 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
1050 }
1051 }
1052
1053 static unsigned
1054 translate_image_format(struct vtn_builder *b, SpvImageFormat format)
1055 {
1056 switch (format) {
1057 case SpvImageFormatUnknown: return PIPE_FORMAT_NONE;
1058 case SpvImageFormatRgba32f: return PIPE_FORMAT_R32G32B32A32_FLOAT;
1059 case SpvImageFormatRgba16f: return PIPE_FORMAT_R16G16B16A16_FLOAT;
1060 case SpvImageFormatR32f: return PIPE_FORMAT_R32_FLOAT;
1061 case SpvImageFormatRgba8: return PIPE_FORMAT_R8G8B8A8_UNORM;
1062 case SpvImageFormatRgba8Snorm: return PIPE_FORMAT_R8G8B8A8_SNORM;
1063 case SpvImageFormatRg32f: return PIPE_FORMAT_R32G32_FLOAT;
1064 case SpvImageFormatRg16f: return PIPE_FORMAT_R16G16_FLOAT;
1065 case SpvImageFormatR11fG11fB10f: return PIPE_FORMAT_R11G11B10_FLOAT;
1066 case SpvImageFormatR16f: return PIPE_FORMAT_R16_FLOAT;
1067 case SpvImageFormatRgba16: return PIPE_FORMAT_R16G16B16A16_UNORM;
1068 case SpvImageFormatRgb10A2: return PIPE_FORMAT_R10G10B10A2_UNORM;
1069 case SpvImageFormatRg16: return PIPE_FORMAT_R16G16_UNORM;
1070 case SpvImageFormatRg8: return PIPE_FORMAT_R8G8_UNORM;
1071 case SpvImageFormatR16: return PIPE_FORMAT_R16_UNORM;
1072 case SpvImageFormatR8: return PIPE_FORMAT_R8_UNORM;
1073 case SpvImageFormatRgba16Snorm: return PIPE_FORMAT_R16G16B16A16_SNORM;
1074 case SpvImageFormatRg16Snorm: return PIPE_FORMAT_R16G16_SNORM;
1075 case SpvImageFormatRg8Snorm: return PIPE_FORMAT_R8G8_SNORM;
1076 case SpvImageFormatR16Snorm: return PIPE_FORMAT_R16_SNORM;
1077 case SpvImageFormatR8Snorm: return PIPE_FORMAT_R8_SNORM;
1078 case SpvImageFormatRgba32i: return PIPE_FORMAT_R32G32B32A32_SINT;
1079 case SpvImageFormatRgba16i: return PIPE_FORMAT_R16G16B16A16_SINT;
1080 case SpvImageFormatRgba8i: return PIPE_FORMAT_R8G8B8A8_SINT;
1081 case SpvImageFormatR32i: return PIPE_FORMAT_R32_SINT;
1082 case SpvImageFormatRg32i: return PIPE_FORMAT_R32G32_SINT;
1083 case SpvImageFormatRg16i: return PIPE_FORMAT_R16G16_SINT;
1084 case SpvImageFormatRg8i: return PIPE_FORMAT_R8G8_SINT;
1085 case SpvImageFormatR16i: return PIPE_FORMAT_R16_SINT;
1086 case SpvImageFormatR8i: return PIPE_FORMAT_R8_SINT;
1087 case SpvImageFormatRgba32ui: return PIPE_FORMAT_R32G32B32A32_UINT;
1088 case SpvImageFormatRgba16ui: return PIPE_FORMAT_R16G16B16A16_UINT;
1089 case SpvImageFormatRgba8ui: return PIPE_FORMAT_R8G8B8A8_UINT;
1090 case SpvImageFormatR32ui: return PIPE_FORMAT_R32_UINT;
1091 case SpvImageFormatRgb10a2ui: return PIPE_FORMAT_R10G10B10A2_UINT;
1092 case SpvImageFormatRg32ui: return PIPE_FORMAT_R32G32_UINT;
1093 case SpvImageFormatRg16ui: return PIPE_FORMAT_R16G16_UINT;
1094 case SpvImageFormatRg8ui: return PIPE_FORMAT_R8G8_UINT;
1095 case SpvImageFormatR16ui: return PIPE_FORMAT_R16_UINT;
1096 case SpvImageFormatR8ui: return PIPE_FORMAT_R8_UINT;
1097 default:
1098 vtn_fail("Invalid image format: %s (%u)",
1099 spirv_imageformat_to_string(format), format);
1100 }
1101 }
1102
1103 static void
1104 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
1105 const uint32_t *w, unsigned count)
1106 {
1107 struct vtn_value *val = NULL;
1108
1109 /* In order to properly handle forward declarations, we have to defer
1110 * allocation for pointer types.
1111 */
1112 if (opcode != SpvOpTypePointer && opcode != SpvOpTypeForwardPointer) {
1113 val = vtn_push_value(b, w[1], vtn_value_type_type);
1114 vtn_fail_if(val->type != NULL,
1115 "Only pointers can have forward declarations");
1116 val->type = rzalloc(b, struct vtn_type);
1117 val->type->id = w[1];
1118 }
1119
1120 switch (opcode) {
1121 case SpvOpTypeVoid:
1122 val->type->base_type = vtn_base_type_void;
1123 val->type->type = glsl_void_type();
1124 break;
1125 case SpvOpTypeBool:
1126 val->type->base_type = vtn_base_type_scalar;
1127 val->type->type = glsl_bool_type();
1128 val->type->length = 1;
1129 break;
1130 case SpvOpTypeInt: {
1131 int bit_size = w[2];
1132 const bool signedness = w[3];
1133 val->type->base_type = vtn_base_type_scalar;
1134 switch (bit_size) {
1135 case 64:
1136 val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
1137 break;
1138 case 32:
1139 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
1140 break;
1141 case 16:
1142 val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
1143 break;
1144 case 8:
1145 val->type->type = (signedness ? glsl_int8_t_type() : glsl_uint8_t_type());
1146 break;
1147 default:
1148 vtn_fail("Invalid int bit size: %u", bit_size);
1149 }
1150 val->type->length = 1;
1151 break;
1152 }
1153
1154 case SpvOpTypeFloat: {
1155 int bit_size = w[2];
1156 val->type->base_type = vtn_base_type_scalar;
1157 switch (bit_size) {
1158 case 16:
1159 val->type->type = glsl_float16_t_type();
1160 break;
1161 case 32:
1162 val->type->type = glsl_float_type();
1163 break;
1164 case 64:
1165 val->type->type = glsl_double_type();
1166 break;
1167 default:
1168 vtn_fail("Invalid float bit size: %u", bit_size);
1169 }
1170 val->type->length = 1;
1171 break;
1172 }
1173
1174 case SpvOpTypeVector: {
1175 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1176 unsigned elems = w[3];
1177
1178 vtn_fail_if(base->base_type != vtn_base_type_scalar,
1179 "Base type for OpTypeVector must be a scalar");
1180 vtn_fail_if((elems < 2 || elems > 4) && (elems != 8) && (elems != 16),
1181 "Invalid component count for OpTypeVector");
1182
1183 val->type->base_type = vtn_base_type_vector;
1184 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
1185 val->type->length = elems;
1186 val->type->stride = glsl_type_is_boolean(val->type->type)
1187 ? 4 : glsl_get_bit_size(base->type) / 8;
1188 val->type->array_element = base;
1189 break;
1190 }
1191
1192 case SpvOpTypeMatrix: {
1193 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1194 unsigned columns = w[3];
1195
1196 vtn_fail_if(base->base_type != vtn_base_type_vector,
1197 "Base type for OpTypeMatrix must be a vector");
1198 vtn_fail_if(columns < 2 || columns > 4,
1199 "Invalid column count for OpTypeMatrix");
1200
1201 val->type->base_type = vtn_base_type_matrix;
1202 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
1203 glsl_get_vector_elements(base->type),
1204 columns);
1205 vtn_fail_if(glsl_type_is_error(val->type->type),
1206 "Unsupported base type for OpTypeMatrix");
1207 assert(!glsl_type_is_error(val->type->type));
1208 val->type->length = columns;
1209 val->type->array_element = base;
1210 val->type->row_major = false;
1211 val->type->stride = 0;
1212 break;
1213 }
1214
1215 case SpvOpTypeRuntimeArray:
1216 case SpvOpTypeArray: {
1217 struct vtn_type *array_element =
1218 vtn_value(b, w[2], vtn_value_type_type)->type;
1219
1220 if (opcode == SpvOpTypeRuntimeArray) {
1221 /* A length of 0 is used to denote unsized arrays */
1222 val->type->length = 0;
1223 } else {
1224 val->type->length = vtn_constant_uint(b, w[3]);
1225 }
1226
1227 val->type->base_type = vtn_base_type_array;
1228 val->type->array_element = array_element;
1229 if (b->shader->info.stage == MESA_SHADER_KERNEL)
1230 val->type->stride = glsl_get_cl_size(array_element->type);
1231
1232 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1233 val->type->type = glsl_array_type(array_element->type, val->type->length,
1234 val->type->stride);
1235 break;
1236 }
1237
1238 case SpvOpTypeStruct: {
1239 unsigned num_fields = count - 2;
1240 val->type->base_type = vtn_base_type_struct;
1241 val->type->length = num_fields;
1242 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
1243 val->type->offsets = ralloc_array(b, unsigned, num_fields);
1244 val->type->packed = false;
1245
1246 NIR_VLA(struct glsl_struct_field, fields, count);
1247 for (unsigned i = 0; i < num_fields; i++) {
1248 val->type->members[i] =
1249 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
1250 fields[i] = (struct glsl_struct_field) {
1251 .type = val->type->members[i]->type,
1252 .name = ralloc_asprintf(b, "field%d", i),
1253 .location = -1,
1254 .offset = -1,
1255 };
1256 }
1257
1258 if (b->shader->info.stage == MESA_SHADER_KERNEL) {
1259 unsigned offset = 0;
1260 for (unsigned i = 0; i < num_fields; i++) {
1261 offset = align(offset, glsl_get_cl_alignment(fields[i].type));
1262 fields[i].offset = offset;
1263 offset += glsl_get_cl_size(fields[i].type);
1264 }
1265 }
1266
1267 struct member_decoration_ctx ctx = {
1268 .num_fields = num_fields,
1269 .fields = fields,
1270 .type = val->type
1271 };
1272
1273 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
1274 vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
1275
1276 vtn_foreach_decoration(b, val, struct_block_decoration_cb, NULL);
1277
1278 const char *name = val->name;
1279
1280 if (val->type->block || val->type->buffer_block) {
1281 /* Packing will be ignored since types coming from SPIR-V are
1282 * explicitly laid out.
1283 */
1284 val->type->type = glsl_interface_type(fields, num_fields,
1285 /* packing */ 0, false,
1286 name ? name : "block");
1287 } else {
1288 val->type->type = glsl_struct_type(fields, num_fields,
1289 name ? name : "struct", false);
1290 }
1291 break;
1292 }
1293
1294 case SpvOpTypeFunction: {
1295 val->type->base_type = vtn_base_type_function;
1296 val->type->type = NULL;
1297
1298 val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
1299
1300 const unsigned num_params = count - 3;
1301 val->type->length = num_params;
1302 val->type->params = ralloc_array(b, struct vtn_type *, num_params);
1303 for (unsigned i = 0; i < count - 3; i++) {
1304 val->type->params[i] =
1305 vtn_value(b, w[i + 3], vtn_value_type_type)->type;
1306 }
1307 break;
1308 }
1309
1310 case SpvOpTypePointer:
1311 case SpvOpTypeForwardPointer: {
1312 /* We can't blindly push the value because it might be a forward
1313 * declaration.
1314 */
1315 val = vtn_untyped_value(b, w[1]);
1316
1317 SpvStorageClass storage_class = w[2];
1318
1319 if (val->value_type == vtn_value_type_invalid) {
1320 val->value_type = vtn_value_type_type;
1321 val->type = rzalloc(b, struct vtn_type);
1322 val->type->id = w[1];
1323 val->type->base_type = vtn_base_type_pointer;
1324 val->type->storage_class = storage_class;
1325
1326 /* These can actually be stored to nir_variables and used as SSA
1327 * values so they need a real glsl_type.
1328 */
1329 enum vtn_variable_mode mode = vtn_storage_class_to_mode(
1330 b, storage_class, NULL, NULL);
1331 val->type->type = nir_address_format_to_glsl_type(
1332 vtn_mode_to_address_format(b, mode));
1333 } else {
1334 vtn_fail_if(val->type->storage_class != storage_class,
1335 "The storage classes of an OpTypePointer and any "
1336 "OpTypeForwardPointers that provide forward "
1337 "declarations of it must match.");
1338 }
1339
1340 if (opcode == SpvOpTypePointer) {
1341 vtn_fail_if(val->type->deref != NULL,
1342 "While OpTypeForwardPointer can be used to provide a "
1343 "forward declaration of a pointer, OpTypePointer can "
1344 "only be used once for a given id.");
1345
1346 val->type->deref = vtn_value(b, w[3], vtn_value_type_type)->type;
1347
1348 /* Only certain storage classes use ArrayStride. The others (in
1349 * particular Workgroup) are expected to be laid out by the driver.
1350 */
1351 switch (storage_class) {
1352 case SpvStorageClassUniform:
1353 case SpvStorageClassPushConstant:
1354 case SpvStorageClassStorageBuffer:
1355 case SpvStorageClassPhysicalStorageBuffer:
1356 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1357 break;
1358 default:
1359 /* Nothing to do. */
1360 break;
1361 }
1362
1363 if (b->physical_ptrs) {
1364 switch (storage_class) {
1365 case SpvStorageClassFunction:
1366 case SpvStorageClassWorkgroup:
1367 case SpvStorageClassCrossWorkgroup:
1368 case SpvStorageClassUniformConstant:
1369 val->type->stride = align(glsl_get_cl_size(val->type->deref->type),
1370 glsl_get_cl_alignment(val->type->deref->type));
1371 break;
1372 default:
1373 break;
1374 }
1375 }
1376 }
1377 break;
1378 }
1379
1380 case SpvOpTypeImage: {
1381 val->type->base_type = vtn_base_type_image;
1382
1383 const struct vtn_type *sampled_type =
1384 vtn_value(b, w[2], vtn_value_type_type)->type;
1385
1386 vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
1387 glsl_get_bit_size(sampled_type->type) != 32,
1388 "Sampled type of OpTypeImage must be a 32-bit scalar");
1389
1390 enum glsl_sampler_dim dim;
1391 switch ((SpvDim)w[3]) {
1392 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
1393 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
1394 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
1395 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
1396 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
1397 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
1398 case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
1399 default:
1400 vtn_fail("Invalid SPIR-V image dimensionality: %s (%u)",
1401 spirv_dim_to_string((SpvDim)w[3]), w[3]);
1402 }
1403
1404 /* w[4]: as per Vulkan spec "Validation Rules within a Module",
1405 * The “Depth” operand of OpTypeImage is ignored.
1406 */
1407 bool is_array = w[5];
1408 bool multisampled = w[6];
1409 unsigned sampled = w[7];
1410 SpvImageFormat format = w[8];
1411
1412 if (count > 9)
1413 val->type->access_qualifier = w[9];
1414 else
1415 val->type->access_qualifier = SpvAccessQualifierReadWrite;
1416
1417 if (multisampled) {
1418 if (dim == GLSL_SAMPLER_DIM_2D)
1419 dim = GLSL_SAMPLER_DIM_MS;
1420 else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
1421 dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
1422 else
1423 vtn_fail("Unsupported multisampled image type");
1424 }
1425
1426 val->type->image_format = translate_image_format(b, format);
1427
1428 enum glsl_base_type sampled_base_type =
1429 glsl_get_base_type(sampled_type->type);
1430 if (sampled == 1) {
1431 val->type->sampled = true;
1432 val->type->type = glsl_sampler_type(dim, false, is_array,
1433 sampled_base_type);
1434 } else if (sampled == 2) {
1435 val->type->sampled = false;
1436 val->type->type = glsl_image_type(dim, is_array, sampled_base_type);
1437 } else {
1438 vtn_fail("We need to know if the image will be sampled");
1439 }
1440 break;
1441 }
1442
1443 case SpvOpTypeSampledImage:
1444 val->type->base_type = vtn_base_type_sampled_image;
1445 val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type;
1446 val->type->type = val->type->image->type;
1447 break;
1448
1449 case SpvOpTypeSampler:
1450 /* The actual sampler type here doesn't really matter. It gets
1451 * thrown away the moment you combine it with an image. What really
1452 * matters is that it's a sampler type as opposed to an integer type
1453 * so the backend knows what to do.
