nir: Add explicit signs to image min/max intrinsics
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "nir/nir_deref.h"
33 #include "spirv_info.h"
34
35 #include "util/u_math.h"
36
37 #include <stdio.h>
38
39 void
40 vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
41 size_t spirv_offset, const char *message)
42 {
43 if (b->options->debug.func) {
44 b->options->debug.func(b->options->debug.private_data,
45 level, spirv_offset, message);
46 }
47
48 #ifndef NDEBUG
49 if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
50 fprintf(stderr, "%s\n", message);
51 #endif
52 }
53
54 void
55 vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
56 size_t spirv_offset, const char *fmt, ...)
57 {
58 va_list args;
59 char *msg;
60
61 va_start(args, fmt);
62 msg = ralloc_vasprintf(NULL, fmt, args);
63 va_end(args);
64
65 vtn_log(b, level, spirv_offset, msg);
66
67 ralloc_free(msg);
68 }
69
70 static void
71 vtn_log_err(struct vtn_builder *b,
72 enum nir_spirv_debug_level level, const char *prefix,
73 const char *file, unsigned line,
74 const char *fmt, va_list args)
75 {
76 char *msg;
77
78 msg = ralloc_strdup(NULL, prefix);
79
80 #ifndef NDEBUG
81 ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
82 #endif
83
84 ralloc_asprintf_append(&msg, " ");
85
86 ralloc_vasprintf_append(&msg, fmt, args);
87
88 ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
89 b->spirv_offset);
90
91 if (b->file) {
92 ralloc_asprintf_append(&msg,
93 "\n in SPIR-V source file %s, line %d, col %d",
94 b->file, b->line, b->col);
95 }
96
97 vtn_log(b, level, b->spirv_offset, msg);
98
99 ralloc_free(msg);
100 }
101
102 static void
103 vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
104 {
105 static int idx = 0;
106
107 char filename[1024];
108 int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
109 path, prefix, idx++);
110 if (len < 0 || len >= sizeof(filename))
111 return;
112
113 FILE *f = fopen(filename, "w");
114 if (f == NULL)
115 return;
116
117 fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
118 fclose(f);
119
120 vtn_info("SPIR-V shader dumped to %s", filename);
121 }
122
123 void
124 _vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
125 const char *fmt, ...)
126 {
127 va_list args;
128
129 va_start(args, fmt);
130 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
131 file, line, fmt, args);
132 va_end(args);
133 }
134
135 void
136 _vtn_err(struct vtn_builder *b, const char *file, unsigned line,
137 const char *fmt, ...)
138 {
139 va_list args;
140
141 va_start(args, fmt);
142 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V ERROR:\n",
143 file, line, fmt, args);
144 va_end(args);
145 }
146
147 void
148 _vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
149 const char *fmt, ...)
150 {
151 va_list args;
152
153 va_start(args, fmt);
154 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
155 file, line, fmt, args);
156 va_end(args);
157
158 const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
159 if (dump_path)
160 vtn_dump_shader(b, dump_path, "fail");
161
162 longjmp(b->fail_jump, 1);
163 }
164
165 struct spec_constant_value {
166 bool is_double;
167 union {
168 uint32_t data32;
169 uint64_t data64;
170 };
171 };
172
173 static struct vtn_ssa_value *
174 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
175 {
176 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
177 val->type = type;
178
179 if (glsl_type_is_vector_or_scalar(type)) {
180 unsigned num_components = glsl_get_vector_elements(val->type);
181 unsigned bit_size = glsl_get_bit_size(val->type);
182 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
183 } else {
184 unsigned elems = glsl_get_length(val->type);
185 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
186 if (glsl_type_is_matrix(type)) {
187 const struct glsl_type *elem_type =
188 glsl_vector_type(glsl_get_base_type(type),
189 glsl_get_vector_elements(type));
190
191 for (unsigned i = 0; i < elems; i++)
192 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
193 } else if (glsl_type_is_array(type)) {
194 const struct glsl_type *elem_type = glsl_get_array_element(type);
195 for (unsigned i = 0; i < elems; i++)
196 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
197 } else {
198 for (unsigned i = 0; i < elems; i++) {
199 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
200 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
201 }
202 }
203 }
204
205 return val;
206 }
207
208 static struct vtn_ssa_value *
209 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
210 const struct glsl_type *type)
211 {
212 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
213
214 if (entry)
215 return entry->data;
216
217 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
218 val->type = type;
219
220 switch (glsl_get_base_type(type)) {
221 case GLSL_TYPE_INT:
222 case GLSL_TYPE_UINT:
223 case GLSL_TYPE_INT16:
224 case GLSL_TYPE_UINT16:
225 case GLSL_TYPE_UINT8:
226 case GLSL_TYPE_INT8:
227 case GLSL_TYPE_INT64:
228 case GLSL_TYPE_UINT64:
229 case GLSL_TYPE_BOOL:
230 case GLSL_TYPE_FLOAT:
231 case GLSL_TYPE_FLOAT16:
232 case GLSL_TYPE_DOUBLE: {
233 int bit_size = glsl_get_bit_size(type);
234 if (glsl_type_is_vector_or_scalar(type)) {
235 unsigned num_components = glsl_get_vector_elements(val->type);
236 nir_load_const_instr *load =
237 nir_load_const_instr_create(b->shader, num_components, bit_size);
238
239 memcpy(load->value, constant->values,
240 sizeof(nir_const_value) * load->def.num_components);
241
242 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
243 val->def = &load->def;
244 } else {
245 assert(glsl_type_is_matrix(type));
246 unsigned columns = glsl_get_matrix_columns(val->type);
247 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
248 const struct glsl_type *column_type = glsl_get_column_type(val->type);
249 for (unsigned i = 0; i < columns; i++)
250 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
251 column_type);
252 }
253 break;
254 }
255
256 case GLSL_TYPE_ARRAY: {
257 unsigned elems = glsl_get_length(val->type);
258 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
259 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
260 for (unsigned i = 0; i < elems; i++)
261 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
262 elem_type);
263 break;
264 }
265
266 case GLSL_TYPE_STRUCT: {
267 unsigned elems = glsl_get_length(val->type);
268 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
269 for (unsigned i = 0; i < elems; i++) {
270 const struct glsl_type *elem_type =
271 glsl_get_struct_field(val->type, i);
272 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
273 elem_type);
274 }
275 break;
276 }
277
278 default:
279 vtn_fail("bad constant type");
280 }
281
282 return val;
283 }
284
285 struct vtn_ssa_value *
286 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
287 {
288 struct vtn_value *val = vtn_untyped_value(b, value_id);
289 switch (val->value_type) {
290 case vtn_value_type_undef:
291 return vtn_undef_ssa_value(b, val->type->type);
292
293 case vtn_value_type_constant:
294 return vtn_const_ssa_value(b, val->constant, val->type->type);
295
296 case vtn_value_type_ssa:
297 return val->ssa;
298
299 case vtn_value_type_pointer:
300 vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
301 struct vtn_ssa_value *ssa =
302 vtn_create_ssa_value(b, val->pointer->ptr_type->type);
303 ssa->def = vtn_pointer_to_ssa(b, val->pointer);
304 return ssa;
305
306 default:
307 vtn_fail("Invalid type for an SSA value");
308 }
309 }
310
311 static char *
312 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
313 unsigned word_count, unsigned *words_used)
314 {
315 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
316 if (words_used) {
317 /* Ammount of space taken by the string (including the null) */
318 unsigned len = strlen(dup) + 1;
319 *words_used = DIV_ROUND_UP(len, sizeof(*words));
320 }
321 return dup;
322 }
323
324 const uint32_t *
325 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
326 const uint32_t *end, vtn_instruction_handler handler)
327 {
328 b->file = NULL;
329 b->line = -1;
330 b->col = -1;
331
332 const uint32_t *w = start;
333 while (w < end) {
334 SpvOp opcode = w[0] & SpvOpCodeMask;
335 unsigned count = w[0] >> SpvWordCountShift;
336 vtn_assert(count >= 1 && w + count <= end);
337
338 b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
339
340 switch (opcode) {
341 case SpvOpNop:
342 break; /* Do nothing */
343
344 case SpvOpLine:
345 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
346 b->line = w[2];
347 b->col = w[3];
348 break;
349
350 case SpvOpNoLine:
351 b->file = NULL;
352 b->line = -1;
353 b->col = -1;
354 break;
355
356 default:
357 if (!handler(b, opcode, w, count))
358 return w;
359 break;
360 }
361
362 w += count;
363 }
364
365 b->spirv_offset = 0;
366 b->file = NULL;
367 b->line = -1;
368 b->col = -1;
369
370 assert(w == end);
371 return w;
372 }
373
374 static void
375 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
376 const uint32_t *w, unsigned count)
377 {
378 const char *ext = (const char *)&w[2];
379 switch (opcode) {
380 case SpvOpExtInstImport: {
381 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
382 if (strcmp(ext, "GLSL.std.450") == 0) {
383 val->ext_handler = vtn_handle_glsl450_instruction;
384 } else if ((strcmp(ext, "SPV_AMD_gcn_shader") == 0)
385 && (b->options && b->options->caps.amd_gcn_shader)) {
386 val->ext_handler = vtn_handle_amd_gcn_shader_instruction;
387 } else if ((strcmp(ext, "SPV_AMD_shader_ballot") == 0)
388 && (b->options && b->options->caps.amd_shader_ballot)) {
389 val->ext_handler = vtn_handle_amd_shader_ballot_instruction;
390 } else if ((strcmp(ext, "SPV_AMD_shader_trinary_minmax") == 0)
391 && (b->options && b->options->caps.amd_trinary_minmax)) {
392 val->ext_handler = vtn_handle_amd_shader_trinary_minmax_instruction;
393 } else if (strcmp(ext, "OpenCL.std") == 0) {
394 val->ext_handler = vtn_handle_opencl_instruction;
395 } else {
396 vtn_fail("Unsupported extension: %s", ext);
397 }
398 break;
399 }
400
401 case SpvOpExtInst: {
402 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
403 bool handled = val->ext_handler(b, w[4], w, count);
404 vtn_assert(handled);
405 break;
406 }
407
408 default:
409 vtn_fail_with_opcode("Unhandled opcode", opcode);
410 }
411 }
412
413 static void
414 _foreach_decoration_helper(struct vtn_builder *b,
415 struct vtn_value *base_value,
416 int parent_member,
417 struct vtn_value *value,
418 vtn_decoration_foreach_cb cb, void *data)
419 {
420 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
421 int member;
422 if (dec->scope == VTN_DEC_DECORATION) {
423 member = parent_member;
424 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
425 vtn_fail_if(value->value_type != vtn_value_type_type ||
426 value->type->base_type != vtn_base_type_struct,
427 "OpMemberDecorate and OpGroupMemberDecorate are only "
428 "allowed on OpTypeStruct");
429 /* This means we haven't recursed yet */
430 assert(value == base_value);
431
432 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
433
434 vtn_fail_if(member >= base_value->type->length,
435 "OpMemberDecorate specifies member %d but the "
436 "OpTypeStruct has only %u members",
437 member, base_value->type->length);
438 } else {
439 /* Not a decoration */
440 assert(dec->scope == VTN_DEC_EXECUTION_MODE);
441 continue;
442 }
443
444 if (dec->group) {
445 assert(dec->group->value_type == vtn_value_type_decoration_group);
446 _foreach_decoration_helper(b, base_value, member, dec->group,
447 cb, data);
448 } else {
449 cb(b, base_value, member, dec, data);
450 }
451 }
452 }
453
454 /** Iterates (recursively if needed) over all of the decorations on a value
455 *
456 * This function iterates over all of the decorations applied to a given
457 * value. If it encounters a decoration group, it recurses into the group
458 * and iterates over all of those decorations as well.
459 */
460 void
461 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
462 vtn_decoration_foreach_cb cb, void *data)
463 {
464 _foreach_decoration_helper(b, value, -1, value, cb, data);
465 }
466
467 void
468 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
469 vtn_execution_mode_foreach_cb cb, void *data)
470 {
471 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
472 if (dec->scope != VTN_DEC_EXECUTION_MODE)
473 continue;
474
475 assert(dec->group == NULL);
476 cb(b, value, dec, data);
477 }
478 }
479
480 void
481 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
482 const uint32_t *w, unsigned count)
483 {
484 const uint32_t *w_end = w + count;
485 const uint32_t target = w[1];
486 w += 2;
487
488 switch (opcode) {
489 case SpvOpDecorationGroup:
490 vtn_push_value(b, target, vtn_value_type_decoration_group);
491 break;
492
493 case SpvOpDecorate:
494 case SpvOpDecorateId:
495 case SpvOpMemberDecorate:
496 case SpvOpDecorateString:
497 case SpvOpMemberDecorateString:
498 case SpvOpExecutionMode:
499 case SpvOpExecutionModeId: {
500 struct vtn_value *val = vtn_untyped_value(b, target);
501
502 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
503 switch (opcode) {
504 case SpvOpDecorate:
505 case SpvOpDecorateId:
506 case SpvOpDecorateString:
507 dec->scope = VTN_DEC_DECORATION;
508 break;
509 case SpvOpMemberDecorate:
510 case SpvOpMemberDecorateString:
511 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
512 vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
513 "Member argument of OpMemberDecorate too large");
514 break;
515 case SpvOpExecutionMode:
516 case SpvOpExecutionModeId:
517 dec->scope = VTN_DEC_EXECUTION_MODE;
518 break;
519 default:
520 unreachable("Invalid decoration opcode");
521 }
522 dec->decoration = *(w++);
523 dec->operands = w;
524
525 /* Link into the list */
526 dec->next = val->decoration;
527 val->decoration = dec;
528 break;
529 }
530
531 case SpvOpGroupMemberDecorate:
532 case SpvOpGroupDecorate: {
533 struct vtn_value *group =
534 vtn_value(b, target, vtn_value_type_decoration_group);
535
536 for (; w < w_end; w++) {
537 struct vtn_value *val = vtn_untyped_value(b, *w);
538 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
539
540 dec->group = group;
541 if (opcode == SpvOpGroupDecorate) {
542 dec->scope = VTN_DEC_DECORATION;
543 } else {
544 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
545 vtn_fail_if(dec->scope < 0, /* Check for overflow */
546 "Member argument of OpGroupMemberDecorate too large");
547 }
548
549 /* Link into the list */
550 dec->next = val->decoration;
551 val->decoration = dec;
552 }
553 break;
554 }
555
556 default:
557 unreachable("Unhandled opcode");
558 }
559 }
560
561 struct member_decoration_ctx {
562 unsigned num_fields;
563 struct glsl_struct_field *fields;
564 struct vtn_type *type;
565 };
566
567 /**
568 * Returns true if the given type contains a struct decorated Block or
569 * BufferBlock
570 */
571 bool
572 vtn_type_contains_block(struct vtn_builder *b, struct vtn_type *type)
573 {
574 switch (type->base_type) {
575 case vtn_base_type_array:
576 return vtn_type_contains_block(b, type->array_element);
577 case vtn_base_type_struct:
578 if (type->block || type->buffer_block)
579 return true;
580 for (unsigned i = 0; i < type->length; i++) {
581 if (vtn_type_contains_block(b, type->members[i]))
582 return true;
583 }
584 return false;
585 default:
586 return false;
587 }
588 }
589
590 /** Returns true if two types are "compatible", i.e. you can do an OpLoad,
591 * OpStore, or OpCopyMemory between them without breaking anything.
592 * Technically, the SPIR-V rules require the exact same type ID but this lets
593 * us internally be a bit looser.
594 */
595 bool
596 vtn_types_compatible(struct vtn_builder *b,
597 struct vtn_type *t1, struct vtn_type *t2)
598 {
599 if (t1->id == t2->id)
600 return true;
601
602 if (t1->base_type != t2->base_type)
603 return false;
604
605 switch (t1->base_type) {
606 case vtn_base_type_void:
607 case vtn_base_type_scalar:
608 case vtn_base_type_vector:
609 case vtn_base_type_matrix:
610 case vtn_base_type_image:
611 case vtn_base_type_sampler:
612 case vtn_base_type_sampled_image:
613 return t1->type == t2->type;
614
615 case vtn_base_type_array:
616 return t1->length == t2->length &&
617 vtn_types_compatible(b, t1->array_element, t2->array_element);
618
619 case vtn_base_type_pointer:
620 return vtn_types_compatible(b, t1->deref, t2->deref);
621
622 case vtn_base_type_struct:
623 if (t1->length != t2->length)
624 return false;
625
626 for (unsigned i = 0; i < t1->length; i++) {
627 if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
628 return false;
629 }
630 return true;
631
632 case vtn_base_type_function:
633 /* This case shouldn't get hit since you can't copy around function
634 * types. Just require them to be identical.
