spirv: Add SpvMemoryModelVulkan and related capabilities
[mesa.git] / src / compiler / spirv / spirv_to_nir.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "nir/nir_vla.h"
30 #include "nir/nir_control_flow.h"
31 #include "nir/nir_constant_expressions.h"
32 #include "nir/nir_deref.h"
33 #include "spirv_info.h"
34
35 #include "util/u_math.h"
36
37 #include <stdio.h>
38
39 void
40 vtn_log(struct vtn_builder *b, enum nir_spirv_debug_level level,
41 size_t spirv_offset, const char *message)
42 {
43 if (b->options->debug.func) {
44 b->options->debug.func(b->options->debug.private_data,
45 level, spirv_offset, message);
46 }
47
48 #ifndef NDEBUG
49 if (level >= NIR_SPIRV_DEBUG_LEVEL_WARNING)
50 fprintf(stderr, "%s\n", message);
51 #endif
52 }
53
54 void
55 vtn_logf(struct vtn_builder *b, enum nir_spirv_debug_level level,
56 size_t spirv_offset, const char *fmt, ...)
57 {
58 va_list args;
59 char *msg;
60
61 va_start(args, fmt);
62 msg = ralloc_vasprintf(NULL, fmt, args);
63 va_end(args);
64
65 vtn_log(b, level, spirv_offset, msg);
66
67 ralloc_free(msg);
68 }
69
70 static void
71 vtn_log_err(struct vtn_builder *b,
72 enum nir_spirv_debug_level level, const char *prefix,
73 const char *file, unsigned line,
74 const char *fmt, va_list args)
75 {
76 char *msg;
77
78 msg = ralloc_strdup(NULL, prefix);
79
80 #ifndef NDEBUG
81 ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line);
82 #endif
83
84 ralloc_asprintf_append(&msg, " ");
85
86 ralloc_vasprintf_append(&msg, fmt, args);
87
88 ralloc_asprintf_append(&msg, "\n %zu bytes into the SPIR-V binary",
89 b->spirv_offset);
90
91 if (b->file) {
92 ralloc_asprintf_append(&msg,
93 "\n in SPIR-V source file %s, line %d, col %d",
94 b->file, b->line, b->col);
95 }
96
97 vtn_log(b, level, b->spirv_offset, msg);
98
99 ralloc_free(msg);
100 }
101
102 static void
103 vtn_dump_shader(struct vtn_builder *b, const char *path, const char *prefix)
104 {
105 static int idx = 0;
106
107 char filename[1024];
108 int len = snprintf(filename, sizeof(filename), "%s/%s-%d.spirv",
109 path, prefix, idx++);
110 if (len < 0 || len >= sizeof(filename))
111 return;
112
113 FILE *f = fopen(filename, "w");
114 if (f == NULL)
115 return;
116
117 fwrite(b->spirv, sizeof(*b->spirv), b->spirv_word_count, f);
118 fclose(f);
119
120 vtn_info("SPIR-V shader dumped to %s", filename);
121 }
122
123 void
124 _vtn_warn(struct vtn_builder *b, const char *file, unsigned line,
125 const char *fmt, ...)
126 {
127 va_list args;
128
129 va_start(args, fmt);
130 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_WARNING, "SPIR-V WARNING:\n",
131 file, line, fmt, args);
132 va_end(args);
133 }
134
135 void
136 _vtn_err(struct vtn_builder *b, const char *file, unsigned line,
137 const char *fmt, ...)
138 {
139 va_list args;
140
141 va_start(args, fmt);
142 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V ERROR:\n",
143 file, line, fmt, args);
144 va_end(args);
145 }
146
147 void
148 _vtn_fail(struct vtn_builder *b, const char *file, unsigned line,
149 const char *fmt, ...)
150 {
151 va_list args;
152
153 va_start(args, fmt);
154 vtn_log_err(b, NIR_SPIRV_DEBUG_LEVEL_ERROR, "SPIR-V parsing FAILED:\n",
155 file, line, fmt, args);
156 va_end(args);
157
158 const char *dump_path = getenv("MESA_SPIRV_FAIL_DUMP_PATH");
159 if (dump_path)
160 vtn_dump_shader(b, dump_path, "fail");
161
162 longjmp(b->fail_jump, 1);
163 }
164
165 struct spec_constant_value {
166 bool is_double;
167 union {
168 uint32_t data32;
169 uint64_t data64;
170 };
171 };
172
173 static struct vtn_ssa_value *
174 vtn_undef_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
175 {
176 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
177 val->type = type;
178
179 if (glsl_type_is_vector_or_scalar(type)) {
180 unsigned num_components = glsl_get_vector_elements(val->type);
181 unsigned bit_size = glsl_get_bit_size(val->type);
182 val->def = nir_ssa_undef(&b->nb, num_components, bit_size);
183 } else {
184 unsigned elems = glsl_get_length(val->type);
185 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
186 if (glsl_type_is_matrix(type)) {
187 const struct glsl_type *elem_type =
188 glsl_vector_type(glsl_get_base_type(type),
189 glsl_get_vector_elements(type));
190
191 for (unsigned i = 0; i < elems; i++)
192 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
193 } else if (glsl_type_is_array(type)) {
194 const struct glsl_type *elem_type = glsl_get_array_element(type);
195 for (unsigned i = 0; i < elems; i++)
196 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
197 } else {
198 for (unsigned i = 0; i < elems; i++) {
199 const struct glsl_type *elem_type = glsl_get_struct_field(type, i);
200 val->elems[i] = vtn_undef_ssa_value(b, elem_type);
201 }
202 }
203 }
204
205 return val;
206 }
207
208 static struct vtn_ssa_value *
209 vtn_const_ssa_value(struct vtn_builder *b, nir_constant *constant,
210 const struct glsl_type *type)
211 {
212 struct hash_entry *entry = _mesa_hash_table_search(b->const_table, constant);
213
214 if (entry)
215 return entry->data;
216
217 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
218 val->type = type;
219
220 switch (glsl_get_base_type(type)) {
221 case GLSL_TYPE_INT:
222 case GLSL_TYPE_UINT:
223 case GLSL_TYPE_INT16:
224 case GLSL_TYPE_UINT16:
225 case GLSL_TYPE_UINT8:
226 case GLSL_TYPE_INT8:
227 case GLSL_TYPE_INT64:
228 case GLSL_TYPE_UINT64:
229 case GLSL_TYPE_BOOL:
230 case GLSL_TYPE_FLOAT:
231 case GLSL_TYPE_FLOAT16:
232 case GLSL_TYPE_DOUBLE: {
233 int bit_size = glsl_get_bit_size(type);
234 if (glsl_type_is_vector_or_scalar(type)) {
235 unsigned num_components = glsl_get_vector_elements(val->type);
236 nir_load_const_instr *load =
237 nir_load_const_instr_create(b->shader, num_components, bit_size);
238
239 memcpy(load->value, constant->values,
240 sizeof(nir_const_value) * load->def.num_components);
241
242 nir_instr_insert_before_cf_list(&b->nb.impl->body, &load->instr);
243 val->def = &load->def;
244 } else {
245 assert(glsl_type_is_matrix(type));
246 unsigned columns = glsl_get_matrix_columns(val->type);
247 val->elems = ralloc_array(b, struct vtn_ssa_value *, columns);
248 const struct glsl_type *column_type = glsl_get_column_type(val->type);
249 for (unsigned i = 0; i < columns; i++)
250 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
251 column_type);
252 }
253 break;
254 }
255
256 case GLSL_TYPE_ARRAY: {
257 unsigned elems = glsl_get_length(val->type);
258 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
259 const struct glsl_type *elem_type = glsl_get_array_element(val->type);
260 for (unsigned i = 0; i < elems; i++)
261 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
262 elem_type);
263 break;
264 }
265
266 case GLSL_TYPE_STRUCT: {
267 unsigned elems = glsl_get_length(val->type);
268 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
269 for (unsigned i = 0; i < elems; i++) {
270 const struct glsl_type *elem_type =
271 glsl_get_struct_field(val->type, i);
272 val->elems[i] = vtn_const_ssa_value(b, constant->elements[i],
273 elem_type);
274 }
275 break;
276 }
277
278 default:
279 vtn_fail("bad constant type");
280 }
281
282 return val;
283 }
284
285 struct vtn_ssa_value *
286 vtn_ssa_value(struct vtn_builder *b, uint32_t value_id)
287 {
288 struct vtn_value *val = vtn_untyped_value(b, value_id);
289 switch (val->value_type) {
290 case vtn_value_type_undef:
291 return vtn_undef_ssa_value(b, val->type->type);
292
293 case vtn_value_type_constant:
294 return vtn_const_ssa_value(b, val->constant, val->type->type);
295
296 case vtn_value_type_ssa:
297 return val->ssa;
298
299 case vtn_value_type_pointer:
300 vtn_assert(val->pointer->ptr_type && val->pointer->ptr_type->type);
301 struct vtn_ssa_value *ssa =
302 vtn_create_ssa_value(b, val->pointer->ptr_type->type);
303 ssa->def = vtn_pointer_to_ssa(b, val->pointer);
304 return ssa;
305
306 default:
307 vtn_fail("Invalid type for an SSA value");
308 }
309 }
310
311 static char *
312 vtn_string_literal(struct vtn_builder *b, const uint32_t *words,
313 unsigned word_count, unsigned *words_used)
314 {
315 char *dup = ralloc_strndup(b, (char *)words, word_count * sizeof(*words));
316 if (words_used) {
317 /* Ammount of space taken by the string (including the null) */
318 unsigned len = strlen(dup) + 1;
319 *words_used = DIV_ROUND_UP(len, sizeof(*words));
320 }
321 return dup;
322 }
323
324 const uint32_t *
325 vtn_foreach_instruction(struct vtn_builder *b, const uint32_t *start,
326 const uint32_t *end, vtn_instruction_handler handler)
327 {
328 b->file = NULL;
329 b->line = -1;
330 b->col = -1;
331
332 const uint32_t *w = start;
333 while (w < end) {
334 SpvOp opcode = w[0] & SpvOpCodeMask;
335 unsigned count = w[0] >> SpvWordCountShift;
336 vtn_assert(count >= 1 && w + count <= end);
337
338 b->spirv_offset = (uint8_t *)w - (uint8_t *)b->spirv;
339
340 switch (opcode) {
341 case SpvOpNop:
342 break; /* Do nothing */
343
344 case SpvOpLine:
345 b->file = vtn_value(b, w[1], vtn_value_type_string)->str;
346 b->line = w[2];
347 b->col = w[3];
348 break;
349
350 case SpvOpNoLine:
351 b->file = NULL;
352 b->line = -1;
353 b->col = -1;
354 break;
355
356 default:
357 if (!handler(b, opcode, w, count))
358 return w;
359 break;
360 }
361
362 w += count;
363 }
364
365 b->spirv_offset = 0;
366 b->file = NULL;
367 b->line = -1;
368 b->col = -1;
369
370 assert(w == end);
371 return w;
372 }
373
374 static void
375 vtn_handle_extension(struct vtn_builder *b, SpvOp opcode,
376 const uint32_t *w, unsigned count)
377 {
378 const char *ext = (const char *)&w[2];
379 switch (opcode) {
380 case SpvOpExtInstImport: {
381 struct vtn_value *val = vtn_push_value(b, w[1], vtn_value_type_extension);
382 if (strcmp(ext, "GLSL.std.450") == 0) {
383 val->ext_handler = vtn_handle_glsl450_instruction;
384 } else if ((strcmp(ext, "SPV_AMD_gcn_shader") == 0)
385 && (b->options && b->options->caps.amd_gcn_shader)) {
386 val->ext_handler = vtn_handle_amd_gcn_shader_instruction;
387 } else if ((strcmp(ext, "SPV_AMD_shader_ballot") == 0)
388 && (b->options && b->options->caps.amd_shader_ballot)) {
389 val->ext_handler = vtn_handle_amd_shader_ballot_instruction;
390 } else if ((strcmp(ext, "SPV_AMD_shader_trinary_minmax") == 0)
391 && (b->options && b->options->caps.amd_trinary_minmax)) {
392 val->ext_handler = vtn_handle_amd_shader_trinary_minmax_instruction;
393 } else if (strcmp(ext, "OpenCL.std") == 0) {
394 val->ext_handler = vtn_handle_opencl_instruction;
395 } else {
396 vtn_fail("Unsupported extension: %s", ext);
397 }
398 break;
399 }
400
401 case SpvOpExtInst: {
402 struct vtn_value *val = vtn_value(b, w[3], vtn_value_type_extension);
403 bool handled = val->ext_handler(b, w[4], w, count);
404 vtn_assert(handled);
405 break;
406 }
407
408 default:
409 vtn_fail_with_opcode("Unhandled opcode", opcode);
410 }
411 }
412
413 static void
414 _foreach_decoration_helper(struct vtn_builder *b,
415 struct vtn_value *base_value,
416 int parent_member,
417 struct vtn_value *value,
418 vtn_decoration_foreach_cb cb, void *data)
419 {
420 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
421 int member;
422 if (dec->scope == VTN_DEC_DECORATION) {
423 member = parent_member;
424 } else if (dec->scope >= VTN_DEC_STRUCT_MEMBER0) {
425 vtn_fail_if(value->value_type != vtn_value_type_type ||
426 value->type->base_type != vtn_base_type_struct,
427 "OpMemberDecorate and OpGroupMemberDecorate are only "
428 "allowed on OpTypeStruct");
429 /* This means we haven't recursed yet */
430 assert(value == base_value);
431
432 member = dec->scope - VTN_DEC_STRUCT_MEMBER0;
433
434 vtn_fail_if(member >= base_value->type->length,
435 "OpMemberDecorate specifies member %d but the "
436 "OpTypeStruct has only %u members",
437 member, base_value->type->length);
438 } else {
439 /* Not a decoration */
440 assert(dec->scope == VTN_DEC_EXECUTION_MODE);
441 continue;
442 }
443
444 if (dec->group) {
445 assert(dec->group->value_type == vtn_value_type_decoration_group);
446 _foreach_decoration_helper(b, base_value, member, dec->group,
447 cb, data);
448 } else {
449 cb(b, base_value, member, dec, data);
450 }
451 }
452 }
453
454 /** Iterates (recursively if needed) over all of the decorations on a value
455 *
456 * This function iterates over all of the decorations applied to a given
457 * value. If it encounters a decoration group, it recurses into the group
458 * and iterates over all of those decorations as well.
459 */
460 void
461 vtn_foreach_decoration(struct vtn_builder *b, struct vtn_value *value,
462 vtn_decoration_foreach_cb cb, void *data)
463 {
464 _foreach_decoration_helper(b, value, -1, value, cb, data);
465 }
466
467 void
468 vtn_foreach_execution_mode(struct vtn_builder *b, struct vtn_value *value,
469 vtn_execution_mode_foreach_cb cb, void *data)
470 {
471 for (struct vtn_decoration *dec = value->decoration; dec; dec = dec->next) {
472 if (dec->scope != VTN_DEC_EXECUTION_MODE)
473 continue;
474
475 assert(dec->group == NULL);
476 cb(b, value, dec, data);
477 }
478 }
479
480 void
481 vtn_handle_decoration(struct vtn_builder *b, SpvOp opcode,
482 const uint32_t *w, unsigned count)
483 {
484 const uint32_t *w_end = w + count;
485 const uint32_t target = w[1];
486 w += 2;
487
488 switch (opcode) {
489 case SpvOpDecorationGroup:
490 vtn_push_value(b, target, vtn_value_type_decoration_group);
491 break;
492
493 case SpvOpDecorate:
494 case SpvOpDecorateId:
495 case SpvOpMemberDecorate:
496 case SpvOpDecorateString:
497 case SpvOpMemberDecorateString:
498 case SpvOpExecutionMode:
499 case SpvOpExecutionModeId: {
500 struct vtn_value *val = vtn_untyped_value(b, target);
501
502 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
503 switch (opcode) {
504 case SpvOpDecorate:
505 case SpvOpDecorateId:
506 case SpvOpDecorateString:
507 dec->scope = VTN_DEC_DECORATION;
508 break;
509 case SpvOpMemberDecorate:
510 case SpvOpMemberDecorateString:
511 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(w++);
512 vtn_fail_if(dec->scope < VTN_DEC_STRUCT_MEMBER0, /* overflow */
513 "Member argument of OpMemberDecorate too large");
514 break;
515 case SpvOpExecutionMode:
516 case SpvOpExecutionModeId:
517 dec->scope = VTN_DEC_EXECUTION_MODE;
518 break;
519 default:
520 unreachable("Invalid decoration opcode");
521 }
522 dec->decoration = *(w++);
523 dec->operands = w;
524
525 /* Link into the list */
526 dec->next = val->decoration;
527 val->decoration = dec;
528 break;
529 }
530
531 case SpvOpGroupMemberDecorate:
532 case SpvOpGroupDecorate: {
533 struct vtn_value *group =
534 vtn_value(b, target, vtn_value_type_decoration_group);
535
536 for (; w < w_end; w++) {
537 struct vtn_value *val = vtn_untyped_value(b, *w);
538 struct vtn_decoration *dec = rzalloc(b, struct vtn_decoration);
539
540 dec->group = group;
541 if (opcode == SpvOpGroupDecorate) {
542 dec->scope = VTN_DEC_DECORATION;
543 } else {
544 dec->scope = VTN_DEC_STRUCT_MEMBER0 + *(++w);
545 vtn_fail_if(dec->scope < 0, /* Check for overflow */
546 "Member argument of OpGroupMemberDecorate too large");
547 }
548
549 /* Link into the list */
550 dec->next = val->decoration;
551 val->decoration = dec;
552 }
553 break;
554 }
555
556 default:
557 unreachable("Unhandled opcode");
558 }
559 }
560
561 struct member_decoration_ctx {
562 unsigned num_fields;
563 struct glsl_struct_field *fields;
564 struct vtn_type *type;
565 };
566
567 /**
568 * Returns true if the given type contains a struct decorated Block or
569 * BufferBlock
570 */
571 bool
572 vtn_type_contains_block(struct vtn_builder *b, struct vtn_type *type)
573 {
574 switch (type->base_type) {
575 case vtn_base_type_array:
576 return vtn_type_contains_block(b, type->array_element);
577 case vtn_base_type_struct:
578 if (type->block || type->buffer_block)
579 return true;
580 for (unsigned i = 0; i < type->length; i++) {
581 if (vtn_type_contains_block(b, type->members[i]))
582 return true;
583 }
584 return false;
585 default:
586 return false;
587 }
588 }
589
590 /** Returns true if two types are "compatible", i.e. you can do an OpLoad,
591 * OpStore, or OpCopyMemory between them without breaking anything.