1454 */
1455 val->type->base_type = vtn_base_type_sampler;
1456 val->type->type = glsl_bare_sampler_type();
1457 break;
1458
1459 case SpvOpTypeOpaque:
1460 case SpvOpTypeEvent:
1461 case SpvOpTypeDeviceEvent:
1462 case SpvOpTypeReserveId:
1463 case SpvOpTypeQueue:
1464 case SpvOpTypePipe:
1465 default:
1466 vtn_fail_with_opcode("Unhandled opcode", opcode);
1467 }
1468
1469 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
1470
1471 if (val->type->base_type == vtn_base_type_struct &&
1472 (val->type->block || val->type->buffer_block)) {
1473 for (unsigned i = 0; i < val->type->length; i++) {
1474 vtn_fail_if(vtn_type_contains_block(b, val->type->members[i]),
1475 "Block and BufferBlock decorations cannot decorate a "
1476 "structure type that is nested at any level inside "
1477 "another structure type decorated with Block or "
1478 "BufferBlock.");
1479 }
1480 }
1481 }
1482
1483 static nir_constant *
1484 vtn_null_constant(struct vtn_builder *b, struct vtn_type *type)
1485 {
1486 nir_constant *c = rzalloc(b, nir_constant);
1487
1488 switch (type->base_type) {
1489 case vtn_base_type_scalar:
1490 case vtn_base_type_vector:
1491 /* Nothing to do here. It's already initialized to zero */
1492 break;
1493
1494 case vtn_base_type_pointer: {
1495 enum vtn_variable_mode mode = vtn_storage_class_to_mode(
1496 b, type->storage_class, type->deref, NULL);
1497 nir_address_format addr_format = vtn_mode_to_address_format(b, mode);
1498
1499 const nir_const_value *null_value = nir_address_format_null_value(addr_format);
1500 memcpy(c->values, null_value,
1501 sizeof(nir_const_value) * nir_address_format_num_components(addr_format));
1502 break;
1503 }
1504
1505 case vtn_base_type_void:
1506 case vtn_base_type_image:
1507 case vtn_base_type_sampler:
1508 case vtn_base_type_sampled_image:
1509 case vtn_base_type_function:
1510 /* For those we have to return something but it doesn't matter what. */
1511 break;
1512
1513 case vtn_base_type_matrix:
1514 case vtn_base_type_array:
1515 vtn_assert(type->length > 0);
1516 c->num_elements = type->length;
1517 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1518
1519 c->elements[0] = vtn_null_constant(b, type->array_element);
1520 for (unsigned i = 1; i < c->num_elements; i++)
1521 c->elements[i] = c->elements[0];
1522 break;
1523
1524 case vtn_base_type_struct:
1525 c->num_elements = type->length;
1526 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1527 for (unsigned i = 0; i < c->num_elements; i++)
1528 c->elements[i] = vtn_null_constant(b, type->members[i]);
1529 break;
1530
1531 default:
1532 vtn_fail("Invalid type for null constant");
1533 }
1534
1535 return c;
1536 }
1537
1538 static void
1539 spec_constant_decoration_cb(struct vtn_builder *b, UNUSED struct vtn_value *val,
1540 ASSERTED int member,
1541 const struct vtn_decoration *dec, void *data)
1542 {
1543 vtn_assert(member == -1);
1544 if (dec->decoration != SpvDecorationSpecId)
1545 return;
1546
1547 nir_const_value *value = data;
1548 for (unsigned i = 0; i < b->num_specializations; i++) {
1549 if (b->specializations[i].id == dec->operands[0]) {
1550 *value = b->specializations[i].value;
1551 return;
1552 }
1553 }
1554 }
1555
1556 static void
1557 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
1558 struct vtn_value *val,
1559 ASSERTED int member,
1560 const struct vtn_decoration *dec,
1561 UNUSED void *data)
1562 {
1563 vtn_assert(member == -1);
1564 if (dec->decoration != SpvDecorationBuiltIn ||
1565 dec->operands[0] != SpvBuiltInWorkgroupSize)
1566 return;
1567
1568 vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
1569 b->workgroup_size_builtin = val;
1570 }
1571
1572 static void
1573 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
1574 const uint32_t *w, unsigned count)
1575 {
1576 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
1577 val->constant = rzalloc(b, nir_constant);
1578 switch (opcode) {
1579 case SpvOpConstantTrue:
1580 case SpvOpConstantFalse:
1581 case SpvOpSpecConstantTrue:
1582 case SpvOpSpecConstantFalse: {
1583 vtn_fail_if(val->type->type != glsl_bool_type(),
1584 "Result type of %s must be OpTypeBool",
1585 spirv_op_to_string(opcode));
1586
1587 bool bval = (opcode == SpvOpConstantTrue ||
1588 opcode == SpvOpSpecConstantTrue);
1589
1590 nir_const_value u32val = nir_const_value_for_uint(bval, 32);
1591
1592 if (opcode == SpvOpSpecConstantTrue ||
1593 opcode == SpvOpSpecConstantFalse)
1594 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &u32val);
1595
1596 val->constant->values[0].b = u32val.u32 != 0;
1597 break;
1598 }
1599
1600 case SpvOpConstant:
1601 case SpvOpSpecConstant: {
1602 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1603 "Result type of %s must be a scalar",
1604 spirv_op_to_string(opcode));
1605 int bit_size = glsl_get_bit_size(val->type->type);
1606 switch (bit_size) {
1607 case 64:
1608 val->constant->values[0].u64 = vtn_u64_literal(&w[3]);
1609 break;
1610 case 32:
1611 val->constant->values[0].u32 = w[3];
1612 break;
1613 case 16:
1614 val->constant->values[0].u16 = w[3];
1615 break;
1616 case 8:
1617 val->constant->values[0].u8 = w[3];
1618 break;
1619 default:
1620 vtn_fail("Unsupported SpvOpConstant bit size: %u", bit_size);
1621 }
1622
1623 if (opcode == SpvOpSpecConstant)
1624 vtn_foreach_decoration(b, val, spec_constant_decoration_cb,
1625 &val->constant->values[0]);
1626 break;
1627 }
1628
1629 case SpvOpSpecConstantComposite:
1630 case SpvOpConstantComposite: {
1631 unsigned elem_count = count - 3;
1632 vtn_fail_if(elem_count != val->type->length,
1633 "%s has %u constituents, expected %u",
1634 spirv_op_to_string(opcode), elem_count, val->type->length);
1635
1636 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1637 for (unsigned i = 0; i < elem_count; i++) {
1638 struct vtn_value *val = vtn_untyped_value(b, w[i + 3]);
1639
1640 if (val->value_type == vtn_value_type_constant) {
1641 elems[i] = val->constant;
1642 } else {
1643 vtn_fail_if(val->value_type != vtn_value_type_undef,
1644 "only constants or undefs allowed for "
1645 "SpvOpConstantComposite");
1646 /* to make it easier, just insert a NULL constant for now */
1647 elems[i] = vtn_null_constant(b, val->type);
1648 }
1649 }
1650
1651 switch (val->type->base_type) {
1652 case vtn_base_type_vector: {
1653 assert(glsl_type_is_vector(val->type->type));
1654 for (unsigned i = 0; i < elem_count; i++)
1655 val->constant->values[i] = elems[i]->values[0];
1656 break;
1657 }
1658
1659 case vtn_base_type_matrix:
1660 case vtn_base_type_struct:
1661 case vtn_base_type_array:
1662 ralloc_steal(val->constant, elems);
1663 val->constant->num_elements = elem_count;
1664 val->constant->elements = elems;
1665 break;
1666
1667 default:
1668 vtn_fail("Result type of %s must be a composite type",
1669 spirv_op_to_string(opcode));
1670 }
1671 break;
1672 }
1673
1674 case SpvOpSpecConstantOp: {
1675 nir_const_value u32op = nir_const_value_for_uint(w[3], 32);
1676 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &u32op);
1677 SpvOp opcode = u32op.u32;
1678 switch (opcode) {
1679 case SpvOpVectorShuffle: {
1680 struct vtn_value *v0 = &b->values[w[4]];
1681 struct vtn_value *v1 = &b->values[w[5]];
1682
1683 vtn_assert(v0->value_type == vtn_value_type_constant ||
1684 v0->value_type == vtn_value_type_undef);
1685 vtn_assert(v1->value_type == vtn_value_type_constant ||
1686 v1->value_type == vtn_value_type_undef);
1687
1688 unsigned len0 = glsl_get_vector_elements(v0->type->type);
1689 unsigned len1 = glsl_get_vector_elements(v1->type->type);
1690
1691 vtn_assert(len0 + len1 < 16);
1692
1693 unsigned bit_size = glsl_get_bit_size(val->type->type);
1694 unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
1695 unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
1696
1697 vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
1698 (void)bit_size0; (void)bit_size1;
1699
1700 nir_const_value undef = { .u64 = 0xdeadbeefdeadbeef };
1701 nir_const_value combined[NIR_MAX_VEC_COMPONENTS * 2];
1702
1703 if (v0->value_type == vtn_value_type_constant) {
1704 for (unsigned i = 0; i < len0; i++)
1705 combined[i] = v0->constant->values[i];
1706 }
1707 if (v1->value_type == vtn_value_type_constant) {
1708 for (unsigned i = 0; i < len1; i++)
1709 combined[len0 + i] = v1->constant->values[i];
1710 }
1711
1712 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1713 uint32_t comp = w[i + 6];
1714 if (comp == (uint32_t)-1) {
1715 /* If component is not used, set the value to a known constant
1716 * to detect if it is wrongly used.
1717 */
1718 val->constant->values[j] = undef;
1719 } else {
1720 vtn_fail_if(comp >= len0 + len1,
1721 "All Component literals must either be FFFFFFFF "
1722 "or in [0, N - 1] (inclusive).");
1723 val->constant->values[j] = combined[comp];
1724 }
1725 }
1726 break;
1727 }
1728
1729 case SpvOpCompositeExtract:
1730 case SpvOpCompositeInsert: {
1731 struct vtn_value *comp;
1732 unsigned deref_start;
1733 struct nir_constant **c;
1734 if (opcode == SpvOpCompositeExtract) {
1735 comp = vtn_value(b, w[4], vtn_value_type_constant);
1736 deref_start = 5;
1737 c = &comp->constant;
1738 } else {
1739 comp = vtn_value(b, w[5], vtn_value_type_constant);
1740 deref_start = 6;
1741 val->constant = nir_constant_clone(comp->constant,
1742 (nir_variable *)b);
1743 c = &val->constant;
1744 }
1745
1746 int elem = -1;
1747 const struct vtn_type *type = comp->type;
1748 for (unsigned i = deref_start; i < count; i++) {
1749 vtn_fail_if(w[i] > type->length,
1750 "%uth index of %s is %u but the type has only "
1751 "%u elements", i - deref_start,
1752 spirv_op_to_string(opcode), w[i], type->length);
1753
1754 switch (type->base_type) {
1755 case vtn_base_type_vector:
1756 elem = w[i];
1757 type = type->array_element;
1758 break;
1759
1760 case vtn_base_type_matrix:
1761 case vtn_base_type_array:
1762 c = &(*c)->elements[w[i]];
1763 type = type->array_element;
1764 break;
1765
1766 case vtn_base_type_struct:
1767 c = &(*c)->elements[w[i]];
1768 type = type->members[w[i]];
1769 break;
1770
1771 default:
1772 vtn_fail("%s must only index into composite types",
1773 spirv_op_to_string(opcode));
1774 }
1775 }
1776
1777 if (opcode == SpvOpCompositeExtract) {
1778 if (elem == -1) {
1779 val->constant = *c;
1780 } else {
1781 unsigned num_components = type->length;
1782 for (unsigned i = 0; i < num_components; i++)
1783 val->constant->values[i] = (*c)->values[elem + i];
1784 }
1785 } else {
1786 struct vtn_value *insert =
1787 vtn_value(b, w[4], vtn_value_type_constant);
1788 vtn_assert(insert->type == type);
1789 if (elem == -1) {
1790 *c = insert->constant;
1791 } else {
1792 unsigned num_components = type->length;
1793 for (unsigned i = 0; i < num_components; i++)
1794 (*c)->values[elem + i] = insert->constant->values[i];
1795 }
1796 }
1797 break;
1798 }
1799
1800 default: {
1801 bool swap;
1802 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
1803 nir_alu_type src_alu_type = dst_alu_type;
1804 unsigned num_components = glsl_get_vector_elements(val->type->type);
1805 unsigned bit_size;
1806
1807 vtn_assert(count <= 7);
1808
1809 switch (opcode) {
1810 case SpvOpSConvert:
1811 case SpvOpFConvert:
1812 case SpvOpUConvert:
1813 /* We have a source in a conversion */
1814 src_alu_type =
1815 nir_get_nir_type_for_glsl_type(
1816 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1817 /* We use the bitsize of the conversion source to evaluate the opcode later */
1818 bit_size = glsl_get_bit_size(
1819 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1820 break;
1821 default:
1822 bit_size = glsl_get_bit_size(val->type->type);
1823 };
1824
1825 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
1826 nir_alu_type_get_type_size(src_alu_type),
1827 nir_alu_type_get_type_size(dst_alu_type));
1828 nir_const_value src[3][NIR_MAX_VEC_COMPONENTS];
1829
1830 for (unsigned i = 0; i < count - 4; i++) {
1831 struct vtn_value *src_val =
1832 vtn_value(b, w[4 + i], vtn_value_type_constant);
1833
1834 /* If this is an unsized source, pull the bit size from the
1835 * source; otherwise, we'll use the bit size from the destination.
1836 */
1837 if (!nir_alu_type_get_type_size(nir_op_infos[op].input_types[i]))
1838 bit_size = glsl_get_bit_size(src_val->type->type);
1839
1840 unsigned src_comps = nir_op_infos[op].input_sizes[i] ?
1841 nir_op_infos[op].input_sizes[i] :
1842 num_components;
1843
1844 unsigned j = swap ? 1 - i : i;
1845 for (unsigned c = 0; c < src_comps; c++)
1846 src[j][c] = src_val->constant->values[c];
1847 }
1848
1849 /* fix up fixed size sources */
1850 switch (op) {
1851 case nir_op_ishl:
1852 case nir_op_ishr:
1853 case nir_op_ushr: {
1854 if (bit_size == 32)
1855 break;
1856 for (unsigned i = 0; i < num_components; ++i) {
1857 switch (bit_size) {
1858 case 64: src[1][i].u32 = src[1][i].u64; break;
1859 case 16: src[1][i].u32 = src[1][i].u16; break;
1860 case 8: src[1][i].u32 = src[1][i].u8; break;
1861 }
1862 }
1863 break;
1864 }
1865 default:
1866 break;
1867 }
1868
1869 nir_const_value *srcs[3] = {
1870 src[0], src[1], src[2],
1871 };
1872 nir_eval_const_opcode(op, val->constant->values,
1873 num_components, bit_size, srcs,
1874 b->shader->info.float_controls_execution_mode);
1875 break;
1876 } /* default */
1877 }
1878 break;
1879 }
1880
1881 case SpvOpConstantNull:
1882 val->constant = vtn_null_constant(b, val->type);
1883 break;
1884
1885 case SpvOpConstantSampler:
1886 vtn_fail("OpConstantSampler requires Kernel Capability");
1887 break;
1888
1889 default:
1890 vtn_fail_with_opcode("Unhandled opcode", opcode);
1891 }
1892
1893 /* Now that we have the value, update the workgroup size if needed */
1894 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1895 }
1896
1897 SpvMemorySemanticsMask
1898 vtn_storage_class_to_memory_semantics(SpvStorageClass sc)
1899 {
1900 switch (sc) {
1901 case SpvStorageClassStorageBuffer:
1902 case SpvStorageClassPhysicalStorageBuffer:
1903 return SpvMemorySemanticsUniformMemoryMask;
1904 case SpvStorageClassWorkgroup:
1905 return SpvMemorySemanticsWorkgroupMemoryMask;
1906 default:
1907 return SpvMemorySemanticsMaskNone;
1908 }
1909 }
1910
1911 static void
1912 vtn_split_barrier_semantics(struct vtn_builder *b,
1913 SpvMemorySemanticsMask semantics,
1914 SpvMemorySemanticsMask *before,
1915 SpvMemorySemanticsMask *after)
1916 {
1917 /* For memory semantics embedded in operations, we split them into up to
1918 * two barriers, to be added before and after the operation. This is less
1919 * strict than if we propagated until the final backend stage, but still
1920 * result in correct execution.
1921 *
1922 * A further improvement could be pipe this information (and use!) into the
1923 * next compiler layers, at the expense of making the handling of barriers
1924 * more complicated.
1925 */
1926
1927 *before = SpvMemorySemanticsMaskNone;
1928 *after = SpvMemorySemanticsMaskNone;
1929
1930 SpvMemorySemanticsMask order_semantics =
1931 semantics & (SpvMemorySemanticsAcquireMask |
1932 SpvMemorySemanticsReleaseMask |
1933 SpvMemorySemanticsAcquireReleaseMask |
1934 SpvMemorySemanticsSequentiallyConsistentMask);
1935
1936 if (util_bitcount(order_semantics) > 1) {
1937 /* Old GLSLang versions incorrectly set all the ordering bits. This was
1938 * fixed in c51287d744fb6e7e9ccc09f6f8451e6c64b1dad6 of glslang repo,
1939 * and it is in GLSLang since revision "SPIRV99.1321" (from Jul-2016).
1940 */
1941 vtn_warn("Multiple memory ordering semantics specified, "
1942 "assuming AcquireRelease.");
1943 order_semantics = SpvMemorySemanticsAcquireReleaseMask;
1944 }
1945
1946 const SpvMemorySemanticsMask av_vis_semantics =
1947 semantics & (SpvMemorySemanticsMakeAvailableMask |
1948 SpvMemorySemanticsMakeVisibleMask);
1949
1950 const SpvMemorySemanticsMask storage_semantics =
1951 semantics & (SpvMemorySemanticsUniformMemoryMask |
1952 SpvMemorySemanticsSubgroupMemoryMask |
1953 SpvMemorySemanticsWorkgroupMemoryMask |
1954 SpvMemorySemanticsCrossWorkgroupMemoryMask |
1955 SpvMemorySemanticsAtomicCounterMemoryMask |
1956 SpvMemorySemanticsImageMemoryMask |
1957 SpvMemorySemanticsOutputMemoryMask);
1958
1959 const SpvMemorySemanticsMask other_semantics =
1960 semantics & ~(order_semantics | av_vis_semantics | storage_semantics);
1961
1962 if (other_semantics)
1963 vtn_warn("Ignoring unhandled memory semantics: %u\n", other_semantics);
1964
1965 /* SequentiallyConsistent is treated as AcquireRelease. */
1966
1967 /* The RELEASE barrier happens BEFORE the operation, and it is usually
1968 * associated with a Store. All the write operations with a matching
1969 * semantics will not be reordered after the Store.
1970 */
1971 if (order_semantics & (SpvMemorySemanticsReleaseMask |
1972 SpvMemorySemanticsAcquireReleaseMask |
1973 SpvMemorySemanticsSequentiallyConsistentMask)) {
1974 *before |= SpvMemorySemanticsReleaseMask | storage_semantics;
1975 }
1976
1977 /* The ACQUIRE barrier happens AFTER the operation, and it is usually
1978 * associated with a Load. All the operations with a matching semantics
1979 * will not be reordered before the Load.
1980 */
1981 if (order_semantics & (SpvMemorySemanticsAcquireMask |
1982 SpvMemorySemanticsAcquireReleaseMask |
1983 SpvMemorySemanticsSequentiallyConsistentMask)) {
1984 *after |= SpvMemorySemanticsAcquireMask | storage_semantics;
1985 }
1986
1987 if (av_vis_semantics & SpvMemorySemanticsMakeVisibleMask)
1988 *before |= SpvMemorySemanticsMakeVisibleMask | storage_semantics;
1989
1990 if (av_vis_semantics & SpvMemorySemanticsMakeAvailableMask)
1991 *after |= SpvMemorySemanticsMakeAvailableMask | storage_semantics;
1992 }
1993
1994 static nir_memory_semantics
1995 vtn_mem_semantics_to_nir_mem_semantics(struct vtn_builder *b,
1996 SpvMemorySemanticsMask semantics)
1997 {
1998 nir_memory_semantics nir_semantics = 0;
1999
2000 SpvMemorySemanticsMask order_semantics =
2001 semantics & (SpvMemorySemanticsAcquireMask |
2002 SpvMemorySemanticsReleaseMask |
2003 SpvMemorySemanticsAcquireReleaseMask |
2004 SpvMemorySemanticsSequentiallyConsistentMask);
2005
2006 if (util_bitcount(order_semantics) > 1) {
2007 /* Old GLSLang versions incorrectly set all the ordering bits. This was
2008 * fixed in c51287d744fb6e7e9ccc09f6f8451e6c64b1dad6 of glslang repo,
2009 * and it is in GLSLang since revision "SPIRV99.1321" (from Jul-2016).
2010 */
2011 vtn_warn("Multiple memory ordering semantics bits specified, "
2012 "assuming AcquireRelease.");
2013 order_semantics = SpvMemorySemanticsAcquireReleaseMask;
2014 }
2015
2016 switch (order_semantics) {
2017 case 0:
2018 /* Not an ordering barrier. */
2019 break;
2020
2021 case SpvMemorySemanticsAcquireMask:
2022 nir_semantics = NIR_MEMORY_ACQUIRE;
2023 break;
2024
2025 case SpvMemorySemanticsReleaseMask:
2026 nir_semantics = NIR_MEMORY_RELEASE;
2027 break;
2028
2029 case SpvMemorySemanticsSequentiallyConsistentMask:
2030 /* Fall through. Treated as AcquireRelease in Vulkan. */
2031 case SpvMemorySemanticsAcquireReleaseMask:
2032 nir_semantics = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE;
2033 break;
2034
2035 default:
2036 unreachable("Invalid memory order semantics");
2037 }
2038
2039 if (semantics & SpvMemorySemanticsMakeAvailableMask) {
2040 vtn_fail_if(!b->options->caps.vk_memory_model,
2041 "To use MakeAvailable memory semantics the VulkanMemoryModel "
2042 "capability must be declared.");
2043 nir_semantics |= NIR_MEMORY_MAKE_AVAILABLE;
2044 }
2045
2046 if (semantics & SpvMemorySemanticsMakeVisibleMask) {
2047 vtn_fail_if(!b->options->caps.vk_memory_model,
2048 "To use MakeVisible memory semantics the VulkanMemoryModel "
2049 "capability must be declared.");
2050 nir_semantics |= NIR_MEMORY_MAKE_VISIBLE;
2051 }
2052
2053 return nir_semantics;
2054 }
2055
2056 static nir_variable_mode
2057 vtn_mem_sematics_to_nir_var_modes(struct vtn_builder *b,
2058 SpvMemorySemanticsMask semantics)
2059 {
2060 /* Vulkan Environment for SPIR-V says "SubgroupMemory, CrossWorkgroupMemory,
2061 * and AtomicCounterMemory are ignored".
2062 */
2063 semantics &= ~(SpvMemorySemanticsSubgroupMemoryMask |
2064 SpvMemorySemanticsCrossWorkgroupMemoryMask |
2065 SpvMemorySemanticsAtomicCounterMemoryMask);
2066
2067 /* TODO: Consider adding nir_var_mem_image mode to NIR so it can be used
2068 * for SpvMemorySemanticsImageMemoryMask.