635 */
636 return false;
637 }
638
639 vtn_fail("Invalid base type");
640 }
641
642 struct vtn_type *
643 vtn_type_without_array(struct vtn_type *type)
644 {
645 while (type->base_type == vtn_base_type_array)
646 type = type->array_element;
647 return type;
648 }
649
650 /* does a shallow copy of a vtn_type */
651
652 static struct vtn_type *
653 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
654 {
655 struct vtn_type *dest = ralloc(b, struct vtn_type);
656 *dest = *src;
657
658 switch (src->base_type) {
659 case vtn_base_type_void:
660 case vtn_base_type_scalar:
661 case vtn_base_type_vector:
662 case vtn_base_type_matrix:
663 case vtn_base_type_array:
664 case vtn_base_type_pointer:
665 case vtn_base_type_image:
666 case vtn_base_type_sampler:
667 case vtn_base_type_sampled_image:
668 /* Nothing more to do */
669 break;
670
671 case vtn_base_type_struct:
672 dest->members = ralloc_array(b, struct vtn_type *, src->length);
673 memcpy(dest->members, src->members,
674 src->length * sizeof(src->members[0]));
675
676 dest->offsets = ralloc_array(b, unsigned, src->length);
677 memcpy(dest->offsets, src->offsets,
678 src->length * sizeof(src->offsets[0]));
679 break;
680
681 case vtn_base_type_function:
682 dest->params = ralloc_array(b, struct vtn_type *, src->length);
683 memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
684 break;
685 }
686
687 return dest;
688 }
689
690 static struct vtn_type *
691 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
692 {
693 type->members[member] = vtn_type_copy(b, type->members[member]);
694 type = type->members[member];
695
696 /* We may have an array of matrices.... Oh, joy! */
697 while (glsl_type_is_array(type->type)) {
698 type->array_element = vtn_type_copy(b, type->array_element);
699 type = type->array_element;
700 }
701
702 vtn_assert(glsl_type_is_matrix(type->type));
703
704 return type;
705 }
706
707 static void
708 vtn_handle_access_qualifier(struct vtn_builder *b, struct vtn_type *type,
709 int member, enum gl_access_qualifier access)
710 {
711 type->members[member] = vtn_type_copy(b, type->members[member]);
712 type = type->members[member];
713
714 type->access |= access;
715 }
716
717 static void
718 array_stride_decoration_cb(struct vtn_builder *b,
719 struct vtn_value *val, int member,
720 const struct vtn_decoration *dec, void *void_ctx)
721 {
722 struct vtn_type *type = val->type;
723
724 if (dec->decoration == SpvDecorationArrayStride) {
725 if (vtn_type_contains_block(b, type)) {
726 vtn_warn("The ArrayStride decoration cannot be applied to an array "
727 "type which contains a structure type decorated Block "
728 "or BufferBlock");
729 /* Ignore the decoration */
730 } else {
731 vtn_fail_if(dec->operands[0] == 0, "ArrayStride must be non-zero");
732 type->stride = dec->operands[0];
733 }
734 }
735 }
736
737 static void
738 struct_member_decoration_cb(struct vtn_builder *b,
739 struct vtn_value *val, int member,
740 const struct vtn_decoration *dec, void *void_ctx)
741 {
742 struct member_decoration_ctx *ctx = void_ctx;
743
744 if (member < 0)
745 return;
746
747 assert(member < ctx->num_fields);
748
749 switch (dec->decoration) {
750 case SpvDecorationRelaxedPrecision:
751 case SpvDecorationUniform:
752 case SpvDecorationUniformId:
753 break; /* FIXME: Do nothing with this for now. */
754 case SpvDecorationNonWritable:
755 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_WRITEABLE);
756 break;
757 case SpvDecorationNonReadable:
758 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_READABLE);
759 break;
760 case SpvDecorationVolatile:
761 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_VOLATILE);
762 break;
763 case SpvDecorationCoherent:
764 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_COHERENT);
765 break;
766 case SpvDecorationNoPerspective:
767 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
768 break;
769 case SpvDecorationFlat:
770 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
771 break;
772 case SpvDecorationCentroid:
773 ctx->fields[member].centroid = true;
774 break;
775 case SpvDecorationSample:
776 ctx->fields[member].sample = true;
777 break;
778 case SpvDecorationStream:
779 /* Vulkan only allows one GS stream */
780 vtn_assert(dec->operands[0] == 0);
781 break;
782 case SpvDecorationLocation:
783 ctx->fields[member].location = dec->operands[0];
784 break;
785 case SpvDecorationComponent:
786 break; /* FIXME: What should we do with these? */
787 case SpvDecorationBuiltIn:
788 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
789 ctx->type->members[member]->is_builtin = true;
790 ctx->type->members[member]->builtin = dec->operands[0];
791 ctx->type->builtin_block = true;
792 break;
793 case SpvDecorationOffset:
794 ctx->type->offsets[member] = dec->operands[0];
795 ctx->fields[member].offset = dec->operands[0];
796 break;
797 case SpvDecorationMatrixStride:
798 /* Handled as a second pass */
799 break;
800 case SpvDecorationColMajor:
801 break; /* Nothing to do here. Column-major is the default. */
802 case SpvDecorationRowMajor:
803 mutable_matrix_member(b, ctx->type, member)->row_major = true;
804 break;
805
806 case SpvDecorationPatch:
807 break;
808
809 case SpvDecorationSpecId:
810 case SpvDecorationBlock:
811 case SpvDecorationBufferBlock:
812 case SpvDecorationArrayStride:
813 case SpvDecorationGLSLShared:
814 case SpvDecorationGLSLPacked:
815 case SpvDecorationInvariant:
816 case SpvDecorationRestrict:
817 case SpvDecorationAliased:
818 case SpvDecorationConstant:
819 case SpvDecorationIndex:
820 case SpvDecorationBinding:
821 case SpvDecorationDescriptorSet:
822 case SpvDecorationLinkageAttributes:
823 case SpvDecorationNoContraction:
824 case SpvDecorationInputAttachmentIndex:
825 vtn_warn("Decoration not allowed on struct members: %s",
826 spirv_decoration_to_string(dec->decoration));
827 break;
828
829 case SpvDecorationXfbBuffer:
830 case SpvDecorationXfbStride:
831 vtn_warn("Vulkan does not have transform feedback");
832 break;
833
834 case SpvDecorationCPacked:
835 if (b->shader->info.stage != MESA_SHADER_KERNEL)
836 vtn_warn("Decoration only allowed for CL-style kernels: %s",
837 spirv_decoration_to_string(dec->decoration));
838 else
839 ctx->type->packed = true;
840 break;
841
842 case SpvDecorationSaturatedConversion:
843 case SpvDecorationFuncParamAttr:
844 case SpvDecorationFPRoundingMode:
845 case SpvDecorationFPFastMathMode:
846 case SpvDecorationAlignment:
847 if (b->shader->info.stage != MESA_SHADER_KERNEL) {
848 vtn_warn("Decoration only allowed for CL-style kernels: %s",
849 spirv_decoration_to_string(dec->decoration));
850 }
851 break;
852
853 case SpvDecorationUserSemantic:
854 /* User semantic decorations can safely be ignored by the driver. */
855 break;
856
857 default:
858 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
859 }
860 }
861
862 /** Chases the array type all the way down to the tail and rewrites the
863 * glsl_types to be based off the tail's glsl_type.
864 */
865 static void
866 vtn_array_type_rewrite_glsl_type(struct vtn_type *type)
867 {
868 if (type->base_type != vtn_base_type_array)
869 return;
870
871 vtn_array_type_rewrite_glsl_type(type->array_element);
872
873 type->type = glsl_array_type(type->array_element->type,
874 type->length, type->stride);
875 }
876
877 /* Matrix strides are handled as a separate pass because we need to know
878 * whether the matrix is row-major or not first.
879 */
880 static void
881 struct_member_matrix_stride_cb(struct vtn_builder *b,
882 struct vtn_value *val, int member,
883 const struct vtn_decoration *dec,
884 void *void_ctx)
885 {
886 if (dec->decoration != SpvDecorationMatrixStride)
887 return;
888
889 vtn_fail_if(member < 0,
890 "The MatrixStride decoration is only allowed on members "
891 "of OpTypeStruct");
892 vtn_fail_if(dec->operands[0] == 0, "MatrixStride must be non-zero");
893
894 struct member_decoration_ctx *ctx = void_ctx;
895
896 struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
897 if (mat_type->row_major) {
898 mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
899 mat_type->stride = mat_type->array_element->stride;
900 mat_type->array_element->stride = dec->operands[0];
901
902 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
903 dec->operands[0], true);
904 mat_type->array_element->type = glsl_get_column_type(mat_type->type);
905 } else {
906 vtn_assert(mat_type->array_element->stride > 0);
907 mat_type->stride = dec->operands[0];
908
909 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
910 dec->operands[0], false);
911 }
912
913 /* Now that we've replaced the glsl_type with a properly strided matrix
914 * type, rewrite the member type so that it's an array of the proper kind
915 * of glsl_type.
916 */
917 vtn_array_type_rewrite_glsl_type(ctx->type->members[member]);
918 ctx->fields[member].type = ctx->type->members[member]->type;
919 }
920
921 static void
922 struct_block_decoration_cb(struct vtn_builder *b,
923 struct vtn_value *val, int member,
924 const struct vtn_decoration *dec, void *ctx)
925 {
926 if (member != -1)
927 return;
928
929 struct vtn_type *type = val->type;
930 if (dec->decoration == SpvDecorationBlock)
931 type->block = true;
932 else if (dec->decoration == SpvDecorationBufferBlock)
933 type->buffer_block = true;
934 }
935
936 static void
937 type_decoration_cb(struct vtn_builder *b,
938 struct vtn_value *val, int member,
939 const struct vtn_decoration *dec, void *ctx)
940 {
941 struct vtn_type *type = val->type;
942
943 if (member != -1) {
944 /* This should have been handled by OpTypeStruct */
945 assert(val->type->base_type == vtn_base_type_struct);
946 assert(member >= 0 && member < val->type->length);
947 return;
948 }
949
950 switch (dec->decoration) {
951 case SpvDecorationArrayStride:
952 vtn_assert(type->base_type == vtn_base_type_array ||
953 type->base_type == vtn_base_type_pointer);
954 break;
955 case SpvDecorationBlock:
956 vtn_assert(type->base_type == vtn_base_type_struct);
957 vtn_assert(type->block);
958 break;
959 case SpvDecorationBufferBlock:
960 vtn_assert(type->base_type == vtn_base_type_struct);
961 vtn_assert(type->buffer_block);
962 break;
963 case SpvDecorationGLSLShared:
964 case SpvDecorationGLSLPacked:
965 /* Ignore these, since we get explicit offsets anyways */
966 break;
967
968 case SpvDecorationRowMajor:
969 case SpvDecorationColMajor:
970 case SpvDecorationMatrixStride:
971 case SpvDecorationBuiltIn:
972 case SpvDecorationNoPerspective:
973 case SpvDecorationFlat:
974 case SpvDecorationPatch:
975 case SpvDecorationCentroid:
976 case SpvDecorationSample:
977 case SpvDecorationVolatile:
978 case SpvDecorationCoherent:
979 case SpvDecorationNonWritable:
980 case SpvDecorationNonReadable:
981 case SpvDecorationUniform:
982 case SpvDecorationUniformId:
983 case SpvDecorationLocation:
984 case SpvDecorationComponent:
985 case SpvDecorationOffset:
986 case SpvDecorationXfbBuffer:
987 case SpvDecorationXfbStride:
988 case SpvDecorationUserSemantic:
989 vtn_warn("Decoration only allowed for struct members: %s",
990 spirv_decoration_to_string(dec->decoration));
991 break;
992
993 case SpvDecorationStream:
994 /* We don't need to do anything here, as stream is filled up when
995 * aplying the decoration to a variable, just check that if it is not a
996 * struct member, it should be a struct.
997 */
998 vtn_assert(type->base_type == vtn_base_type_struct);
999 break;
1000
1001 case SpvDecorationRelaxedPrecision:
1002 case SpvDecorationSpecId:
1003 case SpvDecorationInvariant:
1004 case SpvDecorationRestrict:
1005 case SpvDecorationAliased:
1006 case SpvDecorationConstant:
1007 case SpvDecorationIndex:
1008 case SpvDecorationBinding:
1009 case SpvDecorationDescriptorSet:
1010 case SpvDecorationLinkageAttributes:
1011 case SpvDecorationNoContraction:
1012 case SpvDecorationInputAttachmentIndex:
1013 vtn_warn("Decoration not allowed on types: %s",
1014 spirv_decoration_to_string(dec->decoration));
1015 break;
1016
1017 case SpvDecorationCPacked:
1018 if (b->shader->info.stage != MESA_SHADER_KERNEL)
1019 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1020 spirv_decoration_to_string(dec->decoration));
1021 else
1022 type->packed = true;
1023 break;
1024
1025 case SpvDecorationSaturatedConversion:
1026 case SpvDecorationFuncParamAttr:
1027 case SpvDecorationFPRoundingMode:
1028 case SpvDecorationFPFastMathMode:
1029 case SpvDecorationAlignment:
1030 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1031 spirv_decoration_to_string(dec->decoration));
1032 break;
1033
1034 default:
1035 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
1036 }
1037 }
1038
1039 static unsigned
1040 translate_image_format(struct vtn_builder *b, SpvImageFormat format)
1041 {
1042 switch (format) {
1043 case SpvImageFormatUnknown: return 0; /* GL_NONE */
1044 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
1045 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
1046 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
1047 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
1048 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
1049 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
1050 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
1051 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
1052 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
1053 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
1054 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
1055 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
1056 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
1057 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
1058 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
1059 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
1060 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
1061 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
1062 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
1063 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
1064 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
1065 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
1066 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
1067 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
1068 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
1069 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
1070 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
1071 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
1072 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
1073 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
1074 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
1075 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
1076 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
1077 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
1078 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
1079 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
1080 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
1081 case SpvImageFormatR16ui: return 0x8234; /* GL_R16UI */
1082 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
1083 default:
1084 vtn_fail("Invalid image format: %s (%u)",
1085 spirv_imageformat_to_string(format), format);
1086 }
1087 }
1088
1089 static void
1090 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
1091 const uint32_t *w, unsigned count)
1092 {
1093 struct vtn_value *val = NULL;
1094
1095 /* In order to properly handle forward declarations, we have to defer
1096 * allocation for pointer types.
1097 */
1098 if (opcode != SpvOpTypePointer && opcode != SpvOpTypeForwardPointer) {
1099 val = vtn_push_value(b, w[1], vtn_value_type_type);
1100 vtn_fail_if(val->type != NULL,
1101 "Only pointers can have forward declarations");
1102 val->type = rzalloc(b, struct vtn_type);
1103 val->type->id = w[1];
1104 }
1105
1106 switch (opcode) {
1107 case SpvOpTypeVoid:
1108 val->type->base_type = vtn_base_type_void;
1109 val->type->type = glsl_void_type();
1110 break;
1111 case SpvOpTypeBool:
1112 val->type->base_type = vtn_base_type_scalar;
1113 val->type->type = glsl_bool_type();
1114 val->type->length = 1;
1115 break;
1116 case SpvOpTypeInt: {
1117 int bit_size = w[2];
1118 const bool signedness = w[3];
1119 val->type->base_type = vtn_base_type_scalar;
1120 switch (bit_size) {
1121 case 64:
1122 val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
1123 break;
1124 case 32:
1125 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
1126 break;
1127 case 16:
1128 val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
1129 break;
1130 case 8:
1131 val->type->type = (signedness ? glsl_int8_t_type() : glsl_uint8_t_type());
1132 break;
1133 default:
1134 vtn_fail("Invalid int bit size: %u", bit_size);
1135 }
1136 val->type->length = 1;
1137 break;
1138 }
1139
1140 case SpvOpTypeFloat: {
1141 int bit_size = w[2];
1142 val->type->base_type = vtn_base_type_scalar;
1143 switch (bit_size) {
1144 case 16:
1145 val->type->type = glsl_float16_t_type();
1146 break;
1147 case 32:
1148 val->type->type = glsl_float_type();
1149 break;
1150 case 64:
1151 val->type->type = glsl_double_type();
1152 break;
1153 default:
1154 vtn_fail("Invalid float bit size: %u", bit_size);
1155 }
1156 val->type->length = 1;
1157 break;
1158 }
1159
1160 case SpvOpTypeVector: {
1161 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1162 unsigned elems = w[3];
1163
1164 vtn_fail_if(base->base_type != vtn_base_type_scalar,
1165 "Base type for OpTypeVector must be a scalar");
1166 vtn_fail_if((elems < 2 || elems > 4) && (elems != 8) && (elems != 16),
1167 "Invalid component count for OpTypeVector");
1168
1169 val->type->base_type = vtn_base_type_vector;
1170 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
1171 val->type->length = elems;
1172 val->type->stride = glsl_type_is_boolean(val->type->type)
1173 ? 4 : glsl_get_bit_size(base->type) / 8;
1174 val->type->array_element = base;
1175 break;
1176 }
1177
1178 case SpvOpTypeMatrix: {
1179 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1180 unsigned columns = w[3];
1181
1182 vtn_fail_if(base->base_type != vtn_base_type_vector,
1183 "Base type for OpTypeMatrix must be a vector");
1184 vtn_fail_if(columns < 2 || columns > 4,
1185 "Invalid column count for OpTypeMatrix");
1186
1187 val->type->base_type = vtn_base_type_matrix;
1188 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
1189 glsl_get_vector_elements(base->type),
1190 columns);
1191 vtn_fail_if(glsl_type_is_error(val->type->type),
1192 "Unsupported base type for OpTypeMatrix");
1193 assert(!glsl_type_is_error(val->type->type));
1194 val->type->length = columns;
1195 val->type->array_element = base;
1196 val->type->row_major = false;
1197 val->type->stride = 0;
1198 break;
1199 }
1200
1201 case SpvOpTypeRuntimeArray:
1202 case SpvOpTypeArray: {
1203 struct vtn_type *array_element =
1204 vtn_value(b, w[2], vtn_value_type_type)->type;
1205
1206 if (opcode == SpvOpTypeRuntimeArray) {
1207 /* A length of 0 is used to denote unsized arrays */
1208 val->type->length = 0;
1209 } else {
1210 val->type->length = vtn_constant_uint(b, w[3]);
1211 }
1212
1213 val->type->base_type = vtn_base_type_array;
1214 val->type->array_element = array_element;
1215 if (b->shader->info.stage == MESA_SHADER_KERNEL)
1216 val->type->stride = glsl_get_cl_size(array_element->type);
1217
1218 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1219 val->type->type = glsl_array_type(array_element->type, val->type->length,
1220 val->type->stride);
1221 break;
1222 }
1223
1224 case SpvOpTypeStruct: {
1225 unsigned num_fields = count - 2;
1226 val->type->base_type = vtn_base_type_struct;
1227 val->type->length = num_fields;
1228 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
1229 val->type->offsets = ralloc_array(b, unsigned, num_fields);
1230 val->type->packed = false;
1231
1232 NIR_VLA(struct glsl_struct_field, fields, count);
1233 for (unsigned i = 0; i < num_fields; i++) {
1234 val->type->members[i] =
1235 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
1236 fields[i] = (struct glsl_struct_field) {
1237 .type = val->type->members[i]->type,
1238 .name = ralloc_asprintf(b, "field%d", i),
1239 .location = -1,
1240 .offset = -1,
1241 };
1242 }
1243
1244 if (b->shader->info.stage == MESA_SHADER_KERNEL) {
1245 unsigned offset = 0;
1246 for (unsigned i = 0; i < num_fields; i++) {
1247 offset = align(offset, glsl_get_cl_alignment(fields[i].type));
1248 fields[i].offset = offset;
1249 offset += glsl_get_cl_size(fields[i].type);
1250 }
1251 }
1252
1253 struct member_decoration_ctx ctx = {
1254 .num_fields = num_fields,
1255 .fields = fields,
1256 .type = val->type
1257 };
1258
1259 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
1260 vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
1261
1262 vtn_foreach_decoration(b, val, struct_block_decoration_cb, NULL);
1263
1264 const char *name = val->name;
1265
1266 if (val->type->block || val->type->buffer_block) {
1267 /* Packing will be ignored since types coming from SPIR-V are
1268 * explicitly laid out.
1269 */
1270 val->type->type = glsl_interface_type(fields, num_fields,
1271 /* packing */ 0, false,
1272 name ? name : "block");
1273 } else {
1274 val->type->type = glsl_struct_type(fields, num_fields,
1275 name ? name : "struct", false);
1276 }
1277 break;
1278 }
1279
1280 case SpvOpTypeFunction: {
1281 val->type->base_type = vtn_base_type_function;
1282 val->type->type = NULL;
1283
1284 val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
1285
1286 const unsigned num_params = count - 3;
1287 val->type->length = num_params;
1288 val->type->params = ralloc_array(b, struct vtn_type *, num_params);
1289 for (unsigned i = 0; i < count - 3; i++) {
1290 val->type->params[i] =
1291 vtn_value(b, w[i + 3], vtn_value_type_type)->type;
1292 }
1293 break;
1294 }
1295
1296 case SpvOpTypePointer:
1297 case SpvOpTypeForwardPointer: {
1298 /* We can't blindly push the value because it might be a forward
1299 * declaration.
1300 */
1301 val = vtn_untyped_value(b, w[1]);
1302
1303 SpvStorageClass storage_class = w[2];
1304
1305 if (val->value_type == vtn_value_type_invalid) {
1306 val->value_type = vtn_value_type_type;
1307 val->type = rzalloc(b, struct vtn_type);
1308 val->type->id = w[1];
1309 val->type->base_type = vtn_base_type_pointer;
1310 val->type->storage_class = storage_class;
1311
1312 /* These can actually be stored to nir_variables and used as SSA
1313 * values so they need a real glsl_type.
1314 */
1315 enum vtn_variable_mode mode = vtn_storage_class_to_mode(
1316 b, storage_class, NULL, NULL);
1317 val->type->type = nir_address_format_to_glsl_type(
1318 vtn_mode_to_address_format(b, mode));
1319 } else {
1320 vtn_fail_if(val->type->storage_class != storage_class,
1321 "The storage classes of an OpTypePointer and any "
1322 "OpTypeForwardPointers that provide forward "
1323 "declarations of it must match.");
1324 }
1325
1326 if (opcode == SpvOpTypePointer) {
1327 vtn_fail_if(val->type->deref != NULL,
1328 "While OpTypeForwardPointer can be used to provide a "
1329 "forward declaration of a pointer, OpTypePointer can "
1330 "only be used once for a given id.");
1331
1332 val->type->deref = vtn_value(b, w[3], vtn_value_type_type)->type;
1333
1334 /* Only certain storage classes use ArrayStride. The others (in
1335 * particular Workgroup) are expected to be laid out by the driver.