592 * Technically, the SPIR-V rules require the exact same type ID but this lets
593 * us internally be a bit looser.
594 */
595 bool
596 vtn_types_compatible(struct vtn_builder *b,
597 struct vtn_type *t1, struct vtn_type *t2)
598 {
599 if (t1->id == t2->id)
600 return true;
601
602 if (t1->base_type != t2->base_type)
603 return false;
604
605 switch (t1->base_type) {
606 case vtn_base_type_void:
607 case vtn_base_type_scalar:
608 case vtn_base_type_vector:
609 case vtn_base_type_matrix:
610 case vtn_base_type_image:
611 case vtn_base_type_sampler:
612 case vtn_base_type_sampled_image:
613 return t1->type == t2->type;
614
615 case vtn_base_type_array:
616 return t1->length == t2->length &&
617 vtn_types_compatible(b, t1->array_element, t2->array_element);
618
619 case vtn_base_type_pointer:
620 return vtn_types_compatible(b, t1->deref, t2->deref);
621
622 case vtn_base_type_struct:
623 if (t1->length != t2->length)
624 return false;
625
626 for (unsigned i = 0; i < t1->length; i++) {
627 if (!vtn_types_compatible(b, t1->members[i], t2->members[i]))
628 return false;
629 }
630 return true;
631
632 case vtn_base_type_function:
633 /* This case shouldn't get hit since you can't copy around function
634 * types. Just require them to be identical.
635 */
636 return false;
637 }
638
639 vtn_fail("Invalid base type");
640 }
641
642 struct vtn_type *
643 vtn_type_without_array(struct vtn_type *type)
644 {
645 while (type->base_type == vtn_base_type_array)
646 type = type->array_element;
647 return type;
648 }
649
650 /* does a shallow copy of a vtn_type */
651
652 static struct vtn_type *
653 vtn_type_copy(struct vtn_builder *b, struct vtn_type *src)
654 {
655 struct vtn_type *dest = ralloc(b, struct vtn_type);
656 *dest = *src;
657
658 switch (src->base_type) {
659 case vtn_base_type_void:
660 case vtn_base_type_scalar:
661 case vtn_base_type_vector:
662 case vtn_base_type_matrix:
663 case vtn_base_type_array:
664 case vtn_base_type_pointer:
665 case vtn_base_type_image:
666 case vtn_base_type_sampler:
667 case vtn_base_type_sampled_image:
668 /* Nothing more to do */
669 break;
670
671 case vtn_base_type_struct:
672 dest->members = ralloc_array(b, struct vtn_type *, src->length);
673 memcpy(dest->members, src->members,
674 src->length * sizeof(src->members[0]));
675
676 dest->offsets = ralloc_array(b, unsigned, src->length);
677 memcpy(dest->offsets, src->offsets,
678 src->length * sizeof(src->offsets[0]));
679 break;
680
681 case vtn_base_type_function:
682 dest->params = ralloc_array(b, struct vtn_type *, src->length);
683 memcpy(dest->params, src->params, src->length * sizeof(src->params[0]));
684 break;
685 }
686
687 return dest;
688 }
689
690 static struct vtn_type *
691 mutable_matrix_member(struct vtn_builder *b, struct vtn_type *type, int member)
692 {
693 type->members[member] = vtn_type_copy(b, type->members[member]);
694 type = type->members[member];
695
696 /* We may have an array of matrices.... Oh, joy! */
697 while (glsl_type_is_array(type->type)) {
698 type->array_element = vtn_type_copy(b, type->array_element);
699 type = type->array_element;
700 }
701
702 vtn_assert(glsl_type_is_matrix(type->type));
703
704 return type;
705 }
706
707 static void
708 vtn_handle_access_qualifier(struct vtn_builder *b, struct vtn_type *type,
709 int member, enum gl_access_qualifier access)
710 {
711 type->members[member] = vtn_type_copy(b, type->members[member]);
712 type = type->members[member];
713
714 type->access |= access;
715 }
716
717 static void
718 array_stride_decoration_cb(struct vtn_builder *b,
719 struct vtn_value *val, int member,
720 const struct vtn_decoration *dec, void *void_ctx)
721 {
722 struct vtn_type *type = val->type;
723
724 if (dec->decoration == SpvDecorationArrayStride) {
725 if (vtn_type_contains_block(b, type)) {
726 vtn_warn("The ArrayStride decoration cannot be applied to an array "
727 "type which contains a structure type decorated Block "
728 "or BufferBlock");
729 /* Ignore the decoration */
730 } else {
731 vtn_fail_if(dec->operands[0] == 0, "ArrayStride must be non-zero");
732 type->stride = dec->operands[0];
733 }
734 }
735 }
736
737 static void
738 struct_member_decoration_cb(struct vtn_builder *b,
739 struct vtn_value *val, int member,
740 const struct vtn_decoration *dec, void *void_ctx)
741 {
742 struct member_decoration_ctx *ctx = void_ctx;
743
744 if (member < 0)
745 return;
746
747 assert(member < ctx->num_fields);
748
749 switch (dec->decoration) {
750 case SpvDecorationRelaxedPrecision:
751 case SpvDecorationUniform:
752 case SpvDecorationUniformId:
753 break; /* FIXME: Do nothing with this for now. */
754 case SpvDecorationNonWritable:
755 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_WRITEABLE);
756 break;
757 case SpvDecorationNonReadable:
758 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_NON_READABLE);
759 break;
760 case SpvDecorationVolatile:
761 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_VOLATILE);
762 break;
763 case SpvDecorationCoherent:
764 vtn_handle_access_qualifier(b, ctx->type, member, ACCESS_COHERENT);
765 break;
766 case SpvDecorationNoPerspective:
767 ctx->fields[member].interpolation = INTERP_MODE_NOPERSPECTIVE;
768 break;
769 case SpvDecorationFlat:
770 ctx->fields[member].interpolation = INTERP_MODE_FLAT;
771 break;
772 case SpvDecorationCentroid:
773 ctx->fields[member].centroid = true;
774 break;
775 case SpvDecorationSample:
776 ctx->fields[member].sample = true;
777 break;
778 case SpvDecorationStream:
779 /* Vulkan only allows one GS stream */
780 vtn_assert(dec->operands[0] == 0);
781 break;
782 case SpvDecorationLocation:
783 ctx->fields[member].location = dec->operands[0];
784 break;
785 case SpvDecorationComponent:
786 break; /* FIXME: What should we do with these? */
787 case SpvDecorationBuiltIn:
788 ctx->type->members[member] = vtn_type_copy(b, ctx->type->members[member]);
789 ctx->type->members[member]->is_builtin = true;
790 ctx->type->members[member]->builtin = dec->operands[0];
791 ctx->type->builtin_block = true;
792 break;
793 case SpvDecorationOffset:
794 ctx->type->offsets[member] = dec->operands[0];
795 ctx->fields[member].offset = dec->operands[0];
796 break;
797 case SpvDecorationMatrixStride:
798 /* Handled as a second pass */
799 break;
800 case SpvDecorationColMajor:
801 break; /* Nothing to do here. Column-major is the default. */
802 case SpvDecorationRowMajor:
803 mutable_matrix_member(b, ctx->type, member)->row_major = true;
804 break;
805
806 case SpvDecorationPatch:
807 break;
808
809 case SpvDecorationSpecId:
810 case SpvDecorationBlock:
811 case SpvDecorationBufferBlock:
812 case SpvDecorationArrayStride:
813 case SpvDecorationGLSLShared:
814 case SpvDecorationGLSLPacked:
815 case SpvDecorationInvariant:
816 case SpvDecorationRestrict:
817 case SpvDecorationAliased:
818 case SpvDecorationConstant:
819 case SpvDecorationIndex:
820 case SpvDecorationBinding:
821 case SpvDecorationDescriptorSet:
822 case SpvDecorationLinkageAttributes:
823 case SpvDecorationNoContraction:
824 case SpvDecorationInputAttachmentIndex:
825 vtn_warn("Decoration not allowed on struct members: %s",
826 spirv_decoration_to_string(dec->decoration));
827 break;
828
829 case SpvDecorationXfbBuffer:
830 case SpvDecorationXfbStride:
831 vtn_warn("Vulkan does not have transform feedback");
832 break;
833
834 case SpvDecorationCPacked:
835 if (b->shader->info.stage != MESA_SHADER_KERNEL)
836 vtn_warn("Decoration only allowed for CL-style kernels: %s",
837 spirv_decoration_to_string(dec->decoration));
838 else
839 ctx->type->packed = true;
840 break;
841
842 case SpvDecorationSaturatedConversion:
843 case SpvDecorationFuncParamAttr:
844 case SpvDecorationFPRoundingMode:
845 case SpvDecorationFPFastMathMode:
846 case SpvDecorationAlignment:
847 if (b->shader->info.stage != MESA_SHADER_KERNEL) {
848 vtn_warn("Decoration only allowed for CL-style kernels: %s",
849 spirv_decoration_to_string(dec->decoration));
850 }
851 break;
852
853 case SpvDecorationUserSemantic:
854 /* User semantic decorations can safely be ignored by the driver. */
855 break;
856
857 default:
858 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
859 }
860 }
861
862 /** Chases the array type all the way down to the tail and rewrites the
863 * glsl_types to be based off the tail's glsl_type.
864 */
865 static void
866 vtn_array_type_rewrite_glsl_type(struct vtn_type *type)
867 {
868 if (type->base_type != vtn_base_type_array)
869 return;
870
871 vtn_array_type_rewrite_glsl_type(type->array_element);
872
873 type->type = glsl_array_type(type->array_element->type,
874 type->length, type->stride);
875 }
876
877 /* Matrix strides are handled as a separate pass because we need to know
878 * whether the matrix is row-major or not first.
879 */
880 static void
881 struct_member_matrix_stride_cb(struct vtn_builder *b,
882 struct vtn_value *val, int member,
883 const struct vtn_decoration *dec,
884 void *void_ctx)
885 {
886 if (dec->decoration != SpvDecorationMatrixStride)
887 return;
888
889 vtn_fail_if(member < 0,
890 "The MatrixStride decoration is only allowed on members "
891 "of OpTypeStruct");
892 vtn_fail_if(dec->operands[0] == 0, "MatrixStride must be non-zero");
893
894 struct member_decoration_ctx *ctx = void_ctx;
895
896 struct vtn_type *mat_type = mutable_matrix_member(b, ctx->type, member);
897 if (mat_type->row_major) {
898 mat_type->array_element = vtn_type_copy(b, mat_type->array_element);
899 mat_type->stride = mat_type->array_element->stride;
900 mat_type->array_element->stride = dec->operands[0];
901
902 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
903 dec->operands[0], true);
904 mat_type->array_element->type = glsl_get_column_type(mat_type->type);
905 } else {
906 vtn_assert(mat_type->array_element->stride > 0);
907 mat_type->stride = dec->operands[0];
908
909 mat_type->type = glsl_explicit_matrix_type(mat_type->type,
910 dec->operands[0], false);
911 }
912
913 /* Now that we've replaced the glsl_type with a properly strided matrix
914 * type, rewrite the member type so that it's an array of the proper kind
915 * of glsl_type.
916 */
917 vtn_array_type_rewrite_glsl_type(ctx->type->members[member]);
918 ctx->fields[member].type = ctx->type->members[member]->type;
919 }
920
921 static void
922 struct_block_decoration_cb(struct vtn_builder *b,
923 struct vtn_value *val, int member,
924 const struct vtn_decoration *dec, void *ctx)
925 {
926 if (member != -1)
927 return;
928
929 struct vtn_type *type = val->type;
930 if (dec->decoration == SpvDecorationBlock)
931 type->block = true;
932 else if (dec->decoration == SpvDecorationBufferBlock)
933 type->buffer_block = true;
934 }
935
936 static void
937 type_decoration_cb(struct vtn_builder *b,
938 struct vtn_value *val, int member,
939 const struct vtn_decoration *dec, void *ctx)
940 {
941 struct vtn_type *type = val->type;
942
943 if (member != -1) {
944 /* This should have been handled by OpTypeStruct */
945 assert(val->type->base_type == vtn_base_type_struct);
946 assert(member >= 0 && member < val->type->length);
947 return;
948 }
949
950 switch (dec->decoration) {
951 case SpvDecorationArrayStride:
952 vtn_assert(type->base_type == vtn_base_type_array ||
953 type->base_type == vtn_base_type_pointer);
954 break;
955 case SpvDecorationBlock:
956 vtn_assert(type->base_type == vtn_base_type_struct);
957 vtn_assert(type->block);
958 break;
959 case SpvDecorationBufferBlock:
960 vtn_assert(type->base_type == vtn_base_type_struct);
961 vtn_assert(type->buffer_block);
962 break;
963 case SpvDecorationGLSLShared:
964 case SpvDecorationGLSLPacked:
965 /* Ignore these, since we get explicit offsets anyways */
966 break;
967
968 case SpvDecorationRowMajor:
969 case SpvDecorationColMajor:
970 case SpvDecorationMatrixStride:
971 case SpvDecorationBuiltIn:
972 case SpvDecorationNoPerspective:
973 case SpvDecorationFlat:
974 case SpvDecorationPatch:
975 case SpvDecorationCentroid:
976 case SpvDecorationSample:
977 case SpvDecorationVolatile:
978 case SpvDecorationCoherent:
979 case SpvDecorationNonWritable:
980 case SpvDecorationNonReadable:
981 case SpvDecorationUniform:
982 case SpvDecorationUniformId:
983 case SpvDecorationLocation:
984 case SpvDecorationComponent:
985 case SpvDecorationOffset:
986 case SpvDecorationXfbBuffer:
987 case SpvDecorationXfbStride:
988 case SpvDecorationUserSemantic:
989 vtn_warn("Decoration only allowed for struct members: %s",
990 spirv_decoration_to_string(dec->decoration));
991 break;
992
993 case SpvDecorationStream:
994 /* We don't need to do anything here, as stream is filled up when
995 * aplying the decoration to a variable, just check that if it is not a
996 * struct member, it should be a struct.