2069 */
2070
2071 nir_variable_mode modes = 0;
2072 if (semantics & (SpvMemorySemanticsUniformMemoryMask |
2073 SpvMemorySemanticsImageMemoryMask)) {
2074 modes |= nir_var_uniform |
2075 nir_var_mem_ubo |
2076 nir_var_mem_ssbo |
2077 nir_var_mem_global;
2078 }
2079 if (semantics & SpvMemorySemanticsWorkgroupMemoryMask)
2080 modes |= nir_var_mem_shared;
2081 if (semantics & SpvMemorySemanticsOutputMemoryMask) {
2082 modes |= nir_var_shader_out;
2083 }
2084
2085 return modes;
2086 }
2087
2088 static nir_scope
2089 vtn_scope_to_nir_scope(struct vtn_builder *b, SpvScope scope)
2090 {
2091 nir_scope nir_scope;
2092 switch (scope) {
2093 case SpvScopeDevice:
2094 vtn_fail_if(b->options->caps.vk_memory_model &&
2095 !b->options->caps.vk_memory_model_device_scope,
2096 "If the Vulkan memory model is declared and any instruction "
2097 "uses Device scope, the VulkanMemoryModelDeviceScope "
2098 "capability must be declared.");
2099 nir_scope = NIR_SCOPE_DEVICE;
2100 break;
2101
2102 case SpvScopeQueueFamily:
2103 vtn_fail_if(!b->options->caps.vk_memory_model,
2104 "To use Queue Family scope, the VulkanMemoryModel capability "
2105 "must be declared.");
2106 nir_scope = NIR_SCOPE_QUEUE_FAMILY;
2107 break;
2108
2109 case SpvScopeWorkgroup:
2110 nir_scope = NIR_SCOPE_WORKGROUP;
2111 break;
2112
2113 case SpvScopeSubgroup:
2114 nir_scope = NIR_SCOPE_SUBGROUP;
2115 break;
2116
2117 case SpvScopeInvocation:
2118 nir_scope = NIR_SCOPE_INVOCATION;
2119 break;
2120
2121 default:
2122 vtn_fail("Invalid memory scope");
2123 }
2124
2125 return nir_scope;
2126 }
2127
2128 static void
2129 vtn_emit_scoped_control_barrier(struct vtn_builder *b, SpvScope exec_scope,
2130 SpvScope mem_scope,
2131 SpvMemorySemanticsMask semantics)
2132 {
2133 nir_memory_semantics nir_semantics;
2134 nir_variable_mode modes;
2135
2136 nir_semantics = vtn_mem_semantics_to_nir_mem_semantics(b, semantics);
2137 modes = vtn_mem_sematics_to_nir_var_modes(b, semantics);
2138
2139 /* No barrier to add. */
2140 if (nir_semantics == 0 || modes == 0)
2141 return;
2142
2143 nir_scope nir_exec_scope = vtn_scope_to_nir_scope(b, exec_scope);
2144 nir_scope nir_mem_scope = vtn_scope_to_nir_scope(b, mem_scope);
2145 nir_scoped_barrier(&b->nb, nir_exec_scope, nir_mem_scope, nir_semantics, modes);
2146 }
2147
2148 static void
2149 vtn_emit_scoped_memory_barrier(struct vtn_builder *b, SpvScope scope,
2150 SpvMemorySemanticsMask semantics)
2151 {
2152 nir_variable_mode modes = vtn_mem_sematics_to_nir_var_modes(b, semantics);
2153 nir_memory_semantics nir_semantics =
2154 vtn_mem_semantics_to_nir_mem_semantics(b, semantics);
2155
2156 /* No barrier to add. */
2157 if (nir_semantics == 0 || modes == 0)
2158 return;
2159
2160 nir_scope nir_mem_scope = vtn_scope_to_nir_scope(b, scope);
2161 nir_scoped_barrier(&b->nb, NIR_SCOPE_NONE, nir_mem_scope, nir_semantics, modes);
2162 }
2163
2164 struct vtn_ssa_value *
2165 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
2166 {
2167 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
2168 val->type = type;
2169
2170 if (!glsl_type_is_vector_or_scalar(type)) {
2171 unsigned elems = glsl_get_length(type);
2172 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
2173 for (unsigned i = 0; i < elems; i++) {
2174 const struct glsl_type *child_type;
2175
2176 switch (glsl_get_base_type(type)) {
2177 case GLSL_TYPE_INT:
2178 case GLSL_TYPE_UINT:
2179 case GLSL_TYPE_INT16:
2180 case GLSL_TYPE_UINT16:
2181 case GLSL_TYPE_UINT8:
2182 case GLSL_TYPE_INT8:
2183 case GLSL_TYPE_INT64:
2184 case GLSL_TYPE_UINT64:
2185 case GLSL_TYPE_BOOL:
2186 case GLSL_TYPE_FLOAT:
2187 case GLSL_TYPE_FLOAT16:
2188 case GLSL_TYPE_DOUBLE:
2189 child_type = glsl_get_column_type(type);
2190 break;
2191 case GLSL_TYPE_ARRAY:
2192 child_type = glsl_get_array_element(type);
2193 break;
2194 case GLSL_TYPE_STRUCT:
2195 case GLSL_TYPE_INTERFACE:
2196 child_type = glsl_get_struct_field(type, i);
2197 break;
2198 default:
2199 vtn_fail("unkown base type");
2200 }
2201
2202 val->elems[i] = vtn_create_ssa_value(b, child_type);
2203 }
2204 }
2205
2206 return val;
2207 }
2208
2209 static nir_tex_src
2210 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
2211 {
2212 nir_tex_src src;
2213 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
2214 src.src_type = type;
2215 return src;
2216 }
2217
2218 static uint32_t
2219 image_operand_arg(struct vtn_builder *b, const uint32_t *w, uint32_t count,
2220 uint32_t mask_idx, SpvImageOperandsMask op)
2221 {
2222 static const SpvImageOperandsMask ops_with_arg =
2223 SpvImageOperandsBiasMask |
2224 SpvImageOperandsLodMask |
2225 SpvImageOperandsGradMask |
2226 SpvImageOperandsConstOffsetMask |
2227 SpvImageOperandsOffsetMask |
2228 SpvImageOperandsConstOffsetsMask |
2229 SpvImageOperandsSampleMask |
2230 SpvImageOperandsMinLodMask |
2231 SpvImageOperandsMakeTexelAvailableMask |
2232 SpvImageOperandsMakeTexelVisibleMask;
2233
2234 assert(util_bitcount(op) == 1);
2235 assert(w[mask_idx] & op);
2236 assert(op & ops_with_arg);
2237
2238 uint32_t idx = util_bitcount(w[mask_idx] & (op - 1) & ops_with_arg) + 1;
2239
2240 /* Adjust indices for operands with two arguments. */
2241 static const SpvImageOperandsMask ops_with_two_args =
2242 SpvImageOperandsGradMask;
2243 idx += util_bitcount(w[mask_idx] & (op - 1) & ops_with_two_args);
2244
2245 idx += mask_idx;
2246
2247 vtn_fail_if(idx + (op & ops_with_two_args ? 1 : 0) >= count,
2248 "Image op claims to have %s but does not enough "
2249 "following operands", spirv_imageoperands_to_string(op));
2250
2251 return idx;
2252 }
2253
2254 static void
2255 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
2256 const uint32_t *w, unsigned count)
2257 {
2258 if (opcode == SpvOpSampledImage) {
2259 struct vtn_value *val =
2260 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
2261 val->sampled_image = ralloc(b, struct vtn_sampled_image);
2262 val->sampled_image->image =
2263 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2264 val->sampled_image->sampler =
2265 vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
2266 return;
2267 } else if (opcode == SpvOpImage) {
2268 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
2269 if (src_val->value_type == vtn_value_type_sampled_image) {
2270 vtn_push_value_pointer(b, w[2], src_val->sampled_image->image);
2271 } else {
2272 vtn_assert(src_val->value_type == vtn_value_type_pointer);
2273 vtn_push_value_pointer(b, w[2], src_val->pointer);
2274 }
2275 return;
2276 }
2277
2278 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
2279
2280 struct vtn_pointer *image = NULL, *sampler = NULL;
2281 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
2282 if (sampled_val->value_type == vtn_value_type_sampled_image) {
2283 image = sampled_val->sampled_image->image;
2284 sampler = sampled_val->sampled_image->sampler;
2285 } else {
2286 vtn_assert(sampled_val->value_type == vtn_value_type_pointer);
2287 image = sampled_val->pointer;
2288 }
2289
2290 nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image);
2291 nir_deref_instr *sampler_deref =
2292 sampler ? vtn_pointer_to_deref(b, sampler) : NULL;
2293
2294 const struct glsl_type *image_type = sampled_val->type->type;
2295 const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
2296 const bool is_array = glsl_sampler_type_is_array(image_type);
2297 nir_alu_type dest_type = nir_type_invalid;
2298
2299 /* Figure out the base texture operation */
2300 nir_texop texop;
2301 switch (opcode) {
2302 case SpvOpImageSampleImplicitLod:
2303 case SpvOpImageSampleDrefImplicitLod:
2304 case SpvOpImageSampleProjImplicitLod:
2305 case SpvOpImageSampleProjDrefImplicitLod:
2306 texop = nir_texop_tex;
2307 break;
2308
2309 case SpvOpImageSampleExplicitLod:
2310 case SpvOpImageSampleDrefExplicitLod:
2311 case SpvOpImageSampleProjExplicitLod:
2312 case SpvOpImageSampleProjDrefExplicitLod:
2313 texop = nir_texop_txl;
2314 break;
2315
2316 case SpvOpImageFetch:
2317 if (sampler_dim == GLSL_SAMPLER_DIM_MS) {
2318 texop = nir_texop_txf_ms;
2319 } else {
2320 texop = nir_texop_txf;
2321 }
2322 break;
2323
2324 case SpvOpImageGather:
2325 case SpvOpImageDrefGather:
2326 texop = nir_texop_tg4;
2327 break;
2328
2329 case SpvOpImageQuerySizeLod:
2330 case SpvOpImageQuerySize:
2331 texop = nir_texop_txs;
2332 dest_type = nir_type_int;
2333 break;
2334
2335 case SpvOpImageQueryLod:
2336 texop = nir_texop_lod;
2337 dest_type = nir_type_float;
2338 break;
2339
2340 case SpvOpImageQueryLevels:
2341 texop = nir_texop_query_levels;
2342 dest_type = nir_type_int;
2343 break;
2344
2345 case SpvOpImageQuerySamples:
2346 texop = nir_texop_texture_samples;
2347 dest_type = nir_type_int;
2348 break;
2349
2350 case SpvOpFragmentFetchAMD:
2351 texop = nir_texop_fragment_fetch;
2352 break;
2353
2354 case SpvOpFragmentMaskFetchAMD:
2355 texop = nir_texop_fragment_mask_fetch;
2356 break;
2357
2358 default:
2359 vtn_fail_with_opcode("Unhandled opcode", opcode);
2360 }
2361
2362 nir_tex_src srcs[10]; /* 10 should be enough */
2363 nir_tex_src *p = srcs;
2364
2365 p->src = nir_src_for_ssa(&image_deref->dest.ssa);
2366 p->src_type = nir_tex_src_texture_deref;
2367 p++;
2368
2369 switch (texop) {
2370 case nir_texop_tex:
2371 case nir_texop_txb:
2372 case nir_texop_txl:
2373 case nir_texop_txd:
2374 case nir_texop_tg4:
2375 case nir_texop_lod:
2376 vtn_fail_if(sampler == NULL,
2377 "%s requires an image of type OpTypeSampledImage",
2378 spirv_op_to_string(opcode));
2379 p->src = nir_src_for_ssa(&sampler_deref->dest.ssa);
2380 p->src_type = nir_tex_src_sampler_deref;
2381 p++;
2382 break;
2383 case nir_texop_txf:
2384 case nir_texop_txf_ms:
2385 case nir_texop_txs:
2386 case nir_texop_query_levels:
2387 case nir_texop_texture_samples:
2388 case nir_texop_samples_identical:
2389 case nir_texop_fragment_fetch:
2390 case nir_texop_fragment_mask_fetch:
2391 /* These don't */
2392 break;
2393 case nir_texop_txf_ms_fb:
2394 vtn_fail("unexpected nir_texop_txf_ms_fb");
2395 break;
2396 case nir_texop_txf_ms_mcs:
2397 vtn_fail("unexpected nir_texop_txf_ms_mcs");
2398 case nir_texop_tex_prefetch:
2399 vtn_fail("unexpected nir_texop_tex_prefetch");
2400 }
2401
2402 unsigned idx = 4;
2403
2404 struct nir_ssa_def *coord;
2405 unsigned coord_components;
2406 switch (opcode) {
2407 case SpvOpImageSampleImplicitLod:
2408 case SpvOpImageSampleExplicitLod:
2409 case SpvOpImageSampleDrefImplicitLod:
2410 case SpvOpImageSampleDrefExplicitLod:
2411 case SpvOpImageSampleProjImplicitLod:
2412 case SpvOpImageSampleProjExplicitLod:
2413 case SpvOpImageSampleProjDrefImplicitLod:
2414 case SpvOpImageSampleProjDrefExplicitLod:
2415 case SpvOpImageFetch:
2416 case SpvOpImageGather:
2417 case SpvOpImageDrefGather:
2418 case SpvOpImageQueryLod:
2419 case SpvOpFragmentFetchAMD:
2420 case SpvOpFragmentMaskFetchAMD: {
2421 /* All these types have the coordinate as their first real argument */
2422 coord_components = glsl_get_sampler_dim_coordinate_components(sampler_dim);
2423
2424 if (is_array && texop != nir_texop_lod)
2425 coord_components++;
2426
2427 coord = vtn_ssa_value(b, w[idx++])->def;
2428 p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
2429 (1 << coord_components) - 1));
2430 p->src_type = nir_tex_src_coord;
2431 p++;
2432 break;
2433 }
2434
2435 default:
2436 coord = NULL;
2437 coord_components = 0;
2438 break;
2439 }
2440
2441 switch (opcode) {
2442 case SpvOpImageSampleProjImplicitLod:
2443 case SpvOpImageSampleProjExplicitLod:
2444 case SpvOpImageSampleProjDrefImplicitLod:
2445 case SpvOpImageSampleProjDrefExplicitLod:
2446 /* These have the projector as the last coordinate component */
2447 p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
2448 p->src_type = nir_tex_src_projector;
2449 p++;
2450 break;
2451
2452 default:
2453 break;
2454 }
2455
2456 bool is_shadow = false;
2457 unsigned gather_component = 0;
2458 switch (opcode) {
2459 case SpvOpImageSampleDrefImplicitLod:
2460 case SpvOpImageSampleDrefExplicitLod:
2461 case SpvOpImageSampleProjDrefImplicitLod:
2462 case SpvOpImageSampleProjDrefExplicitLod:
2463 case SpvOpImageDrefGather:
2464 /* These all have an explicit depth value as their next source */
2465 is_shadow = true;
2466 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
2467 break;
2468
2469 case SpvOpImageGather:
2470 /* This has a component as its next source */
2471 gather_component = vtn_constant_uint(b, w[idx++]);
2472 break;
2473
2474 default:
2475 break;
2476 }
2477
2478 /* For OpImageQuerySizeLod, we always have an LOD */
2479 if (opcode == SpvOpImageQuerySizeLod)
2480 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2481
2482 /* For OpFragmentFetchAMD, we always have a multisample index */
2483 if (opcode == SpvOpFragmentFetchAMD)
2484 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
2485
2486 /* Now we need to handle some number of optional arguments */
2487 struct vtn_value *gather_offsets = NULL;
2488 if (idx < count) {
2489 uint32_t operands = w[idx];
2490
2491 if (operands & SpvImageOperandsBiasMask) {
2492 vtn_assert(texop == nir_texop_tex ||
2493 texop == nir_texop_tg4);
2494 if (texop == nir_texop_tex)
2495 texop = nir_texop_txb;
2496 uint32_t arg = image_operand_arg(b, w, count, idx,
2497 SpvImageOperandsBiasMask);
2498 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_bias);
2499 }
2500
2501 if (operands & SpvImageOperandsLodMask) {
2502 vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
2503 texop == nir_texop_txs || texop == nir_texop_tg4);
2504 uint32_t arg = image_operand_arg(b, w, count, idx,
2505 SpvImageOperandsLodMask);
2506 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_lod);
2507 }
2508
2509 if (operands & SpvImageOperandsGradMask) {
2510 vtn_assert(texop == nir_texop_txl);
2511 texop = nir_texop_txd;
2512 uint32_t arg = image_operand_arg(b, w, count, idx,
2513 SpvImageOperandsGradMask);
2514 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_ddx);
2515 (*p++) = vtn_tex_src(b, w[arg + 1], nir_tex_src_ddy);
2516 }
2517
2518 vtn_fail_if(util_bitcount(operands & (SpvImageOperandsConstOffsetsMask |
2519 SpvImageOperandsOffsetMask |
2520 SpvImageOperandsConstOffsetMask)) > 1,
2521 "At most one of the ConstOffset, Offset, and ConstOffsets "
2522 "image operands can be used on a given instruction.");
2523
2524 if (operands & SpvImageOperandsOffsetMask) {
2525 uint32_t arg = image_operand_arg(b, w, count, idx,
2526 SpvImageOperandsOffsetMask);
2527 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_offset);
2528 }
2529
2530 if (operands & SpvImageOperandsConstOffsetMask) {
2531 uint32_t arg = image_operand_arg(b, w, count, idx,
2532 SpvImageOperandsConstOffsetMask);
2533 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_offset);
2534 }
2535
2536 if (operands & SpvImageOperandsConstOffsetsMask) {
2537 vtn_assert(texop == nir_texop_tg4);
2538 uint32_t arg = image_operand_arg(b, w, count, idx,
2539 SpvImageOperandsConstOffsetsMask);
2540 gather_offsets = vtn_value(b, w[arg], vtn_value_type_constant);
2541 }
2542
2543 if (operands & SpvImageOperandsSampleMask) {
2544 vtn_assert(texop == nir_texop_txf_ms);
2545 uint32_t arg = image_operand_arg(b, w, count, idx,
2546 SpvImageOperandsSampleMask);
2547 texop = nir_texop_txf_ms;
2548 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_ms_index);
2549 }
2550
2551 if (operands & SpvImageOperandsMinLodMask) {
2552 vtn_assert(texop == nir_texop_tex ||
2553 texop == nir_texop_txb ||
2554 texop == nir_texop_txd);
2555 uint32_t arg = image_operand_arg(b, w, count, idx,
2556 SpvImageOperandsMinLodMask);
2557 (*p++) = vtn_tex_src(b, w[arg], nir_tex_src_min_lod);
2558 }
2559 }
2560
2561 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
2562 instr->op = texop;
2563
2564 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
2565
2566 instr->coord_components = coord_components;
2567 instr->sampler_dim = sampler_dim;
2568 instr->is_array = is_array;
2569 instr->is_shadow = is_shadow;
2570 instr->is_new_style_shadow =
2571 is_shadow && glsl_get_components(ret_type->type) == 1;
2572 instr->component = gather_component;
2573
2574 if (image && (image->access & ACCESS_NON_UNIFORM))
2575 instr->texture_non_uniform = true;
2576
2577 if (sampler && (sampler->access & ACCESS_NON_UNIFORM))
2578 instr->sampler_non_uniform = true;
2579
2580 /* for non-query ops, get dest_type from sampler type */
2581 if (dest_type == nir_type_invalid) {
2582 switch (glsl_get_sampler_result_type(image_type)) {
2583 case GLSL_TYPE_FLOAT: dest_type = nir_type_float; break;
2584 case GLSL_TYPE_INT: dest_type = nir_type_int; break;
2585 case GLSL_TYPE_UINT: dest_type = nir_type_uint; break;
2586 case GLSL_TYPE_BOOL: dest_type = nir_type_bool; break;
2587 default:
2588 vtn_fail("Invalid base type for sampler result");
2589 }
2590 }
2591
2592 instr->dest_type = dest_type;
2593
2594 nir_ssa_dest_init(&instr->instr, &instr->dest,
2595 nir_tex_instr_dest_size(instr), 32, NULL);
2596
2597 vtn_assert(glsl_get_vector_elements(ret_type->type) ==
2598 nir_tex_instr_dest_size(instr));
2599
2600 if (gather_offsets) {
2601 vtn_fail_if(gather_offsets->type->base_type != vtn_base_type_array ||
2602 gather_offsets->type->length != 4,
2603 "ConstOffsets must be an array of size four of vectors "
2604 "of two integer components");
2605
2606 struct vtn_type *vec_type = gather_offsets->type->array_element;
2607 vtn_fail_if(vec_type->base_type != vtn_base_type_vector ||
2608 vec_type->length != 2 ||
2609 !glsl_type_is_integer(vec_type->type),
2610 "ConstOffsets must be an array of size four of vectors "
2611 "of two integer components");
2612
2613 unsigned bit_size = glsl_get_bit_size(vec_type->type);
2614 for (uint32_t i = 0; i < 4; i++) {
2615 const nir_const_value *cvec =
2616 gather_offsets->constant->elements[i]->values;
2617 for (uint32_t j = 0; j < 2; j++) {
2618 switch (bit_size) {
2619 case 8: instr->tg4_offsets[i][j] = cvec[j].i8; break;
2620 case 16: instr->tg4_offsets[i][j] = cvec[j].i16; break;
2621 case 32: instr->tg4_offsets[i][j] = cvec[j].i32; break;
2622 case 64: instr->tg4_offsets[i][j] = cvec[j].i64; break;
2623 default:
2624 vtn_fail("Unsupported bit size: %u", bit_size);
2625 }
2626 }
2627 }
2628 }
2629
2630 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, ret_type->type);
2631 ssa->def = &instr->dest.ssa;
2632 vtn_push_ssa(b, w[2], ret_type, ssa);
2633
2634 nir_builder_instr_insert(&b->nb, &instr->instr);
2635 }
2636
2637 static void
2638 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
2639 const uint32_t *w, nir_src *src)
2640 {
2641 switch (opcode) {
2642 case SpvOpAtomicIIncrement:
2643 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
2644 break;
2645
2646 case SpvOpAtomicIDecrement:
2647 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
2648 break;
2649
2650 case SpvOpAtomicISub:
2651 src[0] =
2652 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
2653 break;
2654
2655 case SpvOpAtomicCompareExchange:
2656 case SpvOpAtomicCompareExchangeWeak:
2657 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
2658 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
2659 break;
2660
2661 case SpvOpAtomicExchange:
2662 case SpvOpAtomicIAdd:
2663 case SpvOpAtomicSMin:
2664 case SpvOpAtomicUMin:
2665 case SpvOpAtomicSMax:
2666 case SpvOpAtomicUMax:
2667 case SpvOpAtomicAnd:
2668 case SpvOpAtomicOr:
2669 case SpvOpAtomicXor:
2670 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
2671 break;
2672
2673 default:
2674 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2675 }
2676 }
2677
2678 static nir_ssa_def *
2679 get_image_coord(struct vtn_builder *b, uint32_t value)
2680 {
2681 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
2682
2683 /* The image_load_store intrinsics assume a 4-dim coordinate */
2684 unsigned dim = glsl_get_vector_elements(coord->type);
2685 unsigned swizzle[4];
2686 for (unsigned i = 0; i < 4; i++)
2687 swizzle[i] = MIN2(i, dim - 1);
2688
2689 return nir_swizzle(&b->nb, coord->def, swizzle, 4);
2690 }
2691
2692 static nir_ssa_def *
2693 expand_to_vec4(nir_builder *b, nir_ssa_def *value)
2694 {
2695 if (value->num_components == 4)
2696 return value;
2697
2698 unsigned swiz[4];
2699 for (unsigned i = 0; i < 4; i++)
2700 swiz[i] = i < value->num_components ? i : 0;
2701 return nir_swizzle(b, value, swiz, 4);
2702 }
2703
2704 static void
2705 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
2706 const uint32_t *w, unsigned count)
2707 {
2708 /* Just get this one out of the way */
2709 if (opcode == SpvOpImageTexelPointer) {
2710 struct vtn_value *val =
2711 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
2712 val->image = ralloc(b, struct vtn_image_pointer);
2713
2714 val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2715 val->image->coord = get_image_coord(b, w[4]);
2716 val->image->sample = vtn_ssa_value(b, w[5])->def;
2717 val->image->lod = nir_imm_int(&b->nb, 0);
2718 return;
2719 }
2720
2721 struct vtn_image_pointer image;
2722 SpvScope scope = SpvScopeInvocation;
2723 SpvMemorySemanticsMask semantics = 0;
2724
2725 switch (opcode) {
2726 case SpvOpAtomicExchange:
2727 case SpvOpAtomicCompareExchange:
2728 case SpvOpAtomicCompareExchangeWeak:
2729 case SpvOpAtomicIIncrement:
2730 case SpvOpAtomicIDecrement:
2731 case SpvOpAtomicIAdd:
2732 case SpvOpAtomicISub:
2733 case SpvOpAtomicLoad:
2734 case SpvOpAtomicSMin:
2735 case SpvOpAtomicUMin:
2736 case SpvOpAtomicSMax:
2737 case SpvOpAtomicUMax:
2738 case SpvOpAtomicAnd:
2739 case SpvOpAtomicOr:
2740 case SpvOpAtomicXor:
2741 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
2742 scope = vtn_constant_uint(b, w[4]);
2743 semantics = vtn_constant_uint(b, w[5]);
2744 break;
2745
2746 case SpvOpAtomicStore:
2747 image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
2748 scope = vtn_constant_uint(b, w[2]);
2749 semantics = vtn_constant_uint(b, w[3]);
2750 break;
2751
2752 case SpvOpImageQuerySize:
2753 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2754 image.coord = NULL;
2755 image.sample = NULL;
2756 image.lod = NULL;
2757 break;
2758
2759 case SpvOpImageRead: {
2760 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2761 image.coord = get_image_coord(b, w[4]);
2762
2763 const SpvImageOperandsMask operands =
2764 count > 5 ? w[5] : SpvImageOperandsMaskNone;
2765
2766 if (operands & SpvImageOperandsSampleMask) {
2767 uint32_t arg = image_operand_arg(b, w, count, 5,
2768 SpvImageOperandsSampleMask);
2769 image.sample = vtn_ssa_value(b, w[arg])->def;
2770 } else {
2771 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2772 }
2773
2774 if (operands & SpvImageOperandsMakeTexelVisibleMask) {
2775 vtn_fail_if((operands & SpvImageOperandsNonPrivateTexelMask) == 0,
2776 "MakeTexelVisible requires NonPrivateTexel to also be set.");
2777 uint32_t arg = image_operand_arg(b, w, count, 5,
2778 SpvImageOperandsMakeTexelVisibleMask);
2779 semantics = SpvMemorySemanticsMakeVisibleMask;
2780 scope = vtn_constant_uint(b, w[arg]);
2781 }
2782
2783 if (operands & SpvImageOperandsLodMask) {
2784 uint32_t arg = image_operand_arg(b, w, count, 5,
2785 SpvImageOperandsLodMask);
2786 image.lod = vtn_ssa_value(b, w[arg])->def;
2787 } else {
2788 image.lod = nir_imm_int(&b->nb, 0);
2789 }
2790
2791 /* TODO: Volatile. */
2792
2793 break;
2794 }
2795
2796 case SpvOpImageWrite: {
2797 image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2798 image.coord = get_image_coord(b, w[2]);
2799
2800 /* texel = w[3] */
2801
2802 const SpvImageOperandsMask operands =
2803 count > 4 ? w[4] : SpvImageOperandsMaskNone;
2804
2805 if (operands & SpvImageOperandsSampleMask) {
2806 uint32_t arg = image_operand_arg(b, w, count, 4,
2807 SpvImageOperandsSampleMask);
2808 image.sample = vtn_ssa_value(b, w[arg])->def;
2809 } else {
2810 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2811 }
2812
2813 if (operands & SpvImageOperandsMakeTexelAvailableMask) {
2814 vtn_fail_if((operands & SpvImageOperandsNonPrivateTexelMask) == 0,
2815 "MakeTexelAvailable requires NonPrivateTexel to also be set.");
2816 uint32_t arg = image_operand_arg(b, w, count, 4,
2817 SpvImageOperandsMakeTexelAvailableMask);
2818 semantics = SpvMemorySemanticsMakeAvailableMask;
2819 scope = vtn_constant_uint(b, w[arg]);
2820 }
2821
2822 if (operands & SpvImageOperandsLodMask) {
2823 uint32_t arg = image_operand_arg(b, w, count, 4,
2824 SpvImageOperandsLodMask);
2825 image.lod = vtn_ssa_value(b, w[arg])->def;
2826 } else {
2827 image.lod = nir_imm_int(&b->nb, 0);
2828 }
2829
2830 /* TODO: Volatile. */
2831
2832 break;
2833 }
2834
2835 default:
2836 vtn_fail_with_opcode("Invalid image opcode", opcode);
2837 }
2838
2839 nir_intrinsic_op op;
2840 switch (opcode) {
2841 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_deref_##N; break;
2842 OP(ImageQuerySize, size)
2843 OP(ImageRead, load)
2844 OP(ImageWrite, store)
2845 OP(AtomicLoad, load)
2846 OP(AtomicStore, store)
2847 OP(AtomicExchange, atomic_exchange)
2848 OP(AtomicCompareExchange, atomic_comp_swap)
2849 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2850 OP(AtomicIIncrement, atomic_add)
2851 OP(AtomicIDecrement, atomic_add)
2852 OP(AtomicIAdd, atomic_add)
2853 OP(AtomicISub, atomic_add)
2854 OP(AtomicSMin, atomic_imin)
2855 OP(AtomicUMin, atomic_umin)
2856 OP(AtomicSMax, atomic_imax)
2857 OP(AtomicUMax, atomic_umax)
2858 OP(AtomicAnd, atomic_and)
2859 OP(AtomicOr, atomic_or)
2860 OP(AtomicXor, atomic_xor)
2861 #undef OP
2862 default:
2863 vtn_fail_with_opcode("Invalid image opcode", opcode);
2864 }
2865
2866 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2867
2868 nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image.image);
2869 intrin->src[0] = nir_src_for_ssa(&image_deref->dest.ssa);
2870
2871 /* ImageQuerySize doesn't take any extra parameters */
2872 if (opcode != SpvOpImageQuerySize) {
2873 /* The image coordinate is always 4 components but we may not have that
2874 * many. Swizzle to compensate.
2875 */
2876 intrin->src[1] = nir_src_for_ssa(expand_to_vec4(&b->nb, image.coord));
2877 intrin->src[2] = nir_src_for_ssa(image.sample);
2878 }
2879
2880 nir_intrinsic_set_access(intrin, image.image->access);
2881
2882 switch (opcode) {
2883 case SpvOpAtomicLoad:
2884 case SpvOpImageQuerySize:
2885 case SpvOpImageRead:
2886 if (opcode == SpvOpImageRead || opcode == SpvOpAtomicLoad) {
2887 /* Only OpImageRead can support a lod parameter if
2888 * SPV_AMD_shader_image_load_store_lod is used but the current NIR
2889 * intrinsics definition for atomics requires us to set it for
2890 * OpAtomicLoad.
2891 */
2892 intrin->src[3] = nir_src_for_ssa(image.lod);
2893 }
2894 break;
2895 case SpvOpAtomicStore:
2896 case SpvOpImageWrite: {
2897 const uint32_t value_id = opcode == SpvOpAtomicStore ? w[4] : w[3];
2898 nir_ssa_def *value = vtn_ssa_value(b, value_id)->def;
2899 /* nir_intrinsic_image_deref_store always takes a vec4 value */
2900 assert(op == nir_intrinsic_image_deref_store);
2901 intrin->num_components = 4;
2902 intrin->src[3] = nir_src_for_ssa(expand_to_vec4(&b->nb, value));
2903 /* Only OpImageWrite can support a lod parameter if
2904 * SPV_AMD_shader_image_load_store_lod is used but the current NIR
2905 * intrinsics definition for atomics requires us to set it for
2906 * OpAtomicStore.
2907 */
2908 intrin->src[4] = nir_src_for_ssa(image.lod);
2909 break;
2910 }
2911
2912 case SpvOpAtomicCompareExchange:
2913 case SpvOpAtomicCompareExchangeWeak:
2914 case SpvOpAtomicIIncrement:
2915 case SpvOpAtomicIDecrement:
2916 case SpvOpAtomicExchange:
2917 case SpvOpAtomicIAdd:
2918 case SpvOpAtomicISub:
2919 case SpvOpAtomicSMin:
2920 case SpvOpAtomicUMin:
2921 case SpvOpAtomicSMax:
2922 case SpvOpAtomicUMax:
2923 case SpvOpAtomicAnd:
2924 case SpvOpAtomicOr:
2925 case SpvOpAtomicXor:
2926 fill_common_atomic_sources(b, opcode, w, &intrin->src[3]);
2927 break;
2928
2929 default:
2930 vtn_fail_with_opcode("Invalid image opcode", opcode);
2931 }
2932
2933 /* Image operations implicitly have the Image storage memory semantics. */
2934 semantics |= SpvMemorySemanticsImageMemoryMask;
2935
2936 SpvMemorySemanticsMask before_semantics;
2937 SpvMemorySemanticsMask after_semantics;
2938 vtn_split_barrier_semantics(b, semantics, &before_semantics, &after_semantics);
2939
2940 if (before_semantics)
2941 vtn_emit_memory_barrier(b, scope, before_semantics);
2942
2943 if (opcode != SpvOpImageWrite && opcode != SpvOpAtomicStore) {
2944 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2945
2946 unsigned dest_components = glsl_get_vector_elements(type->type);
2947 intrin->num_components = nir_intrinsic_infos[op].dest_components;
2948 if (intrin->num_components == 0)
2949 intrin->num_components = dest_components;
2950
2951 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
2952 intrin->num_components, 32, NULL);
2953
2954 nir_builder_instr_insert(&b->nb, &intrin->instr);
2955
2956 nir_ssa_def *result = &intrin->dest.ssa;
2957 if (intrin->num_components != dest_components)
2958 result = nir_channels(&b->nb, result, (1 << dest_components) - 1);
2959
2960 struct vtn_value *val =
2961 vtn_push_ssa(b, w[2], type, vtn_create_ssa_value(b, type->type));
2962 val->ssa->def = result;
2963 } else {
2964 nir_builder_instr_insert(&b->nb, &intrin->instr);
2965 }
2966
2967 if (after_semantics)
2968 vtn_emit_memory_barrier(b, scope, after_semantics);
2969 }
2970
2971 static nir_intrinsic_op
2972 get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2973 {
2974 switch (opcode) {
2975 case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
2976 case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
2977 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
2978 OP(AtomicExchange, atomic_exchange)
2979 OP(AtomicCompareExchange, atomic_comp_swap)
2980 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2981 OP(AtomicIIncrement, atomic_add)
2982 OP(AtomicIDecrement, atomic_add)
2983 OP(AtomicIAdd, atomic_add)
2984 OP(AtomicISub, atomic_add)
2985 OP(AtomicSMin, atomic_imin)
2986 OP(AtomicUMin, atomic_umin)
2987 OP(AtomicSMax, atomic_imax)
2988 OP(AtomicUMax, atomic_umax)
2989 OP(AtomicAnd, atomic_and)
2990 OP(AtomicOr, atomic_or)
2991 OP(AtomicXor, atomic_xor)
2992 #undef OP
2993 default:
2994 vtn_fail_with_opcode("Invalid SSBO atomic", opcode);
2995 }
2996 }
2997
2998 static nir_intrinsic_op
2999 get_uniform_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
3000 {
3001 switch (opcode) {
3002 #define OP(S, N) case SpvOp##S: return nir_intrinsic_atomic_counter_ ##N;
3003 OP(AtomicLoad, read_deref)
3004 OP(AtomicExchange, exchange)
3005 OP(AtomicCompareExchange, comp_swap)
3006 OP(AtomicCompareExchangeWeak, comp_swap)
3007 OP(AtomicIIncrement, inc_deref)
3008 OP(AtomicIDecrement, post_dec_deref)
3009 OP(AtomicIAdd, add_deref)
3010 OP(AtomicISub, add_deref)
3011 OP(AtomicUMin, min_deref)
3012 OP(AtomicUMax, max_deref)
3013 OP(AtomicAnd, and_deref)
3014 OP(AtomicOr, or_deref)
3015 OP(AtomicXor, xor_deref)
3016 #undef OP
3017 default:
3018 /* We left the following out: AtomicStore, AtomicSMin and
3019 * AtomicSmax. Right now there are not nir intrinsics for them. At this
3020 * moment Atomic Counter support is needed for ARB_spirv support, so is
3021 * only need to support GLSL Atomic Counters that are uints and don't
3022 * allow direct storage.
3023 */
3024 vtn_fail("Invalid uniform atomic");
3025 }
3026 }
3027
3028 static nir_intrinsic_op
3029 get_deref_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
3030 {
3031 switch (opcode) {
3032 case SpvOpAtomicLoad: return nir_intrinsic_load_deref;
3033 case SpvOpAtomicStore: return nir_intrinsic_store_deref;
3034 #define OP(S, N) case SpvOp##S: return nir_intrinsic_deref_##N;
3035 OP(AtomicExchange, atomic_exchange)
3036 OP(AtomicCompareExchange, atomic_comp_swap)
3037 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
3038 OP(AtomicIIncrement, atomic_add)
3039 OP(AtomicIDecrement, atomic_add)
3040 OP(AtomicIAdd, atomic_add)
3041 OP(AtomicISub, atomic_add)
3042 OP(AtomicSMin, atomic_imin)
3043 OP(AtomicUMin, atomic_umin)
3044 OP(AtomicSMax, atomic_imax)
3045 OP(AtomicUMax, atomic_umax)
3046 OP(AtomicAnd, atomic_and)
3047 OP(AtomicOr, atomic_or)
3048 OP(AtomicXor, atomic_xor)
3049 #undef OP
3050 default:
3051 vtn_fail_with_opcode("Invalid shared atomic", opcode);
3052 }
3053 }
3054
3055 /*
3056 * Handles shared atomics, ssbo atomics and atomic counters.
3057 */
3058 static void
3059 vtn_handle_atomics(struct vtn_builder *b, SpvOp opcode,
3060 const uint32_t *w, UNUSED unsigned count)
3061 {
3062 struct vtn_pointer *ptr;
3063 nir_intrinsic_instr *atomic;
3064
3065 SpvScope scope = SpvScopeInvocation;
3066 SpvMemorySemanticsMask semantics = 0;
3067
3068 switch (opcode) {
3069 case SpvOpAtomicLoad:
3070 case SpvOpAtomicExchange:
3071 case SpvOpAtomicCompareExchange:
3072 case SpvOpAtomicCompareExchangeWeak:
3073 case SpvOpAtomicIIncrement:
3074 case SpvOpAtomicIDecrement:
3075 case SpvOpAtomicIAdd:
3076 case SpvOpAtomicISub:
3077 case SpvOpAtomicSMin:
3078 case SpvOpAtomicUMin:
3079 case SpvOpAtomicSMax:
3080 case SpvOpAtomicUMax:
3081 case SpvOpAtomicAnd:
3082 case SpvOpAtomicOr:
3083 case SpvOpAtomicXor:
3084 ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
3085 scope = vtn_constant_uint(b, w[4]);
3086 semantics = vtn_constant_uint(b, w[5]);
3087 break;
3088
3089 case SpvOpAtomicStore:
3090 ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
3091 scope = vtn_constant_uint(b, w[2]);
3092 semantics = vtn_constant_uint(b, w[3]);
3093 break;
3094
3095 default:
3096 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
3097 }
3098
3099 /* uniform as "atomic counter uniform" */
3100 if (ptr->mode == vtn_variable_mode_uniform) {
3101 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
3102 const struct glsl_type *deref_type = deref->type;
3103 nir_intrinsic_op op = get_uniform_nir_atomic_op(b, opcode);
3104 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
3105 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
3106
3107 /* SSBO needs to initialize index/offset. In this case we don't need to,
3108 * as that info is already stored on the ptr->var->var nir_variable (see
3109 * vtn_create_variable)
3110 */
3111
3112 switch (opcode) {
3113 case SpvOpAtomicLoad:
3114 atomic->num_components = glsl_get_vector_elements(deref_type);
3115 break;
3116
3117 case SpvOpAtomicStore:
3118 atomic->num_components = glsl_get_vector_elements(deref_type);
3119 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
3120 break;
3121
3122 case SpvOpAtomicExchange:
3123 case SpvOpAtomicCompareExchange:
3124 case SpvOpAtomicCompareExchangeWeak:
3125 case SpvOpAtomicIIncrement:
3126 case SpvOpAtomicIDecrement:
3127 case SpvOpAtomicIAdd:
3128 case SpvOpAtomicISub:
3129 case SpvOpAtomicSMin:
3130 case SpvOpAtomicUMin:
3131 case SpvOpAtomicSMax:
3132 case SpvOpAtomicUMax:
3133 case SpvOpAtomicAnd:
3134 case SpvOpAtomicOr:
3135 case SpvOpAtomicXor:
3136 /* Nothing: we don't need to call fill_common_atomic_sources here, as
3137 * atomic counter uniforms doesn't have sources
3138 */
3139 break;
3140
3141 default:
3142 unreachable("Invalid SPIR-V atomic");
3143
3144 }
3145 } else if (vtn_pointer_uses_ssa_offset(b, ptr)) {
3146 nir_ssa_def *offset, *index;
3147 offset = vtn_pointer_to_offset(b, ptr, &index);
3148
3149 assert(ptr->mode == vtn_variable_mode_ssbo);
3150
3151 nir_intrinsic_op op = get_ssbo_nir_atomic_op(b, opcode);
3152 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
3153
3154 int src = 0;
3155 switch (opcode) {
3156 case SpvOpAtomicLoad:
3157 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
3158 nir_intrinsic_set_align(atomic, 4, 0);
3159 if (ptr->mode == vtn_variable_mode_ssbo)
3160 atomic->src[src++] = nir_src_for_ssa(index);
3161 atomic->src[src++] = nir_src_for_ssa(offset);
3162 break;
3163
3164 case SpvOpAtomicStore:
3165 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
3166 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
3167 nir_intrinsic_set_align(atomic, 4, 0);
3168 atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
3169 if (ptr->mode == vtn_variable_mode_ssbo)
3170 atomic->src[src++] = nir_src_for_ssa(index);
3171 atomic->src[src++] = nir_src_for_ssa(offset);
3172 break;
3173
3174 case SpvOpAtomicExchange:
3175 case SpvOpAtomicCompareExchange:
3176 case SpvOpAtomicCompareExchangeWeak:
3177 case SpvOpAtomicIIncrement:
3178 case SpvOpAtomicIDecrement:
3179 case SpvOpAtomicIAdd:
3180 case SpvOpAtomicISub:
3181 case SpvOpAtomicSMin:
3182 case SpvOpAtomicUMin:
3183 case SpvOpAtomicSMax:
3184 case SpvOpAtomicUMax:
3185 case SpvOpAtomicAnd:
3186 case SpvOpAtomicOr:
3187 case SpvOpAtomicXor:
3188 if (ptr->mode == vtn_variable_mode_ssbo)
3189 atomic->src[src++] = nir_src_for_ssa(index);
3190 atomic->src[src++] = nir_src_for_ssa(offset);
3191 fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
3192 break;
3193
3194 default:
3195 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
3196 }
3197 } else {
3198 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
3199 const struct glsl_type *deref_type = deref->type;
3200 nir_intrinsic_op op = get_deref_nir_atomic_op(b, opcode);
3201 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
3202 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
3203
3204 switch (opcode) {
3205 case SpvOpAtomicLoad:
3206 atomic->num_components = glsl_get_vector_elements(deref_type);
3207 break;
3208
3209 case SpvOpAtomicStore:
3210 atomic->num_components = glsl_get_vector_elements(deref_type);
3211 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
3212 atomic->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
3213 break;
3214
3215 case SpvOpAtomicExchange:
3216 case SpvOpAtomicCompareExchange:
3217 case SpvOpAtomicCompareExchangeWeak:
3218 case SpvOpAtomicIIncrement:
3219 case SpvOpAtomicIDecrement:
3220 case SpvOpAtomicIAdd:
3221 case SpvOpAtomicISub:
3222 case SpvOpAtomicSMin:
3223 case SpvOpAtomicUMin:
3224 case SpvOpAtomicSMax:
3225 case SpvOpAtomicUMax:
3226 case SpvOpAtomicAnd:
3227 case SpvOpAtomicOr:
3228 case SpvOpAtomicXor:
3229 fill_common_atomic_sources(b, opcode, w, &atomic->src[1]);
3230 break;
3231
3232 default:
3233 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
3234 }
3235 }
3236
3237 /* Atomic ordering operations will implicitly apply to the atomic operation
3238 * storage class, so include that too.