1336 */
1337 switch (storage_class) {
1338 case SpvStorageClassUniform:
1339 case SpvStorageClassPushConstant:
1340 case SpvStorageClassStorageBuffer:
1341 case SpvStorageClassPhysicalStorageBufferEXT:
1342 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1343 break;
1344 default:
1345 /* Nothing to do. */
1346 break;
1347 }
1348
1349 if (b->physical_ptrs) {
1350 switch (storage_class) {
1351 case SpvStorageClassFunction:
1352 case SpvStorageClassWorkgroup:
1353 case SpvStorageClassCrossWorkgroup:
1354 val->type->stride = align(glsl_get_cl_size(val->type->deref->type),
1355 glsl_get_cl_alignment(val->type->deref->type));
1356 break;
1357 default:
1358 break;
1359 }
1360 }
1361 }
1362 break;
1363 }
1364
1365 case SpvOpTypeImage: {
1366 val->type->base_type = vtn_base_type_image;
1367
1368 const struct vtn_type *sampled_type =
1369 vtn_value(b, w[2], vtn_value_type_type)->type;
1370
1371 vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
1372 glsl_get_bit_size(sampled_type->type) != 32,
1373 "Sampled type of OpTypeImage must be a 32-bit scalar");
1374
1375 enum glsl_sampler_dim dim;
1376 switch ((SpvDim)w[3]) {
1377 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
1378 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
1379 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
1380 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
1381 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
1382 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
1383 case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
1384 default:
1385 vtn_fail("Invalid SPIR-V image dimensionality: %s (%u)",
1386 spirv_dim_to_string((SpvDim)w[3]), w[3]);
1387 }
1388
1389 /* w[4]: as per Vulkan spec "Validation Rules within a Module",
1390 * The “Depth” operand of OpTypeImage is ignored.
1391 */
1392 bool is_array = w[5];
1393 bool multisampled = w[6];
1394 unsigned sampled = w[7];
1395 SpvImageFormat format = w[8];
1396
1397 if (count > 9)
1398 val->type->access_qualifier = w[9];
1399 else
1400 val->type->access_qualifier = SpvAccessQualifierReadWrite;
1401
1402 if (multisampled) {
1403 if (dim == GLSL_SAMPLER_DIM_2D)
1404 dim = GLSL_SAMPLER_DIM_MS;
1405 else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
1406 dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
1407 else
1408 vtn_fail("Unsupported multisampled image type");
1409 }
1410
1411 val->type->image_format = translate_image_format(b, format);
1412
1413 enum glsl_base_type sampled_base_type =
1414 glsl_get_base_type(sampled_type->type);
1415 if (sampled == 1) {
1416 val->type->sampled = true;
1417 val->type->type = glsl_sampler_type(dim, false, is_array,
1418 sampled_base_type);
1419 } else if (sampled == 2) {
1420 val->type->sampled = false;
1421 val->type->type = glsl_image_type(dim, is_array, sampled_base_type);
1422 } else {
1423 vtn_fail("We need to know if the image will be sampled");
1424 }
1425 break;
1426 }
1427
1428 case SpvOpTypeSampledImage:
1429 val->type->base_type = vtn_base_type_sampled_image;
1430 val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type;
1431 val->type->type = val->type->image->type;
1432 break;
1433
1434 case SpvOpTypeSampler:
1435 /* The actual sampler type here doesn't really matter. It gets
1436 * thrown away the moment you combine it with an image. What really
1437 * matters is that it's a sampler type as opposed to an integer type
1438 * so the backend knows what to do.
1439 */
1440 val->type->base_type = vtn_base_type_sampler;
1441 val->type->type = glsl_bare_sampler_type();
1442 break;
1443
1444 case SpvOpTypeOpaque:
1445 case SpvOpTypeEvent:
1446 case SpvOpTypeDeviceEvent:
1447 case SpvOpTypeReserveId:
1448 case SpvOpTypeQueue:
1449 case SpvOpTypePipe:
1450 default:
1451 vtn_fail_with_opcode("Unhandled opcode", opcode);
1452 }
1453
1454 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
1455
1456 if (val->type->base_type == vtn_base_type_struct &&
1457 (val->type->block || val->type->buffer_block)) {
1458 for (unsigned i = 0; i < val->type->length; i++) {
1459 vtn_fail_if(vtn_type_contains_block(b, val->type->members[i]),
1460 "Block and BufferBlock decorations cannot decorate a "
1461 "structure type that is nested at any level inside "
1462 "another structure type decorated with Block or "
1463 "BufferBlock.");
1464 }
1465 }
1466 }
1467
1468 static nir_constant *
1469 vtn_null_constant(struct vtn_builder *b, struct vtn_type *type)
1470 {
1471 nir_constant *c = rzalloc(b, nir_constant);
1472
1473 switch (type->base_type) {
1474 case vtn_base_type_scalar:
1475 case vtn_base_type_vector:
1476 /* Nothing to do here. It's already initialized to zero */
1477 break;
1478
1479 case vtn_base_type_pointer: {
1480 enum vtn_variable_mode mode = vtn_storage_class_to_mode(
1481 b, type->storage_class, type->deref, NULL);
1482 nir_address_format addr_format = vtn_mode_to_address_format(b, mode);
1483
1484 const nir_const_value *null_value = nir_address_format_null_value(addr_format);
1485 memcpy(c->values, null_value,
1486 sizeof(nir_const_value) * nir_address_format_num_components(addr_format));
1487 break;
1488 }
1489
1490 case vtn_base_type_void:
1491 case vtn_base_type_image:
1492 case vtn_base_type_sampler:
1493 case vtn_base_type_sampled_image:
1494 case vtn_base_type_function:
1495 /* For those we have to return something but it doesn't matter what. */
1496 break;
1497
1498 case vtn_base_type_matrix:
1499 case vtn_base_type_array:
1500 vtn_assert(type->length > 0);
1501 c->num_elements = type->length;
1502 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1503
1504 c->elements[0] = vtn_null_constant(b, type->array_element);
1505 for (unsigned i = 1; i < c->num_elements; i++)
1506 c->elements[i] = c->elements[0];
1507 break;
1508
1509 case vtn_base_type_struct:
1510 c->num_elements = type->length;
1511 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1512 for (unsigned i = 0; i < c->num_elements; i++)
1513 c->elements[i] = vtn_null_constant(b, type->members[i]);
1514 break;
1515
1516 default:
1517 vtn_fail("Invalid type for null constant");
1518 }
1519
1520 return c;
1521 }
1522
1523 static void
1524 spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v,
1525 int member, const struct vtn_decoration *dec,
1526 void *data)
1527 {
1528 vtn_assert(member == -1);
1529 if (dec->decoration != SpvDecorationSpecId)
1530 return;
1531
1532 struct spec_constant_value *const_value = data;
1533
1534 for (unsigned i = 0; i < b->num_specializations; i++) {
1535 if (b->specializations[i].id == dec->operands[0]) {
1536 if (const_value->is_double)
1537 const_value->data64 = b->specializations[i].data64;
1538 else
1539 const_value->data32 = b->specializations[i].data32;
1540 return;
1541 }
1542 }
1543 }
1544
1545 static uint32_t
1546 get_specialization(struct vtn_builder *b, struct vtn_value *val,
1547 uint32_t const_value)
1548 {
1549 struct spec_constant_value data;
1550 data.is_double = false;
1551 data.data32 = const_value;
1552 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1553 return data.data32;
1554 }
1555
1556 static uint64_t
1557 get_specialization64(struct vtn_builder *b, struct vtn_value *val,
1558 uint64_t const_value)
1559 {
1560 struct spec_constant_value data;
1561 data.is_double = true;
1562 data.data64 = const_value;
1563 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1564 return data.data64;
1565 }
1566
1567 static void
1568 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
1569 struct vtn_value *val,
1570 int member,
1571 const struct vtn_decoration *dec,
1572 void *data)
1573 {
1574 vtn_assert(member == -1);
1575 if (dec->decoration != SpvDecorationBuiltIn ||
1576 dec->operands[0] != SpvBuiltInWorkgroupSize)
1577 return;
1578
1579 vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
1580 b->workgroup_size_builtin = val;
1581 }
1582
1583 static void
1584 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
1585 const uint32_t *w, unsigned count)
1586 {
1587 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
1588 val->constant = rzalloc(b, nir_constant);
1589 switch (opcode) {
1590 case SpvOpConstantTrue:
1591 case SpvOpConstantFalse:
1592 case SpvOpSpecConstantTrue:
1593 case SpvOpSpecConstantFalse: {
1594 vtn_fail_if(val->type->type != glsl_bool_type(),
1595 "Result type of %s must be OpTypeBool",
1596 spirv_op_to_string(opcode));
1597
1598 uint32_t int_val = (opcode == SpvOpConstantTrue ||
1599 opcode == SpvOpSpecConstantTrue);
1600
1601 if (opcode == SpvOpSpecConstantTrue ||
1602 opcode == SpvOpSpecConstantFalse)
1603 int_val = get_specialization(b, val, int_val);
1604
1605 val->constant->values[0].b = int_val != 0;
1606 break;
1607 }
1608
1609 case SpvOpConstant: {
1610 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1611 "Result type of %s must be a scalar",
1612 spirv_op_to_string(opcode));
1613 int bit_size = glsl_get_bit_size(val->type->type);
1614 switch (bit_size) {
1615 case 64:
1616 val->constant->values[0].u64 = vtn_u64_literal(&w[3]);
1617 break;
1618 case 32:
1619 val->constant->values[0].u32 = w[3];
1620 break;
1621 case 16:
1622 val->constant->values[0].u16 = w[3];
1623 break;
1624 case 8:
1625 val->constant->values[0].u8 = w[3];
1626 break;
1627 default:
1628 vtn_fail("Unsupported SpvOpConstant bit size: %u", bit_size);
1629 }
1630 break;
1631 }
1632
1633 case SpvOpSpecConstant: {
1634 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1635 "Result type of %s must be a scalar",
1636 spirv_op_to_string(opcode));
1637 int bit_size = glsl_get_bit_size(val->type->type);
1638 switch (bit_size) {
1639 case 64:
1640 val->constant->values[0].u64 =
1641 get_specialization64(b, val, vtn_u64_literal(&w[3]));
1642 break;
1643 case 32:
1644 val->constant->values[0].u32 = get_specialization(b, val, w[3]);
1645 break;
1646 case 16:
1647 val->constant->values[0].u16 = get_specialization(b, val, w[3]);
1648 break;
1649 case 8:
1650 val->constant->values[0].u8 = get_specialization(b, val, w[3]);
1651 break;
1652 default:
1653 vtn_fail("Unsupported SpvOpSpecConstant bit size");
1654 }
1655 break;
1656 }
1657
1658 case SpvOpSpecConstantComposite:
1659 case SpvOpConstantComposite: {
1660 unsigned elem_count = count - 3;
1661 vtn_fail_if(elem_count != val->type->length,
1662 "%s has %u constituents, expected %u",
1663 spirv_op_to_string(opcode), elem_count, val->type->length);
1664
1665 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1666 for (unsigned i = 0; i < elem_count; i++) {
1667 struct vtn_value *val = vtn_untyped_value(b, w[i + 3]);
1668
1669 if (val->value_type == vtn_value_type_constant) {
1670 elems[i] = val->constant;
1671 } else {
1672 vtn_fail_if(val->value_type != vtn_value_type_undef,
1673 "only constants or undefs allowed for "
1674 "SpvOpConstantComposite");
1675 /* to make it easier, just insert a NULL constant for now */
1676 elems[i] = vtn_null_constant(b, val->type);
1677 }
1678 }
1679
1680 switch (val->type->base_type) {
1681 case vtn_base_type_vector: {
1682 assert(glsl_type_is_vector(val->type->type));
1683 for (unsigned i = 0; i < elem_count; i++)
1684 val->constant->values[i] = elems[i]->values[0];
1685 break;
1686 }
1687
1688 case vtn_base_type_matrix:
1689 case vtn_base_type_struct:
1690 case vtn_base_type_array:
1691 ralloc_steal(val->constant, elems);
1692 val->constant->num_elements = elem_count;
1693 val->constant->elements = elems;
1694 break;
1695
1696 default:
1697 vtn_fail("Result type of %s must be a composite type",
1698 spirv_op_to_string(opcode));
1699 }
1700 break;
1701 }
1702
1703 case SpvOpSpecConstantOp: {
1704 SpvOp opcode = get_specialization(b, val, w[3]);
1705 switch (opcode) {
1706 case SpvOpVectorShuffle: {
1707 struct vtn_value *v0 = &b->values[w[4]];
1708 struct vtn_value *v1 = &b->values[w[5]];
1709
1710 vtn_assert(v0->value_type == vtn_value_type_constant ||
1711 v0->value_type == vtn_value_type_undef);
1712 vtn_assert(v1->value_type == vtn_value_type_constant ||
1713 v1->value_type == vtn_value_type_undef);
1714
1715 unsigned len0 = glsl_get_vector_elements(v0->type->type);
1716 unsigned len1 = glsl_get_vector_elements(v1->type->type);
1717
1718 vtn_assert(len0 + len1 < 16);
1719
1720 unsigned bit_size = glsl_get_bit_size(val->type->type);
1721 unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
1722 unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
1723
1724 vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
1725 (void)bit_size0; (void)bit_size1;
1726
1727 nir_const_value undef = { .u64 = 0xdeadbeefdeadbeef };
1728 nir_const_value combined[NIR_MAX_VEC_COMPONENTS * 2];
1729
1730 if (v0->value_type == vtn_value_type_constant) {
1731 for (unsigned i = 0; i < len0; i++)
1732 combined[i] = v0->constant->values[i];
1733 }
1734 if (v1->value_type == vtn_value_type_constant) {
1735 for (unsigned i = 0; i < len1; i++)
1736 combined[len0 + i] = v1->constant->values[i];
1737 }
1738
1739 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1740 uint32_t comp = w[i + 6];
1741 if (comp == (uint32_t)-1) {
1742 /* If component is not used, set the value to a known constant
1743 * to detect if it is wrongly used.
1744 */
1745 val->constant->values[j] = undef;
1746 } else {
1747 vtn_fail_if(comp >= len0 + len1,
1748 "All Component literals must either be FFFFFFFF "
1749 "or in [0, N - 1] (inclusive).");
1750 val->constant->values[j] = combined[comp];
1751 }
1752 }
1753 break;
1754 }
1755
1756 case SpvOpCompositeExtract:
1757 case SpvOpCompositeInsert: {
1758 struct vtn_value *comp;
1759 unsigned deref_start;
1760 struct nir_constant **c;
1761 if (opcode == SpvOpCompositeExtract) {
1762 comp = vtn_value(b, w[4], vtn_value_type_constant);
1763 deref_start = 5;
1764 c = &comp->constant;
1765 } else {
1766 comp = vtn_value(b, w[5], vtn_value_type_constant);
1767 deref_start = 6;
1768 val->constant = nir_constant_clone(comp->constant,
1769 (nir_variable *)b);
1770 c = &val->constant;
1771 }
1772
1773 int elem = -1;
1774 const struct vtn_type *type = comp->type;
1775 for (unsigned i = deref_start; i < count; i++) {
1776 vtn_fail_if(w[i] > type->length,
1777 "%uth index of %s is %u but the type has only "
1778 "%u elements", i - deref_start,
1779 spirv_op_to_string(opcode), w[i], type->length);
1780
1781 switch (type->base_type) {
1782 case vtn_base_type_vector:
1783 elem = w[i];
1784 type = type->array_element;
1785 break;
1786
1787 case vtn_base_type_matrix:
1788 case vtn_base_type_array:
1789 c = &(*c)->elements[w[i]];
1790 type = type->array_element;
1791 break;
1792
1793 case vtn_base_type_struct:
1794 c = &(*c)->elements[w[i]];
1795 type = type->members[w[i]];
1796 break;
1797
1798 default:
1799 vtn_fail("%s must only index into composite types",
1800 spirv_op_to_string(opcode));
1801 }
1802 }
1803
1804 if (opcode == SpvOpCompositeExtract) {
1805 if (elem == -1) {
1806 val->constant = *c;
1807 } else {
1808 unsigned num_components = type->length;
1809 for (unsigned i = 0; i < num_components; i++)
1810 val->constant->values[i] = (*c)->values[elem + i];
1811 }
1812 } else {
1813 struct vtn_value *insert =
1814 vtn_value(b, w[4], vtn_value_type_constant);
1815 vtn_assert(insert->type == type);
1816 if (elem == -1) {
1817 *c = insert->constant;
1818 } else {
1819 unsigned num_components = type->length;
1820 for (unsigned i = 0; i < num_components; i++)
1821 (*c)->values[elem + i] = insert->constant->values[i];
1822 }
1823 }
1824 break;
1825 }
1826
1827 default: {
1828 bool swap;
1829 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
1830 nir_alu_type src_alu_type = dst_alu_type;
1831 unsigned num_components = glsl_get_vector_elements(val->type->type);
1832 unsigned bit_size;
1833
1834 vtn_assert(count <= 7);
1835
1836 switch (opcode) {
1837 case SpvOpSConvert:
1838 case SpvOpFConvert:
1839 case SpvOpUConvert:
1840 /* We have a source in a conversion */
1841 src_alu_type =
1842 nir_get_nir_type_for_glsl_type(
1843 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1844 /* We use the bitsize of the conversion source to evaluate the opcode later */
1845 bit_size = glsl_get_bit_size(
1846 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1847 break;
1848 default:
1849 bit_size = glsl_get_bit_size(val->type->type);
1850 };
1851
1852 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
1853 nir_alu_type_get_type_size(src_alu_type),
1854 nir_alu_type_get_type_size(dst_alu_type));
1855 nir_const_value src[3][NIR_MAX_VEC_COMPONENTS];
1856
1857 for (unsigned i = 0; i < count - 4; i++) {
1858 struct vtn_value *src_val =
1859 vtn_value(b, w[4 + i], vtn_value_type_constant);
1860
1861 /* If this is an unsized source, pull the bit size from the
1862 * source; otherwise, we'll use the bit size from the destination.
1863 */
1864 if (!nir_alu_type_get_type_size(nir_op_infos[op].input_types[i]))
1865 bit_size = glsl_get_bit_size(src_val->type->type);
1866
1867 unsigned src_comps = nir_op_infos[op].input_sizes[i] ?