997 */
998 vtn_assert(type->base_type == vtn_base_type_struct);
999 break;
1000
1001 case SpvDecorationRelaxedPrecision:
1002 case SpvDecorationSpecId:
1003 case SpvDecorationInvariant:
1004 case SpvDecorationRestrict:
1005 case SpvDecorationAliased:
1006 case SpvDecorationConstant:
1007 case SpvDecorationIndex:
1008 case SpvDecorationBinding:
1009 case SpvDecorationDescriptorSet:
1010 case SpvDecorationLinkageAttributes:
1011 case SpvDecorationNoContraction:
1012 case SpvDecorationInputAttachmentIndex:
1013 vtn_warn("Decoration not allowed on types: %s",
1014 spirv_decoration_to_string(dec->decoration));
1015 break;
1016
1017 case SpvDecorationCPacked:
1018 if (b->shader->info.stage != MESA_SHADER_KERNEL)
1019 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1020 spirv_decoration_to_string(dec->decoration));
1021 else
1022 type->packed = true;
1023 break;
1024
1025 case SpvDecorationSaturatedConversion:
1026 case SpvDecorationFuncParamAttr:
1027 case SpvDecorationFPRoundingMode:
1028 case SpvDecorationFPFastMathMode:
1029 case SpvDecorationAlignment:
1030 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1031 spirv_decoration_to_string(dec->decoration));
1032 break;
1033
1034 default:
1035 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
1036 }
1037 }
1038
1039 static unsigned
1040 translate_image_format(struct vtn_builder *b, SpvImageFormat format)
1041 {
1042 switch (format) {
1043 case SpvImageFormatUnknown: return 0; /* GL_NONE */
1044 case SpvImageFormatRgba32f: return 0x8814; /* GL_RGBA32F */
1045 case SpvImageFormatRgba16f: return 0x881A; /* GL_RGBA16F */
1046 case SpvImageFormatR32f: return 0x822E; /* GL_R32F */
1047 case SpvImageFormatRgba8: return 0x8058; /* GL_RGBA8 */
1048 case SpvImageFormatRgba8Snorm: return 0x8F97; /* GL_RGBA8_SNORM */
1049 case SpvImageFormatRg32f: return 0x8230; /* GL_RG32F */
1050 case SpvImageFormatRg16f: return 0x822F; /* GL_RG16F */
1051 case SpvImageFormatR11fG11fB10f: return 0x8C3A; /* GL_R11F_G11F_B10F */
1052 case SpvImageFormatR16f: return 0x822D; /* GL_R16F */
1053 case SpvImageFormatRgba16: return 0x805B; /* GL_RGBA16 */
1054 case SpvImageFormatRgb10A2: return 0x8059; /* GL_RGB10_A2 */
1055 case SpvImageFormatRg16: return 0x822C; /* GL_RG16 */
1056 case SpvImageFormatRg8: return 0x822B; /* GL_RG8 */
1057 case SpvImageFormatR16: return 0x822A; /* GL_R16 */
1058 case SpvImageFormatR8: return 0x8229; /* GL_R8 */
1059 case SpvImageFormatRgba16Snorm: return 0x8F9B; /* GL_RGBA16_SNORM */
1060 case SpvImageFormatRg16Snorm: return 0x8F99; /* GL_RG16_SNORM */
1061 case SpvImageFormatRg8Snorm: return 0x8F95; /* GL_RG8_SNORM */
1062 case SpvImageFormatR16Snorm: return 0x8F98; /* GL_R16_SNORM */
1063 case SpvImageFormatR8Snorm: return 0x8F94; /* GL_R8_SNORM */
1064 case SpvImageFormatRgba32i: return 0x8D82; /* GL_RGBA32I */
1065 case SpvImageFormatRgba16i: return 0x8D88; /* GL_RGBA16I */
1066 case SpvImageFormatRgba8i: return 0x8D8E; /* GL_RGBA8I */
1067 case SpvImageFormatR32i: return 0x8235; /* GL_R32I */
1068 case SpvImageFormatRg32i: return 0x823B; /* GL_RG32I */
1069 case SpvImageFormatRg16i: return 0x8239; /* GL_RG16I */
1070 case SpvImageFormatRg8i: return 0x8237; /* GL_RG8I */
1071 case SpvImageFormatR16i: return 0x8233; /* GL_R16I */
1072 case SpvImageFormatR8i: return 0x8231; /* GL_R8I */
1073 case SpvImageFormatRgba32ui: return 0x8D70; /* GL_RGBA32UI */
1074 case SpvImageFormatRgba16ui: return 0x8D76; /* GL_RGBA16UI */
1075 case SpvImageFormatRgba8ui: return 0x8D7C; /* GL_RGBA8UI */
1076 case SpvImageFormatR32ui: return 0x8236; /* GL_R32UI */
1077 case SpvImageFormatRgb10a2ui: return 0x906F; /* GL_RGB10_A2UI */
1078 case SpvImageFormatRg32ui: return 0x823C; /* GL_RG32UI */
1079 case SpvImageFormatRg16ui: return 0x823A; /* GL_RG16UI */
1080 case SpvImageFormatRg8ui: return 0x8238; /* GL_RG8UI */
1081 case SpvImageFormatR16ui: return 0x8234; /* GL_R16UI */
1082 case SpvImageFormatR8ui: return 0x8232; /* GL_R8UI */
1083 default:
1084 vtn_fail("Invalid image format: %s (%u)",
1085 spirv_imageformat_to_string(format), format);
1086 }
1087 }
1088
1089 static void
1090 vtn_handle_type(struct vtn_builder *b, SpvOp opcode,
1091 const uint32_t *w, unsigned count)
1092 {
1093 struct vtn_value *val = NULL;
1094
1095 /* In order to properly handle forward declarations, we have to defer
1096 * allocation for pointer types.
1097 */
1098 if (opcode != SpvOpTypePointer && opcode != SpvOpTypeForwardPointer) {
1099 val = vtn_push_value(b, w[1], vtn_value_type_type);
1100 vtn_fail_if(val->type != NULL,
1101 "Only pointers can have forward declarations");
1102 val->type = rzalloc(b, struct vtn_type);
1103 val->type->id = w[1];
1104 }
1105
1106 switch (opcode) {
1107 case SpvOpTypeVoid:
1108 val->type->base_type = vtn_base_type_void;
1109 val->type->type = glsl_void_type();
1110 break;
1111 case SpvOpTypeBool:
1112 val->type->base_type = vtn_base_type_scalar;
1113 val->type->type = glsl_bool_type();
1114 val->type->length = 1;
1115 break;
1116 case SpvOpTypeInt: {
1117 int bit_size = w[2];
1118 const bool signedness = w[3];
1119 val->type->base_type = vtn_base_type_scalar;
1120 switch (bit_size) {
1121 case 64:
1122 val->type->type = (signedness ? glsl_int64_t_type() : glsl_uint64_t_type());
1123 break;
1124 case 32:
1125 val->type->type = (signedness ? glsl_int_type() : glsl_uint_type());
1126 break;
1127 case 16:
1128 val->type->type = (signedness ? glsl_int16_t_type() : glsl_uint16_t_type());
1129 break;
1130 case 8:
1131 val->type->type = (signedness ? glsl_int8_t_type() : glsl_uint8_t_type());
1132 break;
1133 default:
1134 vtn_fail("Invalid int bit size: %u", bit_size);
1135 }
1136 val->type->length = 1;
1137 break;
1138 }
1139
1140 case SpvOpTypeFloat: {
1141 int bit_size = w[2];
1142 val->type->base_type = vtn_base_type_scalar;
1143 switch (bit_size) {
1144 case 16:
1145 val->type->type = glsl_float16_t_type();
1146 break;
1147 case 32:
1148 val->type->type = glsl_float_type();
1149 break;
1150 case 64:
1151 val->type->type = glsl_double_type();
1152 break;
1153 default:
1154 vtn_fail("Invalid float bit size: %u", bit_size);
1155 }
1156 val->type->length = 1;
1157 break;
1158 }
1159
1160 case SpvOpTypeVector: {
1161 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1162 unsigned elems = w[3];
1163
1164 vtn_fail_if(base->base_type != vtn_base_type_scalar,
1165 "Base type for OpTypeVector must be a scalar");
1166 vtn_fail_if((elems < 2 || elems > 4) && (elems != 8) && (elems != 16),
1167 "Invalid component count for OpTypeVector");
1168
1169 val->type->base_type = vtn_base_type_vector;
1170 val->type->type = glsl_vector_type(glsl_get_base_type(base->type), elems);
1171 val->type->length = elems;
1172 val->type->stride = glsl_type_is_boolean(val->type->type)
1173 ? 4 : glsl_get_bit_size(base->type) / 8;
1174 val->type->array_element = base;
1175 break;
1176 }
1177
1178 case SpvOpTypeMatrix: {
1179 struct vtn_type *base = vtn_value(b, w[2], vtn_value_type_type)->type;
1180 unsigned columns = w[3];
1181
1182 vtn_fail_if(base->base_type != vtn_base_type_vector,
1183 "Base type for OpTypeMatrix must be a vector");
1184 vtn_fail_if(columns < 2 || columns > 4,
1185 "Invalid column count for OpTypeMatrix");
1186
1187 val->type->base_type = vtn_base_type_matrix;
1188 val->type->type = glsl_matrix_type(glsl_get_base_type(base->type),
1189 glsl_get_vector_elements(base->type),
1190 columns);
1191 vtn_fail_if(glsl_type_is_error(val->type->type),
1192 "Unsupported base type for OpTypeMatrix");
1193 assert(!glsl_type_is_error(val->type->type));
1194 val->type->length = columns;
1195 val->type->array_element = base;
1196 val->type->row_major = false;
1197 val->type->stride = 0;
1198 break;
1199 }
1200
1201 case SpvOpTypeRuntimeArray:
1202 case SpvOpTypeArray: {
1203 struct vtn_type *array_element =
1204 vtn_value(b, w[2], vtn_value_type_type)->type;
1205
1206 if (opcode == SpvOpTypeRuntimeArray) {
1207 /* A length of 0 is used to denote unsized arrays */
1208 val->type->length = 0;
1209 } else {
1210 val->type->length = vtn_constant_uint(b, w[3]);
1211 }
1212
1213 val->type->base_type = vtn_base_type_array;
1214 val->type->array_element = array_element;
1215 if (b->shader->info.stage == MESA_SHADER_KERNEL)
1216 val->type->stride = glsl_get_cl_size(array_element->type);
1217
1218 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1219 val->type->type = glsl_array_type(array_element->type, val->type->length,
1220 val->type->stride);
1221 break;
1222 }
1223
1224 case SpvOpTypeStruct: {
1225 unsigned num_fields = count - 2;
1226 val->type->base_type = vtn_base_type_struct;
1227 val->type->length = num_fields;
1228 val->type->members = ralloc_array(b, struct vtn_type *, num_fields);
1229 val->type->offsets = ralloc_array(b, unsigned, num_fields);
1230 val->type->packed = false;
1231
1232 NIR_VLA(struct glsl_struct_field, fields, count);
1233 for (unsigned i = 0; i < num_fields; i++) {
1234 val->type->members[i] =
1235 vtn_value(b, w[i + 2], vtn_value_type_type)->type;
1236 fields[i] = (struct glsl_struct_field) {
1237 .type = val->type->members[i]->type,
1238 .name = ralloc_asprintf(b, "field%d", i),
1239 .location = -1,
1240 .offset = -1,
1241 };
1242 }
1243
1244 if (b->shader->info.stage == MESA_SHADER_KERNEL) {
1245 unsigned offset = 0;
1246 for (unsigned i = 0; i < num_fields; i++) {
1247 offset = align(offset, glsl_get_cl_alignment(fields[i].type));
1248 fields[i].offset = offset;
1249 offset += glsl_get_cl_size(fields[i].type);
1250 }
1251 }
1252
1253 struct member_decoration_ctx ctx = {
1254 .num_fields = num_fields,
1255 .fields = fields,
1256 .type = val->type
1257 };
1258
1259 vtn_foreach_decoration(b, val, struct_member_decoration_cb, &ctx);
1260 vtn_foreach_decoration(b, val, struct_member_matrix_stride_cb, &ctx);
1261
1262 vtn_foreach_decoration(b, val, struct_block_decoration_cb, NULL);
1263
1264 const char *name = val->name;
1265
1266 if (val->type->block || val->type->buffer_block) {
1267 /* Packing will be ignored since types coming from SPIR-V are
1268 * explicitly laid out.
1269 */
1270 val->type->type = glsl_interface_type(fields, num_fields,
1271 /* packing */ 0, false,
1272 name ? name : "block");
1273 } else {
1274 val->type->type = glsl_struct_type(fields, num_fields,
1275 name ? name : "struct", false);
1276 }
1277 break;
1278 }
1279
1280 case SpvOpTypeFunction: {
1281 val->type->base_type = vtn_base_type_function;
1282 val->type->type = NULL;
1283
1284 val->type->return_type = vtn_value(b, w[2], vtn_value_type_type)->type;
1285
1286 const unsigned num_params = count - 3;
1287 val->type->length = num_params;
1288 val->type->params = ralloc_array(b, struct vtn_type *, num_params);
1289 for (unsigned i = 0; i < count - 3; i++) {
1290 val->type->params[i] =
1291 vtn_value(b, w[i + 3], vtn_value_type_type)->type;
1292 }
1293 break;
1294 }
1295
1296 case SpvOpTypePointer:
1297 case SpvOpTypeForwardPointer: {
1298 /* We can't blindly push the value because it might be a forward
1299 * declaration.
1300 */
1301 val = vtn_untyped_value(b, w[1]);
1302
1303 SpvStorageClass storage_class = w[2];
1304
1305 if (val->value_type == vtn_value_type_invalid) {
1306 val->value_type = vtn_value_type_type;
1307 val->type = rzalloc(b, struct vtn_type);
1308 val->type->id = w[1];
1309 val->type->base_type = vtn_base_type_pointer;
1310 val->type->storage_class = storage_class;
1311
1312 /* These can actually be stored to nir_variables and used as SSA
1313 * values so they need a real glsl_type.
1314 */
1315 enum vtn_variable_mode mode = vtn_storage_class_to_mode(
1316 b, storage_class, NULL, NULL);
1317 val->type->type = nir_address_format_to_glsl_type(
1318 vtn_mode_to_address_format(b, mode));
1319 } else {
1320 vtn_fail_if(val->type->storage_class != storage_class,
1321 "The storage classes of an OpTypePointer and any "
1322 "OpTypeForwardPointers that provide forward "
1323 "declarations of it must match.");
1324 }
1325
1326 if (opcode == SpvOpTypePointer) {
1327 vtn_fail_if(val->type->deref != NULL,
1328 "While OpTypeForwardPointer can be used to provide a "
1329 "forward declaration of a pointer, OpTypePointer can "
1330 "only be used once for a given id.");
1331
1332 val->type->deref = vtn_value(b, w[3], vtn_value_type_type)->type;
1333
1334 /* Only certain storage classes use ArrayStride. The others (in
1335 * particular Workgroup) are expected to be laid out by the driver.
1336 */
1337 switch (storage_class) {
1338 case SpvStorageClassUniform:
1339 case SpvStorageClassPushConstant:
1340 case SpvStorageClassStorageBuffer:
1341 case SpvStorageClassPhysicalStorageBufferEXT:
1342 vtn_foreach_decoration(b, val, array_stride_decoration_cb, NULL);
1343 break;
1344 default:
1345 /* Nothing to do. */
1346 break;
1347 }
1348
1349 if (b->physical_ptrs) {
1350 switch (storage_class) {
1351 case SpvStorageClassFunction:
1352 case SpvStorageClassWorkgroup:
1353 case SpvStorageClassCrossWorkgroup:
1354 val->type->stride = align(glsl_get_cl_size(val->type->deref->type),
1355 glsl_get_cl_alignment(val->type->deref->type));
1356 break;
1357 default:
1358 break;
1359 }
1360 }
1361 }
1362 break;
1363 }
1364
1365 case SpvOpTypeImage: {
1366 val->type->base_type = vtn_base_type_image;
1367
1368 const struct vtn_type *sampled_type =
1369 vtn_value(b, w[2], vtn_value_type_type)->type;
1370
1371 vtn_fail_if(sampled_type->base_type != vtn_base_type_scalar ||
1372 glsl_get_bit_size(sampled_type->type) != 32,
1373 "Sampled type of OpTypeImage must be a 32-bit scalar");
1374
1375 enum glsl_sampler_dim dim;
1376 switch ((SpvDim)w[3]) {
1377 case SpvDim1D: dim = GLSL_SAMPLER_DIM_1D; break;
1378 case SpvDim2D: dim = GLSL_SAMPLER_DIM_2D; break;
1379 case SpvDim3D: dim = GLSL_SAMPLER_DIM_3D; break;
1380 case SpvDimCube: dim = GLSL_SAMPLER_DIM_CUBE; break;
1381 case SpvDimRect: dim = GLSL_SAMPLER_DIM_RECT; break;
1382 case SpvDimBuffer: dim = GLSL_SAMPLER_DIM_BUF; break;
1383 case SpvDimSubpassData: dim = GLSL_SAMPLER_DIM_SUBPASS; break;
1384 default:
1385 vtn_fail("Invalid SPIR-V image dimensionality: %s (%u)",
1386 spirv_dim_to_string((SpvDim)w[3]), w[3]);
1387 }
1388
1389 /* w[4]: as per Vulkan spec "Validation Rules within a Module",
1390 * The “Depth” operand of OpTypeImage is ignored.