3239 */
3240 semantics |= vtn_storage_class_to_memory_semantics(ptr->ptr_type->storage_class);
3241
3242 SpvMemorySemanticsMask before_semantics;
3243 SpvMemorySemanticsMask after_semantics;
3244 vtn_split_barrier_semantics(b, semantics, &before_semantics, &after_semantics);
3245
3246 if (before_semantics)
3247 vtn_emit_memory_barrier(b, scope, before_semantics);
3248
3249 if (opcode != SpvOpAtomicStore) {
3250 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
3251
3252 nir_ssa_dest_init(&atomic->instr, &atomic->dest,
3253 glsl_get_vector_elements(type->type),
3254 glsl_get_bit_size(type->type), NULL);
3255
3256 struct vtn_ssa_value *ssa = rzalloc(b, struct vtn_ssa_value);
3257 ssa->def = &atomic->dest.ssa;
3258 ssa->type = type->type;
3259 vtn_push_ssa(b, w[2], type, ssa);
3260 }
3261
3262 nir_builder_instr_insert(&b->nb, &atomic->instr);
3263
3264 if (after_semantics)
3265 vtn_emit_memory_barrier(b, scope, after_semantics);
3266 }
3267
3268 static nir_alu_instr *
3269 create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
3270 {
3271 nir_op op = nir_op_vec(num_components);
3272 nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
3273 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
3274 bit_size, NULL);
3275 vec->dest.write_mask = (1 << num_components) - 1;
3276
3277 return vec;
3278 }
3279
3280 struct vtn_ssa_value *
3281 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
3282 {
3283 if (src->transposed)
3284 return src->transposed;
3285
3286 struct vtn_ssa_value *dest =
3287 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
3288
3289 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
3290 nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
3291 glsl_get_bit_size(src->type));
3292 if (glsl_type_is_vector_or_scalar(src->type)) {
3293 vec->src[0].src = nir_src_for_ssa(src->def);
3294 vec->src[0].swizzle[0] = i;
3295 } else {
3296 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
3297 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
3298 vec->src[j].swizzle[0] = i;
3299 }
3300 }
3301 nir_builder_instr_insert(&b->nb, &vec->instr);
3302 dest->elems[i]->def = &vec->dest.dest.ssa;
3303 }
3304
3305 dest->transposed = src;
3306
3307 return dest;
3308 }
3309
3310 static nir_ssa_def *
3311 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
3312 nir_ssa_def *src0, nir_ssa_def *src1,
3313 const uint32_t *indices)
3314 {
3315 nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
3316
3317 for (unsigned i = 0; i < num_components; i++) {
3318 uint32_t index = indices[i];
3319 if (index == 0xffffffff) {
3320 vec->src[i].src =
3321 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
3322 } else if (index < src0->num_components) {
3323 vec->src[i].src = nir_src_for_ssa(src0);
3324 vec->src[i].swizzle[0] = index;
3325 } else {
3326 vec->src[i].src = nir_src_for_ssa(src1);
3327 vec->src[i].swizzle[0] = index - src0->num_components;
3328 }
3329 }
3330
3331 nir_builder_instr_insert(&b->nb, &vec->instr);
3332
3333 return &vec->dest.dest.ssa;
3334 }
3335
3336 /*
3337 * Concatentates a number of vectors/scalars together to produce a vector
3338 */
3339 static nir_ssa_def *
3340 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
3341 unsigned num_srcs, nir_ssa_def **srcs)
3342 {
3343 nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
3344
3345 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3346 *
3347 * "When constructing a vector, there must be at least two Constituent
3348 * operands."
3349 */
3350 vtn_assert(num_srcs >= 2);
3351
3352 unsigned dest_idx = 0;
3353 for (unsigned i = 0; i < num_srcs; i++) {
3354 nir_ssa_def *src = srcs[i];
3355 vtn_assert(dest_idx + src->num_components <= num_components);
3356 for (unsigned j = 0; j < src->num_components; j++) {
3357 vec->src[dest_idx].src = nir_src_for_ssa(src);
3358 vec->src[dest_idx].swizzle[0] = j;
3359 dest_idx++;
3360 }
3361 }
3362
3363 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3364 *
3365 * "When constructing a vector, the total number of components in all
3366 * the operands must equal the number of components in Result Type."
3367 */
3368 vtn_assert(dest_idx == num_components);
3369
3370 nir_builder_instr_insert(&b->nb, &vec->instr);
3371
3372 return &vec->dest.dest.ssa;
3373 }
3374
3375 static struct vtn_ssa_value *
3376 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
3377 {
3378 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
3379 dest->type = src->type;
3380
3381 if (glsl_type_is_vector_or_scalar(src->type)) {
3382 dest->def = src->def;
3383 } else {
3384 unsigned elems = glsl_get_length(src->type);
3385
3386 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
3387 for (unsigned i = 0; i < elems; i++)
3388 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
3389 }
3390
3391 return dest;
3392 }
3393
3394 static struct vtn_ssa_value *
3395 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
3396 struct vtn_ssa_value *insert, const uint32_t *indices,
3397 unsigned num_indices)
3398 {
3399 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
3400
3401 struct vtn_ssa_value *cur = dest;
3402 unsigned i;
3403 for (i = 0; i < num_indices - 1; i++) {
3404 /* If we got a vector here, that means the next index will be trying to
3405 * dereference a scalar.
3406 */
3407 vtn_fail_if(glsl_type_is_vector_or_scalar(cur->type),
3408 "OpCompositeInsert has too many indices.");
3409 vtn_fail_if(indices[i] >= glsl_get_length(cur->type),
3410 "All indices in an OpCompositeInsert must be in-bounds");
3411 cur = cur->elems[indices[i]];
3412 }
3413
3414 if (glsl_type_is_vector_or_scalar(cur->type)) {
3415 vtn_fail_if(indices[i] >= glsl_get_vector_elements(cur->type),
3416 "All indices in an OpCompositeInsert must be in-bounds");
3417
3418 /* According to the SPIR-V spec, OpCompositeInsert may work down to
3419 * the component granularity. In that case, the last index will be
3420 * the index to insert the scalar into the vector.
3421 */
3422
3423 cur->def = nir_vector_insert_imm(&b->nb, cur->def, insert->def, indices[i]);
3424 } else {
3425 vtn_fail_if(indices[i] >= glsl_get_length(cur->type),
3426 "All indices in an OpCompositeInsert must be in-bounds");
3427 cur->elems[indices[i]] = insert;
3428 }
3429
3430 return dest;
3431 }
3432
3433 static struct vtn_ssa_value *
3434 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
3435 const uint32_t *indices, unsigned num_indices)
3436 {
3437 struct vtn_ssa_value *cur = src;
3438 for (unsigned i = 0; i < num_indices; i++) {
3439 if (glsl_type_is_vector_or_scalar(cur->type)) {
3440 vtn_assert(i == num_indices - 1);
3441 vtn_fail_if(indices[i] >= glsl_get_vector_elements(cur->type),
3442 "All indices in an OpCompositeExtract must be in-bounds");
3443
3444 /* According to the SPIR-V spec, OpCompositeExtract may work down to
3445 * the component granularity. The last index will be the index of the
3446 * vector to extract.
3447 */
3448
3449 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
3450 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
3451 ret->def = nir_channel(&b->nb, cur->def, indices[i]);
3452 return ret;
3453 } else {
3454 vtn_fail_if(indices[i] >= glsl_get_length(cur->type),
3455 "All indices in an OpCompositeExtract must be in-bounds");
3456 cur = cur->elems[indices[i]];
3457 }
3458 }
3459
3460 return cur;
3461 }
3462
3463 static void
3464 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
3465 const uint32_t *w, unsigned count)
3466 {
3467 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
3468 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, type->type);
3469
3470 switch (opcode) {
3471 case SpvOpVectorExtractDynamic:
3472 ssa->def = nir_vector_extract(&b->nb, vtn_ssa_value(b, w[3])->def,
3473 vtn_ssa_value(b, w[4])->def);
3474 break;
3475
3476 case SpvOpVectorInsertDynamic:
3477 ssa->def = nir_vector_insert(&b->nb, vtn_ssa_value(b, w[3])->def,
3478 vtn_ssa_value(b, w[4])->def,
3479 vtn_ssa_value(b, w[5])->def);
3480 break;
3481
3482 case SpvOpVectorShuffle:
3483 ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type->type),
3484 vtn_ssa_value(b, w[3])->def,
3485 vtn_ssa_value(b, w[4])->def,
3486 w + 5);
3487 break;
3488
3489 case SpvOpCompositeConstruct: {
3490 unsigned elems = count - 3;
3491 assume(elems >= 1);
3492 if (glsl_type_is_vector_or_scalar(type->type)) {
3493 nir_ssa_def *srcs[NIR_MAX_VEC_COMPONENTS];
3494 for (unsigned i = 0; i < elems; i++)
3495 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
3496 ssa->def =
3497 vtn_vector_construct(b, glsl_get_vector_elements(type->type),
3498 elems, srcs);
3499 } else {
3500 ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
3501 for (unsigned i = 0; i < elems; i++)
3502 ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
3503 }
3504 break;
3505 }
3506 case SpvOpCompositeExtract:
3507 ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
3508 w + 4, count - 4);
3509 break;
3510
3511 case SpvOpCompositeInsert:
3512 ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
3513 vtn_ssa_value(b, w[3]),
3514 w + 5, count - 5);
3515 break;
3516
3517 case SpvOpCopyLogical:
3518 ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
3519 break;
3520 case SpvOpCopyObject:
3521 vtn_copy_value(b, w[3], w[2]);
3522 return;
3523
3524 default:
3525 vtn_fail_with_opcode("unknown composite operation", opcode);
3526 }
3527
3528 vtn_push_ssa(b, w[2], type, ssa);
3529 }
3530
3531 static void
3532 vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op)
3533 {
3534 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
3535 nir_builder_instr_insert(&b->nb, &intrin->instr);
3536 }
3537
3538 void
3539 vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope,
3540 SpvMemorySemanticsMask semantics)
3541 {
3542 if (b->shader->options->use_scoped_barrier) {
3543 vtn_emit_scoped_memory_barrier(b, scope, semantics);
3544 return;
3545 }
3546
3547 static const SpvMemorySemanticsMask all_memory_semantics =
3548 SpvMemorySemanticsUniformMemoryMask |
3549 SpvMemorySemanticsWorkgroupMemoryMask |
3550 SpvMemorySemanticsAtomicCounterMemoryMask |
3551 SpvMemorySemanticsImageMemoryMask |
3552 SpvMemorySemanticsOutputMemoryMask;
3553
3554 /* If we're not actually doing a memory barrier, bail */
3555 if (!(semantics & all_memory_semantics))
3556 return;
3557
3558 /* GL and Vulkan don't have these */
3559 vtn_assert(scope != SpvScopeCrossDevice);
3560
3561 if (scope == SpvScopeSubgroup)
3562 return; /* Nothing to do here */
3563
3564 if (scope == SpvScopeWorkgroup) {
3565 vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier);
3566 return;
3567 }
3568
3569 /* There's only two scopes thing left */
3570 vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice);
3571
3572 /* Map the GLSL memoryBarrier() construct to the corresponding NIR one. */
3573 static const SpvMemorySemanticsMask glsl_memory_barrier =
3574 SpvMemorySemanticsUniformMemoryMask |
3575 SpvMemorySemanticsWorkgroupMemoryMask |
3576 SpvMemorySemanticsImageMemoryMask;
3577 if ((semantics & glsl_memory_barrier) == glsl_memory_barrier) {
3578 vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
3579 semantics &= ~(glsl_memory_barrier | SpvMemorySemanticsAtomicCounterMemoryMask);
3580 }
3581
3582 /* Issue a bunch of more specific barriers */
3583 uint32_t bits = semantics;
3584 while (bits) {
3585 SpvMemorySemanticsMask semantic = 1 << u_bit_scan(&bits);
3586 switch (semantic) {
3587 case SpvMemorySemanticsUniformMemoryMask:
3588 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer);
3589 break;
3590 case SpvMemorySemanticsWorkgroupMemoryMask:
3591 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared);
3592 break;
3593 case SpvMemorySemanticsAtomicCounterMemoryMask:
3594 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter);
3595 break;
3596 case SpvMemorySemanticsImageMemoryMask:
3597 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image);
3598 break;
3599 case SpvMemorySemanticsOutputMemoryMask:
3600 if (b->nb.shader->info.stage == MESA_SHADER_TESS_CTRL)
3601 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_tcs_patch);
3602 break;
3603 default:
3604 break;;
3605 }
3606 }
3607 }
3608
3609 static void
3610 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
3611 const uint32_t *w, UNUSED unsigned count)
3612 {
3613 switch (opcode) {
3614 case SpvOpEmitVertex:
3615 case SpvOpEmitStreamVertex:
3616 case SpvOpEndPrimitive:
3617 case SpvOpEndStreamPrimitive: {
3618 nir_intrinsic_op intrinsic_op;
3619 switch (opcode) {
3620 case SpvOpEmitVertex:
3621 case SpvOpEmitStreamVertex:
3622 intrinsic_op = nir_intrinsic_emit_vertex;
3623 break;
3624 case SpvOpEndPrimitive:
3625 case SpvOpEndStreamPrimitive:
3626 intrinsic_op = nir_intrinsic_end_primitive;
3627 break;
3628 default:
3629 unreachable("Invalid opcode");
3630 }
3631
3632 nir_intrinsic_instr *intrin =
3633 nir_intrinsic_instr_create(b->shader, intrinsic_op);
3634
3635 switch (opcode) {
3636 case SpvOpEmitStreamVertex:
3637 case SpvOpEndStreamPrimitive: {
3638 unsigned stream = vtn_constant_uint(b, w[1]);
3639 nir_intrinsic_set_stream_id(intrin, stream);
3640 break;
3641 }
3642
3643 default:
3644 break;
3645 }
3646
3647 nir_builder_instr_insert(&b->nb, &intrin->instr);
3648 break;
3649 }
3650
3651 case SpvOpMemoryBarrier: {
3652 SpvScope scope = vtn_constant_uint(b, w[1]);
3653 SpvMemorySemanticsMask semantics = vtn_constant_uint(b, w[2]);
3654 vtn_emit_memory_barrier(b, scope, semantics);
3655 return;
3656 }
3657
3658 case SpvOpControlBarrier: {
3659 SpvScope execution_scope = vtn_constant_uint(b, w[1]);
3660 SpvScope memory_scope = vtn_constant_uint(b, w[2]);
3661 SpvMemorySemanticsMask memory_semantics = vtn_constant_uint(b, w[3]);
3662
3663 /* GLSLang, prior to commit 8297936dd6eb3, emitted OpControlBarrier with
3664 * memory semantics of None for GLSL barrier().
3665 * And before that, prior to c3f1cdfa, emitted the OpControlBarrier with
3666 * Device instead of Workgroup for execution scope.
3667 */
3668 if (b->wa_glslang_cs_barrier &&
3669 b->nb.shader->info.stage == MESA_SHADER_COMPUTE &&
3670 (execution_scope == SpvScopeWorkgroup ||
3671 execution_scope == SpvScopeDevice) &&
3672 memory_semantics == SpvMemorySemanticsMaskNone) {
3673 execution_scope = SpvScopeWorkgroup;
3674 memory_scope = SpvScopeWorkgroup;
3675 memory_semantics = SpvMemorySemanticsAcquireReleaseMask |
3676 SpvMemorySemanticsWorkgroupMemoryMask;
3677 }
3678
3679 /* From the SPIR-V spec:
3680 *
3681 * "When used with the TessellationControl execution model, it also
3682 * implicitly synchronizes the Output Storage Class: Writes to Output
3683 * variables performed by any invocation executed prior to a
3684 * OpControlBarrier will be visible to any other invocation after
3685 * return from that OpControlBarrier."