1868 nir_op_infos[op].input_sizes[i] :
1869 num_components;
1870
1871 unsigned j = swap ? 1 - i : i;
1872 for (unsigned c = 0; c < src_comps; c++)
1873 src[j][c] = src_val->constant->values[c];
1874 }
1875
1876 /* fix up fixed size sources */
1877 switch (op) {
1878 case nir_op_ishl:
1879 case nir_op_ishr:
1880 case nir_op_ushr: {
1881 if (bit_size == 32)
1882 break;
1883 for (unsigned i = 0; i < num_components; ++i) {
1884 switch (bit_size) {
1885 case 64: src[1][i].u32 = src[1][i].u64; break;
1886 case 16: src[1][i].u32 = src[1][i].u16; break;
1887 case 8: src[1][i].u32 = src[1][i].u8; break;
1888 }
1889 }
1890 break;
1891 }
1892 default:
1893 break;
1894 }
1895
1896 nir_const_value *srcs[3] = {
1897 src[0], src[1], src[2],
1898 };
1899 nir_eval_const_opcode(op, val->constant->values, num_components, bit_size, srcs);
1900 break;
1901 } /* default */
1902 }
1903 break;
1904 }
1905
1906 case SpvOpConstantNull:
1907 val->constant = vtn_null_constant(b, val->type);
1908 break;
1909
1910 case SpvOpConstantSampler:
1911 vtn_fail("OpConstantSampler requires Kernel Capability");
1912 break;
1913
1914 default:
1915 vtn_fail_with_opcode("Unhandled opcode", opcode);
1916 }
1917
1918 /* Now that we have the value, update the workgroup size if needed */
1919 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1920 }
1921
1922 struct vtn_ssa_value *
1923 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
1924 {
1925 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
1926 val->type = type;
1927
1928 if (!glsl_type_is_vector_or_scalar(type)) {
1929 unsigned elems = glsl_get_length(type);
1930 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
1931 for (unsigned i = 0; i < elems; i++) {
1932 const struct glsl_type *child_type;
1933
1934 switch (glsl_get_base_type(type)) {
1935 case GLSL_TYPE_INT:
1936 case GLSL_TYPE_UINT:
1937 case GLSL_TYPE_INT16:
1938 case GLSL_TYPE_UINT16:
1939 case GLSL_TYPE_UINT8:
1940 case GLSL_TYPE_INT8:
1941 case GLSL_TYPE_INT64:
1942 case GLSL_TYPE_UINT64:
1943 case GLSL_TYPE_BOOL:
1944 case GLSL_TYPE_FLOAT:
1945 case GLSL_TYPE_FLOAT16:
1946 case GLSL_TYPE_DOUBLE:
1947 child_type = glsl_get_column_type(type);
1948 break;
1949 case GLSL_TYPE_ARRAY:
1950 child_type = glsl_get_array_element(type);
1951 break;
1952 case GLSL_TYPE_STRUCT:
1953 case GLSL_TYPE_INTERFACE:
1954 child_type = glsl_get_struct_field(type, i);
1955 break;
1956 default:
1957 vtn_fail("unkown base type");
1958 }
1959
1960 val->elems[i] = vtn_create_ssa_value(b, child_type);
1961 }
1962 }
1963
1964 return val;
1965 }
1966
1967 static nir_tex_src
1968 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
1969 {
1970 nir_tex_src src;
1971 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
1972 src.src_type = type;
1973 return src;
1974 }
1975
1976 static void
1977 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
1978 const uint32_t *w, unsigned count)
1979 {
1980 if (opcode == SpvOpSampledImage) {
1981 struct vtn_value *val =
1982 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
1983 val->sampled_image = ralloc(b, struct vtn_sampled_image);
1984 val->sampled_image->type =
1985 vtn_value(b, w[1], vtn_value_type_type)->type;
1986 val->sampled_image->image =
1987 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
1988 val->sampled_image->sampler =
1989 vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
1990 return;
1991 } else if (opcode == SpvOpImage) {
1992 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
1993 if (src_val->value_type == vtn_value_type_sampled_image) {
1994 vtn_push_value_pointer(b, w[2], src_val->sampled_image->image);
1995 } else {
1996 vtn_assert(src_val->value_type == vtn_value_type_pointer);
1997 vtn_push_value_pointer(b, w[2], src_val->pointer);
1998 }
1999 return;
2000 }
2001
2002 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
2003
2004 struct vtn_sampled_image sampled;
2005 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
2006 if (sampled_val->value_type == vtn_value_type_sampled_image) {
2007 sampled = *sampled_val->sampled_image;
2008 } else {
2009 vtn_assert(sampled_val->value_type == vtn_value_type_pointer);
2010 sampled.type = sampled_val->pointer->type;
2011 sampled.image = NULL;
2012 sampled.sampler = sampled_val->pointer;
2013 }
2014
2015 const struct glsl_type *image_type = sampled.type->type;
2016 const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
2017 const bool is_array = glsl_sampler_type_is_array(image_type);
2018
2019 /* Figure out the base texture operation */
2020 nir_texop texop;
2021 switch (opcode) {
2022 case SpvOpImageSampleImplicitLod:
2023 case SpvOpImageSampleDrefImplicitLod:
2024 case SpvOpImageSampleProjImplicitLod:
2025 case SpvOpImageSampleProjDrefImplicitLod:
2026 texop = nir_texop_tex;
2027 break;
2028
2029 case SpvOpImageSampleExplicitLod:
2030 case SpvOpImageSampleDrefExplicitLod:
2031 case SpvOpImageSampleProjExplicitLod:
2032 case SpvOpImageSampleProjDrefExplicitLod:
2033 texop = nir_texop_txl;
2034 break;
2035
2036 case SpvOpImageFetch:
2037 if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
2038 texop = nir_texop_txf_ms;
2039 } else {
2040 texop = nir_texop_txf;
2041 }
2042 break;
2043
2044 case SpvOpImageGather:
2045 case SpvOpImageDrefGather:
2046 texop = nir_texop_tg4;
2047 break;
2048
2049 case SpvOpImageQuerySizeLod:
2050 case SpvOpImageQuerySize:
2051 texop = nir_texop_txs;
2052 break;
2053
2054 case SpvOpImageQueryLod:
2055 texop = nir_texop_lod;
2056 break;
2057
2058 case SpvOpImageQueryLevels:
2059 texop = nir_texop_query_levels;
2060 break;
2061
2062 case SpvOpImageQuerySamples:
2063 texop = nir_texop_texture_samples;
2064 break;
2065
2066 default:
2067 vtn_fail_with_opcode("Unhandled opcode", opcode);
2068 }
2069
2070 nir_tex_src srcs[10]; /* 10 should be enough */
2071 nir_tex_src *p = srcs;
2072
2073 nir_deref_instr *sampler = vtn_pointer_to_deref(b, sampled.sampler);
2074 nir_deref_instr *texture =
2075 sampled.image ? vtn_pointer_to_deref(b, sampled.image) : sampler;
2076
2077 p->src = nir_src_for_ssa(&texture->dest.ssa);
2078 p->src_type = nir_tex_src_texture_deref;
2079 p++;
2080
2081 switch (texop) {
2082 case nir_texop_tex:
2083 case nir_texop_txb:
2084 case nir_texop_txl:
2085 case nir_texop_txd:
2086 case nir_texop_tg4:
2087 case nir_texop_lod:
2088 /* These operations require a sampler */
2089 p->src = nir_src_for_ssa(&sampler->dest.ssa);
2090 p->src_type = nir_tex_src_sampler_deref;
2091 p++;
2092 break;
2093 case nir_texop_txf:
2094 case nir_texop_txf_ms:
2095 case nir_texop_txs:
2096 case nir_texop_query_levels:
2097 case nir_texop_texture_samples:
2098 case nir_texop_samples_identical:
2099 /* These don't */
2100 break;
2101 case nir_texop_txf_ms_fb:
2102 vtn_fail("unexpected nir_texop_txf_ms_fb");
2103 break;
2104 case nir_texop_txf_ms_mcs:
2105 vtn_fail("unexpected nir_texop_txf_ms_mcs");
2106 }
2107
2108 unsigned idx = 4;
2109
2110 struct nir_ssa_def *coord;
2111 unsigned coord_components;
2112 switch (opcode) {
2113 case SpvOpImageSampleImplicitLod:
2114 case SpvOpImageSampleExplicitLod:
2115 case SpvOpImageSampleDrefImplicitLod:
2116 case SpvOpImageSampleDrefExplicitLod:
2117 case SpvOpImageSampleProjImplicitLod:
2118 case SpvOpImageSampleProjExplicitLod:
2119 case SpvOpImageSampleProjDrefImplicitLod:
2120 case SpvOpImageSampleProjDrefExplicitLod:
2121 case SpvOpImageFetch:
2122 case SpvOpImageGather:
2123 case SpvOpImageDrefGather:
2124 case SpvOpImageQueryLod: {
2125 /* All these types have the coordinate as their first real argument */
2126 switch (sampler_dim) {
2127 case GLSL_SAMPLER_DIM_1D:
2128 case GLSL_SAMPLER_DIM_BUF:
2129 coord_components = 1;
2130 break;
2131 case GLSL_SAMPLER_DIM_2D:
2132 case GLSL_SAMPLER_DIM_RECT:
2133 case GLSL_SAMPLER_DIM_MS:
2134 coord_components = 2;
2135 break;
2136 case GLSL_SAMPLER_DIM_3D:
2137 case GLSL_SAMPLER_DIM_CUBE:
2138 coord_components = 3;
2139 break;
2140 default:
2141 vtn_fail("Invalid sampler type");
2142 }
2143
2144 if (is_array && texop != nir_texop_lod)
2145 coord_components++;
2146
2147 coord = vtn_ssa_value(b, w[idx++])->def;
2148 p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
2149 (1 << coord_components) - 1));
2150 p->src_type = nir_tex_src_coord;
2151 p++;
2152 break;
2153 }
2154
2155 default:
2156 coord = NULL;
2157 coord_components = 0;
2158 break;
2159 }
2160
2161 switch (opcode) {
2162 case SpvOpImageSampleProjImplicitLod:
2163 case SpvOpImageSampleProjExplicitLod:
2164 case SpvOpImageSampleProjDrefImplicitLod:
2165 case SpvOpImageSampleProjDrefExplicitLod:
2166 /* These have the projector as the last coordinate component */
2167 p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
2168 p->src_type = nir_tex_src_projector;
2169 p++;
2170 break;
2171
2172 default:
2173 break;
2174 }
2175
2176 bool is_shadow = false;
2177 unsigned gather_component = 0;
2178 switch (opcode) {
2179 case SpvOpImageSampleDrefImplicitLod:
2180 case SpvOpImageSampleDrefExplicitLod:
2181 case SpvOpImageSampleProjDrefImplicitLod:
2182 case SpvOpImageSampleProjDrefExplicitLod:
2183 case SpvOpImageDrefGather:
2184 /* These all have an explicit depth value as their next source */
2185 is_shadow = true;
2186 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
2187 break;
2188
2189 case SpvOpImageGather:
2190 /* This has a component as its next source */
2191 gather_component = vtn_constant_uint(b, w[idx++]);
2192 break;
2193
2194 default:
2195 break;
2196 }
2197
2198 /* For OpImageQuerySizeLod, we always have an LOD */
2199 if (opcode == SpvOpImageQuerySizeLod)
2200 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2201
2202 /* Now we need to handle some number of optional arguments */
2203 struct vtn_value *gather_offsets = NULL;
2204 if (idx < count) {
2205 uint32_t operands = w[idx++];
2206
2207 if (operands & SpvImageOperandsBiasMask) {
2208 vtn_assert(texop == nir_texop_tex);
2209 texop = nir_texop_txb;
2210 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
2211 }
2212
2213 if (operands & SpvImageOperandsLodMask) {
2214 vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
2215 texop == nir_texop_txs);
2216 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2217 }
2218
2219 if (operands & SpvImageOperandsGradMask) {
2220 vtn_assert(texop == nir_texop_txl);
2221 texop = nir_texop_txd;
2222 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
2223 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
2224 }
2225
2226 if (operands & SpvImageOperandsOffsetMask ||
2227 operands & SpvImageOperandsConstOffsetMask)
2228 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
2229
2230 if (operands & SpvImageOperandsConstOffsetsMask) {
2231 vtn_assert(texop == nir_texop_tg4);
2232 gather_offsets = vtn_value(b, w[idx++], vtn_value_type_constant);
2233 }
2234
2235 if (operands & SpvImageOperandsSampleMask) {
2236 vtn_assert(texop == nir_texop_txf_ms);
2237 texop = nir_texop_txf_ms;
2238 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
2239 }
2240
2241 if (operands & SpvImageOperandsMinLodMask) {
2242 vtn_assert(texop == nir_texop_tex ||
2243 texop == nir_texop_txb ||
2244 texop == nir_texop_txd);
2245 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_min_lod);
2246 }
2247 }
2248 /* We should have now consumed exactly all of the arguments */
2249 vtn_assert(idx == count);
2250
2251 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
2252 instr->op = texop;
2253
2254 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
2255
2256 instr->coord_components = coord_components;
2257 instr->sampler_dim = sampler_dim;
2258 instr->is_array = is_array;
2259 instr->is_shadow = is_shadow;
2260 instr->is_new_style_shadow =
2261 is_shadow && glsl_get_components(ret_type->type) == 1;
2262 instr->component = gather_component;
2263
2264 if (sampled.image && (sampled.image->access & ACCESS_NON_UNIFORM))
2265 instr->texture_non_uniform = true;
2266
2267 if (sampled.sampler && (sampled.sampler->access & ACCESS_NON_UNIFORM))
2268 instr->sampler_non_uniform = true;
2269
2270 switch (glsl_get_sampler_result_type(image_type)) {
2271 case GLSL_TYPE_FLOAT: instr->dest_type = nir_type_float; break;
2272 case GLSL_TYPE_INT: instr->dest_type = nir_type_int; break;
2273 case GLSL_TYPE_UINT: instr->dest_type = nir_type_uint; break;
2274 case GLSL_TYPE_BOOL: instr->dest_type = nir_type_bool; break;
2275 default:
2276 vtn_fail("Invalid base type for sampler result");
2277 }
2278
2279 nir_ssa_dest_init(&instr->instr, &instr->dest,
2280 nir_tex_instr_dest_size(instr), 32, NULL);
2281
2282 vtn_assert(glsl_get_vector_elements(ret_type->type) ==
2283 nir_tex_instr_dest_size(instr));
2284
2285 if (gather_offsets) {
2286 vtn_fail_if(gather_offsets->type->base_type != vtn_base_type_array ||
2287 gather_offsets->type->length != 4,
2288 "ConstOffsets must be an array of size four of vectors "
2289 "of two integer components");
2290
2291 struct vtn_type *vec_type = gather_offsets->type->array_element;
2292 vtn_fail_if(vec_type->base_type != vtn_base_type_vector ||
2293 vec_type->length != 2 ||
2294 !glsl_type_is_integer(vec_type->type),
2295 "ConstOffsets must be an array of size four of vectors "
2296 "of two integer components");
2297
2298 unsigned bit_size = glsl_get_bit_size(vec_type->type);
2299 for (uint32_t i = 0; i < 4; i++) {
2300 const nir_const_value *cvec =
2301 gather_offsets->constant->elements[i]->values;
2302 for (uint32_t j = 0; j < 2; j++) {
2303 switch (bit_size) {
2304 case 8: instr->tg4_offsets[i][j] = cvec[j].i8; break;
2305 case 16: instr->tg4_offsets[i][j] = cvec[j].i16; break;
2306 case 32: instr->tg4_offsets[i][j] = cvec[j].i32; break;
2307 case 64: instr->tg4_offsets[i][j] = cvec[j].i64; break;
2308 default:
2309 vtn_fail("Unsupported bit size: %u", bit_size);
2310 }
2311 }
2312 }
2313 }
2314
2315 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, ret_type->type);
2316 ssa->def = &instr->dest.ssa;
2317 vtn_push_ssa(b, w[2], ret_type, ssa);
2318
2319 nir_builder_instr_insert(&b->nb, &instr->instr);
2320 }
2321
2322 static void
2323 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
2324 const uint32_t *w, nir_src *src)
2325 {
2326 switch (opcode) {
2327 case SpvOpAtomicIIncrement:
2328 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
2329 break;
2330
2331 case SpvOpAtomicIDecrement:
2332 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
2333 break;
2334
2335 case SpvOpAtomicISub:
2336 src[0] =
2337 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
2338 break;
2339
2340 case SpvOpAtomicCompareExchange:
2341 case SpvOpAtomicCompareExchangeWeak:
2342 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
2343 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
2344 break;
2345
2346 case SpvOpAtomicExchange:
2347 case SpvOpAtomicIAdd:
2348 case SpvOpAtomicSMin:
2349 case SpvOpAtomicUMin:
2350 case SpvOpAtomicSMax:
2351 case SpvOpAtomicUMax:
2352 case SpvOpAtomicAnd:
2353 case SpvOpAtomicOr:
2354 case SpvOpAtomicXor:
2355 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
2356 break;
2357
2358 default:
2359 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2360 }
2361 }
2362
2363 static nir_ssa_def *
2364 get_image_coord(struct vtn_builder *b, uint32_t value)
2365 {
2366 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
2367
2368 /* The image_load_store intrinsics assume a 4-dim coordinate */
2369 unsigned dim = glsl_get_vector_elements(coord->type);
2370 unsigned swizzle[4];
2371 for (unsigned i = 0; i < 4; i++)
2372 swizzle[i] = MIN2(i, dim - 1);
2373
2374 return nir_swizzle(&b->nb, coord->def, swizzle, 4);
2375 }
2376
2377 static nir_ssa_def *
2378 expand_to_vec4(nir_builder *b, nir_ssa_def *value)
2379 {
2380 if (value->num_components == 4)
2381 return value;
2382
2383 unsigned swiz[4];
2384 for (unsigned i = 0; i < 4; i++)
2385 swiz[i] = i < value->num_components ? i : 0;
2386 return nir_swizzle(b, value, swiz, 4);
2387 }
2388
2389 static void
2390 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
2391 const uint32_t *w, unsigned count)
2392 {
2393 /* Just get this one out of the way */
2394 if (opcode == SpvOpImageTexelPointer) {
2395 struct vtn_value *val =
2396 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
2397 val->image = ralloc(b, struct vtn_image_pointer);
2398
2399 val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2400 val->image->coord = get_image_coord(b, w[4]);
2401 val->image->sample = vtn_ssa_value(b, w[5])->def;
2402 return;
2403 }
2404
2405 struct vtn_image_pointer image;
2406
2407 switch (opcode) {
2408 case SpvOpAtomicExchange:
2409 case SpvOpAtomicCompareExchange:
2410 case SpvOpAtomicCompareExchangeWeak:
2411 case SpvOpAtomicIIncrement:
2412 case SpvOpAtomicIDecrement:
2413 case SpvOpAtomicIAdd:
2414 case SpvOpAtomicISub:
2415 case SpvOpAtomicLoad:
2416 case SpvOpAtomicSMin:
2417 case SpvOpAtomicUMin:
2418 case SpvOpAtomicSMax:
2419 case SpvOpAtomicUMax:
2420 case SpvOpAtomicAnd:
2421 case SpvOpAtomicOr:
2422 case SpvOpAtomicXor:
2423 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
2424 break;
2425
2426 case SpvOpAtomicStore:
2427 image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
2428 break;
2429
2430 case SpvOpImageQuerySize:
2431 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2432 image.coord = NULL;
2433 image.sample = NULL;
2434 break;
2435
2436 case SpvOpImageRead:
2437 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2438 image.coord = get_image_coord(b, w[4]);
2439
2440 if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
2441 vtn_assert(w[5] == SpvImageOperandsSampleMask);
2442 image.sample = vtn_ssa_value(b, w[6])->def;
2443 } else {
2444 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2445 }
2446 break;
2447
2448 case SpvOpImageWrite:
2449 image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2450 image.coord = get_image_coord(b, w[2]);
2451
2452 /* texel = w[3] */
2453
2454 if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
2455 vtn_assert(w[4] == SpvImageOperandsSampleMask);
2456 image.sample = vtn_ssa_value(b, w[5])->def;
2457 } else {
2458 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2459 }
2460 break;
2461
2462 default:
2463 vtn_fail_with_opcode("Invalid image opcode", opcode);
2464 }
2465
2466 nir_intrinsic_op op;
2467 switch (opcode) {
2468 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_deref_##N; break;
2469 OP(ImageQuerySize, size)
2470 OP(ImageRead, load)
2471 OP(ImageWrite, store)
2472 OP(AtomicLoad, load)
2473 OP(AtomicStore, store)
2474 OP(AtomicExchange, atomic_exchange)
2475 OP(AtomicCompareExchange, atomic_comp_swap)
2476 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2477 OP(AtomicIIncrement, atomic_add)
2478 OP(AtomicIDecrement, atomic_add)
2479 OP(AtomicIAdd, atomic_add)
2480 OP(AtomicISub, atomic_add)
2481 OP(AtomicSMin, atomic_imin)
2482 OP(AtomicUMin, atomic_umin)
2483 OP(AtomicSMax, atomic_imax)
2484 OP(AtomicUMax, atomic_umax)
2485 OP(AtomicAnd, atomic_and)
2486 OP(AtomicOr, atomic_or)
2487 OP(AtomicXor, atomic_xor)
2488 #undef OP
2489 default:
2490 vtn_fail_with_opcode("Invalid image opcode", opcode);
2491 }
2492
2493 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2494
2495 nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image.image);
2496 intrin->src[0] = nir_src_for_ssa(&image_deref->dest.ssa);
2497
2498 /* ImageQuerySize doesn't take any extra parameters */
2499 if (opcode != SpvOpImageQuerySize) {
2500 /* The image coordinate is always 4 components but we may not have that
2501 * many. Swizzle to compensate.