1391 */
1392 bool is_array = w[5];
1393 bool multisampled = w[6];
1394 unsigned sampled = w[7];
1395 SpvImageFormat format = w[8];
1396
1397 if (count > 9)
1398 val->type->access_qualifier = w[9];
1399 else
1400 val->type->access_qualifier = SpvAccessQualifierReadWrite;
1401
1402 if (multisampled) {
1403 if (dim == GLSL_SAMPLER_DIM_2D)
1404 dim = GLSL_SAMPLER_DIM_MS;
1405 else if (dim == GLSL_SAMPLER_DIM_SUBPASS)
1406 dim = GLSL_SAMPLER_DIM_SUBPASS_MS;
1407 else
1408 vtn_fail("Unsupported multisampled image type");
1409 }
1410
1411 val->type->image_format = translate_image_format(b, format);
1412
1413 enum glsl_base_type sampled_base_type =
1414 glsl_get_base_type(sampled_type->type);
1415 if (sampled == 1) {
1416 val->type->sampled = true;
1417 val->type->type = glsl_sampler_type(dim, false, is_array,
1418 sampled_base_type);
1419 } else if (sampled == 2) {
1420 val->type->sampled = false;
1421 val->type->type = glsl_image_type(dim, is_array, sampled_base_type);
1422 } else {
1423 vtn_fail("We need to know if the image will be sampled");
1424 }
1425 break;
1426 }
1427
1428 case SpvOpTypeSampledImage:
1429 val->type->base_type = vtn_base_type_sampled_image;
1430 val->type->image = vtn_value(b, w[2], vtn_value_type_type)->type;
1431 val->type->type = val->type->image->type;
1432 break;
1433
1434 case SpvOpTypeSampler:
1435 /* The actual sampler type here doesn't really matter. It gets
1436 * thrown away the moment you combine it with an image. What really
1437 * matters is that it's a sampler type as opposed to an integer type
1438 * so the backend knows what to do.
1439 */
1440 val->type->base_type = vtn_base_type_sampler;
1441 val->type->type = glsl_bare_sampler_type();
1442 break;
1443
1444 case SpvOpTypeOpaque:
1445 case SpvOpTypeEvent:
1446 case SpvOpTypeDeviceEvent:
1447 case SpvOpTypeReserveId:
1448 case SpvOpTypeQueue:
1449 case SpvOpTypePipe:
1450 default:
1451 vtn_fail_with_opcode("Unhandled opcode", opcode);
1452 }
1453
1454 vtn_foreach_decoration(b, val, type_decoration_cb, NULL);
1455
1456 if (val->type->base_type == vtn_base_type_struct &&
1457 (val->type->block || val->type->buffer_block)) {
1458 for (unsigned i = 0; i < val->type->length; i++) {
1459 vtn_fail_if(vtn_type_contains_block(b, val->type->members[i]),
1460 "Block and BufferBlock decorations cannot decorate a "
1461 "structure type that is nested at any level inside "
1462 "another structure type decorated with Block or "
1463 "BufferBlock.");
1464 }
1465 }
1466 }
1467
1468 static nir_constant *
1469 vtn_null_constant(struct vtn_builder *b, struct vtn_type *type)
1470 {
1471 nir_constant *c = rzalloc(b, nir_constant);
1472
1473 switch (type->base_type) {
1474 case vtn_base_type_scalar:
1475 case vtn_base_type_vector:
1476 /* Nothing to do here. It's already initialized to zero */
1477 break;
1478
1479 case vtn_base_type_pointer: {
1480 enum vtn_variable_mode mode = vtn_storage_class_to_mode(
1481 b, type->storage_class, type->deref, NULL);
1482 nir_address_format addr_format = vtn_mode_to_address_format(b, mode);
1483
1484 const nir_const_value *null_value = nir_address_format_null_value(addr_format);
1485 memcpy(c->values, null_value,
1486 sizeof(nir_const_value) * nir_address_format_num_components(addr_format));
1487 break;
1488 }
1489
1490 case vtn_base_type_void:
1491 case vtn_base_type_image:
1492 case vtn_base_type_sampler:
1493 case vtn_base_type_sampled_image:
1494 case vtn_base_type_function:
1495 /* For those we have to return something but it doesn't matter what. */
1496 break;
1497
1498 case vtn_base_type_matrix:
1499 case vtn_base_type_array:
1500 vtn_assert(type->length > 0);
1501 c->num_elements = type->length;
1502 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1503
1504 c->elements[0] = vtn_null_constant(b, type->array_element);
1505 for (unsigned i = 1; i < c->num_elements; i++)
1506 c->elements[i] = c->elements[0];
1507 break;
1508
1509 case vtn_base_type_struct:
1510 c->num_elements = type->length;
1511 c->elements = ralloc_array(b, nir_constant *, c->num_elements);
1512 for (unsigned i = 0; i < c->num_elements; i++)
1513 c->elements[i] = vtn_null_constant(b, type->members[i]);
1514 break;
1515
1516 default:
1517 vtn_fail("Invalid type for null constant");
1518 }
1519
1520 return c;
1521 }
1522
1523 static void
1524 spec_constant_decoration_cb(struct vtn_builder *b, struct vtn_value *v,
1525 int member, const struct vtn_decoration *dec,
1526 void *data)
1527 {
1528 vtn_assert(member == -1);
1529 if (dec->decoration != SpvDecorationSpecId)
1530 return;
1531
1532 struct spec_constant_value *const_value = data;
1533
1534 for (unsigned i = 0; i < b->num_specializations; i++) {
1535 if (b->specializations[i].id == dec->operands[0]) {
1536 if (const_value->is_double)
1537 const_value->data64 = b->specializations[i].data64;
1538 else
1539 const_value->data32 = b->specializations[i].data32;
1540 return;
1541 }
1542 }
1543 }
1544
1545 static uint32_t
1546 get_specialization(struct vtn_builder *b, struct vtn_value *val,
1547 uint32_t const_value)
1548 {
1549 struct spec_constant_value data;
1550 data.is_double = false;
1551 data.data32 = const_value;
1552 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1553 return data.data32;
1554 }
1555
1556 static uint64_t
1557 get_specialization64(struct vtn_builder *b, struct vtn_value *val,
1558 uint64_t const_value)
1559 {
1560 struct spec_constant_value data;
1561 data.is_double = true;
1562 data.data64 = const_value;
1563 vtn_foreach_decoration(b, val, spec_constant_decoration_cb, &data);
1564 return data.data64;
1565 }
1566
1567 static void
1568 handle_workgroup_size_decoration_cb(struct vtn_builder *b,
1569 struct vtn_value *val,
1570 int member,
1571 const struct vtn_decoration *dec,
1572 void *data)
1573 {
1574 vtn_assert(member == -1);
1575 if (dec->decoration != SpvDecorationBuiltIn ||
1576 dec->operands[0] != SpvBuiltInWorkgroupSize)
1577 return;
1578
1579 vtn_assert(val->type->type == glsl_vector_type(GLSL_TYPE_UINT, 3));
1580 b->workgroup_size_builtin = val;
1581 }
1582
1583 static void
1584 vtn_handle_constant(struct vtn_builder *b, SpvOp opcode,
1585 const uint32_t *w, unsigned count)
1586 {
1587 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_constant);
1588 val->constant = rzalloc(b, nir_constant);
1589 switch (opcode) {
1590 case SpvOpConstantTrue:
1591 case SpvOpConstantFalse:
1592 case SpvOpSpecConstantTrue:
1593 case SpvOpSpecConstantFalse: {
1594 vtn_fail_if(val->type->type != glsl_bool_type(),
1595 "Result type of %s must be OpTypeBool",
1596 spirv_op_to_string(opcode));
1597
1598 uint32_t int_val = (opcode == SpvOpConstantTrue ||
1599 opcode == SpvOpSpecConstantTrue);
1600
1601 if (opcode == SpvOpSpecConstantTrue ||
1602 opcode == SpvOpSpecConstantFalse)
1603 int_val = get_specialization(b, val, int_val);
1604
1605 val->constant->values[0].b = int_val != 0;
1606 break;
1607 }
1608
1609 case SpvOpConstant: {
1610 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1611 "Result type of %s must be a scalar",
1612 spirv_op_to_string(opcode));
1613 int bit_size = glsl_get_bit_size(val->type->type);
1614 switch (bit_size) {
1615 case 64:
1616 val->constant->values[0].u64 = vtn_u64_literal(&w[3]);
1617 break;
1618 case 32:
1619 val->constant->values[0].u32 = w[3];
1620 break;
1621 case 16:
1622 val->constant->values[0].u16 = w[3];
1623 break;
1624 case 8:
1625 val->constant->values[0].u8 = w[3];
1626 break;
1627 default:
1628 vtn_fail("Unsupported SpvOpConstant bit size: %u", bit_size);
1629 }
1630 break;
1631 }
1632
1633 case SpvOpSpecConstant: {
1634 vtn_fail_if(val->type->base_type != vtn_base_type_scalar,
1635 "Result type of %s must be a scalar",
1636 spirv_op_to_string(opcode));
1637 int bit_size = glsl_get_bit_size(val->type->type);
1638 switch (bit_size) {
1639 case 64:
1640 val->constant->values[0].u64 =
1641 get_specialization64(b, val, vtn_u64_literal(&w[3]));
1642 break;
1643 case 32:
1644 val->constant->values[0].u32 = get_specialization(b, val, w[3]);
1645 break;
1646 case 16:
1647 val->constant->values[0].u16 = get_specialization(b, val, w[3]);
1648 break;
1649 case 8:
1650 val->constant->values[0].u8 = get_specialization(b, val, w[3]);
1651 break;
1652 default:
1653 vtn_fail("Unsupported SpvOpSpecConstant bit size");
1654 }
1655 break;
1656 }
1657
1658 case SpvOpSpecConstantComposite:
1659 case SpvOpConstantComposite: {
1660 unsigned elem_count = count - 3;
1661 vtn_fail_if(elem_count != val->type->length,
1662 "%s has %u constituents, expected %u",
1663 spirv_op_to_string(opcode), elem_count, val->type->length);
1664
1665 nir_constant **elems = ralloc_array(b, nir_constant *, elem_count);
1666 for (unsigned i = 0; i < elem_count; i++) {
1667 struct vtn_value *val = vtn_untyped_value(b, w[i + 3]);
1668
1669 if (val->value_type == vtn_value_type_constant) {
1670 elems[i] = val->constant;
1671 } else {
1672 vtn_fail_if(val->value_type != vtn_value_type_undef,
1673 "only constants or undefs allowed for "
1674 "SpvOpConstantComposite");
1675 /* to make it easier, just insert a NULL constant for now */
1676 elems[i] = vtn_null_constant(b, val->type);
1677 }
1678 }
1679
1680 switch (val->type->base_type) {
1681 case vtn_base_type_vector: {
1682 assert(glsl_type_is_vector(val->type->type));
1683 for (unsigned i = 0; i < elem_count; i++)
1684 val->constant->values[i] = elems[i]->values[0];
1685 break;
1686 }
1687
1688 case vtn_base_type_matrix:
1689 case vtn_base_type_struct:
1690 case vtn_base_type_array:
1691 ralloc_steal(val->constant, elems);
1692 val->constant->num_elements = elem_count;
1693 val->constant->elements = elems;
1694 break;
1695
1696 default:
1697 vtn_fail("Result type of %s must be a composite type",
1698 spirv_op_to_string(opcode));
1699 }
1700 break;
1701 }
1702
1703 case SpvOpSpecConstantOp: {
1704 SpvOp opcode = get_specialization(b, val, w[3]);
1705 switch (opcode) {
1706 case SpvOpVectorShuffle: {
1707 struct vtn_value *v0 = &b->values[w[4]];
1708 struct vtn_value *v1 = &b->values[w[5]];
1709
1710 vtn_assert(v0->value_type == vtn_value_type_constant ||
1711 v0->value_type == vtn_value_type_undef);
1712 vtn_assert(v1->value_type == vtn_value_type_constant ||
1713 v1->value_type == vtn_value_type_undef);
1714
1715 unsigned len0 = glsl_get_vector_elements(v0->type->type);
1716 unsigned len1 = glsl_get_vector_elements(v1->type->type);
1717
1718 vtn_assert(len0 + len1 < 16);
1719
1720 unsigned bit_size = glsl_get_bit_size(val->type->type);
1721 unsigned bit_size0 = glsl_get_bit_size(v0->type->type);
1722 unsigned bit_size1 = glsl_get_bit_size(v1->type->type);
1723
1724 vtn_assert(bit_size == bit_size0 && bit_size == bit_size1);
1725 (void)bit_size0; (void)bit_size1;
1726
1727 nir_const_value undef = { .u64 = 0xdeadbeefdeadbeef };
1728 nir_const_value combined[NIR_MAX_VEC_COMPONENTS * 2];
1729
1730 if (v0->value_type == vtn_value_type_constant) {
1731 for (unsigned i = 0; i < len0; i++)
1732 combined[i] = v0->constant->values[i];
1733 }
1734 if (v1->value_type == vtn_value_type_constant) {
1735 for (unsigned i = 0; i < len1; i++)
1736 combined[len0 + i] = v1->constant->values[i];
1737 }
1738
1739 for (unsigned i = 0, j = 0; i < count - 6; i++, j++) {
1740 uint32_t comp = w[i + 6];
1741 if (comp == (uint32_t)-1) {
1742 /* If component is not used, set the value to a known constant
1743 * to detect if it is wrongly used.
1744 */
1745 val->constant->values[j] = undef;
1746 } else {
1747 vtn_fail_if(comp >= len0 + len1,
1748 "All Component literals must either be FFFFFFFF "
1749 "or in [0, N - 1] (inclusive).");
1750 val->constant->values[j] = combined[comp];
1751 }
1752 }
1753 break;
1754 }
1755
1756 case SpvOpCompositeExtract:
1757 case SpvOpCompositeInsert: {
1758 struct vtn_value *comp;
1759 unsigned deref_start;
1760 struct nir_constant **c;
1761 if (opcode == SpvOpCompositeExtract) {
1762 comp = vtn_value(b, w[4], vtn_value_type_constant);
1763 deref_start = 5;
1764 c = &comp->constant;
1765 } else {
1766 comp = vtn_value(b, w[5], vtn_value_type_constant);
1767 deref_start = 6;
1768 val->constant = nir_constant_clone(comp->constant,
1769 (nir_variable *)b);
1770 c = &val->constant;
1771 }
1772
1773 int elem = -1;
1774 const struct vtn_type *type = comp->type;
1775 for (unsigned i = deref_start; i < count; i++) {
1776 vtn_fail_if(w[i] > type->length,
1777 "%uth index of %s is %u but the type has only "
1778 "%u elements", i - deref_start,
1779 spirv_op_to_string(opcode), w[i], type->length);
1780
1781 switch (type->base_type) {
1782 case vtn_base_type_vector:
1783 elem = w[i];
1784 type = type->array_element;
1785 break;
1786
1787 case vtn_base_type_matrix:
1788 case vtn_base_type_array:
1789 c = &(*c)->elements[w[i]];
1790 type = type->array_element;
1791 break;
1792
1793 case vtn_base_type_struct:
1794 c = &(*c)->elements[w[i]];
1795 type = type->members[w[i]];
1796 break;
1797
1798 default:
1799 vtn_fail("%s must only index into composite types",
1800 spirv_op_to_string(opcode));
1801 }
1802 }
1803
1804 if (opcode == SpvOpCompositeExtract) {
1805 if (elem == -1) {
1806 val->constant = *c;
1807 } else {
1808 unsigned num_components = type->length;
1809 for (unsigned i = 0; i < num_components; i++)
1810 val->constant->values[i] = (*c)->values[elem + i];
1811 }
1812 } else {
1813 struct vtn_value *insert =
1814 vtn_value(b, w[4], vtn_value_type_constant);
1815 vtn_assert(insert->type == type);
1816 if (elem == -1) {
1817 *c = insert->constant;
1818 } else {
1819 unsigned num_components = type->length;
1820 for (unsigned i = 0; i < num_components; i++)
1821 (*c)->values[elem + i] = insert->constant->values[i];
1822 }
1823 }
1824 break;
1825 }
1826
1827 default: {
1828 bool swap;
1829 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(val->type->type);
1830 nir_alu_type src_alu_type = dst_alu_type;
1831 unsigned num_components = glsl_get_vector_elements(val->type->type);
1832 unsigned bit_size;
1833
1834 vtn_assert(count <= 7);
1835
1836 switch (opcode) {
1837 case SpvOpSConvert:
1838 case SpvOpFConvert:
1839 case SpvOpUConvert:
1840 /* We have a source in a conversion */
1841 src_alu_type =
1842 nir_get_nir_type_for_glsl_type(
1843 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1844 /* We use the bitsize of the conversion source to evaluate the opcode later */
1845 bit_size = glsl_get_bit_size(
1846 vtn_value(b, w[4], vtn_value_type_constant)->type->type);
1847 break;
1848 default:
1849 bit_size = glsl_get_bit_size(val->type->type);
1850 };
1851
1852 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
1853 nir_alu_type_get_type_size(src_alu_type),
1854 nir_alu_type_get_type_size(dst_alu_type));
1855 nir_const_value src[3][NIR_MAX_VEC_COMPONENTS];
1856
1857 for (unsigned i = 0; i < count - 4; i++) {
1858 struct vtn_value *src_val =
1859 vtn_value(b, w[4 + i], vtn_value_type_constant);
1860
1861 /* If this is an unsized source, pull the bit size from the
1862 * source; otherwise, we'll use the bit size from the destination.