3686 */
3687 if (b->nb.shader->info.stage == MESA_SHADER_TESS_CTRL) {
3688 memory_semantics &= ~(SpvMemorySemanticsAcquireMask |
3689 SpvMemorySemanticsReleaseMask |
3690 SpvMemorySemanticsAcquireReleaseMask |
3691 SpvMemorySemanticsSequentiallyConsistentMask);
3692 memory_semantics |= SpvMemorySemanticsAcquireReleaseMask |
3693 SpvMemorySemanticsOutputMemoryMask;
3694 }
3695
3696 if (b->shader->options->use_scoped_barrier) {
3697 vtn_emit_scoped_control_barrier(b, execution_scope, memory_scope,
3698 memory_semantics);
3699 } else {
3700 vtn_emit_memory_barrier(b, memory_scope, memory_semantics);
3701
3702 if (execution_scope == SpvScopeWorkgroup)
3703 vtn_emit_barrier(b, nir_intrinsic_control_barrier);
3704 }
3705 break;
3706 }
3707
3708 default:
3709 unreachable("unknown barrier instruction");
3710 }
3711 }
3712
3713 static unsigned
3714 gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
3715 SpvExecutionMode mode)
3716 {
3717 switch (mode) {
3718 case SpvExecutionModeInputPoints:
3719 case SpvExecutionModeOutputPoints:
3720 return 0; /* GL_POINTS */
3721 case SpvExecutionModeInputLines:
3722 return 1; /* GL_LINES */
3723 case SpvExecutionModeInputLinesAdjacency:
3724 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
3725 case SpvExecutionModeTriangles:
3726 return 4; /* GL_TRIANGLES */
3727 case SpvExecutionModeInputTrianglesAdjacency:
3728 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
3729 case SpvExecutionModeQuads:
3730 return 7; /* GL_QUADS */
3731 case SpvExecutionModeIsolines:
3732 return 0x8E7A; /* GL_ISOLINES */
3733 case SpvExecutionModeOutputLineStrip:
3734 return 3; /* GL_LINE_STRIP */
3735 case SpvExecutionModeOutputTriangleStrip:
3736 return 5; /* GL_TRIANGLE_STRIP */
3737 default:
3738 vtn_fail("Invalid primitive type: %s (%u)",
3739 spirv_executionmode_to_string(mode), mode);
3740 }
3741 }
3742
3743 static unsigned
3744 vertices_in_from_spv_execution_mode(struct vtn_builder *b,
3745 SpvExecutionMode mode)
3746 {
3747 switch (mode) {
3748 case SpvExecutionModeInputPoints:
3749 return 1;
3750 case SpvExecutionModeInputLines:
3751 return 2;
3752 case SpvExecutionModeInputLinesAdjacency:
3753 return 4;
3754 case SpvExecutionModeTriangles:
3755 return 3;
3756 case SpvExecutionModeInputTrianglesAdjacency:
3757 return 6;
3758 default:
3759 vtn_fail("Invalid GS input mode: %s (%u)",
3760 spirv_executionmode_to_string(mode), mode);
3761 }
3762 }
3763
3764 static gl_shader_stage
3765 stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
3766 {
3767 switch (model) {
3768 case SpvExecutionModelVertex:
3769 return MESA_SHADER_VERTEX;
3770 case SpvExecutionModelTessellationControl:
3771 return MESA_SHADER_TESS_CTRL;
3772 case SpvExecutionModelTessellationEvaluation:
3773 return MESA_SHADER_TESS_EVAL;
3774 case SpvExecutionModelGeometry:
3775 return MESA_SHADER_GEOMETRY;
3776 case SpvExecutionModelFragment:
3777 return MESA_SHADER_FRAGMENT;
3778 case SpvExecutionModelGLCompute:
3779 return MESA_SHADER_COMPUTE;
3780 case SpvExecutionModelKernel:
3781 return MESA_SHADER_KERNEL;
3782 default:
3783 vtn_fail("Unsupported execution model: %s (%u)",
3784 spirv_executionmodel_to_string(model), model);
3785 }
3786 }
3787
3788 #define spv_check_supported(name, cap) do { \
3789 if (!(b->options && b->options->caps.name)) \
3790 vtn_warn("Unsupported SPIR-V capability: %s (%u)", \
3791 spirv_capability_to_string(cap), cap); \
3792 } while(0)
3793
3794
3795 void
3796 vtn_handle_entry_point(struct vtn_builder *b, const uint32_t *w,
3797 unsigned count)
3798 {
3799 struct vtn_value *entry_point = &b->values[w[2]];
3800 /* Let this be a name label regardless */
3801 unsigned name_words;
3802 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
3803
3804 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
3805 stage_for_execution_model(b, w[1]) != b->entry_point_stage)
3806 return;
3807
3808 vtn_assert(b->entry_point == NULL);
3809 b->entry_point = entry_point;
3810 }
3811
3812 static bool
3813 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
3814 const uint32_t *w, unsigned count)
3815 {
3816 switch (opcode) {
3817 case SpvOpSource: {
3818 const char *lang;
3819 switch (w[1]) {
3820 default:
3821 case SpvSourceLanguageUnknown: lang = "unknown"; break;
3822 case SpvSourceLanguageESSL: lang = "ESSL"; break;
3823 case SpvSourceLanguageGLSL: lang = "GLSL"; break;
3824 case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
3825 case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
3826 case SpvSourceLanguageHLSL: lang = "HLSL"; break;
3827 }
3828
3829 uint32_t version = w[2];
3830
3831 const char *file =
3832 (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
3833
3834 vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
3835 break;
3836 }
3837
3838 case SpvOpSourceExtension:
3839 case SpvOpSourceContinued:
3840 case SpvOpExtension:
3841 case SpvOpModuleProcessed:
3842 /* Unhandled, but these are for debug so that's ok. */
3843 break;
3844
3845 case SpvOpCapability: {
3846 SpvCapability cap = w[1];
3847 switch (cap) {
3848 case SpvCapabilityMatrix:
3849 case SpvCapabilityShader:
3850 case SpvCapabilityGeometry:
3851 case SpvCapabilityGeometryPointSize:
3852 case SpvCapabilityUniformBufferArrayDynamicIndexing:
3853 case SpvCapabilitySampledImageArrayDynamicIndexing:
3854 case SpvCapabilityStorageBufferArrayDynamicIndexing:
3855 case SpvCapabilityStorageImageArrayDynamicIndexing:
3856 case SpvCapabilityImageRect:
3857 case SpvCapabilitySampledRect:
3858 case SpvCapabilitySampled1D:
3859 case SpvCapabilityImage1D:
3860 case SpvCapabilitySampledCubeArray:
3861 case SpvCapabilityImageCubeArray:
3862 case SpvCapabilitySampledBuffer:
3863 case SpvCapabilityImageBuffer:
3864 case SpvCapabilityImageQuery:
3865 case SpvCapabilityDerivativeControl:
3866 case SpvCapabilityInterpolationFunction:
3867 case SpvCapabilityMultiViewport:
3868 case SpvCapabilitySampleRateShading:
3869 case SpvCapabilityClipDistance:
3870 case SpvCapabilityCullDistance:
3871 case SpvCapabilityInputAttachment:
3872 case SpvCapabilityImageGatherExtended:
3873 case SpvCapabilityStorageImageExtendedFormats:
3874 case SpvCapabilityVector16:
3875 break;
3876
3877 case SpvCapabilityLinkage:
3878 case SpvCapabilityFloat16Buffer:
3879 case SpvCapabilitySparseResidency:
3880 vtn_warn("Unsupported SPIR-V capability: %s",
3881 spirv_capability_to_string(cap));
3882 break;
3883
3884 case SpvCapabilityMinLod:
3885 spv_check_supported(min_lod, cap);
3886 break;
3887
3888 case SpvCapabilityAtomicStorage:
3889 spv_check_supported(atomic_storage, cap);
3890 break;
3891
3892 case SpvCapabilityFloat64:
3893 spv_check_supported(float64, cap);
3894 break;
3895 case SpvCapabilityInt64:
3896 spv_check_supported(int64, cap);
3897 break;
3898 case SpvCapabilityInt16:
3899 spv_check_supported(int16, cap);
3900 break;
3901 case SpvCapabilityInt8:
3902 spv_check_supported(int8, cap);
3903 break;
3904
3905 case SpvCapabilityTransformFeedback:
3906 spv_check_supported(transform_feedback, cap);
3907 break;
3908
3909 case SpvCapabilityGeometryStreams:
3910 spv_check_supported(geometry_streams, cap);
3911 break;
3912
3913 case SpvCapabilityInt64Atomics:
3914 spv_check_supported(int64_atomics, cap);
3915 break;
3916
3917 case SpvCapabilityStorageImageMultisample:
3918 spv_check_supported(storage_image_ms, cap);
3919 break;
3920
3921 case SpvCapabilityAddresses:
3922 spv_check_supported(address, cap);
3923 break;
3924
3925 case SpvCapabilityKernel:
3926 spv_check_supported(kernel, cap);
3927 break;
3928
3929 case SpvCapabilityImageBasic:
3930 case SpvCapabilityImageReadWrite:
3931 case SpvCapabilityImageMipmap:
3932 case SpvCapabilityPipes:
3933 case SpvCapabilityDeviceEnqueue:
3934 case SpvCapabilityLiteralSampler:
3935 case SpvCapabilityGenericPointer:
3936 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
3937 spirv_capability_to_string(cap));
3938 break;
3939
3940 case SpvCapabilityImageMSArray:
3941 spv_check_supported(image_ms_array, cap);
3942 break;
3943
3944 case SpvCapabilityTessellation:
3945 case SpvCapabilityTessellationPointSize:
3946 spv_check_supported(tessellation, cap);
3947 break;
3948
3949 case SpvCapabilityDrawParameters:
3950 spv_check_supported(draw_parameters, cap);
3951 break;
3952
3953 case SpvCapabilityStorageImageReadWithoutFormat:
3954 spv_check_supported(image_read_without_format, cap);
3955 break;
3956
3957 case SpvCapabilityStorageImageWriteWithoutFormat:
3958 spv_check_supported(image_write_without_format, cap);
3959 break;
3960
3961 case SpvCapabilityDeviceGroup:
3962 spv_check_supported(device_group, cap);
3963 break;
3964
3965 case SpvCapabilityMultiView:
3966 spv_check_supported(multiview, cap);
3967 break;
3968
3969 case SpvCapabilityGroupNonUniform:
3970 spv_check_supported(subgroup_basic, cap);
3971 break;
3972
3973 case SpvCapabilitySubgroupVoteKHR:
3974 case SpvCapabilityGroupNonUniformVote:
3975 spv_check_supported(subgroup_vote, cap);
3976 break;
3977
3978 case SpvCapabilitySubgroupBallotKHR:
3979 case SpvCapabilityGroupNonUniformBallot:
3980 spv_check_supported(subgroup_ballot, cap);
3981 break;
3982
3983 case SpvCapabilityGroupNonUniformShuffle:
3984 case SpvCapabilityGroupNonUniformShuffleRelative:
3985 spv_check_supported(subgroup_shuffle, cap);
3986 break;
3987
3988 case SpvCapabilityGroupNonUniformQuad:
3989 spv_check_supported(subgroup_quad, cap);
3990 break;
3991
3992 case SpvCapabilityGroupNonUniformArithmetic:
3993 case SpvCapabilityGroupNonUniformClustered:
3994 spv_check_supported(subgroup_arithmetic, cap);
3995 break;
3996
3997 case SpvCapabilityGroups:
3998 spv_check_supported(amd_shader_ballot, cap);
3999 break;
4000
4001 case SpvCapabilityVariablePointersStorageBuffer:
4002 case SpvCapabilityVariablePointers:
4003 spv_check_supported(variable_pointers, cap);
4004 b->variable_pointers = true;
4005 break;
4006
4007 case SpvCapabilityStorageUniformBufferBlock16:
4008 case SpvCapabilityStorageUniform16:
4009 case SpvCapabilityStoragePushConstant16:
4010 case SpvCapabilityStorageInputOutput16:
4011 spv_check_supported(storage_16bit, cap);
4012 break;
4013
4014 case SpvCapabilityShaderLayer:
4015 case SpvCapabilityShaderViewportIndex:
4016 case SpvCapabilityShaderViewportIndexLayerEXT:
4017 spv_check_supported(shader_viewport_index_layer, cap);
4018 break;
4019
4020 case SpvCapabilityStorageBuffer8BitAccess:
4021 case SpvCapabilityUniformAndStorageBuffer8BitAccess:
4022 case SpvCapabilityStoragePushConstant8:
4023 spv_check_supported(storage_8bit, cap);
4024 break;
4025
4026 case SpvCapabilityShaderNonUniformEXT:
4027 spv_check_supported(descriptor_indexing, cap);
4028 break;
4029
4030 case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT:
4031 case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT:
4032 case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT:
4033 spv_check_supported(descriptor_array_dynamic_indexing, cap);
4034 break;
4035
4036 case SpvCapabilityUniformBufferArrayNonUniformIndexingEXT:
4037 case SpvCapabilitySampledImageArrayNonUniformIndexingEXT:
4038 case SpvCapabilityStorageBufferArrayNonUniformIndexingEXT:
4039 case SpvCapabilityStorageImageArrayNonUniformIndexingEXT:
4040 case SpvCapabilityInputAttachmentArrayNonUniformIndexingEXT:
4041 case SpvCapabilityUniformTexelBufferArrayNonUniformIndexingEXT:
4042 case SpvCapabilityStorageTexelBufferArrayNonUniformIndexingEXT:
4043 spv_check_supported(descriptor_array_non_uniform_indexing, cap);
4044 break;
4045
4046 case SpvCapabilityRuntimeDescriptorArrayEXT:
4047 spv_check_supported(runtime_descriptor_array, cap);
4048 break;
4049
4050 case SpvCapabilityStencilExportEXT:
4051 spv_check_supported(stencil_export, cap);
4052 break;
4053
4054 case SpvCapabilitySampleMaskPostDepthCoverage:
4055 spv_check_supported(post_depth_coverage, cap);
4056 break;
4057
4058 case SpvCapabilityDenormFlushToZero:
4059 case SpvCapabilityDenormPreserve:
4060 case SpvCapabilitySignedZeroInfNanPreserve:
4061 case SpvCapabilityRoundingModeRTE:
4062 case SpvCapabilityRoundingModeRTZ:
4063 spv_check_supported(float_controls, cap);
4064 break;
4065
4066 case SpvCapabilityPhysicalStorageBufferAddresses:
4067 spv_check_supported(physical_storage_buffer_address, cap);
4068 break;
4069
4070 case SpvCapabilityComputeDerivativeGroupQuadsNV:
4071 case SpvCapabilityComputeDerivativeGroupLinearNV:
4072 spv_check_supported(derivative_group, cap);
4073 break;
4074
4075 case SpvCapabilityFloat16:
4076 spv_check_supported(float16, cap);
4077 break;
4078
4079 case SpvCapabilityFragmentShaderSampleInterlockEXT:
4080 spv_check_supported(fragment_shader_sample_interlock, cap);
4081 break;
4082
4083 case SpvCapabilityFragmentShaderPixelInterlockEXT:
4084 spv_check_supported(fragment_shader_pixel_interlock, cap);
4085 break;
4086
4087 case SpvCapabilityDemoteToHelperInvocationEXT:
4088 spv_check_supported(demote_to_helper_invocation, cap);
4089 break;
4090
4091 case SpvCapabilityShaderClockKHR:
4092 spv_check_supported(shader_clock, cap);
4093 break;
4094
4095 case SpvCapabilityVulkanMemoryModel:
4096 spv_check_supported(vk_memory_model, cap);
4097 break;
4098
4099 case SpvCapabilityVulkanMemoryModelDeviceScope:
4100 spv_check_supported(vk_memory_model_device_scope, cap);
4101 break;
4102
4103 case SpvCapabilityImageReadWriteLodAMD:
4104 spv_check_supported(amd_image_read_write_lod, cap);
4105 break;
4106
4107 case SpvCapabilityIntegerFunctions2INTEL:
4108 spv_check_supported(integer_functions2, cap);
4109 break;
4110
4111 case SpvCapabilityFragmentMaskAMD:
4112 spv_check_supported(amd_fragment_mask, cap);
4113 break;
4114
4115 case SpvCapabilityImageGatherBiasLodAMD:
4116 spv_check_supported(amd_image_gather_bias_lod, cap);
4117 break;
4118
4119 default:
4120 vtn_fail("Unhandled capability: %s (%u)",
4121 spirv_capability_to_string(cap), cap);
4122 }
4123 break;
4124 }
4125
4126 case SpvOpExtInstImport:
4127 vtn_handle_extension(b, opcode, w, count);
4128 break;
4129
4130 case SpvOpMemoryModel:
4131 switch (w[1]) {
4132 case SpvAddressingModelPhysical32:
4133 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
4134 "AddressingModelPhysical32 only supported for kernels");
4135 b->shader->info.cs.ptr_size = 32;
4136 b->physical_ptrs = true;
4137 b->options->shared_addr_format = nir_address_format_32bit_global;
4138 b->options->global_addr_format = nir_address_format_32bit_global;
4139 b->options->temp_addr_format = nir_address_format_32bit_global;
4140 break;
4141 case SpvAddressingModelPhysical64:
4142 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
4143 "AddressingModelPhysical64 only supported for kernels");
4144 b->shader->info.cs.ptr_size = 64;
4145 b->physical_ptrs = true;
4146 b->options->shared_addr_format = nir_address_format_64bit_global;
4147 b->options->global_addr_format = nir_address_format_64bit_global;
4148 b->options->temp_addr_format = nir_address_format_64bit_global;
4149 break;
4150 case SpvAddressingModelLogical:
4151 vtn_fail_if(b->shader->info.stage == MESA_SHADER_KERNEL,
4152 "AddressingModelLogical only supported for shaders");
4153 b->physical_ptrs = false;
4154 break;
4155 case SpvAddressingModelPhysicalStorageBuffer64:
4156 vtn_fail_if(!b->options ||
4157 !b->options->caps.physical_storage_buffer_address,
4158 "AddressingModelPhysicalStorageBuffer64 not supported");
4159 break;
4160 default:
4161 vtn_fail("Unknown addressing model: %s (%u)",
4162 spirv_addressingmodel_to_string(w[1]), w[1]);
4163 break;
4164 }
4165
4166 switch (w[2]) {
4167 case SpvMemoryModelSimple:
4168 case SpvMemoryModelGLSL450:
4169 case SpvMemoryModelOpenCL:
4170 break;
4171 case SpvMemoryModelVulkan:
4172 vtn_fail_if(!b->options->caps.vk_memory_model,
4173 "Vulkan memory model is unsupported by this driver");
4174 break;
4175 default:
4176 vtn_fail("Unsupported memory model: %s",
4177 spirv_memorymodel_to_string(w[2]));
4178 break;
4179 }
4180 break;
4181
4182 case SpvOpEntryPoint:
4183 vtn_handle_entry_point(b, w, count);
4184 break;
4185
4186 case SpvOpString:
4187 vtn_push_value(b, w[1], vtn_value_type_string)->str =
4188 vtn_string_literal(b, &w[2], count - 2, NULL);
4189 break;
4190
4191 case SpvOpName:
4192 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
4193 break;
4194
4195 case SpvOpMemberName:
4196 /* TODO */
4197 break;
4198
4199 case SpvOpExecutionMode:
4200 case SpvOpExecutionModeId:
4201 case SpvOpDecorationGroup:
4202 case SpvOpDecorate:
4203 case SpvOpDecorateId:
4204 case SpvOpMemberDecorate:
4205 case SpvOpGroupDecorate:
4206 case SpvOpGroupMemberDecorate:
4207 case SpvOpDecorateString:
4208 case SpvOpMemberDecorateString:
4209 vtn_handle_decoration(b, opcode, w, count);
4210 break;
4211
4212 case SpvOpExtInst: {
4213 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
4214 if (val->ext_handler == vtn_handle_non_semantic_instruction) {
4215 /* NonSemantic extended instructions are acceptable in preamble. */
4216 vtn_handle_non_semantic_instruction(b, w[4], w, count);
4217 return true;
4218 } else {
4219 return false; /* End of preamble. */
4220 }
4221 }
4222
4223 default:
4224 return false; /* End of preamble */
4225 }
4226
4227 return true;
4228 }
4229
4230 static void
4231 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
4232 const struct vtn_decoration *mode, UNUSED void *data)
4233 {
4234 vtn_assert(b->entry_point == entry_point);
4235
4236 switch(mode->exec_mode) {
4237 case SpvExecutionModeOriginUpperLeft:
4238 case SpvExecutionModeOriginLowerLeft:
4239 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4240 b->shader->info.fs.origin_upper_left =
4241 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
4242 break;
4243
4244 case SpvExecutionModeEarlyFragmentTests:
4245 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4246 b->shader->info.fs.early_fragment_tests = true;
4247 break;
4248
4249 case SpvExecutionModePostDepthCoverage:
4250 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4251 b->shader->info.fs.post_depth_coverage = true;
4252 break;
4253
4254 case SpvExecutionModeInvocations:
4255 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
4256 b->shader->info.gs.invocations = MAX2(1, mode->operands[0]);
4257 break;
4258
4259 case SpvExecutionModeDepthReplacing:
4260 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4261 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
4262 break;
4263 case SpvExecutionModeDepthGreater:
4264 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4265 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
4266 break;
4267 case SpvExecutionModeDepthLess:
4268 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4269 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