2502 */
2503 intrin->src[1] = nir_src_for_ssa(expand_to_vec4(&b->nb, image.coord));
2504 intrin->src[2] = nir_src_for_ssa(image.sample);
2505 }
2506
2507 nir_intrinsic_set_access(intrin, image.image->access);
2508
2509 switch (opcode) {
2510 case SpvOpAtomicLoad:
2511 case SpvOpImageQuerySize:
2512 case SpvOpImageRead:
2513 break;
2514 case SpvOpAtomicStore:
2515 case SpvOpImageWrite: {
2516 const uint32_t value_id = opcode == SpvOpAtomicStore ? w[4] : w[3];
2517 nir_ssa_def *value = vtn_ssa_value(b, value_id)->def;
2518 /* nir_intrinsic_image_deref_store always takes a vec4 value */
2519 assert(op == nir_intrinsic_image_deref_store);
2520 intrin->num_components = 4;
2521 intrin->src[3] = nir_src_for_ssa(expand_to_vec4(&b->nb, value));
2522 break;
2523 }
2524
2525 case SpvOpAtomicCompareExchange:
2526 case SpvOpAtomicCompareExchangeWeak:
2527 case SpvOpAtomicIIncrement:
2528 case SpvOpAtomicIDecrement:
2529 case SpvOpAtomicExchange:
2530 case SpvOpAtomicIAdd:
2531 case SpvOpAtomicISub:
2532 case SpvOpAtomicSMin:
2533 case SpvOpAtomicUMin:
2534 case SpvOpAtomicSMax:
2535 case SpvOpAtomicUMax:
2536 case SpvOpAtomicAnd:
2537 case SpvOpAtomicOr:
2538 case SpvOpAtomicXor:
2539 fill_common_atomic_sources(b, opcode, w, &intrin->src[3]);
2540 break;
2541
2542 default:
2543 vtn_fail_with_opcode("Invalid image opcode", opcode);
2544 }
2545
2546 if (opcode != SpvOpImageWrite && opcode != SpvOpAtomicStore) {
2547 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2548
2549 unsigned dest_components = glsl_get_vector_elements(type->type);
2550 intrin->num_components = nir_intrinsic_infos[op].dest_components;
2551 if (intrin->num_components == 0)
2552 intrin->num_components = dest_components;
2553
2554 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
2555 intrin->num_components, 32, NULL);
2556
2557 nir_builder_instr_insert(&b->nb, &intrin->instr);
2558
2559 nir_ssa_def *result = &intrin->dest.ssa;
2560 if (intrin->num_components != dest_components)
2561 result = nir_channels(&b->nb, result, (1 << dest_components) - 1);
2562
2563 struct vtn_value *val =
2564 vtn_push_ssa(b, w[2], type, vtn_create_ssa_value(b, type->type));
2565 val->ssa->def = result;
2566 } else {
2567 nir_builder_instr_insert(&b->nb, &intrin->instr);
2568 }
2569 }
2570
2571 static nir_intrinsic_op
2572 get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2573 {
2574 switch (opcode) {
2575 case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
2576 case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
2577 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
2578 OP(AtomicExchange, atomic_exchange)
2579 OP(AtomicCompareExchange, atomic_comp_swap)
2580 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2581 OP(AtomicIIncrement, atomic_add)
2582 OP(AtomicIDecrement, atomic_add)
2583 OP(AtomicIAdd, atomic_add)
2584 OP(AtomicISub, atomic_add)
2585 OP(AtomicSMin, atomic_imin)
2586 OP(AtomicUMin, atomic_umin)
2587 OP(AtomicSMax, atomic_imax)
2588 OP(AtomicUMax, atomic_umax)
2589 OP(AtomicAnd, atomic_and)
2590 OP(AtomicOr, atomic_or)
2591 OP(AtomicXor, atomic_xor)
2592 #undef OP
2593 default:
2594 vtn_fail_with_opcode("Invalid SSBO atomic", opcode);
2595 }
2596 }
2597
2598 static nir_intrinsic_op
2599 get_uniform_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2600 {
2601 switch (opcode) {
2602 #define OP(S, N) case SpvOp##S: return nir_intrinsic_atomic_counter_ ##N;
2603 OP(AtomicLoad, read_deref)
2604 OP(AtomicExchange, exchange)
2605 OP(AtomicCompareExchange, comp_swap)
2606 OP(AtomicCompareExchangeWeak, comp_swap)
2607 OP(AtomicIIncrement, inc_deref)
2608 OP(AtomicIDecrement, post_dec_deref)
2609 OP(AtomicIAdd, add_deref)
2610 OP(AtomicISub, add_deref)
2611 OP(AtomicUMin, min_deref)
2612 OP(AtomicUMax, max_deref)
2613 OP(AtomicAnd, and_deref)
2614 OP(AtomicOr, or_deref)
2615 OP(AtomicXor, xor_deref)
2616 #undef OP
2617 default:
2618 /* We left the following out: AtomicStore, AtomicSMin and
2619 * AtomicSmax. Right now there are not nir intrinsics for them. At this
2620 * moment Atomic Counter support is needed for ARB_spirv support, so is
2621 * only need to support GLSL Atomic Counters that are uints and don't
2622 * allow direct storage.
2623 */
2624 unreachable("Invalid uniform atomic");
2625 }
2626 }
2627
2628 static nir_intrinsic_op
2629 get_deref_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2630 {
2631 switch (opcode) {
2632 case SpvOpAtomicLoad: return nir_intrinsic_load_deref;
2633 case SpvOpAtomicStore: return nir_intrinsic_store_deref;
2634 #define OP(S, N) case SpvOp##S: return nir_intrinsic_deref_##N;
2635 OP(AtomicExchange, atomic_exchange)
2636 OP(AtomicCompareExchange, atomic_comp_swap)
2637 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2638 OP(AtomicIIncrement, atomic_add)
2639 OP(AtomicIDecrement, atomic_add)
2640 OP(AtomicIAdd, atomic_add)
2641 OP(AtomicISub, atomic_add)
2642 OP(AtomicSMin, atomic_imin)
2643 OP(AtomicUMin, atomic_umin)
2644 OP(AtomicSMax, atomic_imax)
2645 OP(AtomicUMax, atomic_umax)
2646 OP(AtomicAnd, atomic_and)
2647 OP(AtomicOr, atomic_or)
2648 OP(AtomicXor, atomic_xor)
2649 #undef OP
2650 default:
2651 vtn_fail_with_opcode("Invalid shared atomic", opcode);
2652 }
2653 }
2654
2655 /*
2656 * Handles shared atomics, ssbo atomics and atomic counters.
2657 */
2658 static void
2659 vtn_handle_atomics(struct vtn_builder *b, SpvOp opcode,
2660 const uint32_t *w, unsigned count)
2661 {
2662 struct vtn_pointer *ptr;
2663 nir_intrinsic_instr *atomic;
2664
2665 switch (opcode) {
2666 case SpvOpAtomicLoad:
2667 case SpvOpAtomicExchange:
2668 case SpvOpAtomicCompareExchange:
2669 case SpvOpAtomicCompareExchangeWeak:
2670 case SpvOpAtomicIIncrement:
2671 case SpvOpAtomicIDecrement:
2672 case SpvOpAtomicIAdd:
2673 case SpvOpAtomicISub:
2674 case SpvOpAtomicSMin:
2675 case SpvOpAtomicUMin:
2676 case SpvOpAtomicSMax:
2677 case SpvOpAtomicUMax:
2678 case SpvOpAtomicAnd:
2679 case SpvOpAtomicOr:
2680 case SpvOpAtomicXor:
2681 ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2682 break;
2683
2684 case SpvOpAtomicStore:
2685 ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2686 break;
2687
2688 default:
2689 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2690 }
2691
2692 /*
2693 SpvScope scope = w[4];
2694 SpvMemorySemanticsMask semantics = w[5];
2695 */
2696
2697 /* uniform as "atomic counter uniform" */
2698 if (ptr->mode == vtn_variable_mode_uniform) {
2699 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2700 const struct glsl_type *deref_type = deref->type;
2701 nir_intrinsic_op op = get_uniform_nir_atomic_op(b, opcode);
2702 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2703 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2704
2705 /* SSBO needs to initialize index/offset. In this case we don't need to,
2706 * as that info is already stored on the ptr->var->var nir_variable (see
2707 * vtn_create_variable)
2708 */
2709
2710 switch (opcode) {
2711 case SpvOpAtomicLoad:
2712 atomic->num_components = glsl_get_vector_elements(deref_type);
2713 break;
2714
2715 case SpvOpAtomicStore:
2716 atomic->num_components = glsl_get_vector_elements(deref_type);
2717 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2718 break;
2719
2720 case SpvOpAtomicExchange:
2721 case SpvOpAtomicCompareExchange:
2722 case SpvOpAtomicCompareExchangeWeak:
2723 case SpvOpAtomicIIncrement:
2724 case SpvOpAtomicIDecrement:
2725 case SpvOpAtomicIAdd:
2726 case SpvOpAtomicISub:
2727 case SpvOpAtomicSMin:
2728 case SpvOpAtomicUMin:
2729 case SpvOpAtomicSMax:
2730 case SpvOpAtomicUMax:
2731 case SpvOpAtomicAnd:
2732 case SpvOpAtomicOr:
2733 case SpvOpAtomicXor:
2734 /* Nothing: we don't need to call fill_common_atomic_sources here, as
2735 * atomic counter uniforms doesn't have sources
2736 */
2737 break;
2738
2739 default:
2740 unreachable("Invalid SPIR-V atomic");
2741
2742 }
2743 } else if (vtn_pointer_uses_ssa_offset(b, ptr)) {
2744 nir_ssa_def *offset, *index;
2745 offset = vtn_pointer_to_offset(b, ptr, &index);
2746
2747 assert(ptr->mode == vtn_variable_mode_ssbo);
2748
2749 nir_intrinsic_op op = get_ssbo_nir_atomic_op(b, opcode);
2750 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2751
2752 int src = 0;
2753 switch (opcode) {
2754 case SpvOpAtomicLoad:
2755 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2756 nir_intrinsic_set_align(atomic, 4, 0);
2757 if (ptr->mode == vtn_variable_mode_ssbo)
2758 atomic->src[src++] = nir_src_for_ssa(index);
2759 atomic->src[src++] = nir_src_for_ssa(offset);
2760 break;
2761
2762 case SpvOpAtomicStore:
2763 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2764 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2765 nir_intrinsic_set_align(atomic, 4, 0);
2766 atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2767 if (ptr->mode == vtn_variable_mode_ssbo)
2768 atomic->src[src++] = nir_src_for_ssa(index);
2769 atomic->src[src++] = nir_src_for_ssa(offset);
2770 break;
2771
2772 case SpvOpAtomicExchange:
2773 case SpvOpAtomicCompareExchange:
2774 case SpvOpAtomicCompareExchangeWeak:
2775 case SpvOpAtomicIIncrement:
2776 case SpvOpAtomicIDecrement:
2777 case SpvOpAtomicIAdd:
2778 case SpvOpAtomicISub:
2779 case SpvOpAtomicSMin:
2780 case SpvOpAtomicUMin:
2781 case SpvOpAtomicSMax:
2782 case SpvOpAtomicUMax:
2783 case SpvOpAtomicAnd:
2784 case SpvOpAtomicOr:
2785 case SpvOpAtomicXor:
2786 if (ptr->mode == vtn_variable_mode_ssbo)
2787 atomic->src[src++] = nir_src_for_ssa(index);
2788 atomic->src[src++] = nir_src_for_ssa(offset);
2789 fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
2790 break;
2791
2792 default:
2793 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2794 }
2795 } else {
2796 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2797 const struct glsl_type *deref_type = deref->type;
2798 nir_intrinsic_op op = get_deref_nir_atomic_op(b, opcode);
2799 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2800 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2801
2802 switch (opcode) {
2803 case SpvOpAtomicLoad:
2804 atomic->num_components = glsl_get_vector_elements(deref_type);
2805 break;
2806
2807 case SpvOpAtomicStore:
2808 atomic->num_components = glsl_get_vector_elements(deref_type);
2809 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2810 atomic->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2811 break;
2812
2813 case SpvOpAtomicExchange:
2814 case SpvOpAtomicCompareExchange:
2815 case SpvOpAtomicCompareExchangeWeak:
2816 case SpvOpAtomicIIncrement:
2817 case SpvOpAtomicIDecrement:
2818 case SpvOpAtomicIAdd:
2819 case SpvOpAtomicISub:
2820 case SpvOpAtomicSMin:
2821 case SpvOpAtomicUMin:
2822 case SpvOpAtomicSMax:
2823 case SpvOpAtomicUMax:
2824 case SpvOpAtomicAnd:
2825 case SpvOpAtomicOr:
2826 case SpvOpAtomicXor:
2827 fill_common_atomic_sources(b, opcode, w, &atomic->src[1]);
2828 break;
2829
2830 default:
2831 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2832 }
2833 }
2834
2835 if (opcode != SpvOpAtomicStore) {
2836 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2837
2838 nir_ssa_dest_init(&atomic->instr, &atomic->dest,
2839 glsl_get_vector_elements(type->type),
2840 glsl_get_bit_size(type->type), NULL);
2841
2842 struct vtn_ssa_value *ssa = rzalloc(b, struct vtn_ssa_value);
2843 ssa->def = &atomic->dest.ssa;
2844 ssa->type = type->type;
2845 vtn_push_ssa(b, w[2], type, ssa);
2846 }
2847
2848 nir_builder_instr_insert(&b->nb, &atomic->instr);
2849 }
2850
2851 static nir_alu_instr *
2852 create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
2853 {
2854 nir_op op = nir_op_vec(num_components);
2855 nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
2856 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
2857 bit_size, NULL);
2858 vec->dest.write_mask = (1 << num_components) - 1;
2859
2860 return vec;
2861 }
2862
2863 struct vtn_ssa_value *
2864 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
2865 {
2866 if (src->transposed)
2867 return src->transposed;
2868
2869 struct vtn_ssa_value *dest =
2870 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
2871
2872 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
2873 nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
2874 glsl_get_bit_size(src->type));
2875 if (glsl_type_is_vector_or_scalar(src->type)) {
2876 vec->src[0].src = nir_src_for_ssa(src->def);
2877 vec->src[0].swizzle[0] = i;
2878 } else {
2879 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
2880 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
2881 vec->src[j].swizzle[0] = i;
2882 }
2883 }
2884 nir_builder_instr_insert(&b->nb, &vec->instr);
2885 dest->elems[i]->def = &vec->dest.dest.ssa;
2886 }
2887
2888 dest->transposed = src;
2889
2890 return dest;
2891 }
2892
2893 nir_ssa_def *
2894 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
2895 {
2896 return nir_channel(&b->nb, src, index);
2897 }
2898
2899 nir_ssa_def *
2900 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
2901 unsigned index)
2902 {
2903 nir_alu_instr *vec = create_vec(b, src->num_components,
2904 src->bit_size);
2905
2906 for (unsigned i = 0; i < src->num_components; i++) {
2907 if (i == index) {
2908 vec->src[i].src = nir_src_for_ssa(insert);
2909 } else {
2910 vec->src[i].src = nir_src_for_ssa(src);
2911 vec->src[i].swizzle[0] = i;
2912 }
2913 }
2914
2915 nir_builder_instr_insert(&b->nb, &vec->instr);
2916
2917 return &vec->dest.dest.ssa;
2918 }
2919
2920 static nir_ssa_def *
2921 nir_ieq_imm(nir_builder *b, nir_ssa_def *x, uint64_t i)
2922 {
2923 return nir_ieq(b, x, nir_imm_intN_t(b, i, x->bit_size));
2924 }
2925
2926 nir_ssa_def *
2927 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
2928 nir_ssa_def *index)
2929 {
2930 return nir_vector_extract(&b->nb, src, nir_i2i(&b->nb, index, 32));
2931 }
2932
2933 nir_ssa_def *
2934 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
2935 nir_ssa_def *insert, nir_ssa_def *index)
2936 {
2937 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
2938 for (unsigned i = 1; i < src->num_components; i++)
2939 dest = nir_bcsel(&b->nb, nir_ieq_imm(&b->nb, index, i),
2940 vtn_vector_insert(b, src, insert, i), dest);
2941
2942 return dest;
2943 }
2944
2945 static nir_ssa_def *
2946 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
2947 nir_ssa_def *src0, nir_ssa_def *src1,
2948 const uint32_t *indices)
2949 {
2950 nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
2951
2952 for (unsigned i = 0; i < num_components; i++) {
2953 uint32_t index = indices[i];
2954 if (index == 0xffffffff) {
2955 vec->src[i].src =
2956 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
2957 } else if (index < src0->num_components) {
2958 vec->src[i].src = nir_src_for_ssa(src0);
2959 vec->src[i].swizzle[0] = index;
2960 } else {
2961 vec->src[i].src = nir_src_for_ssa(src1);
2962 vec->src[i].swizzle[0] = index - src0->num_components;
2963 }
2964 }
2965
2966 nir_builder_instr_insert(&b->nb, &vec->instr);
2967
2968 return &vec->dest.dest.ssa;
2969 }
2970
2971 /*
2972 * Concatentates a number of vectors/scalars together to produce a vector
2973 */
2974 static nir_ssa_def *
2975 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
2976 unsigned num_srcs, nir_ssa_def **srcs)
2977 {
2978 nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
2979
2980 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
2981 *
2982 * "When constructing a vector, there must be at least two Constituent
2983 * operands."
2984 */
2985 vtn_assert(num_srcs >= 2);
2986
2987 unsigned dest_idx = 0;
2988 for (unsigned i = 0; i < num_srcs; i++) {
2989 nir_ssa_def *src = srcs[i];
2990 vtn_assert(dest_idx + src->num_components <= num_components);
2991 for (unsigned j = 0; j < src->num_components; j++) {
2992 vec->src[dest_idx].src = nir_src_for_ssa(src);
2993 vec->src[dest_idx].swizzle[0] = j;
2994 dest_idx++;
2995 }
2996 }
2997
2998 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
2999 *
3000 * "When constructing a vector, the total number of components in all
3001 * the operands must equal the number of components in Result Type."
3002 */
3003 vtn_assert(dest_idx == num_components);
3004
3005 nir_builder_instr_insert(&b->nb, &vec->instr);
3006
3007 return &vec->dest.dest.ssa;
3008 }
3009
3010 static struct vtn_ssa_value *
3011 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
3012 {
3013 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
3014 dest->type = src->type;
3015
3016 if (glsl_type_is_vector_or_scalar(src->type)) {
3017 dest->def = src->def;
3018 } else {
3019 unsigned elems = glsl_get_length(src->type);
3020
3021 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
3022 for (unsigned i = 0; i < elems; i++)
3023 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
3024 }
3025
3026 return dest;
3027 }
3028
3029 static struct vtn_ssa_value *
3030 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
3031 struct vtn_ssa_value *insert, const uint32_t *indices,
3032 unsigned num_indices)
3033 {
3034 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
3035
3036 struct vtn_ssa_value *cur = dest;
3037 unsigned i;
3038 for (i = 0; i < num_indices - 1; i++) {
3039 cur = cur->elems[indices[i]];
3040 }
3041
3042 if (glsl_type_is_vector_or_scalar(cur->type)) {
3043 /* According to the SPIR-V spec, OpCompositeInsert may work down to
3044 * the component granularity. In that case, the last index will be
3045 * the index to insert the scalar into the vector.
3046 */
3047
3048 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
3049 } else {
3050 cur->elems[indices[i]] = insert;
3051 }
3052
3053 return dest;
3054 }
3055
3056 static struct vtn_ssa_value *
3057 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
3058 const uint32_t *indices, unsigned num_indices)
3059 {
3060 struct vtn_ssa_value *cur = src;
3061 for (unsigned i = 0; i < num_indices; i++) {
3062 if (glsl_type_is_vector_or_scalar(cur->type)) {
3063 vtn_assert(i == num_indices - 1);
3064 /* According to the SPIR-V spec, OpCompositeExtract may work down to
3065 * the component granularity. The last index will be the index of the
3066 * vector to extract.