1863 */
1864 if (!nir_alu_type_get_type_size(nir_op_infos[op].input_types[i]))
1865 bit_size = glsl_get_bit_size(src_val->type->type);
1866
1867 unsigned src_comps = nir_op_infos[op].input_sizes[i] ?
1868 nir_op_infos[op].input_sizes[i] :
1869 num_components;
1870
1871 unsigned j = swap ? 1 - i : i;
1872 for (unsigned c = 0; c < src_comps; c++)
1873 src[j][c] = src_val->constant->values[c];
1874 }
1875
1876 /* fix up fixed size sources */
1877 switch (op) {
1878 case nir_op_ishl:
1879 case nir_op_ishr:
1880 case nir_op_ushr: {
1881 if (bit_size == 32)
1882 break;
1883 for (unsigned i = 0; i < num_components; ++i) {
1884 switch (bit_size) {
1885 case 64: src[1][i].u32 = src[1][i].u64; break;
1886 case 16: src[1][i].u32 = src[1][i].u16; break;
1887 case 8: src[1][i].u32 = src[1][i].u8; break;
1888 }
1889 }
1890 break;
1891 }
1892 default:
1893 break;
1894 }
1895
1896 nir_const_value *srcs[3] = {
1897 src[0], src[1], src[2],
1898 };
1899 nir_eval_const_opcode(op, val->constant->values,
1900 num_components, bit_size, srcs,
1901 b->shader->info.float_controls_execution_mode);
1902 break;
1903 } /* default */
1904 }
1905 break;
1906 }
1907
1908 case SpvOpConstantNull:
1909 val->constant = vtn_null_constant(b, val->type);
1910 break;
1911
1912 case SpvOpConstantSampler:
1913 vtn_fail("OpConstantSampler requires Kernel Capability");
1914 break;
1915
1916 default:
1917 vtn_fail_with_opcode("Unhandled opcode", opcode);
1918 }
1919
1920 /* Now that we have the value, update the workgroup size if needed */
1921 vtn_foreach_decoration(b, val, handle_workgroup_size_decoration_cb, NULL);
1922 }
1923
1924 SpvMemorySemanticsMask
1925 vtn_storage_class_to_memory_semantics(SpvStorageClass sc)
1926 {
1927 switch (sc) {
1928 case SpvStorageClassStorageBuffer:
1929 case SpvStorageClassPhysicalStorageBufferEXT:
1930 return SpvMemorySemanticsUniformMemoryMask;
1931 case SpvStorageClassWorkgroup:
1932 return SpvMemorySemanticsWorkgroupMemoryMask;
1933 default:
1934 return SpvMemorySemanticsMaskNone;
1935 }
1936 }
1937
1938 static void
1939 vtn_split_barrier_semantics(struct vtn_builder *b,
1940 SpvMemorySemanticsMask semantics,
1941 SpvMemorySemanticsMask *before,
1942 SpvMemorySemanticsMask *after)
1943 {
1944 /* For memory semantics embedded in operations, we split them into up to
1945 * two barriers, to be added before and after the operation. This is less
1946 * strict than if we propagated until the final backend stage, but still
1947 * result in correct execution.
1948 *
1949 * A further improvement could be pipe this information (and use!) into the
1950 * next compiler layers, at the expense of making the handling of barriers
1951 * more complicated.
1952 */
1953
1954 *before = SpvMemorySemanticsMaskNone;
1955 *after = SpvMemorySemanticsMaskNone;
1956
1957 const SpvMemorySemanticsMask order_semantics =
1958 semantics & (SpvMemorySemanticsAcquireMask |
1959 SpvMemorySemanticsReleaseMask |
1960 SpvMemorySemanticsAcquireReleaseMask |
1961 SpvMemorySemanticsSequentiallyConsistentMask);
1962
1963 const SpvMemorySemanticsMask av_vis_semantics =
1964 semantics & (SpvMemorySemanticsMakeAvailableMask |
1965 SpvMemorySemanticsMakeVisibleMask);
1966
1967 const SpvMemorySemanticsMask storage_semantics =
1968 semantics & (SpvMemorySemanticsUniformMemoryMask |
1969 SpvMemorySemanticsSubgroupMemoryMask |
1970 SpvMemorySemanticsWorkgroupMemoryMask |
1971 SpvMemorySemanticsCrossWorkgroupMemoryMask |
1972 SpvMemorySemanticsAtomicCounterMemoryMask |
1973 SpvMemorySemanticsImageMemoryMask |
1974 SpvMemorySemanticsOutputMemoryMask);
1975
1976 const SpvMemorySemanticsMask other_semantics =
1977 semantics & ~(order_semantics | av_vis_semantics | storage_semantics);
1978
1979 if (other_semantics)
1980 vtn_warn("Ignoring unhandled memory semantics: %u\n", other_semantics);
1981
1982 vtn_fail_if(util_bitcount(order_semantics) > 1,
1983 "Multiple memory ordering bits specified");
1984
1985 /* SequentiallyConsistent is treated as AcquireRelease. */
1986
1987 /* The RELEASE barrier happens BEFORE the operation, and it is usually
1988 * associated with a Store. All the write operations with a matching
1989 * semantics will not be reordered after the Store.
1990 */
1991 if (order_semantics & (SpvMemorySemanticsReleaseMask |
1992 SpvMemorySemanticsAcquireReleaseMask |
1993 SpvMemorySemanticsSequentiallyConsistentMask)) {
1994 *before |= SpvMemorySemanticsReleaseMask | storage_semantics;
1995 }
1996
1997 /* The ACQUIRE barrier happens AFTER the operation, and it is usually
1998 * associated with a Load. All the operations with a matching semantics
1999 * will not be reordered before the Load.
2000 */
2001 if (order_semantics & (SpvMemorySemanticsAcquireMask |
2002 SpvMemorySemanticsAcquireReleaseMask |
2003 SpvMemorySemanticsSequentiallyConsistentMask)) {
2004 *after |= SpvMemorySemanticsAcquireMask | storage_semantics;
2005 }
2006
2007 if (av_vis_semantics & SpvMemorySemanticsMakeVisibleMask)
2008 *before |= SpvMemorySemanticsMakeVisibleMask | storage_semantics;
2009
2010 if (av_vis_semantics & SpvMemorySemanticsMakeAvailableMask)
2011 *after |= SpvMemorySemanticsMakeAvailableMask | storage_semantics;
2012 }
2013
2014 struct vtn_ssa_value *
2015 vtn_create_ssa_value(struct vtn_builder *b, const struct glsl_type *type)
2016 {
2017 struct vtn_ssa_value *val = rzalloc(b, struct vtn_ssa_value);
2018 val->type = type;
2019
2020 if (!glsl_type_is_vector_or_scalar(type)) {
2021 unsigned elems = glsl_get_length(type);
2022 val->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
2023 for (unsigned i = 0; i < elems; i++) {
2024 const struct glsl_type *child_type;
2025
2026 switch (glsl_get_base_type(type)) {
2027 case GLSL_TYPE_INT:
2028 case GLSL_TYPE_UINT:
2029 case GLSL_TYPE_INT16:
2030 case GLSL_TYPE_UINT16:
2031 case GLSL_TYPE_UINT8:
2032 case GLSL_TYPE_INT8:
2033 case GLSL_TYPE_INT64:
2034 case GLSL_TYPE_UINT64:
2035 case GLSL_TYPE_BOOL:
2036 case GLSL_TYPE_FLOAT:
2037 case GLSL_TYPE_FLOAT16:
2038 case GLSL_TYPE_DOUBLE:
2039 child_type = glsl_get_column_type(type);
2040 break;
2041 case GLSL_TYPE_ARRAY:
2042 child_type = glsl_get_array_element(type);
2043 break;
2044 case GLSL_TYPE_STRUCT:
2045 case GLSL_TYPE_INTERFACE:
2046 child_type = glsl_get_struct_field(type, i);
2047 break;
2048 default:
2049 vtn_fail("unkown base type");
2050 }
2051
2052 val->elems[i] = vtn_create_ssa_value(b, child_type);
2053 }
2054 }
2055
2056 return val;
2057 }
2058
2059 static nir_tex_src
2060 vtn_tex_src(struct vtn_builder *b, unsigned index, nir_tex_src_type type)
2061 {
2062 nir_tex_src src;
2063 src.src = nir_src_for_ssa(vtn_ssa_value(b, index)->def);
2064 src.src_type = type;
2065 return src;
2066 }
2067
2068 static void
2069 vtn_handle_texture(struct vtn_builder *b, SpvOp opcode,
2070 const uint32_t *w, unsigned count)
2071 {
2072 if (opcode == SpvOpSampledImage) {
2073 struct vtn_value *val =
2074 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
2075 val->sampled_image = ralloc(b, struct vtn_sampled_image);
2076 val->sampled_image->type =
2077 vtn_value(b, w[1], vtn_value_type_type)->type;
2078 val->sampled_image->image =
2079 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2080 val->sampled_image->sampler =
2081 vtn_value(b, w[4], vtn_value_type_pointer)->pointer;
2082 return;
2083 } else if (opcode == SpvOpImage) {
2084 struct vtn_value *src_val = vtn_untyped_value(b, w[3]);
2085 if (src_val->value_type == vtn_value_type_sampled_image) {
2086 vtn_push_value_pointer(b, w[2], src_val->sampled_image->image);
2087 } else {
2088 vtn_assert(src_val->value_type == vtn_value_type_pointer);
2089 vtn_push_value_pointer(b, w[2], src_val->pointer);
2090 }
2091 return;
2092 }
2093
2094 struct vtn_type *ret_type = vtn_value(b, w[1], vtn_value_type_type)->type;
2095
2096 struct vtn_sampled_image sampled;
2097 struct vtn_value *sampled_val = vtn_untyped_value(b, w[3]);
2098 if (sampled_val->value_type == vtn_value_type_sampled_image) {
2099 sampled = *sampled_val->sampled_image;
2100 } else {
2101 vtn_assert(sampled_val->value_type == vtn_value_type_pointer);
2102 sampled.type = sampled_val->pointer->type;
2103 sampled.image = NULL;
2104 sampled.sampler = sampled_val->pointer;
2105 }
2106
2107 const struct glsl_type *image_type = sampled.type->type;
2108 const enum glsl_sampler_dim sampler_dim = glsl_get_sampler_dim(image_type);
2109 const bool is_array = glsl_sampler_type_is_array(image_type);
2110 nir_alu_type dest_type = nir_type_invalid;
2111
2112 /* Figure out the base texture operation */
2113 nir_texop texop;
2114 switch (opcode) {
2115 case SpvOpImageSampleImplicitLod:
2116 case SpvOpImageSampleDrefImplicitLod:
2117 case SpvOpImageSampleProjImplicitLod:
2118 case SpvOpImageSampleProjDrefImplicitLod:
2119 texop = nir_texop_tex;
2120 break;
2121
2122 case SpvOpImageSampleExplicitLod:
2123 case SpvOpImageSampleDrefExplicitLod:
2124 case SpvOpImageSampleProjExplicitLod:
2125 case SpvOpImageSampleProjDrefExplicitLod:
2126 texop = nir_texop_txl;
2127 break;
2128
2129 case SpvOpImageFetch:
2130 if (glsl_get_sampler_dim(image_type) == GLSL_SAMPLER_DIM_MS) {
2131 texop = nir_texop_txf_ms;
2132 } else {
2133 texop = nir_texop_txf;
2134 }
2135 break;
2136
2137 case SpvOpImageGather:
2138 case SpvOpImageDrefGather:
2139 texop = nir_texop_tg4;
2140 break;
2141
2142 case SpvOpImageQuerySizeLod:
2143 case SpvOpImageQuerySize:
2144 texop = nir_texop_txs;
2145 dest_type = nir_type_int;
2146 break;
2147
2148 case SpvOpImageQueryLod:
2149 texop = nir_texop_lod;
2150 dest_type = nir_type_float;
2151 break;
2152
2153 case SpvOpImageQueryLevels:
2154 texop = nir_texop_query_levels;
2155 dest_type = nir_type_int;
2156 break;
2157
2158 case SpvOpImageQuerySamples:
2159 texop = nir_texop_texture_samples;
2160 dest_type = nir_type_int;
2161 break;
2162
2163 default:
2164 vtn_fail_with_opcode("Unhandled opcode", opcode);
2165 }
2166
2167 nir_tex_src srcs[10]; /* 10 should be enough */
2168 nir_tex_src *p = srcs;
2169
2170 nir_deref_instr *sampler = vtn_pointer_to_deref(b, sampled.sampler);
2171 nir_deref_instr *texture =
2172 sampled.image ? vtn_pointer_to_deref(b, sampled.image) : sampler;
2173
2174 p->src = nir_src_for_ssa(&texture->dest.ssa);
2175 p->src_type = nir_tex_src_texture_deref;
2176 p++;
2177
2178 switch (texop) {
2179 case nir_texop_tex:
2180 case nir_texop_txb:
2181 case nir_texop_txl:
2182 case nir_texop_txd:
2183 case nir_texop_tg4:
2184 case nir_texop_lod:
2185 /* These operations require a sampler */
2186 p->src = nir_src_for_ssa(&sampler->dest.ssa);
2187 p->src_type = nir_tex_src_sampler_deref;
2188 p++;
2189 break;
2190 case nir_texop_txf:
2191 case nir_texop_txf_ms:
2192 case nir_texop_txs:
2193 case nir_texop_query_levels:
2194 case nir_texop_texture_samples:
2195 case nir_texop_samples_identical:
2196 /* These don't */
2197 break;
2198 case nir_texop_txf_ms_fb:
2199 vtn_fail("unexpected nir_texop_txf_ms_fb");
2200 break;
2201 case nir_texop_txf_ms_mcs:
2202 vtn_fail("unexpected nir_texop_txf_ms_mcs");
2203 case nir_texop_tex_prefetch:
2204 vtn_fail("unexpected nir_texop_tex_prefetch");
2205 }
2206
2207 unsigned idx = 4;
2208
2209 struct nir_ssa_def *coord;
2210 unsigned coord_components;
2211 switch (opcode) {
2212 case SpvOpImageSampleImplicitLod:
2213 case SpvOpImageSampleExplicitLod:
2214 case SpvOpImageSampleDrefImplicitLod:
2215 case SpvOpImageSampleDrefExplicitLod:
2216 case SpvOpImageSampleProjImplicitLod:
2217 case SpvOpImageSampleProjExplicitLod:
2218 case SpvOpImageSampleProjDrefImplicitLod:
2219 case SpvOpImageSampleProjDrefExplicitLod:
2220 case SpvOpImageFetch:
2221 case SpvOpImageGather:
2222 case SpvOpImageDrefGather:
2223 case SpvOpImageQueryLod: {
2224 /* All these types have the coordinate as their first real argument */
2225 switch (sampler_dim) {
2226 case GLSL_SAMPLER_DIM_1D:
2227 case GLSL_SAMPLER_DIM_BUF:
2228 coord_components = 1;
2229 break;
2230 case GLSL_SAMPLER_DIM_2D:
2231 case GLSL_SAMPLER_DIM_RECT:
2232 case GLSL_SAMPLER_DIM_MS:
2233 coord_components = 2;
2234 break;
2235 case GLSL_SAMPLER_DIM_3D:
2236 case GLSL_SAMPLER_DIM_CUBE:
2237 coord_components = 3;
2238 break;
2239 default:
2240 vtn_fail("Invalid sampler type");
2241 }
2242
2243 if (is_array && texop != nir_texop_lod)
2244 coord_components++;
2245
2246 coord = vtn_ssa_value(b, w[idx++])->def;
2247 p->src = nir_src_for_ssa(nir_channels(&b->nb, coord,
2248 (1 << coord_components) - 1));
2249 p->src_type = nir_tex_src_coord;
2250 p++;
2251 break;
2252 }
2253
2254 default:
2255 coord = NULL;
2256 coord_components = 0;
2257 break;
2258 }
2259
2260 switch (opcode) {
2261 case SpvOpImageSampleProjImplicitLod:
2262 case SpvOpImageSampleProjExplicitLod:
2263 case SpvOpImageSampleProjDrefImplicitLod:
2264 case SpvOpImageSampleProjDrefExplicitLod:
2265 /* These have the projector as the last coordinate component */
2266 p->src = nir_src_for_ssa(nir_channel(&b->nb, coord, coord_components));
2267 p->src_type = nir_tex_src_projector;
2268 p++;
2269 break;
2270
2271 default:
2272 break;
2273 }
2274
2275 bool is_shadow = false;
2276 unsigned gather_component = 0;
2277 switch (opcode) {
2278 case SpvOpImageSampleDrefImplicitLod:
2279 case SpvOpImageSampleDrefExplicitLod:
2280 case SpvOpImageSampleProjDrefImplicitLod:
2281 case SpvOpImageSampleProjDrefExplicitLod:
2282 case SpvOpImageDrefGather:
2283 /* These all have an explicit depth value as their next source */
2284 is_shadow = true;
2285 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_comparator);
2286 break;
2287
2288 case SpvOpImageGather:
2289 /* This has a component as its next source */
2290 gather_component = vtn_constant_uint(b, w[idx++]);
2291 break;
2292
2293 default:
2294 break;
2295 }
2296
2297 /* For OpImageQuerySizeLod, we always have an LOD */
2298 if (opcode == SpvOpImageQuerySizeLod)
2299 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2300
2301 /* Now we need to handle some number of optional arguments */
2302 struct vtn_value *gather_offsets = NULL;
2303 if (idx < count) {
2304 uint32_t operands = w[idx++];
2305
2306 if (operands & SpvImageOperandsBiasMask) {
2307 vtn_assert(texop == nir_texop_tex);
2308 texop = nir_texop_txb;
2309 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_bias);
2310 }
2311
2312 if (operands & SpvImageOperandsLodMask) {
2313 vtn_assert(texop == nir_texop_txl || texop == nir_texop_txf ||
2314 texop == nir_texop_txs);
2315 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_lod);
2316 }
2317
2318 if (operands & SpvImageOperandsGradMask) {