4270 break;
4271 case SpvExecutionModeDepthUnchanged:
4272 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4273 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
4274 break;
4275
4276 case SpvExecutionModeLocalSize:
4277 vtn_assert(gl_shader_stage_is_compute(b->shader->info.stage));
4278 b->shader->info.cs.local_size[0] = mode->operands[0];
4279 b->shader->info.cs.local_size[1] = mode->operands[1];
4280 b->shader->info.cs.local_size[2] = mode->operands[2];
4281 break;
4282
4283 case SpvExecutionModeLocalSizeId:
4284 b->shader->info.cs.local_size[0] = vtn_constant_uint(b, mode->operands[0]);
4285 b->shader->info.cs.local_size[1] = vtn_constant_uint(b, mode->operands[1]);
4286 b->shader->info.cs.local_size[2] = vtn_constant_uint(b, mode->operands[2]);
4287 break;
4288
4289 case SpvExecutionModeLocalSizeHint:
4290 case SpvExecutionModeLocalSizeHintId:
4291 break; /* Nothing to do with this */
4292
4293 case SpvExecutionModeOutputVertices:
4294 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4295 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4296 b->shader->info.tess.tcs_vertices_out = mode->operands[0];
4297 } else {
4298 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
4299 b->shader->info.gs.vertices_out = mode->operands[0];
4300 }
4301 break;
4302
4303 case SpvExecutionModeInputPoints:
4304 case SpvExecutionModeInputLines:
4305 case SpvExecutionModeInputLinesAdjacency:
4306 case SpvExecutionModeTriangles:
4307 case SpvExecutionModeInputTrianglesAdjacency:
4308 case SpvExecutionModeQuads:
4309 case SpvExecutionModeIsolines:
4310 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4311 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
4312 b->shader->info.tess.primitive_mode =
4313 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
4314 } else {
4315 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
4316 b->shader->info.gs.vertices_in =
4317 vertices_in_from_spv_execution_mode(b, mode->exec_mode);
4318 b->shader->info.gs.input_primitive =
4319 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
4320 }
4321 break;
4322
4323 case SpvExecutionModeOutputPoints:
4324 case SpvExecutionModeOutputLineStrip:
4325 case SpvExecutionModeOutputTriangleStrip:
4326 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
4327 b->shader->info.gs.output_primitive =
4328 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
4329 break;
4330
4331 case SpvExecutionModeSpacingEqual:
4332 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4333 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4334 b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
4335 break;
4336 case SpvExecutionModeSpacingFractionalEven:
4337 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4338 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4339 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
4340 break;
4341 case SpvExecutionModeSpacingFractionalOdd:
4342 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4343 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4344 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
4345 break;
4346 case SpvExecutionModeVertexOrderCw:
4347 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4348 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4349 b->shader->info.tess.ccw = false;
4350 break;
4351 case SpvExecutionModeVertexOrderCcw:
4352 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4353 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4354 b->shader->info.tess.ccw = true;
4355 break;
4356 case SpvExecutionModePointMode:
4357 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4358 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4359 b->shader->info.tess.point_mode = true;
4360 break;
4361
4362 case SpvExecutionModePixelCenterInteger:
4363 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4364 b->shader->info.fs.pixel_center_integer = true;
4365 break;
4366
4367 case SpvExecutionModeXfb:
4368 b->shader->info.has_transform_feedback_varyings = true;
4369 break;
4370
4371 case SpvExecutionModeVecTypeHint:
4372 break; /* OpenCL */
4373
4374 case SpvExecutionModeContractionOff:
4375 if (b->shader->info.stage != MESA_SHADER_KERNEL)
4376 vtn_warn("ExectionMode only allowed for CL-style kernels: %s",
4377 spirv_executionmode_to_string(mode->exec_mode));
4378 else
4379 b->exact = true;
4380 break;
4381
4382 case SpvExecutionModeStencilRefReplacingEXT:
4383 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4384 break;
4385
4386 case SpvExecutionModeDerivativeGroupQuadsNV:
4387 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
4388 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_QUADS;
4389 break;
4390
4391 case SpvExecutionModeDerivativeGroupLinearNV:
4392 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
4393 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_LINEAR;
4394 break;
4395
4396 case SpvExecutionModePixelInterlockOrderedEXT:
4397 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4398 b->shader->info.fs.pixel_interlock_ordered = true;
4399 break;
4400
4401 case SpvExecutionModePixelInterlockUnorderedEXT:
4402 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4403 b->shader->info.fs.pixel_interlock_unordered = true;
4404 break;
4405
4406 case SpvExecutionModeSampleInterlockOrderedEXT:
4407 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4408 b->shader->info.fs.sample_interlock_ordered = true;
4409 break;
4410
4411 case SpvExecutionModeSampleInterlockUnorderedEXT:
4412 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4413 b->shader->info.fs.sample_interlock_unordered = true;
4414 break;
4415
4416 case SpvExecutionModeDenormPreserve:
4417 case SpvExecutionModeDenormFlushToZero:
4418 case SpvExecutionModeSignedZeroInfNanPreserve:
4419 case SpvExecutionModeRoundingModeRTE:
4420 case SpvExecutionModeRoundingModeRTZ:
4421 /* Already handled in vtn_handle_rounding_mode_in_execution_mode() */
4422 break;
4423
4424 default:
4425 vtn_fail("Unhandled execution mode: %s (%u)",
4426 spirv_executionmode_to_string(mode->exec_mode),
4427 mode->exec_mode);
4428 }
4429 }
4430
4431 static void
4432 vtn_handle_rounding_mode_in_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
4433 const struct vtn_decoration *mode, void *data)
4434 {
4435 vtn_assert(b->entry_point == entry_point);
4436
4437 unsigned execution_mode = 0;
4438
4439 switch(mode->exec_mode) {
4440 case SpvExecutionModeDenormPreserve:
4441 switch (mode->operands[0]) {
4442 case 16: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP16; break;
4443 case 32: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP32; break;
4444 case 64: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP64; break;
4445 default: vtn_fail("Floating point type not supported");
4446 }
4447 break;
4448 case SpvExecutionModeDenormFlushToZero:
4449 switch (mode->operands[0]) {
4450 case 16: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16; break;
4451 case 32: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32; break;
4452 case 64: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64; break;
4453 default: vtn_fail("Floating point type not supported");
4454 }
4455 break;
4456 case SpvExecutionModeSignedZeroInfNanPreserve:
4457 switch (mode->operands[0]) {
4458 case 16: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16; break;
4459 case 32: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32; break;
4460 case 64: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64; break;
4461 default: vtn_fail("Floating point type not supported");
4462 }
4463 break;
4464 case SpvExecutionModeRoundingModeRTE:
4465 switch (mode->operands[0]) {
4466 case 16: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16; break;
4467 case 32: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32; break;
4468 case 64: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64; break;
4469 default: vtn_fail("Floating point type not supported");
4470 }
4471 break;
4472 case SpvExecutionModeRoundingModeRTZ:
4473 switch (mode->operands[0]) {
4474 case 16: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16; break;
4475 case 32: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32; break;
4476 case 64: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64; break;
4477 default: vtn_fail("Floating point type not supported");
4478 }
4479 break;
4480
4481 default:
4482 break;
4483 }
4484
4485 b->shader->info.float_controls_execution_mode |= execution_mode;
4486 }
4487
4488 static bool
4489 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
4490 const uint32_t *w, unsigned count)
4491 {
4492 vtn_set_instruction_result_type(b, opcode, w, count);
4493
4494 switch (opcode) {
4495 case SpvOpSource:
4496 case SpvOpSourceContinued:
4497 case SpvOpSourceExtension:
4498 case SpvOpExtension:
4499 case SpvOpCapability:
4500 case SpvOpExtInstImport:
4501 case SpvOpMemoryModel:
4502 case SpvOpEntryPoint:
4503 case SpvOpExecutionMode:
4504 case SpvOpString:
4505 case SpvOpName:
4506 case SpvOpMemberName:
4507 case SpvOpDecorationGroup:
4508 case SpvOpDecorate:
4509 case SpvOpDecorateId:
4510 case SpvOpMemberDecorate:
4511 case SpvOpGroupDecorate:
4512 case SpvOpGroupMemberDecorate:
4513 case SpvOpDecorateString:
4514 case SpvOpMemberDecorateString:
4515 vtn_fail("Invalid opcode types and variables section");
4516 break;
4517
4518 case SpvOpTypeVoid:
4519 case SpvOpTypeBool:
4520 case SpvOpTypeInt:
4521 case SpvOpTypeFloat:
4522 case SpvOpTypeVector:
4523 case SpvOpTypeMatrix:
4524 case SpvOpTypeImage:
4525 case SpvOpTypeSampler:
4526 case SpvOpTypeSampledImage:
4527 case SpvOpTypeArray:
4528 case SpvOpTypeRuntimeArray:
4529 case SpvOpTypeStruct:
4530 case SpvOpTypeOpaque:
4531 case SpvOpTypePointer:
4532 case SpvOpTypeForwardPointer:
4533 case SpvOpTypeFunction:
4534 case SpvOpTypeEvent:
4535 case SpvOpTypeDeviceEvent:
4536 case SpvOpTypeReserveId:
4537 case SpvOpTypeQueue:
4538 case SpvOpTypePipe:
4539 vtn_handle_type(b, opcode, w, count);
4540 break;
4541
4542 case SpvOpConstantTrue:
4543 case SpvOpConstantFalse:
4544 case SpvOpConstant:
4545 case SpvOpConstantComposite:
4546 case SpvOpConstantSampler:
4547 case SpvOpConstantNull:
4548 case SpvOpSpecConstantTrue:
4549 case SpvOpSpecConstantFalse:
4550 case SpvOpSpecConstant:
4551 case SpvOpSpecConstantComposite:
4552 case SpvOpSpecConstantOp:
4553 vtn_handle_constant(b, opcode, w, count);
4554 break;
4555
4556 case SpvOpUndef:
4557 case SpvOpVariable:
4558 vtn_handle_variables(b, opcode, w, count);
4559 break;
4560
4561 case SpvOpExtInst: {
4562 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
4563 /* NonSemantic extended instructions are acceptable in preamble, others
4564 * will indicate the end of preamble.
4565 */
4566 return val->ext_handler == vtn_handle_non_semantic_instruction;
4567 }
4568
4569 default:
4570 return false; /* End of preamble */
4571 }
4572
4573 return true;
4574 }
4575
4576 static struct vtn_ssa_value *
4577 vtn_nir_select(struct vtn_builder *b, struct vtn_ssa_value *src0,
4578 struct vtn_ssa_value *src1, struct vtn_ssa_value *src2)
4579 {
4580 struct vtn_ssa_value *dest = rzalloc(b, struct vtn_ssa_value);
4581 dest->type = src1->type;
4582
4583 if (glsl_type_is_vector_or_scalar(src1->type)) {
4584 dest->def = nir_bcsel(&b->nb, src0->def, src1->def, src2->def);
4585 } else {
4586 unsigned elems = glsl_get_length(src1->type);
4587
4588 dest->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
4589 for (unsigned i = 0; i < elems; i++) {
4590 dest->elems[i] = vtn_nir_select(b, src0,
4591 src1->elems[i], src2->elems[i]);
4592 }
4593 }
4594
4595 return dest;
4596 }
4597
4598 static void
4599 vtn_handle_select(struct vtn_builder *b, SpvOp opcode,
4600 const uint32_t *w, unsigned count)
4601 {
4602 /* Handle OpSelect up-front here because it needs to be able to handle
4603 * pointers and not just regular vectors and scalars.
4604 */
4605 struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
4606 struct vtn_value *cond_val = vtn_untyped_value(b, w[3]);
4607 struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
4608 struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
4609
4610 vtn_fail_if(obj1_val->type != res_val->type ||
4611 obj2_val->type != res_val->type,
4612 "Object types must match the result type in OpSelect");
4613
4614 vtn_fail_if((cond_val->type->base_type != vtn_base_type_scalar &&
4615 cond_val->type->base_type != vtn_base_type_vector) ||
4616 !glsl_type_is_boolean(cond_val->type->type),
4617 "OpSelect must have either a vector of booleans or "
4618 "a boolean as Condition type");
4619
4620 vtn_fail_if(cond_val->type->base_type == vtn_base_type_vector &&
4621 (res_val->type->base_type != vtn_base_type_vector ||
4622 res_val->type->length != cond_val->type->length),
4623 "When Condition type in OpSelect is a vector, the Result "
4624 "type must be a vector of the same length");
4625
4626 switch (res_val->type->base_type) {
4627 case vtn_base_type_scalar:
4628 case vtn_base_type_vector:
4629 case vtn_base_type_matrix:
4630 case vtn_base_type_array:
4631 case vtn_base_type_struct:
4632 /* OK. */
4633 break;
4634 case vtn_base_type_pointer:
4635 /* We need to have actual storage for pointer types. */
4636 vtn_fail_if(res_val->type->type == NULL,
4637 "Invalid pointer result type for OpSelect");
4638 break;
4639 default:
4640 vtn_fail("Result type of OpSelect must be a scalar, composite, or pointer");
4641 }
4642
4643 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
4644 struct vtn_ssa_value *ssa = vtn_nir_select(b,
4645 vtn_ssa_value(b, w[3]), vtn_ssa_value(b, w[4]), vtn_ssa_value(b, w[5]));
4646
4647 vtn_push_ssa(b, w[2], res_type, ssa);
4648 }
4649
4650 static void
4651 vtn_handle_ptr(struct vtn_builder *b, SpvOp opcode,
4652 const uint32_t *w, unsigned count)
4653 {
4654 struct vtn_type *type1 = vtn_untyped_value(b, w[3])->type;
4655 struct vtn_type *type2 = vtn_untyped_value(b, w[4])->type;
4656 vtn_fail_if(type1->base_type != vtn_base_type_pointer ||
4657 type2->base_type != vtn_base_type_pointer,
4658 "%s operands must have pointer types",
4659 spirv_op_to_string(opcode));
4660 vtn_fail_if(type1->storage_class != type2->storage_class,
4661 "%s operands must have the same storage class",
4662 spirv_op_to_string(opcode));
4663
4664 struct vtn_type *vtn_type =
4665 vtn_value(b, w[1], vtn_value_type_type)->type;
4666 const struct glsl_type *type = vtn_type->type;
4667
4668 nir_address_format addr_format = vtn_mode_to_address_format(
4669 b, vtn_storage_class_to_mode(b, type1->storage_class, NULL, NULL));
4670
4671 nir_ssa_def *def;
4672
4673 switch (opcode) {
4674 case SpvOpPtrDiff: {
4675 /* OpPtrDiff returns the difference in number of elements (not byte offset). */
4676 unsigned elem_size, elem_align;
4677 glsl_get_natural_size_align_bytes(type1->deref->type,
4678 &elem_size, &elem_align);
4679
4680 def = nir_build_addr_isub(&b->nb,
4681 vtn_ssa_value(b, w[3])->def,
4682 vtn_ssa_value(b, w[4])->def,
4683 addr_format);
4684 def = nir_idiv(&b->nb, def, nir_imm_intN_t(&b->nb, elem_size, def->bit_size));
4685 def = nir_i2i(&b->nb, def, glsl_get_bit_size(type));
4686 break;
4687 }
4688
4689 case SpvOpPtrEqual:
4690 case SpvOpPtrNotEqual: {
4691 def = nir_build_addr_ieq(&b->nb,
4692 vtn_ssa_value(b, w[3])->def,
4693 vtn_ssa_value(b, w[4])->def,
4694 addr_format);
4695 if (opcode == SpvOpPtrNotEqual)
4696 def = nir_inot(&b->nb, def);
4697 break;
4698 }
4699
4700 default:
4701 unreachable("Invalid ptr operation");
4702 }
4703
4704 struct vtn_ssa_value *ssa_value = vtn_create_ssa_value(b, type);
4705 ssa_value->def = def;
4706 vtn_push_ssa(b, w[2], vtn_type, ssa_value);
4707 }
4708
4709 static bool
4710 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
4711 const uint32_t *w, unsigned count)
4712 {
4713 switch (opcode) {
4714 case SpvOpLabel:
4715 break;
4716
4717 case SpvOpLoopMerge:
4718 case SpvOpSelectionMerge:
4719 /* This is handled by cfg pre-pass and walk_blocks */
4720 break;
4721
4722 case SpvOpUndef: {
4723 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
4724 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
4725 break;
4726 }
4727
4728 case SpvOpExtInst:
4729 vtn_handle_extension(b, opcode, w, count);
4730 break;
4731
4732 case SpvOpVariable:
4733 case SpvOpLoad:
4734 case SpvOpStore:
4735 case SpvOpCopyMemory:
4736 case SpvOpCopyMemorySized:
4737 case SpvOpAccessChain:
4738 case SpvOpPtrAccessChain:
4739 case SpvOpInBoundsAccessChain:
4740 case SpvOpInBoundsPtrAccessChain:
4741 case SpvOpArrayLength:
4742 case SpvOpConvertPtrToU:
4743 case SpvOpConvertUToPtr:
4744 vtn_handle_variables(b, opcode, w, count);
4745 break;
4746
4747 case SpvOpFunctionCall:
4748 vtn_handle_function_call(b, opcode, w, count);
4749 break;
4750
4751 case SpvOpSampledImage:
4752 case SpvOpImage:
4753 case SpvOpImageSampleImplicitLod:
4754 case SpvOpImageSampleExplicitLod:
4755 case SpvOpImageSampleDrefImplicitLod:
4756 case SpvOpImageSampleDrefExplicitLod:
4757 case SpvOpImageSampleProjImplicitLod:
4758 case SpvOpImageSampleProjExplicitLod:
4759 case SpvOpImageSampleProjDrefImplicitLod:
4760 case SpvOpImageSampleProjDrefExplicitLod:
4761 case SpvOpImageFetch:
4762 case SpvOpImageGather:
4763 case SpvOpImageDrefGather:
4764 case SpvOpImageQuerySizeLod:
4765 case SpvOpImageQueryLod:
4766 case SpvOpImageQueryLevels:
4767 case SpvOpImageQuerySamples:
4768 vtn_handle_texture(b, opcode, w, count);
4769 break;
4770
4771 case SpvOpImageRead:
4772 case SpvOpImageWrite:
4773 case SpvOpImageTexelPointer:
4774 vtn_handle_image(b, opcode, w, count);
4775 break;
4776
4777 case SpvOpImageQuerySize: {
4778 struct vtn_pointer *image =
4779 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
4780 if (glsl_type_is_image(image->type->type)) {
4781 vtn_handle_image(b, opcode, w, count);
4782 } else {
4783 vtn_assert(glsl_type_is_sampler(image->type->type));
4784 vtn_handle_texture(b, opcode, w, count);
4785 }
4786 break;
4787 }
4788
4789 case SpvOpFragmentMaskFetchAMD:
4790 case SpvOpFragmentFetchAMD:
4791 vtn_handle_texture(b, opcode, w, count);
4792 break;
4793
4794 case SpvOpAtomicLoad:
4795 case SpvOpAtomicExchange:
4796 case SpvOpAtomicCompareExchange:
4797 case SpvOpAtomicCompareExchangeWeak:
4798 case SpvOpAtomicIIncrement:
4799 case SpvOpAtomicIDecrement:
4800 case SpvOpAtomicIAdd:
4801 case SpvOpAtomicISub:
4802 case SpvOpAtomicSMin:
4803 case SpvOpAtomicUMin:
4804 case SpvOpAtomicSMax:
4805 case SpvOpAtomicUMax:
4806 case SpvOpAtomicAnd:
4807 case SpvOpAtomicOr:
4808 case SpvOpAtomicXor: {
4809 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
4810 if (pointer->value_type == vtn_value_type_image_pointer) {