3067 */
3068
3069 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
3070 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
3071 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
3072 return ret;
3073 } else {
3074 cur = cur->elems[indices[i]];
3075 }
3076 }
3077
3078 return cur;
3079 }
3080
3081 static void
3082 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
3083 const uint32_t *w, unsigned count)
3084 {
3085 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
3086 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, type->type);
3087
3088 switch (opcode) {
3089 case SpvOpVectorExtractDynamic:
3090 ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
3091 vtn_ssa_value(b, w[4])->def);
3092 break;
3093
3094 case SpvOpVectorInsertDynamic:
3095 ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
3096 vtn_ssa_value(b, w[4])->def,
3097 vtn_ssa_value(b, w[5])->def);
3098 break;
3099
3100 case SpvOpVectorShuffle:
3101 ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type->type),
3102 vtn_ssa_value(b, w[3])->def,
3103 vtn_ssa_value(b, w[4])->def,
3104 w + 5);
3105 break;
3106
3107 case SpvOpCompositeConstruct: {
3108 unsigned elems = count - 3;
3109 assume(elems >= 1);
3110 if (glsl_type_is_vector_or_scalar(type->type)) {
3111 nir_ssa_def *srcs[NIR_MAX_VEC_COMPONENTS];
3112 for (unsigned i = 0; i < elems; i++)
3113 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
3114 ssa->def =
3115 vtn_vector_construct(b, glsl_get_vector_elements(type->type),
3116 elems, srcs);
3117 } else {
3118 ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
3119 for (unsigned i = 0; i < elems; i++)
3120 ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
3121 }
3122 break;
3123 }
3124 case SpvOpCompositeExtract:
3125 ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
3126 w + 4, count - 4);
3127 break;
3128
3129 case SpvOpCompositeInsert:
3130 ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
3131 vtn_ssa_value(b, w[3]),
3132 w + 5, count - 5);
3133 break;
3134
3135 case SpvOpCopyLogical:
3136 case SpvOpCopyObject:
3137 ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
3138 break;
3139
3140 default:
3141 vtn_fail_with_opcode("unknown composite operation", opcode);
3142 }
3143
3144 vtn_push_ssa(b, w[2], type, ssa);
3145 }
3146
3147 static void
3148 vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op)
3149 {
3150 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
3151 nir_builder_instr_insert(&b->nb, &intrin->instr);
3152 }
3153
3154 static void
3155 vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope,
3156 SpvMemorySemanticsMask semantics)
3157 {
3158 static const SpvMemorySemanticsMask all_memory_semantics =
3159 SpvMemorySemanticsUniformMemoryMask |
3160 SpvMemorySemanticsWorkgroupMemoryMask |
3161 SpvMemorySemanticsAtomicCounterMemoryMask |
3162 SpvMemorySemanticsImageMemoryMask;
3163
3164 /* If we're not actually doing a memory barrier, bail */
3165 if (!(semantics & all_memory_semantics))
3166 return;
3167
3168 /* GL and Vulkan don't have these */
3169 vtn_assert(scope != SpvScopeCrossDevice);
3170
3171 if (scope == SpvScopeSubgroup)
3172 return; /* Nothing to do here */
3173
3174 if (scope == SpvScopeWorkgroup) {
3175 vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier);
3176 return;
3177 }
3178
3179 /* There's only two scopes thing left */
3180 vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice);
3181
3182 if ((semantics & all_memory_semantics) == all_memory_semantics) {
3183 vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
3184 return;
3185 }
3186
3187 /* Issue a bunch of more specific barriers */
3188 uint32_t bits = semantics;
3189 while (bits) {
3190 SpvMemorySemanticsMask semantic = 1 << u_bit_scan(&bits);
3191 switch (semantic) {
3192 case SpvMemorySemanticsUniformMemoryMask:
3193 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer);
3194 break;
3195 case SpvMemorySemanticsWorkgroupMemoryMask:
3196 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared);
3197 break;
3198 case SpvMemorySemanticsAtomicCounterMemoryMask:
3199 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter);
3200 break;
3201 case SpvMemorySemanticsImageMemoryMask:
3202 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image);
3203 break;
3204 default:
3205 break;;
3206 }
3207 }
3208 }
3209
3210 static void
3211 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
3212 const uint32_t *w, unsigned count)
3213 {
3214 switch (opcode) {
3215 case SpvOpEmitVertex:
3216 case SpvOpEmitStreamVertex:
3217 case SpvOpEndPrimitive:
3218 case SpvOpEndStreamPrimitive: {
3219 nir_intrinsic_op intrinsic_op;
3220 switch (opcode) {
3221 case SpvOpEmitVertex:
3222 case SpvOpEmitStreamVertex:
3223 intrinsic_op = nir_intrinsic_emit_vertex;
3224 break;
3225 case SpvOpEndPrimitive:
3226 case SpvOpEndStreamPrimitive:
3227 intrinsic_op = nir_intrinsic_end_primitive;
3228 break;
3229 default:
3230 unreachable("Invalid opcode");
3231 }
3232
3233 nir_intrinsic_instr *intrin =
3234 nir_intrinsic_instr_create(b->shader, intrinsic_op);
3235
3236 switch (opcode) {
3237 case SpvOpEmitStreamVertex:
3238 case SpvOpEndStreamPrimitive: {
3239 unsigned stream = vtn_constant_uint(b, w[1]);
3240 nir_intrinsic_set_stream_id(intrin, stream);
3241 break;
3242 }
3243
3244 default:
3245 break;
3246 }
3247
3248 nir_builder_instr_insert(&b->nb, &intrin->instr);
3249 break;
3250 }
3251
3252 case SpvOpMemoryBarrier: {
3253 SpvScope scope = vtn_constant_uint(b, w[1]);
3254 SpvMemorySemanticsMask semantics = vtn_constant_uint(b, w[2]);
3255 vtn_emit_memory_barrier(b, scope, semantics);
3256 return;
3257 }
3258
3259 case SpvOpControlBarrier: {
3260 SpvScope memory_scope = vtn_constant_uint(b, w[2]);
3261 SpvMemorySemanticsMask memory_semantics = vtn_constant_uint(b, w[3]);
3262 vtn_emit_memory_barrier(b, memory_scope, memory_semantics);
3263
3264 SpvScope execution_scope = vtn_constant_uint(b, w[1]);
3265 if (execution_scope == SpvScopeWorkgroup)
3266 vtn_emit_barrier(b, nir_intrinsic_barrier);
3267 break;
3268 }
3269
3270 default:
3271 unreachable("unknown barrier instruction");
3272 }
3273 }
3274
3275 static unsigned
3276 gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
3277 SpvExecutionMode mode)
3278 {
3279 switch (mode) {
3280 case SpvExecutionModeInputPoints:
3281 case SpvExecutionModeOutputPoints:
3282 return 0; /* GL_POINTS */
3283 case SpvExecutionModeInputLines:
3284 return 1; /* GL_LINES */
3285 case SpvExecutionModeInputLinesAdjacency:
3286 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
3287 case SpvExecutionModeTriangles:
3288 return 4; /* GL_TRIANGLES */
3289 case SpvExecutionModeInputTrianglesAdjacency:
3290 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
3291 case SpvExecutionModeQuads:
3292 return 7; /* GL_QUADS */
3293 case SpvExecutionModeIsolines:
3294 return 0x8E7A; /* GL_ISOLINES */
3295 case SpvExecutionModeOutputLineStrip:
3296 return 3; /* GL_LINE_STRIP */
3297 case SpvExecutionModeOutputTriangleStrip:
3298 return 5; /* GL_TRIANGLE_STRIP */
3299 default:
3300 vtn_fail("Invalid primitive type: %s (%u)",
3301 spirv_executionmode_to_string(mode), mode);
3302 }
3303 }
3304
3305 static unsigned
3306 vertices_in_from_spv_execution_mode(struct vtn_builder *b,
3307 SpvExecutionMode mode)
3308 {
3309 switch (mode) {
3310 case SpvExecutionModeInputPoints:
3311 return 1;
3312 case SpvExecutionModeInputLines:
3313 return 2;
3314 case SpvExecutionModeInputLinesAdjacency:
3315 return 4;
3316 case SpvExecutionModeTriangles:
3317 return 3;
3318 case SpvExecutionModeInputTrianglesAdjacency:
3319 return 6;
3320 default:
3321 vtn_fail("Invalid GS input mode: %s (%u)",
3322 spirv_executionmode_to_string(mode), mode);
3323 }
3324 }
3325
3326 static gl_shader_stage
3327 stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
3328 {
3329 switch (model) {
3330 case SpvExecutionModelVertex:
3331 return MESA_SHADER_VERTEX;
3332 case SpvExecutionModelTessellationControl:
3333 return MESA_SHADER_TESS_CTRL;
3334 case SpvExecutionModelTessellationEvaluation:
3335 return MESA_SHADER_TESS_EVAL;
3336 case SpvExecutionModelGeometry:
3337 return MESA_SHADER_GEOMETRY;
3338 case SpvExecutionModelFragment:
3339 return MESA_SHADER_FRAGMENT;
3340 case SpvExecutionModelGLCompute:
3341 return MESA_SHADER_COMPUTE;
3342 case SpvExecutionModelKernel:
3343 return MESA_SHADER_KERNEL;
3344 default:
3345 vtn_fail("Unsupported execution model: %s (%u)",
3346 spirv_executionmodel_to_string(model), model);
3347 }
3348 }
3349
3350 #define spv_check_supported(name, cap) do { \
3351 if (!(b->options && b->options->caps.name)) \
3352 vtn_warn("Unsupported SPIR-V capability: %s (%u)", \
3353 spirv_capability_to_string(cap), cap); \
3354 } while(0)
3355
3356
3357 void
3358 vtn_handle_entry_point(struct vtn_builder *b, const uint32_t *w,
3359 unsigned count)
3360 {
3361 struct vtn_value *entry_point = &b->values[w[2]];
3362 /* Let this be a name label regardless */
3363 unsigned name_words;
3364 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
3365
3366 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
3367 stage_for_execution_model(b, w[1]) != b->entry_point_stage)
3368 return;
3369
3370 vtn_assert(b->entry_point == NULL);
3371 b->entry_point = entry_point;
3372 }
3373
3374 static bool
3375 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
3376 const uint32_t *w, unsigned count)
3377 {
3378 switch (opcode) {
3379 case SpvOpSource: {
3380 const char *lang;
3381 switch (w[1]) {
3382 default:
3383 case SpvSourceLanguageUnknown: lang = "unknown"; break;
3384 case SpvSourceLanguageESSL: lang = "ESSL"; break;
3385 case SpvSourceLanguageGLSL: lang = "GLSL"; break;
3386 case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
3387 case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
3388 case SpvSourceLanguageHLSL: lang = "HLSL"; break;
3389 }
3390
3391 uint32_t version = w[2];
3392
3393 const char *file =
3394 (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
3395
3396 vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
3397 break;
3398 }
3399
3400 case SpvOpSourceExtension:
3401 case SpvOpSourceContinued:
3402 case SpvOpExtension:
3403 case SpvOpModuleProcessed:
3404 /* Unhandled, but these are for debug so that's ok. */
3405 break;
3406
3407 case SpvOpCapability: {
3408 SpvCapability cap = w[1];
3409 switch (cap) {
3410 case SpvCapabilityMatrix:
3411 case SpvCapabilityShader:
3412 case SpvCapabilityGeometry:
3413 case SpvCapabilityGeometryPointSize:
3414 case SpvCapabilityUniformBufferArrayDynamicIndexing:
3415 case SpvCapabilitySampledImageArrayDynamicIndexing:
3416 case SpvCapabilityStorageBufferArrayDynamicIndexing:
3417 case SpvCapabilityStorageImageArrayDynamicIndexing:
3418 case SpvCapabilityImageRect:
3419 case SpvCapabilitySampledRect:
3420 case SpvCapabilitySampled1D:
3421 case SpvCapabilityImage1D:
3422 case SpvCapabilitySampledCubeArray:
3423 case SpvCapabilityImageCubeArray:
3424 case SpvCapabilitySampledBuffer:
3425 case SpvCapabilityImageBuffer:
3426 case SpvCapabilityImageQuery:
3427 case SpvCapabilityDerivativeControl:
3428 case SpvCapabilityInterpolationFunction:
3429 case SpvCapabilityMultiViewport:
3430 case SpvCapabilitySampleRateShading:
3431 case SpvCapabilityClipDistance:
3432 case SpvCapabilityCullDistance:
3433 case SpvCapabilityInputAttachment:
3434 case SpvCapabilityImageGatherExtended:
3435 case SpvCapabilityStorageImageExtendedFormats:
3436 break;
3437
3438 case SpvCapabilityLinkage:
3439 case SpvCapabilityVector16:
3440 case SpvCapabilityFloat16Buffer:
3441 case SpvCapabilitySparseResidency:
3442 vtn_warn("Unsupported SPIR-V capability: %s",
3443 spirv_capability_to_string(cap));
3444 break;
3445
3446 case SpvCapabilityMinLod:
3447 spv_check_supported(min_lod, cap);
3448 break;
3449
3450 case SpvCapabilityAtomicStorage:
3451 spv_check_supported(atomic_storage, cap);
3452 break;
3453
3454 case SpvCapabilityFloat64:
3455 spv_check_supported(float64, cap);
3456 break;
3457 case SpvCapabilityInt64:
3458 spv_check_supported(int64, cap);
3459 break;
3460 case SpvCapabilityInt16:
3461 spv_check_supported(int16, cap);
3462 break;
3463 case SpvCapabilityInt8:
3464 spv_check_supported(int8, cap);
3465 break;
3466
3467 case SpvCapabilityTransformFeedback:
3468 spv_check_supported(transform_feedback, cap);
3469 break;
3470
3471 case SpvCapabilityGeometryStreams:
3472 spv_check_supported(geometry_streams, cap);
3473 break;
3474
3475 case SpvCapabilityInt64Atomics:
3476 spv_check_supported(int64_atomics, cap);
3477 break;
3478
3479 case SpvCapabilityStorageImageMultisample:
3480 spv_check_supported(storage_image_ms, cap);
3481 break;
3482
3483 case SpvCapabilityAddresses:
3484 spv_check_supported(address, cap);
3485 break;
3486
3487 case SpvCapabilityKernel:
3488 spv_check_supported(kernel, cap);
3489 break;
3490
3491 case SpvCapabilityImageBasic:
3492 case SpvCapabilityImageReadWrite:
3493 case SpvCapabilityImageMipmap:
3494 case SpvCapabilityPipes:
3495 case SpvCapabilityDeviceEnqueue:
3496 case SpvCapabilityLiteralSampler:
3497 case SpvCapabilityGenericPointer:
3498 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
3499 spirv_capability_to_string(cap));
3500 break;
3501
3502 case SpvCapabilityImageMSArray:
3503 spv_check_supported(image_ms_array, cap);
3504 break;
3505
3506 case SpvCapabilityTessellation:
3507 case SpvCapabilityTessellationPointSize:
3508 spv_check_supported(tessellation, cap);
3509 break;
3510
3511 case SpvCapabilityDrawParameters:
3512 spv_check_supported(draw_parameters, cap);
3513 break;
3514
3515 case SpvCapabilityStorageImageReadWithoutFormat:
3516 spv_check_supported(image_read_without_format, cap);
3517 break;
3518
3519 case SpvCapabilityStorageImageWriteWithoutFormat:
3520 spv_check_supported(image_write_without_format, cap);
3521 break;
3522
3523 case SpvCapabilityDeviceGroup:
3524 spv_check_supported(device_group, cap);
3525 break;
3526
3527 case SpvCapabilityMultiView:
3528 spv_check_supported(multiview, cap);
3529 break;
3530
3531 case SpvCapabilityGroupNonUniform:
3532 spv_check_supported(subgroup_basic, cap);
3533 break;
3534
3535 case SpvCapabilitySubgroupVoteKHR:
3536 case SpvCapabilityGroupNonUniformVote:
3537 spv_check_supported(subgroup_vote, cap);
3538 break;
3539
3540 case SpvCapabilitySubgroupBallotKHR:
3541 case SpvCapabilityGroupNonUniformBallot:
3542 spv_check_supported(subgroup_ballot, cap);
3543 break;
3544
3545 case SpvCapabilityGroupNonUniformShuffle:
3546 case SpvCapabilityGroupNonUniformShuffleRelative:
3547 spv_check_supported(subgroup_shuffle, cap);
3548 break;
3549
3550 case SpvCapabilityGroupNonUniformQuad:
3551 spv_check_supported(subgroup_quad, cap);
3552 break;
3553
3554 case SpvCapabilityGroupNonUniformArithmetic:
3555 case SpvCapabilityGroupNonUniformClustered:
3556 spv_check_supported(subgroup_arithmetic, cap);
3557 break;
3558
3559 case SpvCapabilityGroups:
3560 spv_check_supported(amd_shader_ballot, cap);
3561 break;
3562
3563 case SpvCapabilityVariablePointersStorageBuffer:
3564 case SpvCapabilityVariablePointers:
3565 spv_check_supported(variable_pointers, cap);
3566 b->variable_pointers = true;
3567 break;
3568
3569 case SpvCapabilityStorageUniformBufferBlock16:
3570 case SpvCapabilityStorageUniform16:
3571 case SpvCapabilityStoragePushConstant16:
3572 case SpvCapabilityStorageInputOutput16:
3573 spv_check_supported(storage_16bit, cap);
3574 break;
3575
3576 case SpvCapabilityShaderViewportIndexLayerEXT:
3577 spv_check_supported(shader_viewport_index_layer, cap);
3578 break;
3579
3580 case SpvCapabilityStorageBuffer8BitAccess:
3581 case SpvCapabilityUniformAndStorageBuffer8BitAccess:
3582 case SpvCapabilityStoragePushConstant8:
3583 spv_check_supported(storage_8bit, cap);
3584 break;
3585
3586 case SpvCapabilityShaderNonUniformEXT:
3587 spv_check_supported(descriptor_indexing, cap);
3588 break;
3589
3590 case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT:
3591 case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT:
3592 case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT:
3593 spv_check_supported(descriptor_array_dynamic_indexing, cap);
3594 break;
3595
3596 case SpvCapabilityUniformBufferArrayNonUniformIndexingEXT:
3597 case SpvCapabilitySampledImageArrayNonUniformIndexingEXT:
3598 case SpvCapabilityStorageBufferArrayNonUniformIndexingEXT:
3599 case SpvCapabilityStorageImageArrayNonUniformIndexingEXT:
3600 case SpvCapabilityInputAttachmentArrayNonUniformIndexingEXT:
3601 case SpvCapabilityUniformTexelBufferArrayNonUniformIndexingEXT:
3602 case SpvCapabilityStorageTexelBufferArrayNonUniformIndexingEXT:
3603 spv_check_supported(descriptor_array_non_uniform_indexing, cap);
3604 break;
3605
3606 case SpvCapabilityRuntimeDescriptorArrayEXT:
3607 spv_check_supported(runtime_descriptor_array, cap);
3608 break;
3609
3610 case SpvCapabilityStencilExportEXT:
3611 spv_check_supported(stencil_export, cap);
3612 break;
3613
3614 case SpvCapabilitySampleMaskPostDepthCoverage:
3615 spv_check_supported(post_depth_coverage, cap);
3616 break;
3617
3618 case SpvCapabilityPhysicalStorageBufferAddressesEXT:
3619 spv_check_supported(physical_storage_buffer_address, cap);
3620 break;
3621
3622 case SpvCapabilityComputeDerivativeGroupQuadsNV:
3623 case SpvCapabilityComputeDerivativeGroupLinearNV:
3624 spv_check_supported(derivative_group, cap);
3625 break;
3626
3627 case SpvCapabilityFloat16:
3628 spv_check_supported(float16, cap);
3629 break;
3630
3631 case SpvCapabilityFragmentShaderSampleInterlockEXT:
3632 spv_check_supported(fragment_shader_sample_interlock, cap);
3633 break;
3634
3635 case SpvCapabilityFragmentShaderPixelInterlockEXT:
3636 spv_check_supported(fragment_shader_pixel_interlock, cap);
3637 break;
3638
3639 case SpvCapabilityDemoteToHelperInvocationEXT:
3640 spv_check_supported(demote_to_helper_invocation, cap);
3641 break;
3642