2319 vtn_assert(texop == nir_texop_txl);
2320 texop = nir_texop_txd;
2321 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddx);
2322 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ddy);
2323 }
2324
2325 if (operands & SpvImageOperandsOffsetMask ||
2326 operands & SpvImageOperandsConstOffsetMask)
2327 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_offset);
2328
2329 if (operands & SpvImageOperandsConstOffsetsMask) {
2330 vtn_assert(texop == nir_texop_tg4);
2331 gather_offsets = vtn_value(b, w[idx++], vtn_value_type_constant);
2332 }
2333
2334 if (operands & SpvImageOperandsSampleMask) {
2335 vtn_assert(texop == nir_texop_txf_ms);
2336 texop = nir_texop_txf_ms;
2337 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_ms_index);
2338 }
2339
2340 if (operands & SpvImageOperandsMinLodMask) {
2341 vtn_assert(texop == nir_texop_tex ||
2342 texop == nir_texop_txb ||
2343 texop == nir_texop_txd);
2344 (*p++) = vtn_tex_src(b, w[idx++], nir_tex_src_min_lod);
2345 }
2346 }
2347 /* We should have now consumed exactly all of the arguments */
2348 vtn_assert(idx == count);
2349
2350 nir_tex_instr *instr = nir_tex_instr_create(b->shader, p - srcs);
2351 instr->op = texop;
2352
2353 memcpy(instr->src, srcs, instr->num_srcs * sizeof(*instr->src));
2354
2355 instr->coord_components = coord_components;
2356 instr->sampler_dim = sampler_dim;
2357 instr->is_array = is_array;
2358 instr->is_shadow = is_shadow;
2359 instr->is_new_style_shadow =
2360 is_shadow && glsl_get_components(ret_type->type) == 1;
2361 instr->component = gather_component;
2362
2363 if (sampled.image && (sampled.image->access & ACCESS_NON_UNIFORM))
2364 instr->texture_non_uniform = true;
2365
2366 if (sampled.sampler && (sampled.sampler->access & ACCESS_NON_UNIFORM))
2367 instr->sampler_non_uniform = true;
2368
2369 /* for non-query ops, get dest_type from sampler type */
2370 if (dest_type == nir_type_invalid) {
2371 switch (glsl_get_sampler_result_type(image_type)) {
2372 case GLSL_TYPE_FLOAT: dest_type = nir_type_float; break;
2373 case GLSL_TYPE_INT: dest_type = nir_type_int; break;
2374 case GLSL_TYPE_UINT: dest_type = nir_type_uint; break;
2375 case GLSL_TYPE_BOOL: dest_type = nir_type_bool; break;
2376 default:
2377 vtn_fail("Invalid base type for sampler result");
2378 }
2379 }
2380
2381 instr->dest_type = dest_type;
2382
2383 nir_ssa_dest_init(&instr->instr, &instr->dest,
2384 nir_tex_instr_dest_size(instr), 32, NULL);
2385
2386 vtn_assert(glsl_get_vector_elements(ret_type->type) ==
2387 nir_tex_instr_dest_size(instr));
2388
2389 if (gather_offsets) {
2390 vtn_fail_if(gather_offsets->type->base_type != vtn_base_type_array ||
2391 gather_offsets->type->length != 4,
2392 "ConstOffsets must be an array of size four of vectors "
2393 "of two integer components");
2394
2395 struct vtn_type *vec_type = gather_offsets->type->array_element;
2396 vtn_fail_if(vec_type->base_type != vtn_base_type_vector ||
2397 vec_type->length != 2 ||
2398 !glsl_type_is_integer(vec_type->type),
2399 "ConstOffsets must be an array of size four of vectors "
2400 "of two integer components");
2401
2402 unsigned bit_size = glsl_get_bit_size(vec_type->type);
2403 for (uint32_t i = 0; i < 4; i++) {
2404 const nir_const_value *cvec =
2405 gather_offsets->constant->elements[i]->values;
2406 for (uint32_t j = 0; j < 2; j++) {
2407 switch (bit_size) {
2408 case 8: instr->tg4_offsets[i][j] = cvec[j].i8; break;
2409 case 16: instr->tg4_offsets[i][j] = cvec[j].i16; break;
2410 case 32: instr->tg4_offsets[i][j] = cvec[j].i32; break;
2411 case 64: instr->tg4_offsets[i][j] = cvec[j].i64; break;
2412 default:
2413 vtn_fail("Unsupported bit size: %u", bit_size);
2414 }
2415 }
2416 }
2417 }
2418
2419 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, ret_type->type);
2420 ssa->def = &instr->dest.ssa;
2421 vtn_push_ssa(b, w[2], ret_type, ssa);
2422
2423 nir_builder_instr_insert(&b->nb, &instr->instr);
2424 }
2425
2426 static void
2427 fill_common_atomic_sources(struct vtn_builder *b, SpvOp opcode,
2428 const uint32_t *w, nir_src *src)
2429 {
2430 switch (opcode) {
2431 case SpvOpAtomicIIncrement:
2432 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, 1));
2433 break;
2434
2435 case SpvOpAtomicIDecrement:
2436 src[0] = nir_src_for_ssa(nir_imm_int(&b->nb, -1));
2437 break;
2438
2439 case SpvOpAtomicISub:
2440 src[0] =
2441 nir_src_for_ssa(nir_ineg(&b->nb, vtn_ssa_value(b, w[6])->def));
2442 break;
2443
2444 case SpvOpAtomicCompareExchange:
2445 case SpvOpAtomicCompareExchangeWeak:
2446 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[8])->def);
2447 src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[7])->def);
2448 break;
2449
2450 case SpvOpAtomicExchange:
2451 case SpvOpAtomicIAdd:
2452 case SpvOpAtomicSMin:
2453 case SpvOpAtomicUMin:
2454 case SpvOpAtomicSMax:
2455 case SpvOpAtomicUMax:
2456 case SpvOpAtomicAnd:
2457 case SpvOpAtomicOr:
2458 case SpvOpAtomicXor:
2459 src[0] = nir_src_for_ssa(vtn_ssa_value(b, w[6])->def);
2460 break;
2461
2462 default:
2463 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2464 }
2465 }
2466
2467 static nir_ssa_def *
2468 get_image_coord(struct vtn_builder *b, uint32_t value)
2469 {
2470 struct vtn_ssa_value *coord = vtn_ssa_value(b, value);
2471
2472 /* The image_load_store intrinsics assume a 4-dim coordinate */
2473 unsigned dim = glsl_get_vector_elements(coord->type);
2474 unsigned swizzle[4];
2475 for (unsigned i = 0; i < 4; i++)
2476 swizzle[i] = MIN2(i, dim - 1);
2477
2478 return nir_swizzle(&b->nb, coord->def, swizzle, 4);
2479 }
2480
2481 static nir_ssa_def *
2482 expand_to_vec4(nir_builder *b, nir_ssa_def *value)
2483 {
2484 if (value->num_components == 4)
2485 return value;
2486
2487 unsigned swiz[4];
2488 for (unsigned i = 0; i < 4; i++)
2489 swiz[i] = i < value->num_components ? i : 0;
2490 return nir_swizzle(b, value, swiz, 4);
2491 }
2492
2493 static void
2494 vtn_handle_image(struct vtn_builder *b, SpvOp opcode,
2495 const uint32_t *w, unsigned count)
2496 {
2497 /* Just get this one out of the way */
2498 if (opcode == SpvOpImageTexelPointer) {
2499 struct vtn_value *val =
2500 vtn_push_value(b, w[2], vtn_value_type_image_pointer);
2501 val->image = ralloc(b, struct vtn_image_pointer);
2502
2503 val->image->image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2504 val->image->coord = get_image_coord(b, w[4]);
2505 val->image->sample = vtn_ssa_value(b, w[5])->def;
2506 return;
2507 }
2508
2509 struct vtn_image_pointer image;
2510 SpvScope scope = SpvScopeInvocation;
2511 SpvMemorySemanticsMask semantics = 0;
2512
2513 switch (opcode) {
2514 case SpvOpAtomicExchange:
2515 case SpvOpAtomicCompareExchange:
2516 case SpvOpAtomicCompareExchangeWeak:
2517 case SpvOpAtomicIIncrement:
2518 case SpvOpAtomicIDecrement:
2519 case SpvOpAtomicIAdd:
2520 case SpvOpAtomicISub:
2521 case SpvOpAtomicLoad:
2522 case SpvOpAtomicSMin:
2523 case SpvOpAtomicUMin:
2524 case SpvOpAtomicSMax:
2525 case SpvOpAtomicUMax:
2526 case SpvOpAtomicAnd:
2527 case SpvOpAtomicOr:
2528 case SpvOpAtomicXor:
2529 image = *vtn_value(b, w[3], vtn_value_type_image_pointer)->image;
2530 scope = vtn_constant_uint(b, w[4]);
2531 semantics = vtn_constant_uint(b, w[5]);
2532 break;
2533
2534 case SpvOpAtomicStore:
2535 image = *vtn_value(b, w[1], vtn_value_type_image_pointer)->image;
2536 scope = vtn_constant_uint(b, w[2]);
2537 semantics = vtn_constant_uint(b, w[3]);
2538 break;
2539
2540 case SpvOpImageQuerySize:
2541 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2542 image.coord = NULL;
2543 image.sample = NULL;
2544 break;
2545
2546 case SpvOpImageRead:
2547 image.image = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2548 image.coord = get_image_coord(b, w[4]);
2549
2550 if (count > 5 && (w[5] & SpvImageOperandsSampleMask)) {
2551 vtn_assert(w[5] == SpvImageOperandsSampleMask);
2552 image.sample = vtn_ssa_value(b, w[6])->def;
2553 } else {
2554 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2555 }
2556 break;
2557
2558 case SpvOpImageWrite:
2559 image.image = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2560 image.coord = get_image_coord(b, w[2]);
2561
2562 /* texel = w[3] */
2563
2564 if (count > 4 && (w[4] & SpvImageOperandsSampleMask)) {
2565 vtn_assert(w[4] == SpvImageOperandsSampleMask);
2566 image.sample = vtn_ssa_value(b, w[5])->def;
2567 } else {
2568 image.sample = nir_ssa_undef(&b->nb, 1, 32);
2569 }
2570 break;
2571
2572 default:
2573 vtn_fail_with_opcode("Invalid image opcode", opcode);
2574 }
2575
2576 nir_intrinsic_op op;
2577 switch (opcode) {
2578 #define OP(S, N) case SpvOp##S: op = nir_intrinsic_image_deref_##N; break;
2579 OP(ImageQuerySize, size)
2580 OP(ImageRead, load)
2581 OP(ImageWrite, store)
2582 OP(AtomicLoad, load)
2583 OP(AtomicStore, store)
2584 OP(AtomicExchange, atomic_exchange)
2585 OP(AtomicCompareExchange, atomic_comp_swap)
2586 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2587 OP(AtomicIIncrement, atomic_add)
2588 OP(AtomicIDecrement, atomic_add)
2589 OP(AtomicIAdd, atomic_add)
2590 OP(AtomicISub, atomic_add)
2591 OP(AtomicSMin, atomic_imin)
2592 OP(AtomicUMin, atomic_umin)
2593 OP(AtomicSMax, atomic_imax)
2594 OP(AtomicUMax, atomic_umax)
2595 OP(AtomicAnd, atomic_and)
2596 OP(AtomicOr, atomic_or)
2597 OP(AtomicXor, atomic_xor)
2598 #undef OP
2599 default:
2600 vtn_fail_with_opcode("Invalid image opcode", opcode);
2601 }
2602
2603 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
2604
2605 nir_deref_instr *image_deref = vtn_pointer_to_deref(b, image.image);
2606 intrin->src[0] = nir_src_for_ssa(&image_deref->dest.ssa);
2607
2608 /* ImageQuerySize doesn't take any extra parameters */
2609 if (opcode != SpvOpImageQuerySize) {
2610 /* The image coordinate is always 4 components but we may not have that
2611 * many. Swizzle to compensate.
2612 */
2613 intrin->src[1] = nir_src_for_ssa(expand_to_vec4(&b->nb, image.coord));
2614 intrin->src[2] = nir_src_for_ssa(image.sample);
2615 }
2616
2617 nir_intrinsic_set_access(intrin, image.image->access);
2618
2619 switch (opcode) {
2620 case SpvOpAtomicLoad:
2621 case SpvOpImageQuerySize:
2622 case SpvOpImageRead:
2623 break;
2624 case SpvOpAtomicStore:
2625 case SpvOpImageWrite: {
2626 const uint32_t value_id = opcode == SpvOpAtomicStore ? w[4] : w[3];
2627 nir_ssa_def *value = vtn_ssa_value(b, value_id)->def;
2628 /* nir_intrinsic_image_deref_store always takes a vec4 value */
2629 assert(op == nir_intrinsic_image_deref_store);
2630 intrin->num_components = 4;
2631 intrin->src[3] = nir_src_for_ssa(expand_to_vec4(&b->nb, value));
2632 break;
2633 }
2634
2635 case SpvOpAtomicCompareExchange:
2636 case SpvOpAtomicCompareExchangeWeak:
2637 case SpvOpAtomicIIncrement:
2638 case SpvOpAtomicIDecrement:
2639 case SpvOpAtomicExchange:
2640 case SpvOpAtomicIAdd:
2641 case SpvOpAtomicISub:
2642 case SpvOpAtomicSMin:
2643 case SpvOpAtomicUMin:
2644 case SpvOpAtomicSMax:
2645 case SpvOpAtomicUMax:
2646 case SpvOpAtomicAnd:
2647 case SpvOpAtomicOr:
2648 case SpvOpAtomicXor:
2649 fill_common_atomic_sources(b, opcode, w, &intrin->src[3]);
2650 break;
2651
2652 default:
2653 vtn_fail_with_opcode("Invalid image opcode", opcode);
2654 }
2655
2656 /* Image operations implicitly have the Image storage memory semantics. */
2657 semantics |= SpvMemorySemanticsImageMemoryMask;
2658
2659 SpvMemorySemanticsMask before_semantics;
2660 SpvMemorySemanticsMask after_semantics;
2661 vtn_split_barrier_semantics(b, semantics, &before_semantics, &after_semantics);
2662
2663 if (before_semantics)
2664 vtn_emit_memory_barrier(b, scope, before_semantics);
2665
2666 if (opcode != SpvOpImageWrite && opcode != SpvOpAtomicStore) {
2667 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2668
2669 unsigned dest_components = glsl_get_vector_elements(type->type);
2670 intrin->num_components = nir_intrinsic_infos[op].dest_components;
2671 if (intrin->num_components == 0)
2672 intrin->num_components = dest_components;
2673
2674 nir_ssa_dest_init(&intrin->instr, &intrin->dest,
2675 intrin->num_components, 32, NULL);
2676
2677 nir_builder_instr_insert(&b->nb, &intrin->instr);
2678
2679 nir_ssa_def *result = &intrin->dest.ssa;
2680 if (intrin->num_components != dest_components)
2681 result = nir_channels(&b->nb, result, (1 << dest_components) - 1);
2682
2683 struct vtn_value *val =
2684 vtn_push_ssa(b, w[2], type, vtn_create_ssa_value(b, type->type));
2685 val->ssa->def = result;
2686 } else {
2687 nir_builder_instr_insert(&b->nb, &intrin->instr);
2688 }
2689
2690 if (after_semantics)
2691 vtn_emit_memory_barrier(b, scope, after_semantics);
2692 }
2693
2694 static nir_intrinsic_op
2695 get_ssbo_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2696 {
2697 switch (opcode) {
2698 case SpvOpAtomicLoad: return nir_intrinsic_load_ssbo;
2699 case SpvOpAtomicStore: return nir_intrinsic_store_ssbo;
2700 #define OP(S, N) case SpvOp##S: return nir_intrinsic_ssbo_##N;
2701 OP(AtomicExchange, atomic_exchange)
2702 OP(AtomicCompareExchange, atomic_comp_swap)
2703 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2704 OP(AtomicIIncrement, atomic_add)
2705 OP(AtomicIDecrement, atomic_add)
2706 OP(AtomicIAdd, atomic_add)
2707 OP(AtomicISub, atomic_add)
2708 OP(AtomicSMin, atomic_imin)
2709 OP(AtomicUMin, atomic_umin)
2710 OP(AtomicSMax, atomic_imax)
2711 OP(AtomicUMax, atomic_umax)
2712 OP(AtomicAnd, atomic_and)
2713 OP(AtomicOr, atomic_or)
2714 OP(AtomicXor, atomic_xor)
2715 #undef OP
2716 default:
2717 vtn_fail_with_opcode("Invalid SSBO atomic", opcode);
2718 }
2719 }
2720
2721 static nir_intrinsic_op
2722 get_uniform_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2723 {
2724 switch (opcode) {
2725 #define OP(S, N) case SpvOp##S: return nir_intrinsic_atomic_counter_ ##N;
2726 OP(AtomicLoad, read_deref)
2727 OP(AtomicExchange, exchange)
2728 OP(AtomicCompareExchange, comp_swap)
2729 OP(AtomicCompareExchangeWeak, comp_swap)
2730 OP(AtomicIIncrement, inc_deref)
2731 OP(AtomicIDecrement, post_dec_deref)
2732 OP(AtomicIAdd, add_deref)
2733 OP(AtomicISub, add_deref)
2734 OP(AtomicUMin, min_deref)
2735 OP(AtomicUMax, max_deref)
2736 OP(AtomicAnd, and_deref)
2737 OP(AtomicOr, or_deref)
2738 OP(AtomicXor, xor_deref)
2739 #undef OP
2740 default:
2741 /* We left the following out: AtomicStore, AtomicSMin and
2742 * AtomicSmax. Right now there are not nir intrinsics for them. At this
2743 * moment Atomic Counter support is needed for ARB_spirv support, so is
2744 * only need to support GLSL Atomic Counters that are uints and don't
2745 * allow direct storage.