4811 vtn_handle_image(b, opcode, w, count);
4812 } else {
4813 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4814 vtn_handle_atomics(b, opcode, w, count);
4815 }
4816 break;
4817 }
4818
4819 case SpvOpAtomicStore: {
4820 struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
4821 if (pointer->value_type == vtn_value_type_image_pointer) {
4822 vtn_handle_image(b, opcode, w, count);
4823 } else {
4824 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4825 vtn_handle_atomics(b, opcode, w, count);
4826 }
4827 break;
4828 }
4829
4830 case SpvOpSelect:
4831 vtn_handle_select(b, opcode, w, count);
4832 break;
4833
4834 case SpvOpSNegate:
4835 case SpvOpFNegate:
4836 case SpvOpNot:
4837 case SpvOpAny:
4838 case SpvOpAll:
4839 case SpvOpConvertFToU:
4840 case SpvOpConvertFToS:
4841 case SpvOpConvertSToF:
4842 case SpvOpConvertUToF:
4843 case SpvOpUConvert:
4844 case SpvOpSConvert:
4845 case SpvOpFConvert:
4846 case SpvOpQuantizeToF16:
4847 case SpvOpPtrCastToGeneric:
4848 case SpvOpGenericCastToPtr:
4849 case SpvOpIsNan:
4850 case SpvOpIsInf:
4851 case SpvOpIsFinite:
4852 case SpvOpIsNormal:
4853 case SpvOpSignBitSet:
4854 case SpvOpLessOrGreater:
4855 case SpvOpOrdered:
4856 case SpvOpUnordered:
4857 case SpvOpIAdd:
4858 case SpvOpFAdd:
4859 case SpvOpISub:
4860 case SpvOpFSub:
4861 case SpvOpIMul:
4862 case SpvOpFMul:
4863 case SpvOpUDiv:
4864 case SpvOpSDiv:
4865 case SpvOpFDiv:
4866 case SpvOpUMod:
4867 case SpvOpSRem:
4868 case SpvOpSMod:
4869 case SpvOpFRem:
4870 case SpvOpFMod:
4871 case SpvOpVectorTimesScalar:
4872 case SpvOpDot:
4873 case SpvOpIAddCarry:
4874 case SpvOpISubBorrow:
4875 case SpvOpUMulExtended:
4876 case SpvOpSMulExtended:
4877 case SpvOpShiftRightLogical:
4878 case SpvOpShiftRightArithmetic:
4879 case SpvOpShiftLeftLogical:
4880 case SpvOpLogicalEqual:
4881 case SpvOpLogicalNotEqual:
4882 case SpvOpLogicalOr:
4883 case SpvOpLogicalAnd:
4884 case SpvOpLogicalNot:
4885 case SpvOpBitwiseOr:
4886 case SpvOpBitwiseXor:
4887 case SpvOpBitwiseAnd:
4888 case SpvOpIEqual:
4889 case SpvOpFOrdEqual:
4890 case SpvOpFUnordEqual:
4891 case SpvOpINotEqual:
4892 case SpvOpFOrdNotEqual:
4893 case SpvOpFUnordNotEqual:
4894 case SpvOpULessThan:
4895 case SpvOpSLessThan:
4896 case SpvOpFOrdLessThan:
4897 case SpvOpFUnordLessThan:
4898 case SpvOpUGreaterThan:
4899 case SpvOpSGreaterThan:
4900 case SpvOpFOrdGreaterThan:
4901 case SpvOpFUnordGreaterThan:
4902 case SpvOpULessThanEqual:
4903 case SpvOpSLessThanEqual:
4904 case SpvOpFOrdLessThanEqual:
4905 case SpvOpFUnordLessThanEqual:
4906 case SpvOpUGreaterThanEqual:
4907 case SpvOpSGreaterThanEqual:
4908 case SpvOpFOrdGreaterThanEqual:
4909 case SpvOpFUnordGreaterThanEqual:
4910 case SpvOpDPdx:
4911 case SpvOpDPdy:
4912 case SpvOpFwidth:
4913 case SpvOpDPdxFine:
4914 case SpvOpDPdyFine:
4915 case SpvOpFwidthFine:
4916 case SpvOpDPdxCoarse:
4917 case SpvOpDPdyCoarse:
4918 case SpvOpFwidthCoarse:
4919 case SpvOpBitFieldInsert:
4920 case SpvOpBitFieldSExtract:
4921 case SpvOpBitFieldUExtract:
4922 case SpvOpBitReverse:
4923 case SpvOpBitCount:
4924 case SpvOpTranspose:
4925 case SpvOpOuterProduct:
4926 case SpvOpMatrixTimesScalar:
4927 case SpvOpVectorTimesMatrix:
4928 case SpvOpMatrixTimesVector:
4929 case SpvOpMatrixTimesMatrix:
4930 case SpvOpUCountLeadingZerosINTEL:
4931 case SpvOpUCountTrailingZerosINTEL:
4932 case SpvOpAbsISubINTEL:
4933 case SpvOpAbsUSubINTEL:
4934 case SpvOpIAddSatINTEL:
4935 case SpvOpUAddSatINTEL:
4936 case SpvOpIAverageINTEL:
4937 case SpvOpUAverageINTEL:
4938 case SpvOpIAverageRoundedINTEL:
4939 case SpvOpUAverageRoundedINTEL:
4940 case SpvOpISubSatINTEL:
4941 case SpvOpUSubSatINTEL:
4942 case SpvOpIMul32x16INTEL:
4943 case SpvOpUMul32x16INTEL:
4944 vtn_handle_alu(b, opcode, w, count);
4945 break;
4946
4947 case SpvOpBitcast:
4948 vtn_handle_bitcast(b, w, count);
4949 break;
4950
4951 case SpvOpVectorExtractDynamic:
4952 case SpvOpVectorInsertDynamic:
4953 case SpvOpVectorShuffle:
4954 case SpvOpCompositeConstruct:
4955 case SpvOpCompositeExtract:
4956 case SpvOpCompositeInsert:
4957 case SpvOpCopyLogical:
4958 case SpvOpCopyObject:
4959 vtn_handle_composite(b, opcode, w, count);
4960 break;
4961
4962 case SpvOpEmitVertex:
4963 case SpvOpEndPrimitive:
4964 case SpvOpEmitStreamVertex:
4965 case SpvOpEndStreamPrimitive:
4966 case SpvOpControlBarrier:
4967 case SpvOpMemoryBarrier:
4968 vtn_handle_barrier(b, opcode, w, count);
4969 break;
4970
4971 case SpvOpGroupNonUniformElect:
4972 case SpvOpGroupNonUniformAll:
4973 case SpvOpGroupNonUniformAny:
4974 case SpvOpGroupNonUniformAllEqual:
4975 case SpvOpGroupNonUniformBroadcast:
4976 case SpvOpGroupNonUniformBroadcastFirst:
4977 case SpvOpGroupNonUniformBallot:
4978 case SpvOpGroupNonUniformInverseBallot:
4979 case SpvOpGroupNonUniformBallotBitExtract:
4980 case SpvOpGroupNonUniformBallotBitCount:
4981 case SpvOpGroupNonUniformBallotFindLSB:
4982 case SpvOpGroupNonUniformBallotFindMSB:
4983 case SpvOpGroupNonUniformShuffle:
4984 case SpvOpGroupNonUniformShuffleXor:
4985 case SpvOpGroupNonUniformShuffleUp:
4986 case SpvOpGroupNonUniformShuffleDown:
4987 case SpvOpGroupNonUniformIAdd:
4988 case SpvOpGroupNonUniformFAdd:
4989 case SpvOpGroupNonUniformIMul:
4990 case SpvOpGroupNonUniformFMul:
4991 case SpvOpGroupNonUniformSMin:
4992 case SpvOpGroupNonUniformUMin:
4993 case SpvOpGroupNonUniformFMin:
4994 case SpvOpGroupNonUniformSMax:
4995 case SpvOpGroupNonUniformUMax:
4996 case SpvOpGroupNonUniformFMax:
4997 case SpvOpGroupNonUniformBitwiseAnd:
4998 case SpvOpGroupNonUniformBitwiseOr:
4999 case SpvOpGroupNonUniformBitwiseXor:
5000 case SpvOpGroupNonUniformLogicalAnd:
5001 case SpvOpGroupNonUniformLogicalOr:
5002 case SpvOpGroupNonUniformLogicalXor:
5003 case SpvOpGroupNonUniformQuadBroadcast:
5004 case SpvOpGroupNonUniformQuadSwap:
5005 case SpvOpGroupAll:
5006 case SpvOpGroupAny:
5007 case SpvOpGroupBroadcast:
5008 case SpvOpGroupIAdd:
5009 case SpvOpGroupFAdd:
5010 case SpvOpGroupFMin:
5011 case SpvOpGroupUMin:
5012 case SpvOpGroupSMin:
5013 case SpvOpGroupFMax:
5014 case SpvOpGroupUMax:
5015 case SpvOpGroupSMax:
5016 case SpvOpSubgroupBallotKHR:
5017 case SpvOpSubgroupFirstInvocationKHR:
5018 case SpvOpSubgroupReadInvocationKHR:
5019 case SpvOpSubgroupAllKHR:
5020 case SpvOpSubgroupAnyKHR:
5021 case SpvOpSubgroupAllEqualKHR:
5022 case SpvOpGroupIAddNonUniformAMD:
5023 case SpvOpGroupFAddNonUniformAMD:
5024 case SpvOpGroupFMinNonUniformAMD:
5025 case SpvOpGroupUMinNonUniformAMD:
5026 case SpvOpGroupSMinNonUniformAMD:
5027 case SpvOpGroupFMaxNonUniformAMD:
5028 case SpvOpGroupUMaxNonUniformAMD:
5029 case SpvOpGroupSMaxNonUniformAMD:
5030 vtn_handle_subgroup(b, opcode, w, count);
5031 break;
5032
5033 case SpvOpPtrDiff:
5034 case SpvOpPtrEqual:
5035 case SpvOpPtrNotEqual:
5036 vtn_handle_ptr(b, opcode, w, count);
5037 break;
5038
5039 case SpvOpBeginInvocationInterlockEXT:
5040 vtn_emit_barrier(b, nir_intrinsic_begin_invocation_interlock);
5041 break;
5042
5043 case SpvOpEndInvocationInterlockEXT:
5044 vtn_emit_barrier(b, nir_intrinsic_end_invocation_interlock);
5045 break;
5046
5047 case SpvOpDemoteToHelperInvocationEXT: {
5048 nir_intrinsic_instr *intrin =
5049 nir_intrinsic_instr_create(b->shader, nir_intrinsic_demote);
5050 nir_builder_instr_insert(&b->nb, &intrin->instr);
5051 break;
5052 }
5053
5054 case SpvOpIsHelperInvocationEXT: {
5055 nir_intrinsic_instr *intrin =
5056 nir_intrinsic_instr_create(b->shader, nir_intrinsic_is_helper_invocation);
5057 nir_ssa_dest_init(&intrin->instr, &intrin->dest, 1, 1, NULL);
5058 nir_builder_instr_insert(&b->nb, &intrin->instr);
5059
5060 struct vtn_type *res_type =
5061 vtn_value(b, w[1], vtn_value_type_type)->type;
5062 struct vtn_ssa_value *val = vtn_create_ssa_value(b, res_type->type);
5063 val->def = &intrin->dest.ssa;
5064
5065 vtn_push_ssa(b, w[2], res_type, val);
5066 break;
5067 }
5068
5069 case SpvOpReadClockKHR: {
5070 SpvScope scope = vtn_constant_uint(b, w[3]);
5071 nir_scope nir_scope;
5072
5073 switch (scope) {
5074 case SpvScopeDevice:
5075 nir_scope = NIR_SCOPE_DEVICE;
5076 break;
5077 case SpvScopeSubgroup:
5078 nir_scope = NIR_SCOPE_SUBGROUP;
5079 break;
5080 default:
5081 vtn_fail("invalid read clock scope");
5082 }
5083
5084 /* Operation supports two result types: uvec2 and uint64_t. The NIR
5085 * intrinsic gives uvec2, so pack the result for the other case.
5086 */
5087 nir_intrinsic_instr *intrin =
5088 nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_shader_clock);
5089 nir_ssa_dest_init(&intrin->instr, &intrin->dest, 2, 32, NULL);
5090 nir_intrinsic_set_memory_scope(intrin, nir_scope);
5091 nir_builder_instr_insert(&b->nb, &intrin->instr);
5092
5093 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
5094 const struct glsl_type *dest_type = type->type;
5095 nir_ssa_def *result;
5096
5097 if (glsl_type_is_vector(dest_type)) {
5098 assert(dest_type == glsl_vector_type(GLSL_TYPE_UINT, 2));
5099 result = &intrin->dest.ssa;
5100 } else {
5101 assert(glsl_type_is_scalar(dest_type));
5102 assert(glsl_get_base_type(dest_type) == GLSL_TYPE_UINT64);
5103 result = nir_pack_64_2x32(&b->nb, &intrin->dest.ssa);
5104 }
5105
5106 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
5107 val->type = type;
5108 val->ssa = vtn_create_ssa_value(b, dest_type);
5109 val->ssa->def = result;
5110 break;
5111 }
5112
5113 case SpvOpLifetimeStart:
5114 case SpvOpLifetimeStop:
5115 break;
5116
5117 default:
5118 vtn_fail_with_opcode("Unhandled opcode", opcode);
5119 }
5120
5121 return true;
5122 }
5123
5124 struct vtn_builder*
5125 vtn_create_builder(const uint32_t *words, size_t word_count,
5126 gl_shader_stage stage, const char *entry_point_name,
5127 const struct spirv_to_nir_options *options)
5128 {
5129 /* Initialize the vtn_builder object */
5130 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
5131 struct spirv_to_nir_options *dup_options =
5132 ralloc(b, struct spirv_to_nir_options);
5133 *dup_options = *options;
5134
5135 b->spirv = words;
5136 b->spirv_word_count = word_count;
5137 b->file = NULL;
5138 b->line = -1;
5139 b->col = -1;
5140 list_inithead(&b->functions);
5141 b->entry_point_stage = stage;
5142 b->entry_point_name = entry_point_name;
5143 b->options = dup_options;
5144
5145 /*
5146 * Handle the SPIR-V header (first 5 dwords).
5147 * Can't use vtx_assert() as the setjmp(3) target isn't initialized yet.
5148 */
5149 if (word_count <= 5)
5150 goto fail;
5151
5152 if (words[0] != SpvMagicNumber) {
5153 vtn_err("words[0] was 0x%x, want 0x%x", words[0], SpvMagicNumber);
5154 goto fail;
5155 }
5156 if (words[1] < 0x10000) {
5157 vtn_err("words[1] was 0x%x, want >= 0x10000", words[1]);
5158 goto fail;
5159 }
5160
5161 uint16_t generator_id = words[2] >> 16;
5162 uint16_t generator_version = words[2];
5163
5164 /* The first GLSLang version bump actually 1.5 years after #179 was fixed
5165 * but this should at least let us shut the workaround off for modern
5166 * versions of GLSLang.
5167 */
5168 b->wa_glslang_179 = (generator_id == 8 && generator_version == 1);
5169
5170 /* In GLSLang commit 8297936dd6eb3, their handling of barrier() was fixed
5171 * to provide correct memory semantics on compute shader barrier()
5172 * commands. Prior to that, we need to fix them up ourselves. This
5173 * GLSLang fix caused them to bump to generator version 3.
5174 */
5175 b->wa_glslang_cs_barrier = (generator_id == 8 && generator_version < 3);
5176
5177 /* words[2] == generator magic */
5178 unsigned value_id_bound = words[3];
5179 if (words[4] != 0) {
5180 vtn_err("words[4] was %u, want 0", words[4]);
5181 goto fail;
5182 }
5183
5184 b->value_id_bound = value_id_bound;
5185 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
5186
5187 return b;
5188 fail:
5189 ralloc_free(b);
5190 return NULL;
5191 }
5192
5193 static nir_function *
5194 vtn_emit_kernel_entry_point_wrapper(struct vtn_builder *b,
5195 nir_function *entry_point)
5196 {
5197 vtn_assert(entry_point == b->entry_point->func->impl->function);
5198 vtn_fail_if(!entry_point->name, "entry points are required to have a name");
5199 const char *func_name =
5200 ralloc_asprintf(b->shader, "__wrapped_%s", entry_point->name);
5201
5202 /* we shouldn't have any inputs yet */
5203 vtn_assert(!entry_point->shader->num_inputs);
5204 vtn_assert(b->shader->info.stage == MESA_SHADER_KERNEL);
5205
5206 nir_function *main_entry_point = nir_function_create(b->shader, func_name);
5207 main_entry_point->impl = nir_function_impl_create(main_entry_point);
5208 nir_builder_init(&b->nb, main_entry_point->impl);
5209 b->nb.cursor = nir_after_cf_list(&main_entry_point->impl->body);
5210 b->func_param_idx = 0;
5211
5212 nir_call_instr *call = nir_call_instr_create(b->nb.shader, entry_point);
5213
5214 for (unsigned i = 0; i < entry_point->num_params; ++i) {
5215 struct vtn_type *param_type = b->entry_point->func->type->params[i];
5216
5217 /* consider all pointers to function memory to be parameters passed
5218 * by value
5219 */
5220 bool is_by_val = param_type->base_type == vtn_base_type_pointer &&
5221 param_type->storage_class == SpvStorageClassFunction;
5222
5223 /* input variable */
5224 nir_variable *in_var = rzalloc(b->nb.shader, nir_variable);
5225 in_var->data.mode = nir_var_shader_in;
5226 in_var->data.read_only = true;
5227 in_var->data.location = i;
5228
5229 if (is_by_val)
5230 in_var->type = param_type->deref->type;
5231 else
5232 in_var->type = param_type->type;
5233
5234 nir_shader_add_variable(b->nb.shader, in_var);
5235 b->nb.shader->num_inputs++;
5236
5237 /* we have to copy the entire variable into function memory */
5238 if (is_by_val) {
5239 nir_variable *copy_var =
5240 nir_local_variable_create(main_entry_point->impl, in_var->type,
5241 "copy_in");
5242 nir_copy_var(&b->nb, copy_var, in_var);
5243 call->params[i] =
5244 nir_src_for_ssa(&nir_build_deref_var(&b->nb, copy_var)->dest.ssa);
5245 } else {
5246 call->params[i] = nir_src_for_ssa(nir_load_var(&b->nb, in_var));
5247 }
5248 }
5249
5250 nir_builder_instr_insert(&b->nb, &call->instr);
5251
5252 return main_entry_point;
5253 }
5254
5255 nir_shader *
5256 spirv_to_nir(const uint32_t *words, size_t word_count,
5257 struct nir_spirv_specialization *spec, unsigned num_spec,
5258 gl_shader_stage stage, const char *entry_point_name,
5259 const struct spirv_to_nir_options *options,
5260 const nir_shader_compiler_options *nir_options)
5261
5262 {
5263 const uint32_t *word_end = words + word_count;
5264
5265 struct vtn_builder *b = vtn_create_builder(words, word_count,
5266 stage, entry_point_name,
5267 options);
5268
5269 if (b == NULL)
5270 return NULL;
5271
5272 /* See also _vtn_fail() */
5273 if (setjmp(b->fail_jump)) {
5274 ralloc_free(b);
5275 return NULL;
5276 }
5277
5278 /* Skip the SPIR-V header, handled at vtn_create_builder */
5279 words+= 5;
5280
5281 b->shader = nir_shader_create(b, stage, nir_options, NULL);
5282
5283 /* Handle all the preamble instructions */
5284 words = vtn_foreach_instruction(b, words, word_end,
5285 vtn_handle_preamble_instruction);
5286
5287 if (b->entry_point == NULL) {
5288 vtn_fail("Entry point not found");
5289 ralloc_free(b);
5290 return NULL;
5291 }
5292
5293 /* Set shader info defaults */
5294 if (stage == MESA_SHADER_GEOMETRY)
5295 b->shader->info.gs.invocations = 1;
5296
5297 /* Parse rounding mode execution modes. This has to happen earlier than
5298 * other changes in the execution modes since they can affect, for example,
5299 * the result of the floating point constants.
5300 */
5301 vtn_foreach_execution_mode(b, b->entry_point,
5302 vtn_handle_rounding_mode_in_execution_mode, NULL);
5303
5304 b->specializations = spec;
5305 b->num_specializations = num_spec;
5306
5307 /* Handle all variable, type, and constant instructions */
5308 words = vtn_foreach_instruction(b, words, word_end,
5309 vtn_handle_variable_or_type_instruction);
5310
5311 /* Parse execution modes */
5312 vtn_foreach_execution_mode(b, b->entry_point,
5313 vtn_handle_execution_mode, NULL);
5314
5315 if (b->workgroup_size_builtin) {
5316 vtn_assert(b->workgroup_size_builtin->type->type ==
5317 glsl_vector_type(GLSL_TYPE_UINT, 3));
5318
5319 nir_const_value *const_size =
5320 b->workgroup_size_builtin->constant->values;
5321
5322 b->shader->info.cs.local_size[0] = const_size[0].u32;
5323 b->shader->info.cs.local_size[1] = const_size[1].u32;
5324 b->shader->info.cs.local_size[2] = const_size[2].u32;
5325 }
5326
5327 /* Set types on all vtn_values */
5328 vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
5329
5330 vtn_build_cfg(b, words, word_end);
5331
5332 assert(b->entry_point->value_type == vtn_value_type_function);
5333 b->entry_point->func->referenced = true;
5334
5335 bool progress;
5336 do {
5337 progress = false;
5338 vtn_foreach_cf_node(node, &b->functions) {
5339 struct vtn_function *func = vtn_cf_node_as_function(node);
5340 if (func->referenced && !func->emitted) {
5341 b->const_table = _mesa_pointer_hash_table_create(b);
5342
5343 vtn_function_emit(b, func, vtn_handle_body_instruction);
5344 progress = true;
5345 }
5346 }
5347 } while (progress);
5348
5349 vtn_assert(b->entry_point->value_type == vtn_value_type_function);
5350 nir_function *entry_point = b->entry_point->func->impl->function;
5351 vtn_assert(entry_point);
5352
5353 /* post process entry_points with input params */
5354 if (entry_point->num_params && b->shader->info.stage == MESA_SHADER_KERNEL)
5355 entry_point = vtn_emit_kernel_entry_point_wrapper(b, entry_point);
5356
5357 entry_point->is_entrypoint = true;
5358
5359 /* When multiple shader stages exist in the same SPIR-V module, we
5360 * generate input and output variables for every stage, in the same
5361 * NIR program. These dead variables can be invalid NIR. For example,
5362 * TCS outputs must be per-vertex arrays (or decorated 'patch'), while
5363 * VS output variables wouldn't be.
5364 *
5365 * To ensure we have valid NIR, we eliminate any dead inputs and outputs
5366 * right away. In order to do so, we must lower any constant initializers
5367 * on outputs so nir_remove_dead_variables sees that they're written to.
5368 */
5369 nir_lower_variable_initializers(b->shader, nir_var_shader_out);
5370 nir_remove_dead_variables(b->shader,
5371 nir_var_shader_in | nir_var_shader_out, NULL);
5372
5373 /* We sometimes generate bogus derefs that, while never used, give the
5374 * validator a bit of heartburn. Run dead code to get rid of them.
5375 */
5376 nir_opt_dce(b->shader);
5377
5378 /* Unparent the shader from the vtn_builder before we delete the builder */
5379 ralloc_steal(NULL, b->shader);
5380
5381 nir_shader *shader = b->shader;
5382 ralloc_free(b);
5383
5384 return shader;
5385 }