3643 default:
3644 vtn_fail("Unhandled capability: %s (%u)",
3645 spirv_capability_to_string(cap), cap);
3646 }
3647 break;
3648 }
3649
3650 case SpvOpExtInstImport:
3651 vtn_handle_extension(b, opcode, w, count);
3652 break;
3653
3654 case SpvOpMemoryModel:
3655 switch (w[1]) {
3656 case SpvAddressingModelPhysical32:
3657 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
3658 "AddressingModelPhysical32 only supported for kernels");
3659 b->shader->info.cs.ptr_size = 32;
3660 b->physical_ptrs = true;
3661 b->options->shared_addr_format = nir_address_format_32bit_global;
3662 b->options->global_addr_format = nir_address_format_32bit_global;
3663 b->options->temp_addr_format = nir_address_format_32bit_global;
3664 break;
3665 case SpvAddressingModelPhysical64:
3666 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
3667 "AddressingModelPhysical64 only supported for kernels");
3668 b->shader->info.cs.ptr_size = 64;
3669 b->physical_ptrs = true;
3670 b->options->shared_addr_format = nir_address_format_64bit_global;
3671 b->options->global_addr_format = nir_address_format_64bit_global;
3672 b->options->temp_addr_format = nir_address_format_64bit_global;
3673 break;
3674 case SpvAddressingModelLogical:
3675 vtn_fail_if(b->shader->info.stage >= MESA_SHADER_STAGES,
3676 "AddressingModelLogical only supported for shaders");
3677 b->shader->info.cs.ptr_size = 0;
3678 b->physical_ptrs = false;
3679 break;
3680 case SpvAddressingModelPhysicalStorageBuffer64EXT:
3681 vtn_fail_if(!b->options ||
3682 !b->options->caps.physical_storage_buffer_address,
3683 "AddressingModelPhysicalStorageBuffer64EXT not supported");
3684 break;
3685 default:
3686 vtn_fail("Unknown addressing model: %s (%u)",
3687 spirv_addressingmodel_to_string(w[1]), w[1]);
3688 break;
3689 }
3690
3691 vtn_assert(w[2] == SpvMemoryModelSimple ||
3692 w[2] == SpvMemoryModelGLSL450 ||
3693 w[2] == SpvMemoryModelOpenCL);
3694 break;
3695
3696 case SpvOpEntryPoint:
3697 vtn_handle_entry_point(b, w, count);
3698 break;
3699
3700 case SpvOpString:
3701 vtn_push_value(b, w[1], vtn_value_type_string)->str =
3702 vtn_string_literal(b, &w[2], count - 2, NULL);
3703 break;
3704
3705 case SpvOpName:
3706 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
3707 break;
3708
3709 case SpvOpMemberName:
3710 /* TODO */
3711 break;
3712
3713 case SpvOpExecutionMode:
3714 case SpvOpExecutionModeId:
3715 case SpvOpDecorationGroup:
3716 case SpvOpDecorate:
3717 case SpvOpDecorateId:
3718 case SpvOpMemberDecorate:
3719 case SpvOpGroupDecorate:
3720 case SpvOpGroupMemberDecorate:
3721 case SpvOpDecorateString:
3722 case SpvOpMemberDecorateString:
3723 vtn_handle_decoration(b, opcode, w, count);
3724 break;
3725
3726 default:
3727 return false; /* End of preamble */
3728 }
3729
3730 return true;
3731 }
3732
3733 static void
3734 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
3735 const struct vtn_decoration *mode, void *data)
3736 {
3737 vtn_assert(b->entry_point == entry_point);
3738
3739 switch(mode->exec_mode) {
3740 case SpvExecutionModeOriginUpperLeft:
3741 case SpvExecutionModeOriginLowerLeft:
3742 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3743 b->shader->info.fs.origin_upper_left =
3744 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
3745 break;
3746
3747 case SpvExecutionModeEarlyFragmentTests:
3748 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3749 b->shader->info.fs.early_fragment_tests = true;
3750 break;
3751
3752 case SpvExecutionModePostDepthCoverage:
3753 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3754 b->shader->info.fs.post_depth_coverage = true;
3755 break;
3756
3757 case SpvExecutionModeInvocations:
3758 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3759 b->shader->info.gs.invocations = MAX2(1, mode->operands[0]);
3760 break;
3761
3762 case SpvExecutionModeDepthReplacing:
3763 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3764 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
3765 break;
3766 case SpvExecutionModeDepthGreater:
3767 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3768 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
3769 break;
3770 case SpvExecutionModeDepthLess:
3771 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3772 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
3773 break;
3774 case SpvExecutionModeDepthUnchanged:
3775 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3776 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3777 break;
3778
3779 case SpvExecutionModeLocalSize:
3780 vtn_assert(gl_shader_stage_is_compute(b->shader->info.stage));
3781 b->shader->info.cs.local_size[0] = mode->operands[0];
3782 b->shader->info.cs.local_size[1] = mode->operands[1];
3783 b->shader->info.cs.local_size[2] = mode->operands[2];
3784 break;
3785
3786 case SpvExecutionModeLocalSizeId:
3787 b->shader->info.cs.local_size[0] = vtn_constant_uint(b, mode->operands[0]);
3788 b->shader->info.cs.local_size[1] = vtn_constant_uint(b, mode->operands[1]);
3789 b->shader->info.cs.local_size[2] = vtn_constant_uint(b, mode->operands[2]);
3790 break;
3791
3792 case SpvExecutionModeLocalSizeHint:
3793 case SpvExecutionModeLocalSizeHintId:
3794 break; /* Nothing to do with this */
3795
3796 case SpvExecutionModeOutputVertices:
3797 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3798 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3799 b->shader->info.tess.tcs_vertices_out = mode->operands[0];
3800 } else {
3801 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3802 b->shader->info.gs.vertices_out = mode->operands[0];
3803 }
3804 break;
3805
3806 case SpvExecutionModeInputPoints:
3807 case SpvExecutionModeInputLines:
3808 case SpvExecutionModeInputLinesAdjacency:
3809 case SpvExecutionModeTriangles:
3810 case SpvExecutionModeInputTrianglesAdjacency:
3811 case SpvExecutionModeQuads:
3812 case SpvExecutionModeIsolines:
3813 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3814 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3815 b->shader->info.tess.primitive_mode =
3816 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3817 } else {
3818 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3819 b->shader->info.gs.vertices_in =
3820 vertices_in_from_spv_execution_mode(b, mode->exec_mode);
3821 b->shader->info.gs.input_primitive =
3822 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3823 }
3824 break;
3825
3826 case SpvExecutionModeOutputPoints:
3827 case SpvExecutionModeOutputLineStrip:
3828 case SpvExecutionModeOutputTriangleStrip:
3829 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3830 b->shader->info.gs.output_primitive =
3831 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3832 break;
3833
3834 case SpvExecutionModeSpacingEqual:
3835 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3836 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3837 b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
3838 break;
3839 case SpvExecutionModeSpacingFractionalEven:
3840 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3841 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3842 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
3843 break;
3844 case SpvExecutionModeSpacingFractionalOdd:
3845 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3846 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3847 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
3848 break;
3849 case SpvExecutionModeVertexOrderCw:
3850 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3851 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3852 b->shader->info.tess.ccw = false;
3853 break;
3854 case SpvExecutionModeVertexOrderCcw:
3855 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3856 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3857 b->shader->info.tess.ccw = true;
3858 break;
3859 case SpvExecutionModePointMode:
3860 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3861 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
3862 b->shader->info.tess.point_mode = true;
3863 break;
3864
3865 case SpvExecutionModePixelCenterInteger:
3866 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3867 b->shader->info.fs.pixel_center_integer = true;
3868 break;
3869
3870 case SpvExecutionModeXfb:
3871 b->shader->info.has_transform_feedback_varyings = true;
3872 break;
3873
3874 case SpvExecutionModeVecTypeHint:
3875 break; /* OpenCL */
3876
3877 case SpvExecutionModeContractionOff:
3878 if (b->shader->info.stage != MESA_SHADER_KERNEL)
3879 vtn_warn("ExectionMode only allowed for CL-style kernels: %s",
3880 spirv_executionmode_to_string(mode->exec_mode));
3881 else
3882 b->exact = true;
3883 break;
3884
3885 case SpvExecutionModeStencilRefReplacingEXT:
3886 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3887 break;
3888
3889 case SpvExecutionModeDerivativeGroupQuadsNV:
3890 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
3891 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_QUADS;
3892 break;
3893
3894 case SpvExecutionModeDerivativeGroupLinearNV:
3895 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
3896 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_LINEAR;
3897 break;
3898
3899 case SpvExecutionModePixelInterlockOrderedEXT:
3900 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3901 b->shader->info.fs.pixel_interlock_ordered = true;
3902 break;
3903
3904 case SpvExecutionModePixelInterlockUnorderedEXT:
3905 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3906 b->shader->info.fs.pixel_interlock_unordered = true;
3907 break;
3908
3909 case SpvExecutionModeSampleInterlockOrderedEXT:
3910 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3911 b->shader->info.fs.sample_interlock_ordered = true;
3912 break;
3913
3914 case SpvExecutionModeSampleInterlockUnorderedEXT:
3915 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3916 b->shader->info.fs.sample_interlock_unordered = true;
3917 break;
3918
3919 default:
3920 vtn_fail("Unhandled execution mode: %s (%u)",
3921 spirv_executionmode_to_string(mode->exec_mode),
3922 mode->exec_mode);
3923 }
3924 }
3925
3926 static bool
3927 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
3928 const uint32_t *w, unsigned count)
3929 {
3930 vtn_set_instruction_result_type(b, opcode, w, count);
3931
3932 switch (opcode) {
3933 case SpvOpSource:
3934 case SpvOpSourceContinued:
3935 case SpvOpSourceExtension:
3936 case SpvOpExtension:
3937 case SpvOpCapability:
3938 case SpvOpExtInstImport:
3939 case SpvOpMemoryModel:
3940 case SpvOpEntryPoint:
3941 case SpvOpExecutionMode:
3942 case SpvOpString:
3943 case SpvOpName:
3944 case SpvOpMemberName:
3945 case SpvOpDecorationGroup:
3946 case SpvOpDecorate:
3947 case SpvOpDecorateId:
3948 case SpvOpMemberDecorate:
3949 case SpvOpGroupDecorate:
3950 case SpvOpGroupMemberDecorate:
3951 case SpvOpDecorateString:
3952 case SpvOpMemberDecorateString:
3953 vtn_fail("Invalid opcode types and variables section");
3954 break;
3955
3956 case SpvOpTypeVoid:
3957 case SpvOpTypeBool:
3958 case SpvOpTypeInt:
3959 case SpvOpTypeFloat:
3960 case SpvOpTypeVector:
3961 case SpvOpTypeMatrix:
3962 case SpvOpTypeImage:
3963 case SpvOpTypeSampler:
3964 case SpvOpTypeSampledImage:
3965 case SpvOpTypeArray:
3966 case SpvOpTypeRuntimeArray:
3967 case SpvOpTypeStruct:
3968 case SpvOpTypeOpaque:
3969 case SpvOpTypePointer:
3970 case SpvOpTypeForwardPointer:
3971 case SpvOpTypeFunction:
3972 case SpvOpTypeEvent:
3973 case SpvOpTypeDeviceEvent:
3974 case SpvOpTypeReserveId:
3975 case SpvOpTypeQueue:
3976 case SpvOpTypePipe:
3977 vtn_handle_type(b, opcode, w, count);
3978 break;
3979
3980 case SpvOpConstantTrue:
3981 case SpvOpConstantFalse:
3982 case SpvOpConstant:
3983 case SpvOpConstantComposite:
3984 case SpvOpConstantSampler:
3985 case SpvOpConstantNull:
3986 case SpvOpSpecConstantTrue:
3987 case SpvOpSpecConstantFalse:
3988 case SpvOpSpecConstant:
3989 case SpvOpSpecConstantComposite:
3990 case SpvOpSpecConstantOp:
3991 vtn_handle_constant(b, opcode, w, count);
3992 break;
3993
3994 case SpvOpUndef:
3995 case SpvOpVariable:
3996 vtn_handle_variables(b, opcode, w, count);
3997 break;
3998
3999 default:
4000 return false; /* End of preamble */
4001 }
4002
4003 return true;
4004 }
4005
4006 static struct vtn_ssa_value *
4007 vtn_nir_select(struct vtn_builder *b, struct vtn_ssa_value *src0,
4008 struct vtn_ssa_value *src1, struct vtn_ssa_value *src2)
4009 {
4010 struct vtn_ssa_value *dest = rzalloc(b, struct vtn_ssa_value);
4011 dest->type = src1->type;
4012
4013 if (glsl_type_is_vector_or_scalar(src1->type)) {
4014 dest->def = nir_bcsel(&b->nb, src0->def, src1->def, src2->def);
4015 } else {
4016 unsigned elems = glsl_get_length(src1->type);
4017
4018 dest->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
4019 for (unsigned i = 0; i < elems; i++) {
4020 dest->elems[i] = vtn_nir_select(b, src0,
4021 src1->elems[i], src2->elems[i]);
4022 }
4023 }
4024
4025 return dest;
4026 }
4027
4028 static void
4029 vtn_handle_select(struct vtn_builder *b, SpvOp opcode,
4030 const uint32_t *w, unsigned count)
4031 {
4032 /* Handle OpSelect up-front here because it needs to be able to handle
4033 * pointers and not just regular vectors and scalars.
4034 */
4035 struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
4036 struct vtn_value *cond_val = vtn_untyped_value(b, w[3]);
4037 struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
4038 struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
4039
4040 vtn_fail_if(obj1_val->type != res_val->type ||
4041 obj2_val->type != res_val->type,
4042 "Object types must match the result type in OpSelect");
4043
4044 vtn_fail_if((cond_val->type->base_type != vtn_base_type_scalar &&
4045 cond_val->type->base_type != vtn_base_type_vector) ||
4046 !glsl_type_is_boolean(cond_val->type->type),
4047 "OpSelect must have either a vector of booleans or "
4048 "a boolean as Condition type");
4049
4050 vtn_fail_if(cond_val->type->base_type == vtn_base_type_vector &&
4051 (res_val->type->base_type != vtn_base_type_vector ||
4052 res_val->type->length != cond_val->type->length),
4053 "When Condition type in OpSelect is a vector, the Result "
4054 "type must be a vector of the same length");
4055
4056 switch (res_val->type->base_type) {
4057 case vtn_base_type_scalar:
4058 case vtn_base_type_vector:
4059 case vtn_base_type_matrix:
4060 case vtn_base_type_array:
4061 case vtn_base_type_struct:
4062 /* OK. */
4063 break;
4064 case vtn_base_type_pointer:
4065 /* We need to have actual storage for pointer types. */
4066 vtn_fail_if(res_val->type->type == NULL,
4067 "Invalid pointer result type for OpSelect");
4068 break;
4069 default:
4070 vtn_fail("Result type of OpSelect must be a scalar, composite, or pointer");
4071 }
4072
4073 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
4074 struct vtn_ssa_value *ssa = vtn_nir_select(b,
4075 vtn_ssa_value(b, w[3]), vtn_ssa_value(b, w[4]), vtn_ssa_value(b, w[5]));
4076
4077 vtn_push_ssa(b, w[2], res_type, ssa);
4078 }
4079
4080 static void
4081 vtn_handle_ptr(struct vtn_builder *b, SpvOp opcode,
4082 const uint32_t *w, unsigned count)
4083 {
4084 struct vtn_type *type1 = vtn_untyped_value(b, w[3])->type;
4085 struct vtn_type *type2 = vtn_untyped_value(b, w[4])->type;
4086 vtn_fail_if(type1->base_type != vtn_base_type_pointer ||
4087 type2->base_type != vtn_base_type_pointer,
4088 "%s operands must have pointer types",
4089 spirv_op_to_string(opcode));
4090 vtn_fail_if(type1->storage_class != type2->storage_class,
4091 "%s operands must have the same storage class",
4092 spirv_op_to_string(opcode));
4093
4094 struct vtn_type *vtn_type =
4095 vtn_value(b, w[1], vtn_value_type_type)->type;
4096 const struct glsl_type *type = vtn_type->type;
4097
4098 nir_address_format addr_format = vtn_mode_to_address_format(
4099 b, vtn_storage_class_to_mode(b, type1->storage_class, NULL, NULL));
4100
4101 nir_ssa_def *def;
4102
4103 switch (opcode) {
4104 case SpvOpPtrDiff: {
4105 /* OpPtrDiff returns the difference in number of elements (not byte offset). */
4106 unsigned elem_size, elem_align;
4107 glsl_get_natural_size_align_bytes(type1->deref->type,
4108 &elem_size, &elem_align);
4109
4110 def = nir_build_addr_isub(&b->nb,
4111 vtn_ssa_value(b, w[3])->def,
4112 vtn_ssa_value(b, w[4])->def,
4113 addr_format);
4114 def = nir_idiv(&b->nb, def, nir_imm_intN_t(&b->nb, elem_size, def->bit_size));
4115 def = nir_i2i(&b->nb, def, glsl_get_bit_size(type));
4116 break;
4117 }
4118
4119 case SpvOpPtrEqual:
4120 case SpvOpPtrNotEqual: {
4121 def = nir_build_addr_ieq(&b->nb,
4122 vtn_ssa_value(b, w[3])->def,
4123 vtn_ssa_value(b, w[4])->def,
4124 addr_format);
4125 if (opcode == SpvOpPtrNotEqual)
4126 def = nir_inot(&b->nb, def);
4127 break;
4128 }
4129
4130 default:
4131 unreachable("Invalid ptr operation");
4132 }
4133
4134 struct vtn_ssa_value *ssa_value = vtn_create_ssa_value(b, type);
4135 ssa_value->def = def;
4136 vtn_push_ssa(b, w[2], vtn_type, ssa_value);
4137 }
4138
4139 static bool
4140 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
4141 const uint32_t *w, unsigned count)
4142 {
4143 switch (opcode) {
4144 case SpvOpLabel:
4145 break;
4146
4147 case SpvOpLoopMerge:
4148 case SpvOpSelectionMerge:
4149 /* This is handled by cfg pre-pass and walk_blocks */
4150 break;
4151
4152 case SpvOpUndef: {
4153 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
4154 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
4155 break;
4156 }
4157
4158 case SpvOpExtInst:
4159 vtn_handle_extension(b, opcode, w, count);
4160 break;
4161
4162 case SpvOpVariable:
4163 case SpvOpLoad:
4164 case SpvOpStore:
4165 case SpvOpCopyMemory:
4166 case SpvOpCopyMemorySized:
4167 case SpvOpAccessChain:
4168 case SpvOpPtrAccessChain:
4169 case SpvOpInBoundsAccessChain:
4170 case SpvOpInBoundsPtrAccessChain:
4171 case SpvOpArrayLength:
4172 case SpvOpConvertPtrToU:
4173 case SpvOpConvertUToPtr:
4174 vtn_handle_variables(b, opcode, w, count);
4175 break;
4176
4177 case SpvOpFunctionCall:
4178 vtn_handle_function_call(b, opcode, w, count);
4179 break;
4180
4181 case SpvOpSampledImage:
4182 case SpvOpImage:
4183 case SpvOpImageSampleImplicitLod:
4184 case SpvOpImageSampleExplicitLod:
4185 case SpvOpImageSampleDrefImplicitLod:
4186 case SpvOpImageSampleDrefExplicitLod:
4187 case SpvOpImageSampleProjImplicitLod:
4188 case SpvOpImageSampleProjExplicitLod:
4189 case SpvOpImageSampleProjDrefImplicitLod:
4190 case SpvOpImageSampleProjDrefExplicitLod:
4191 case SpvOpImageFetch:
4192 case SpvOpImageGather:
4193 case SpvOpImageDrefGather:
4194 case SpvOpImageQuerySizeLod:
4195 case SpvOpImageQueryLod:
4196 case SpvOpImageQueryLevels:
4197 case SpvOpImageQuerySamples:
4198 vtn_handle_texture(b, opcode, w, count);
4199 break;
4200
4201 case SpvOpImageRead:
4202 case SpvOpImageWrite:
4203 case SpvOpImageTexelPointer:
4204 vtn_handle_image(b, opcode, w, count);
4205 break;
4206
4207 case SpvOpImageQuerySize: {
4208 struct vtn_pointer *image =
4209 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
4210 if (glsl_type_is_image(image->type->type)) {
4211 vtn_handle_image(b, opcode, w, count);
4212 } else {
4213 vtn_assert(glsl_type_is_sampler(image->type->type));
4214 vtn_handle_texture(b, opcode, w, count);
4215 }
4216 break;
4217 }
4218
4219 case SpvOpAtomicLoad:
4220 case SpvOpAtomicExchange:
4221 case SpvOpAtomicCompareExchange:
4222 case SpvOpAtomicCompareExchangeWeak:
4223 case SpvOpAtomicIIncrement:
4224 case SpvOpAtomicIDecrement:
4225 case SpvOpAtomicIAdd:
4226 case SpvOpAtomicISub:
4227 case SpvOpAtomicSMin:
4228 case SpvOpAtomicUMin:
4229 case SpvOpAtomicSMax:
4230 case SpvOpAtomicUMax:
4231 case SpvOpAtomicAnd:
4232 case SpvOpAtomicOr:
4233 case SpvOpAtomicXor: {
4234 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
4235 if (pointer->value_type == vtn_value_type_image_pointer) {
4236 vtn_handle_image(b, opcode, w, count);
4237 } else {
4238 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4239 vtn_handle_atomics(b, opcode, w, count);
4240 }
4241 break;
4242 }
4243
4244 case SpvOpAtomicStore: {
4245 struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
4246 if (pointer->value_type == vtn_value_type_image_pointer) {
4247 vtn_handle_image(b, opcode, w, count);
4248 } else {
4249 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4250 vtn_handle_atomics(b, opcode, w, count);
4251 }
4252 break;
4253 }
4254
4255 case SpvOpSelect:
4256 vtn_handle_select(b, opcode, w, count);
4257 break;
4258
4259 case SpvOpSNegate:
4260 case SpvOpFNegate:
4261 case SpvOpNot:
4262 case SpvOpAny:
4263 case SpvOpAll:
4264 case SpvOpConvertFToU:
4265 case SpvOpConvertFToS:
4266 case SpvOpConvertSToF:
4267 case SpvOpConvertUToF:
4268 case SpvOpUConvert:
4269 case SpvOpSConvert:
4270 case SpvOpFConvert:
4271 case SpvOpQuantizeToF16:
4272 case SpvOpPtrCastToGeneric:
4273 case SpvOpGenericCastToPtr:
4274 case SpvOpIsNan:
4275 case SpvOpIsInf:
4276 case SpvOpIsFinite:
4277 case SpvOpIsNormal:
4278 case SpvOpSignBitSet:
4279 case SpvOpLessOrGreater:
4280 case SpvOpOrdered:
4281 case SpvOpUnordered:
4282 case SpvOpIAdd:
4283 case SpvOpFAdd:
4284 case SpvOpISub:
4285 case SpvOpFSub:
4286 case SpvOpIMul:
4287 case SpvOpFMul:
4288 case SpvOpUDiv:
4289 case SpvOpSDiv:
4290 case SpvOpFDiv:
4291 case SpvOpUMod:
4292 case SpvOpSRem:
4293 case SpvOpSMod:
4294 case SpvOpFRem:
4295 case SpvOpFMod:
4296 case SpvOpVectorTimesScalar:
4297 case SpvOpDot:
4298 case SpvOpIAddCarry:
4299 case SpvOpISubBorrow:
4300 case SpvOpUMulExtended:
4301 case SpvOpSMulExtended:
4302 case SpvOpShiftRightLogical:
4303 case SpvOpShiftRightArithmetic:
4304 case SpvOpShiftLeftLogical:
4305 case SpvOpLogicalEqual:
4306 case SpvOpLogicalNotEqual:
4307 case SpvOpLogicalOr:
4308 case SpvOpLogicalAnd:
4309 case SpvOpLogicalNot:
4310 case SpvOpBitwiseOr:
4311 case SpvOpBitwiseXor:
4312 case SpvOpBitwiseAnd:
4313 case SpvOpIEqual:
4314 case SpvOpFOrdEqual:
4315 case SpvOpFUnordEqual:
4316 case SpvOpINotEqual:
4317 case SpvOpFOrdNotEqual:
4318 case SpvOpFUnordNotEqual:
4319 case SpvOpULessThan:
4320 case SpvOpSLessThan:
4321 case SpvOpFOrdLessThan:
4322 case SpvOpFUnordLessThan:
4323 case SpvOpUGreaterThan:
4324 case SpvOpSGreaterThan:
4325 case SpvOpFOrdGreaterThan:
4326 case SpvOpFUnordGreaterThan:
4327 case SpvOpULessThanEqual:
4328 case SpvOpSLessThanEqual:
4329 case SpvOpFOrdLessThanEqual:
4330 case SpvOpFUnordLessThanEqual:
4331 case SpvOpUGreaterThanEqual:
4332 case SpvOpSGreaterThanEqual:
4333 case SpvOpFOrdGreaterThanEqual:
4334 case SpvOpFUnordGreaterThanEqual:
4335 case SpvOpDPdx:
4336 case SpvOpDPdy:
4337 case SpvOpFwidth:
4338 case SpvOpDPdxFine:
4339 case SpvOpDPdyFine:
4340 case SpvOpFwidthFine:
4341 case SpvOpDPdxCoarse:
4342 case SpvOpDPdyCoarse:
4343 case SpvOpFwidthCoarse:
4344 case SpvOpBitFieldInsert:
4345 case SpvOpBitFieldSExtract:
4346 case SpvOpBitFieldUExtract:
4347 case SpvOpBitReverse:
4348 case SpvOpBitCount:
4349 case SpvOpTranspose:
4350 case SpvOpOuterProduct:
4351 case SpvOpMatrixTimesScalar:
4352 case SpvOpVectorTimesMatrix:
4353 case SpvOpMatrixTimesVector:
4354 case SpvOpMatrixTimesMatrix:
4355 vtn_handle_alu(b, opcode, w, count);
4356 break;
4357
4358 case SpvOpBitcast:
4359 vtn_handle_bitcast(b, w, count);
4360 break;
4361
4362 case SpvOpVectorExtractDynamic:
4363 case SpvOpVectorInsertDynamic:
4364 case SpvOpVectorShuffle:
4365 case SpvOpCompositeConstruct:
4366 case SpvOpCompositeExtract:
4367 case SpvOpCompositeInsert:
4368 case SpvOpCopyLogical:
4369 case SpvOpCopyObject:
4370 vtn_handle_composite(b, opcode, w, count);
4371 break;
4372
4373 case SpvOpEmitVertex:
4374 case SpvOpEndPrimitive:
4375 case SpvOpEmitStreamVertex:
4376 case SpvOpEndStreamPrimitive:
4377 case SpvOpControlBarrier:
4378 case SpvOpMemoryBarrier:
4379 vtn_handle_barrier(b, opcode, w, count);
4380 break;
4381
4382 case SpvOpGroupNonUniformElect:
4383 case SpvOpGroupNonUniformAll:
4384 case SpvOpGroupNonUniformAny:
4385 case SpvOpGroupNonUniformAllEqual:
4386 case SpvOpGroupNonUniformBroadcast:
4387 case SpvOpGroupNonUniformBroadcastFirst:
4388 case SpvOpGroupNonUniformBallot:
4389 case SpvOpGroupNonUniformInverseBallot:
4390 case SpvOpGroupNonUniformBallotBitExtract:
4391 case SpvOpGroupNonUniformBallotBitCount:
4392 case SpvOpGroupNonUniformBallotFindLSB:
4393 case SpvOpGroupNonUniformBallotFindMSB:
4394 case SpvOpGroupNonUniformShuffle:
4395 case SpvOpGroupNonUniformShuffleXor:
4396 case SpvOpGroupNonUniformShuffleUp:
4397 case SpvOpGroupNonUniformShuffleDown:
4398 case SpvOpGroupNonUniformIAdd:
4399 case SpvOpGroupNonUniformFAdd:
4400 case SpvOpGroupNonUniformIMul:
4401 case SpvOpGroupNonUniformFMul:
4402 case SpvOpGroupNonUniformSMin:
4403 case SpvOpGroupNonUniformUMin:
4404 case SpvOpGroupNonUniformFMin:
4405 case SpvOpGroupNonUniformSMax:
4406 case SpvOpGroupNonUniformUMax:
4407 case SpvOpGroupNonUniformFMax:
4408 case SpvOpGroupNonUniformBitwiseAnd:
4409 case SpvOpGroupNonUniformBitwiseOr:
4410 case SpvOpGroupNonUniformBitwiseXor:
4411 case SpvOpGroupNonUniformLogicalAnd:
4412 case SpvOpGroupNonUniformLogicalOr:
4413 case SpvOpGroupNonUniformLogicalXor:
4414 case SpvOpGroupNonUniformQuadBroadcast:
4415 case SpvOpGroupNonUniformQuadSwap:
4416 case SpvOpGroupAll:
4417 case SpvOpGroupAny:
4418 case SpvOpGroupBroadcast:
4419 case SpvOpGroupIAdd:
4420 case SpvOpGroupFAdd:
4421 case SpvOpGroupFMin:
4422 case SpvOpGroupUMin:
4423 case SpvOpGroupSMin:
4424 case SpvOpGroupFMax:
4425 case SpvOpGroupUMax:
4426 case SpvOpGroupSMax:
4427 case SpvOpSubgroupBallotKHR:
4428 case SpvOpSubgroupFirstInvocationKHR:
4429 case SpvOpSubgroupReadInvocationKHR:
4430 case SpvOpSubgroupAllKHR:
4431 case SpvOpSubgroupAnyKHR:
4432 case SpvOpSubgroupAllEqualKHR:
4433 case SpvOpGroupIAddNonUniformAMD:
4434 case SpvOpGroupFAddNonUniformAMD:
4435 case SpvOpGroupFMinNonUniformAMD:
4436 case SpvOpGroupUMinNonUniformAMD:
4437 case SpvOpGroupSMinNonUniformAMD:
4438 case SpvOpGroupFMaxNonUniformAMD:
4439 case SpvOpGroupUMaxNonUniformAMD:
4440 case SpvOpGroupSMaxNonUniformAMD:
4441 vtn_handle_subgroup(b, opcode, w, count);
4442 break;
4443
4444 case SpvOpPtrDiff:
4445 case SpvOpPtrEqual:
4446 case SpvOpPtrNotEqual:
4447 vtn_handle_ptr(b, opcode, w, count);
4448 break;
4449
4450 case SpvOpBeginInvocationInterlockEXT:
4451 vtn_emit_barrier(b, nir_intrinsic_begin_invocation_interlock);
4452 break;
4453
4454 case SpvOpEndInvocationInterlockEXT:
4455 vtn_emit_barrier(b, nir_intrinsic_end_invocation_interlock);
4456 break;
4457
4458 case SpvOpDemoteToHelperInvocationEXT: {
4459 nir_intrinsic_instr *intrin =
4460 nir_intrinsic_instr_create(b->shader, nir_intrinsic_demote);
4461 nir_builder_instr_insert(&b->nb, &intrin->instr);
4462 break;
4463 }
4464
4465 case SpvOpIsHelperInvocationEXT: {
4466 nir_intrinsic_instr *intrin =
4467 nir_intrinsic_instr_create(b->shader, nir_intrinsic_is_helper_invocation);
4468 nir_ssa_dest_init(&intrin->instr, &intrin->dest, 1, 1, NULL);
4469 nir_builder_instr_insert(&b->nb, &intrin->instr);
4470
4471 struct vtn_type *res_type =
4472 vtn_value(b, w[1], vtn_value_type_type)->type;
4473 struct vtn_ssa_value *val = vtn_create_ssa_value(b, res_type->type);
4474 val->def = &intrin->dest.ssa;
4475
4476 vtn_push_ssa(b, w[2], res_type, val);
4477 break;
4478 }
4479
4480 default:
4481 vtn_fail_with_opcode("Unhandled opcode", opcode);
4482 }
4483
4484 return true;
4485 }
4486
4487 struct vtn_builder*
4488 vtn_create_builder(const uint32_t *words, size_t word_count,
4489 gl_shader_stage stage, const char *entry_point_name,
4490 const struct spirv_to_nir_options *options)
4491 {
4492 /* Initialize the vtn_builder object */
4493 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
4494 struct spirv_to_nir_options *dup_options =
4495 ralloc(b, struct spirv_to_nir_options);
4496 *dup_options = *options;
4497
4498 b->spirv = words;
4499 b->spirv_word_count = word_count;
4500 b->file = NULL;
4501 b->line = -1;
4502 b->col = -1;
4503 exec_list_make_empty(&b->functions);
4504 b->entry_point_stage = stage;
4505 b->entry_point_name = entry_point_name;
4506 b->options = dup_options;
4507
4508 /*
4509 * Handle the SPIR-V header (first 5 dwords).
4510 * Can't use vtx_assert() as the setjmp(3) target isn't initialized yet.
4511 */
4512 if (word_count <= 5)
4513 goto fail;
4514
4515 if (words[0] != SpvMagicNumber) {
4516 vtn_err("words[0] was 0x%x, want 0x%x", words[0], SpvMagicNumber);
4517 goto fail;
4518 }
4519 if (words[1] < 0x10000) {
4520 vtn_err("words[1] was 0x%x, want >= 0x10000", words[1]);
4521 goto fail;
4522 }
4523
4524 uint16_t generator_id = words[2] >> 16;
4525 uint16_t generator_version = words[2];
4526
4527 /* The first GLSLang version bump actually 1.5 years after #179 was fixed
4528 * but this should at least let us shut the workaround off for modern
4529 * versions of GLSLang.
4530 */
4531 b->wa_glslang_179 = (generator_id == 8 && generator_version == 1);
4532
4533 /* words[2] == generator magic */
4534 unsigned value_id_bound = words[3];
4535 if (words[4] != 0) {
4536 vtn_err("words[4] was %u, want 0", words[4]);
4537 goto fail;
4538 }
4539
4540 b->value_id_bound = value_id_bound;
4541 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
4542
4543 return b;
4544 fail:
4545 ralloc_free(b);
4546 return NULL;
4547 }
4548
4549 static nir_function *
4550 vtn_emit_kernel_entry_point_wrapper(struct vtn_builder *b,
4551 nir_function *entry_point)
4552 {
4553 vtn_assert(entry_point == b->entry_point->func->impl->function);
4554 vtn_fail_if(!entry_point->name, "entry points are required to have a name");
4555 const char *func_name =
4556 ralloc_asprintf(b->shader, "__wrapped_%s", entry_point->name);
4557
4558 /* we shouldn't have any inputs yet */
4559 vtn_assert(!entry_point->shader->num_inputs);
4560 vtn_assert(b->shader->info.stage == MESA_SHADER_KERNEL);
4561
4562 nir_function *main_entry_point = nir_function_create(b->shader, func_name);
4563 main_entry_point->impl = nir_function_impl_create(main_entry_point);
4564 nir_builder_init(&b->nb, main_entry_point->impl);
4565 b->nb.cursor = nir_after_cf_list(&main_entry_point->impl->body);
4566 b->func_param_idx = 0;
4567
4568 nir_call_instr *call = nir_call_instr_create(b->nb.shader, entry_point);
4569
4570 for (unsigned i = 0; i < entry_point->num_params; ++i) {
4571 struct vtn_type *param_type = b->entry_point->func->type->params[i];
4572
4573 /* consider all pointers to function memory to be parameters passed
4574 * by value
4575 */
4576 bool is_by_val = param_type->base_type == vtn_base_type_pointer &&
4577 param_type->storage_class == SpvStorageClassFunction;
4578
4579 /* input variable */
4580 nir_variable *in_var = rzalloc(b->nb.shader, nir_variable);
4581 in_var->data.mode = nir_var_shader_in;
4582 in_var->data.read_only = true;
4583 in_var->data.location = i;
4584
4585 if (is_by_val)
4586 in_var->type = param_type->deref->type;
4587 else
4588 in_var->type = param_type->type;
4589
4590 nir_shader_add_variable(b->nb.shader, in_var);
4591 b->nb.shader->num_inputs++;
4592
4593 /* we have to copy the entire variable into function memory */
4594 if (is_by_val) {
4595 nir_variable *copy_var =
4596 nir_local_variable_create(main_entry_point->impl, in_var->type,
4597 "copy_in");
4598 nir_copy_var(&b->nb, copy_var, in_var);
4599 call->params[i] =
4600 nir_src_for_ssa(&nir_build_deref_var(&b->nb, copy_var)->dest.ssa);
4601 } else {
4602 call->params[i] = nir_src_for_ssa(nir_load_var(&b->nb, in_var));
4603 }
4604 }
4605
4606 nir_builder_instr_insert(&b->nb, &call->instr);
4607
4608 return main_entry_point;
4609 }
4610
4611 nir_shader *
4612 spirv_to_nir(const uint32_t *words, size_t word_count,
4613 struct nir_spirv_specialization *spec, unsigned num_spec,
4614 gl_shader_stage stage, const char *entry_point_name,
4615 const struct spirv_to_nir_options *options,
4616 const nir_shader_compiler_options *nir_options)
4617
4618 {
4619 const uint32_t *word_end = words + word_count;
4620
4621 struct vtn_builder *b = vtn_create_builder(words, word_count,
4622 stage, entry_point_name,
4623 options);
4624
4625 if (b == NULL)
4626 return NULL;
4627
4628 /* See also _vtn_fail() */
4629 if (setjmp(b->fail_jump)) {
4630 ralloc_free(b);
4631 return NULL;
4632 }
4633
4634 /* Skip the SPIR-V header, handled at vtn_create_builder */
4635 words+= 5;
4636
4637 b->shader = nir_shader_create(b, stage, nir_options, NULL);
4638
4639 /* Handle all the preamble instructions */
4640 words = vtn_foreach_instruction(b, words, word_end,
4641 vtn_handle_preamble_instruction);
4642
4643 if (b->entry_point == NULL) {
4644 vtn_fail("Entry point not found");
4645 ralloc_free(b);
4646 return NULL;
4647 }
4648
4649 /* Set shader info defaults */
4650 b->shader->info.gs.invocations = 1;
4651
4652 b->specializations = spec;
4653 b->num_specializations = num_spec;
4654
4655 /* Handle all variable, type, and constant instructions */
4656 words = vtn_foreach_instruction(b, words, word_end,
4657 vtn_handle_variable_or_type_instruction);
4658
4659 /* Parse execution modes */
4660 vtn_foreach_execution_mode(b, b->entry_point,
4661 vtn_handle_execution_mode, NULL);
4662
4663 if (b->workgroup_size_builtin) {
4664 vtn_assert(b->workgroup_size_builtin->type->type ==
4665 glsl_vector_type(GLSL_TYPE_UINT, 3));
4666
4667 nir_const_value *const_size =
4668 b->workgroup_size_builtin->constant->values;
4669
4670 b->shader->info.cs.local_size[0] = const_size[0].u32;
4671 b->shader->info.cs.local_size[1] = const_size[1].u32;
4672 b->shader->info.cs.local_size[2] = const_size[2].u32;
4673 }
4674
4675 /* Set types on all vtn_values */
4676 vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
4677
4678 vtn_build_cfg(b, words, word_end);
4679
4680 assert(b->entry_point->value_type == vtn_value_type_function);
4681 b->entry_point->func->referenced = true;
4682
4683 bool progress;
4684 do {
4685 progress = false;
4686 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
4687 if (func->referenced && !func->emitted) {
4688 b->const_table = _mesa_pointer_hash_table_create(b);
4689
4690 vtn_function_emit(b, func, vtn_handle_body_instruction);
4691 progress = true;
4692 }
4693 }
4694 } while (progress);
4695
4696 vtn_assert(b->entry_point->value_type == vtn_value_type_function);
4697 nir_function *entry_point = b->entry_point->func->impl->function;
4698 vtn_assert(entry_point);
4699
4700 /* post process entry_points with input params */
4701 if (entry_point->num_params && b->shader->info.stage == MESA_SHADER_KERNEL)
4702 entry_point = vtn_emit_kernel_entry_point_wrapper(b, entry_point);
4703
4704 entry_point->is_entrypoint = true;
4705
4706 /* When multiple shader stages exist in the same SPIR-V module, we
4707 * generate input and output variables for every stage, in the same
4708 * NIR program. These dead variables can be invalid NIR. For example,
4709 * TCS outputs must be per-vertex arrays (or decorated 'patch'), while
4710 * VS output variables wouldn't be.
4711 *
4712 * To ensure we have valid NIR, we eliminate any dead inputs and outputs
4713 * right away. In order to do so, we must lower any constant initializers
4714 * on outputs so nir_remove_dead_variables sees that they're written to.
4715 */
4716 nir_lower_constant_initializers(b->shader, nir_var_shader_out);
4717 nir_remove_dead_variables(b->shader,
4718 nir_var_shader_in | nir_var_shader_out);
4719
4720 /* We sometimes generate bogus derefs that, while never used, give the
4721 * validator a bit of heartburn. Run dead code to get rid of them.
4722 */
4723 nir_opt_dce(b->shader);
4724
4725 /* Unparent the shader from the vtn_builder before we delete the builder */
4726 ralloc_steal(NULL, b->shader);
4727
4728 nir_shader *shader = b->shader;
4729 ralloc_free(b);
4730
4731 return shader;
4732 }