2746 */
2747 unreachable("Invalid uniform atomic");
2748 }
2749 }
2750
2751 static nir_intrinsic_op
2752 get_deref_nir_atomic_op(struct vtn_builder *b, SpvOp opcode)
2753 {
2754 switch (opcode) {
2755 case SpvOpAtomicLoad: return nir_intrinsic_load_deref;
2756 case SpvOpAtomicStore: return nir_intrinsic_store_deref;
2757 #define OP(S, N) case SpvOp##S: return nir_intrinsic_deref_##N;
2758 OP(AtomicExchange, atomic_exchange)
2759 OP(AtomicCompareExchange, atomic_comp_swap)
2760 OP(AtomicCompareExchangeWeak, atomic_comp_swap)
2761 OP(AtomicIIncrement, atomic_add)
2762 OP(AtomicIDecrement, atomic_add)
2763 OP(AtomicIAdd, atomic_add)
2764 OP(AtomicISub, atomic_add)
2765 OP(AtomicSMin, atomic_imin)
2766 OP(AtomicUMin, atomic_umin)
2767 OP(AtomicSMax, atomic_imax)
2768 OP(AtomicUMax, atomic_umax)
2769 OP(AtomicAnd, atomic_and)
2770 OP(AtomicOr, atomic_or)
2771 OP(AtomicXor, atomic_xor)
2772 #undef OP
2773 default:
2774 vtn_fail_with_opcode("Invalid shared atomic", opcode);
2775 }
2776 }
2777
2778 /*
2779 * Handles shared atomics, ssbo atomics and atomic counters.
2780 */
2781 static void
2782 vtn_handle_atomics(struct vtn_builder *b, SpvOp opcode,
2783 const uint32_t *w, unsigned count)
2784 {
2785 struct vtn_pointer *ptr;
2786 nir_intrinsic_instr *atomic;
2787
2788 SpvScope scope = SpvScopeInvocation;
2789 SpvMemorySemanticsMask semantics = 0;
2790
2791 switch (opcode) {
2792 case SpvOpAtomicLoad:
2793 case SpvOpAtomicExchange:
2794 case SpvOpAtomicCompareExchange:
2795 case SpvOpAtomicCompareExchangeWeak:
2796 case SpvOpAtomicIIncrement:
2797 case SpvOpAtomicIDecrement:
2798 case SpvOpAtomicIAdd:
2799 case SpvOpAtomicISub:
2800 case SpvOpAtomicSMin:
2801 case SpvOpAtomicUMin:
2802 case SpvOpAtomicSMax:
2803 case SpvOpAtomicUMax:
2804 case SpvOpAtomicAnd:
2805 case SpvOpAtomicOr:
2806 case SpvOpAtomicXor:
2807 ptr = vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2808 scope = vtn_constant_uint(b, w[4]);
2809 semantics = vtn_constant_uint(b, w[5]);
2810 break;
2811
2812 case SpvOpAtomicStore:
2813 ptr = vtn_value(b, w[1], vtn_value_type_pointer)->pointer;
2814 scope = vtn_constant_uint(b, w[2]);
2815 semantics = vtn_constant_uint(b, w[3]);
2816 break;
2817
2818 default:
2819 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2820 }
2821
2822 /* uniform as "atomic counter uniform" */
2823 if (ptr->mode == vtn_variable_mode_uniform) {
2824 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2825 const struct glsl_type *deref_type = deref->type;
2826 nir_intrinsic_op op = get_uniform_nir_atomic_op(b, opcode);
2827 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2828 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2829
2830 /* SSBO needs to initialize index/offset. In this case we don't need to,
2831 * as that info is already stored on the ptr->var->var nir_variable (see
2832 * vtn_create_variable)
2833 */
2834
2835 switch (opcode) {
2836 case SpvOpAtomicLoad:
2837 atomic->num_components = glsl_get_vector_elements(deref_type);
2838 break;
2839
2840 case SpvOpAtomicStore:
2841 atomic->num_components = glsl_get_vector_elements(deref_type);
2842 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2843 break;
2844
2845 case SpvOpAtomicExchange:
2846 case SpvOpAtomicCompareExchange:
2847 case SpvOpAtomicCompareExchangeWeak:
2848 case SpvOpAtomicIIncrement:
2849 case SpvOpAtomicIDecrement:
2850 case SpvOpAtomicIAdd:
2851 case SpvOpAtomicISub:
2852 case SpvOpAtomicSMin:
2853 case SpvOpAtomicUMin:
2854 case SpvOpAtomicSMax:
2855 case SpvOpAtomicUMax:
2856 case SpvOpAtomicAnd:
2857 case SpvOpAtomicOr:
2858 case SpvOpAtomicXor:
2859 /* Nothing: we don't need to call fill_common_atomic_sources here, as
2860 * atomic counter uniforms doesn't have sources
2861 */
2862 break;
2863
2864 default:
2865 unreachable("Invalid SPIR-V atomic");
2866
2867 }
2868 } else if (vtn_pointer_uses_ssa_offset(b, ptr)) {
2869 nir_ssa_def *offset, *index;
2870 offset = vtn_pointer_to_offset(b, ptr, &index);
2871
2872 assert(ptr->mode == vtn_variable_mode_ssbo);
2873
2874 nir_intrinsic_op op = get_ssbo_nir_atomic_op(b, opcode);
2875 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2876
2877 int src = 0;
2878 switch (opcode) {
2879 case SpvOpAtomicLoad:
2880 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2881 nir_intrinsic_set_align(atomic, 4, 0);
2882 if (ptr->mode == vtn_variable_mode_ssbo)
2883 atomic->src[src++] = nir_src_for_ssa(index);
2884 atomic->src[src++] = nir_src_for_ssa(offset);
2885 break;
2886
2887 case SpvOpAtomicStore:
2888 atomic->num_components = glsl_get_vector_elements(ptr->type->type);
2889 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2890 nir_intrinsic_set_align(atomic, 4, 0);
2891 atomic->src[src++] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2892 if (ptr->mode == vtn_variable_mode_ssbo)
2893 atomic->src[src++] = nir_src_for_ssa(index);
2894 atomic->src[src++] = nir_src_for_ssa(offset);
2895 break;
2896
2897 case SpvOpAtomicExchange:
2898 case SpvOpAtomicCompareExchange:
2899 case SpvOpAtomicCompareExchangeWeak:
2900 case SpvOpAtomicIIncrement:
2901 case SpvOpAtomicIDecrement:
2902 case SpvOpAtomicIAdd:
2903 case SpvOpAtomicISub:
2904 case SpvOpAtomicSMin:
2905 case SpvOpAtomicUMin:
2906 case SpvOpAtomicSMax:
2907 case SpvOpAtomicUMax:
2908 case SpvOpAtomicAnd:
2909 case SpvOpAtomicOr:
2910 case SpvOpAtomicXor:
2911 if (ptr->mode == vtn_variable_mode_ssbo)
2912 atomic->src[src++] = nir_src_for_ssa(index);
2913 atomic->src[src++] = nir_src_for_ssa(offset);
2914 fill_common_atomic_sources(b, opcode, w, &atomic->src[src]);
2915 break;
2916
2917 default:
2918 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2919 }
2920 } else {
2921 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
2922 const struct glsl_type *deref_type = deref->type;
2923 nir_intrinsic_op op = get_deref_nir_atomic_op(b, opcode);
2924 atomic = nir_intrinsic_instr_create(b->nb.shader, op);
2925 atomic->src[0] = nir_src_for_ssa(&deref->dest.ssa);
2926
2927 switch (opcode) {
2928 case SpvOpAtomicLoad:
2929 atomic->num_components = glsl_get_vector_elements(deref_type);
2930 break;
2931
2932 case SpvOpAtomicStore:
2933 atomic->num_components = glsl_get_vector_elements(deref_type);
2934 nir_intrinsic_set_write_mask(atomic, (1 << atomic->num_components) - 1);
2935 atomic->src[1] = nir_src_for_ssa(vtn_ssa_value(b, w[4])->def);
2936 break;
2937
2938 case SpvOpAtomicExchange:
2939 case SpvOpAtomicCompareExchange:
2940 case SpvOpAtomicCompareExchangeWeak:
2941 case SpvOpAtomicIIncrement:
2942 case SpvOpAtomicIDecrement:
2943 case SpvOpAtomicIAdd:
2944 case SpvOpAtomicISub:
2945 case SpvOpAtomicSMin:
2946 case SpvOpAtomicUMin:
2947 case SpvOpAtomicSMax:
2948 case SpvOpAtomicUMax:
2949 case SpvOpAtomicAnd:
2950 case SpvOpAtomicOr:
2951 case SpvOpAtomicXor:
2952 fill_common_atomic_sources(b, opcode, w, &atomic->src[1]);
2953 break;
2954
2955 default:
2956 vtn_fail_with_opcode("Invalid SPIR-V atomic", opcode);
2957 }
2958 }
2959
2960 /* Atomic ordering operations will implicitly apply to the atomic operation
2961 * storage class, so include that too.
2962 */
2963 semantics |= vtn_storage_class_to_memory_semantics(ptr->ptr_type->storage_class);
2964
2965 SpvMemorySemanticsMask before_semantics;
2966 SpvMemorySemanticsMask after_semantics;
2967 vtn_split_barrier_semantics(b, semantics, &before_semantics, &after_semantics);
2968
2969 if (before_semantics)
2970 vtn_emit_memory_barrier(b, scope, before_semantics);
2971
2972 if (opcode != SpvOpAtomicStore) {
2973 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
2974
2975 nir_ssa_dest_init(&atomic->instr, &atomic->dest,
2976 glsl_get_vector_elements(type->type),
2977 glsl_get_bit_size(type->type), NULL);
2978
2979 struct vtn_ssa_value *ssa = rzalloc(b, struct vtn_ssa_value);
2980 ssa->def = &atomic->dest.ssa;
2981 ssa->type = type->type;
2982 vtn_push_ssa(b, w[2], type, ssa);
2983 }
2984
2985 nir_builder_instr_insert(&b->nb, &atomic->instr);
2986
2987 if (after_semantics)
2988 vtn_emit_memory_barrier(b, scope, after_semantics);
2989 }
2990
2991 static nir_alu_instr *
2992 create_vec(struct vtn_builder *b, unsigned num_components, unsigned bit_size)
2993 {
2994 nir_op op = nir_op_vec(num_components);
2995 nir_alu_instr *vec = nir_alu_instr_create(b->shader, op);
2996 nir_ssa_dest_init(&vec->instr, &vec->dest.dest, num_components,
2997 bit_size, NULL);
2998 vec->dest.write_mask = (1 << num_components) - 1;
2999
3000 return vec;
3001 }
3002
3003 struct vtn_ssa_value *
3004 vtn_ssa_transpose(struct vtn_builder *b, struct vtn_ssa_value *src)
3005 {
3006 if (src->transposed)
3007 return src->transposed;
3008
3009 struct vtn_ssa_value *dest =
3010 vtn_create_ssa_value(b, glsl_transposed_type(src->type));
3011
3012 for (unsigned i = 0; i < glsl_get_matrix_columns(dest->type); i++) {
3013 nir_alu_instr *vec = create_vec(b, glsl_get_matrix_columns(src->type),
3014 glsl_get_bit_size(src->type));
3015 if (glsl_type_is_vector_or_scalar(src->type)) {
3016 vec->src[0].src = nir_src_for_ssa(src->def);
3017 vec->src[0].swizzle[0] = i;
3018 } else {
3019 for (unsigned j = 0; j < glsl_get_matrix_columns(src->type); j++) {
3020 vec->src[j].src = nir_src_for_ssa(src->elems[j]->def);
3021 vec->src[j].swizzle[0] = i;
3022 }
3023 }
3024 nir_builder_instr_insert(&b->nb, &vec->instr);
3025 dest->elems[i]->def = &vec->dest.dest.ssa;
3026 }
3027
3028 dest->transposed = src;
3029
3030 return dest;
3031 }
3032
3033 nir_ssa_def *
3034 vtn_vector_extract(struct vtn_builder *b, nir_ssa_def *src, unsigned index)
3035 {
3036 return nir_channel(&b->nb, src, index);
3037 }
3038
3039 nir_ssa_def *
3040 vtn_vector_insert(struct vtn_builder *b, nir_ssa_def *src, nir_ssa_def *insert,
3041 unsigned index)
3042 {
3043 nir_alu_instr *vec = create_vec(b, src->num_components,
3044 src->bit_size);
3045
3046 for (unsigned i = 0; i < src->num_components; i++) {
3047 if (i == index) {
3048 vec->src[i].src = nir_src_for_ssa(insert);
3049 } else {
3050 vec->src[i].src = nir_src_for_ssa(src);
3051 vec->src[i].swizzle[0] = i;
3052 }
3053 }
3054
3055 nir_builder_instr_insert(&b->nb, &vec->instr);
3056
3057 return &vec->dest.dest.ssa;
3058 }
3059
3060 static nir_ssa_def *
3061 nir_ieq_imm(nir_builder *b, nir_ssa_def *x, uint64_t i)
3062 {
3063 return nir_ieq(b, x, nir_imm_intN_t(b, i, x->bit_size));
3064 }
3065
3066 nir_ssa_def *
3067 vtn_vector_extract_dynamic(struct vtn_builder *b, nir_ssa_def *src,
3068 nir_ssa_def *index)
3069 {
3070 return nir_vector_extract(&b->nb, src, nir_i2i(&b->nb, index, 32));
3071 }
3072
3073 nir_ssa_def *
3074 vtn_vector_insert_dynamic(struct vtn_builder *b, nir_ssa_def *src,
3075 nir_ssa_def *insert, nir_ssa_def *index)
3076 {
3077 nir_ssa_def *dest = vtn_vector_insert(b, src, insert, 0);
3078 for (unsigned i = 1; i < src->num_components; i++)
3079 dest = nir_bcsel(&b->nb, nir_ieq_imm(&b->nb, index, i),
3080 vtn_vector_insert(b, src, insert, i), dest);
3081
3082 return dest;
3083 }
3084
3085 static nir_ssa_def *
3086 vtn_vector_shuffle(struct vtn_builder *b, unsigned num_components,
3087 nir_ssa_def *src0, nir_ssa_def *src1,
3088 const uint32_t *indices)
3089 {
3090 nir_alu_instr *vec = create_vec(b, num_components, src0->bit_size);
3091
3092 for (unsigned i = 0; i < num_components; i++) {
3093 uint32_t index = indices[i];
3094 if (index == 0xffffffff) {
3095 vec->src[i].src =
3096 nir_src_for_ssa(nir_ssa_undef(&b->nb, 1, src0->bit_size));
3097 } else if (index < src0->num_components) {
3098 vec->src[i].src = nir_src_for_ssa(src0);
3099 vec->src[i].swizzle[0] = index;
3100 } else {
3101 vec->src[i].src = nir_src_for_ssa(src1);
3102 vec->src[i].swizzle[0] = index - src0->num_components;
3103 }
3104 }
3105
3106 nir_builder_instr_insert(&b->nb, &vec->instr);
3107
3108 return &vec->dest.dest.ssa;
3109 }
3110
3111 /*
3112 * Concatentates a number of vectors/scalars together to produce a vector
3113 */
3114 static nir_ssa_def *
3115 vtn_vector_construct(struct vtn_builder *b, unsigned num_components,
3116 unsigned num_srcs, nir_ssa_def **srcs)
3117 {
3118 nir_alu_instr *vec = create_vec(b, num_components, srcs[0]->bit_size);
3119
3120 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3121 *
3122 * "When constructing a vector, there must be at least two Constituent
3123 * operands."
3124 */
3125 vtn_assert(num_srcs >= 2);
3126
3127 unsigned dest_idx = 0;
3128 for (unsigned i = 0; i < num_srcs; i++) {
3129 nir_ssa_def *src = srcs[i];
3130 vtn_assert(dest_idx + src->num_components <= num_components);
3131 for (unsigned j = 0; j < src->num_components; j++) {
3132 vec->src[dest_idx].src = nir_src_for_ssa(src);
3133 vec->src[dest_idx].swizzle[0] = j;
3134 dest_idx++;
3135 }
3136 }
3137
3138 /* From the SPIR-V 1.1 spec for OpCompositeConstruct:
3139 *
3140 * "When constructing a vector, the total number of components in all
3141 * the operands must equal the number of components in Result Type."
3142 */
3143 vtn_assert(dest_idx == num_components);
3144
3145 nir_builder_instr_insert(&b->nb, &vec->instr);
3146
3147 return &vec->dest.dest.ssa;
3148 }
3149
3150 static struct vtn_ssa_value *
3151 vtn_composite_copy(void *mem_ctx, struct vtn_ssa_value *src)
3152 {
3153 struct vtn_ssa_value *dest = rzalloc(mem_ctx, struct vtn_ssa_value);
3154 dest->type = src->type;
3155
3156 if (glsl_type_is_vector_or_scalar(src->type)) {
3157 dest->def = src->def;
3158 } else {
3159 unsigned elems = glsl_get_length(src->type);
3160
3161 dest->elems = ralloc_array(mem_ctx, struct vtn_ssa_value *, elems);
3162 for (unsigned i = 0; i < elems; i++)
3163 dest->elems[i] = vtn_composite_copy(mem_ctx, src->elems[i]);
3164 }
3165
3166 return dest;
3167 }
3168
3169 static struct vtn_ssa_value *
3170 vtn_composite_insert(struct vtn_builder *b, struct vtn_ssa_value *src,
3171 struct vtn_ssa_value *insert, const uint32_t *indices,
3172 unsigned num_indices)
3173 {
3174 struct vtn_ssa_value *dest = vtn_composite_copy(b, src);
3175
3176 struct vtn_ssa_value *cur = dest;
3177 unsigned i;
3178 for (i = 0; i < num_indices - 1; i++) {
3179 cur = cur->elems[indices[i]];
3180 }
3181
3182 if (glsl_type_is_vector_or_scalar(cur->type)) {
3183 /* According to the SPIR-V spec, OpCompositeInsert may work down to
3184 * the component granularity. In that case, the last index will be
3185 * the index to insert the scalar into the vector.
3186 */
3187
3188 cur->def = vtn_vector_insert(b, cur->def, insert->def, indices[i]);
3189 } else {
3190 cur->elems[indices[i]] = insert;
3191 }
3192
3193 return dest;
3194 }
3195
3196 static struct vtn_ssa_value *
3197 vtn_composite_extract(struct vtn_builder *b, struct vtn_ssa_value *src,
3198 const uint32_t *indices, unsigned num_indices)
3199 {
3200 struct vtn_ssa_value *cur = src;
3201 for (unsigned i = 0; i < num_indices; i++) {
3202 if (glsl_type_is_vector_or_scalar(cur->type)) {
3203 vtn_assert(i == num_indices - 1);
3204 /* According to the SPIR-V spec, OpCompositeExtract may work down to
3205 * the component granularity. The last index will be the index of the
3206 * vector to extract.
3207 */
3208
3209 struct vtn_ssa_value *ret = rzalloc(b, struct vtn_ssa_value);
3210 ret->type = glsl_scalar_type(glsl_get_base_type(cur->type));
3211 ret->def = vtn_vector_extract(b, cur->def, indices[i]);
3212 return ret;
3213 } else {
3214 cur = cur->elems[indices[i]];
3215 }
3216 }
3217
3218 return cur;
3219 }
3220
3221 static void
3222 vtn_handle_composite(struct vtn_builder *b, SpvOp opcode,
3223 const uint32_t *w, unsigned count)
3224 {
3225 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
3226 struct vtn_ssa_value *ssa = vtn_create_ssa_value(b, type->type);
3227
3228 switch (opcode) {
3229 case SpvOpVectorExtractDynamic:
3230 ssa->def = vtn_vector_extract_dynamic(b, vtn_ssa_value(b, w[3])->def,
3231 vtn_ssa_value(b, w[4])->def);
3232 break;
3233
3234 case SpvOpVectorInsertDynamic:
3235 ssa->def = vtn_vector_insert_dynamic(b, vtn_ssa_value(b, w[3])->def,
3236 vtn_ssa_value(b, w[4])->def,
3237 vtn_ssa_value(b, w[5])->def);
3238 break;
3239
3240 case SpvOpVectorShuffle:
3241 ssa->def = vtn_vector_shuffle(b, glsl_get_vector_elements(type->type),
3242 vtn_ssa_value(b, w[3])->def,
3243 vtn_ssa_value(b, w[4])->def,
3244 w + 5);
3245 break;
3246
3247 case SpvOpCompositeConstruct: {
3248 unsigned elems = count - 3;
3249 assume(elems >= 1);
3250 if (glsl_type_is_vector_or_scalar(type->type)) {
3251 nir_ssa_def *srcs[NIR_MAX_VEC_COMPONENTS];
3252 for (unsigned i = 0; i < elems; i++)
3253 srcs[i] = vtn_ssa_value(b, w[3 + i])->def;
3254 ssa->def =
3255 vtn_vector_construct(b, glsl_get_vector_elements(type->type),
3256 elems, srcs);
3257 } else {
3258 ssa->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
3259 for (unsigned i = 0; i < elems; i++)
3260 ssa->elems[i] = vtn_ssa_value(b, w[3 + i]);
3261 }
3262 break;
3263 }
3264 case SpvOpCompositeExtract:
3265 ssa = vtn_composite_extract(b, vtn_ssa_value(b, w[3]),
3266 w + 4, count - 4);
3267 break;
3268
3269 case SpvOpCompositeInsert:
3270 ssa = vtn_composite_insert(b, vtn_ssa_value(b, w[4]),
3271 vtn_ssa_value(b, w[3]),
3272 w + 5, count - 5);
3273 break;
3274
3275 case SpvOpCopyLogical:
3276 case SpvOpCopyObject:
3277 ssa = vtn_composite_copy(b, vtn_ssa_value(b, w[3]));
3278 break;
3279
3280 default:
3281 vtn_fail_with_opcode("unknown composite operation", opcode);
3282 }
3283
3284 vtn_push_ssa(b, w[2], type, ssa);
3285 }
3286
3287 static void
3288 vtn_emit_barrier(struct vtn_builder *b, nir_intrinsic_op op)
3289 {
3290 nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->shader, op);
3291 nir_builder_instr_insert(&b->nb, &intrin->instr);
3292 }
3293
3294 void
3295 vtn_emit_memory_barrier(struct vtn_builder *b, SpvScope scope,
3296 SpvMemorySemanticsMask semantics)
3297 {
3298 static const SpvMemorySemanticsMask all_memory_semantics =
3299 SpvMemorySemanticsUniformMemoryMask |
3300 SpvMemorySemanticsWorkgroupMemoryMask |
3301 SpvMemorySemanticsAtomicCounterMemoryMask |
3302 SpvMemorySemanticsImageMemoryMask;
3303
3304 /* If we're not actually doing a memory barrier, bail */
3305 if (!(semantics & all_memory_semantics))
3306 return;
3307
3308 /* GL and Vulkan don't have these */
3309 vtn_assert(scope != SpvScopeCrossDevice);
3310
3311 if (scope == SpvScopeSubgroup)
3312 return; /* Nothing to do here */
3313
3314 if (scope == SpvScopeWorkgroup) {
3315 vtn_emit_barrier(b, nir_intrinsic_group_memory_barrier);
3316 return;
3317 }
3318
3319 /* There's only two scopes thing left */
3320 vtn_assert(scope == SpvScopeInvocation || scope == SpvScopeDevice);
3321
3322 if ((semantics & all_memory_semantics) == all_memory_semantics) {
3323 vtn_emit_barrier(b, nir_intrinsic_memory_barrier);
3324 return;
3325 }
3326
3327 /* Issue a bunch of more specific barriers */
3328 uint32_t bits = semantics;
3329 while (bits) {
3330 SpvMemorySemanticsMask semantic = 1 << u_bit_scan(&bits);
3331 switch (semantic) {
3332 case SpvMemorySemanticsUniformMemoryMask:
3333 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_buffer);
3334 break;
3335 case SpvMemorySemanticsWorkgroupMemoryMask:
3336 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_shared);
3337 break;
3338 case SpvMemorySemanticsAtomicCounterMemoryMask:
3339 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_atomic_counter);
3340 break;
3341 case SpvMemorySemanticsImageMemoryMask:
3342 vtn_emit_barrier(b, nir_intrinsic_memory_barrier_image);
3343 break;
3344 default:
3345 break;;
3346 }
3347 }
3348 }
3349
3350 static void
3351 vtn_handle_barrier(struct vtn_builder *b, SpvOp opcode,
3352 const uint32_t *w, unsigned count)
3353 {
3354 switch (opcode) {
3355 case SpvOpEmitVertex:
3356 case SpvOpEmitStreamVertex:
3357 case SpvOpEndPrimitive:
3358 case SpvOpEndStreamPrimitive: {
3359 nir_intrinsic_op intrinsic_op;
3360 switch (opcode) {
3361 case SpvOpEmitVertex:
3362 case SpvOpEmitStreamVertex:
3363 intrinsic_op = nir_intrinsic_emit_vertex;
3364 break;
3365 case SpvOpEndPrimitive:
3366 case SpvOpEndStreamPrimitive:
3367 intrinsic_op = nir_intrinsic_end_primitive;
3368 break;
3369 default:
3370 unreachable("Invalid opcode");
3371 }
3372
3373 nir_intrinsic_instr *intrin =
3374 nir_intrinsic_instr_create(b->shader, intrinsic_op);
3375
3376 switch (opcode) {
3377 case SpvOpEmitStreamVertex:
3378 case SpvOpEndStreamPrimitive: {
3379 unsigned stream = vtn_constant_uint(b, w[1]);
3380 nir_intrinsic_set_stream_id(intrin, stream);
3381 break;
3382 }
3383
3384 default:
3385 break;
3386 }
3387
3388 nir_builder_instr_insert(&b->nb, &intrin->instr);
3389 break;
3390 }
3391
3392 case SpvOpMemoryBarrier: {
3393 SpvScope scope = vtn_constant_uint(b, w[1]);
3394 SpvMemorySemanticsMask semantics = vtn_constant_uint(b, w[2]);
3395 vtn_emit_memory_barrier(b, scope, semantics);
3396 return;
3397 }
3398
3399 case SpvOpControlBarrier: {
3400 SpvScope memory_scope = vtn_constant_uint(b, w[2]);
3401 SpvMemorySemanticsMask memory_semantics = vtn_constant_uint(b, w[3]);
3402 vtn_emit_memory_barrier(b, memory_scope, memory_semantics);
3403
3404 SpvScope execution_scope = vtn_constant_uint(b, w[1]);
3405 if (execution_scope == SpvScopeWorkgroup)
3406 vtn_emit_barrier(b, nir_intrinsic_barrier);
3407 break;
3408 }
3409
3410 default:
3411 unreachable("unknown barrier instruction");
3412 }
3413 }
3414
3415 static unsigned
3416 gl_primitive_from_spv_execution_mode(struct vtn_builder *b,
3417 SpvExecutionMode mode)
3418 {
3419 switch (mode) {
3420 case SpvExecutionModeInputPoints:
3421 case SpvExecutionModeOutputPoints:
3422 return 0; /* GL_POINTS */
3423 case SpvExecutionModeInputLines:
3424 return 1; /* GL_LINES */
3425 case SpvExecutionModeInputLinesAdjacency:
3426 return 0x000A; /* GL_LINE_STRIP_ADJACENCY_ARB */
3427 case SpvExecutionModeTriangles:
3428 return 4; /* GL_TRIANGLES */
3429 case SpvExecutionModeInputTrianglesAdjacency:
3430 return 0x000C; /* GL_TRIANGLES_ADJACENCY_ARB */
3431 case SpvExecutionModeQuads:
3432 return 7; /* GL_QUADS */
3433 case SpvExecutionModeIsolines:
3434 return 0x8E7A; /* GL_ISOLINES */
3435 case SpvExecutionModeOutputLineStrip:
3436 return 3; /* GL_LINE_STRIP */
3437 case SpvExecutionModeOutputTriangleStrip:
3438 return 5; /* GL_TRIANGLE_STRIP */
3439 default:
3440 vtn_fail("Invalid primitive type: %s (%u)",
3441 spirv_executionmode_to_string(mode), mode);
3442 }
3443 }
3444
3445 static unsigned
3446 vertices_in_from_spv_execution_mode(struct vtn_builder *b,
3447 SpvExecutionMode mode)
3448 {
3449 switch (mode) {
3450 case SpvExecutionModeInputPoints:
3451 return 1;
3452 case SpvExecutionModeInputLines:
3453 return 2;
3454 case SpvExecutionModeInputLinesAdjacency:
3455 return 4;
3456 case SpvExecutionModeTriangles:
3457 return 3;
3458 case SpvExecutionModeInputTrianglesAdjacency:
3459 return 6;
3460 default:
3461 vtn_fail("Invalid GS input mode: %s (%u)",
3462 spirv_executionmode_to_string(mode), mode);
3463 }
3464 }
3465
3466 static gl_shader_stage
3467 stage_for_execution_model(struct vtn_builder *b, SpvExecutionModel model)
3468 {
3469 switch (model) {
3470 case SpvExecutionModelVertex:
3471 return MESA_SHADER_VERTEX;
3472 case SpvExecutionModelTessellationControl:
3473 return MESA_SHADER_TESS_CTRL;
3474 case SpvExecutionModelTessellationEvaluation:
3475 return MESA_SHADER_TESS_EVAL;
3476 case SpvExecutionModelGeometry:
3477 return MESA_SHADER_GEOMETRY;
3478 case SpvExecutionModelFragment:
3479 return MESA_SHADER_FRAGMENT;
3480 case SpvExecutionModelGLCompute:
3481 return MESA_SHADER_COMPUTE;
3482 case SpvExecutionModelKernel:
3483 return MESA_SHADER_KERNEL;
3484 default:
3485 vtn_fail("Unsupported execution model: %s (%u)",
3486 spirv_executionmodel_to_string(model), model);
3487 }
3488 }
3489
3490 #define spv_check_supported(name, cap) do { \
3491 if (!(b->options && b->options->caps.name)) \
3492 vtn_warn("Unsupported SPIR-V capability: %s (%u)", \
3493 spirv_capability_to_string(cap), cap); \
3494 } while(0)
3495
3496
3497 void
3498 vtn_handle_entry_point(struct vtn_builder *b, const uint32_t *w,
3499 unsigned count)
3500 {
3501 struct vtn_value *entry_point = &b->values[w[2]];
3502 /* Let this be a name label regardless */
3503 unsigned name_words;
3504 entry_point->name = vtn_string_literal(b, &w[3], count - 3, &name_words);
3505
3506 if (strcmp(entry_point->name, b->entry_point_name) != 0 ||
3507 stage_for_execution_model(b, w[1]) != b->entry_point_stage)
3508 return;
3509
3510 vtn_assert(b->entry_point == NULL);
3511 b->entry_point = entry_point;
3512 }
3513
3514 static bool
3515 vtn_handle_preamble_instruction(struct vtn_builder *b, SpvOp opcode,
3516 const uint32_t *w, unsigned count)
3517 {
3518 switch (opcode) {
3519 case SpvOpSource: {
3520 const char *lang;
3521 switch (w[1]) {
3522 default:
3523 case SpvSourceLanguageUnknown: lang = "unknown"; break;
3524 case SpvSourceLanguageESSL: lang = "ESSL"; break;
3525 case SpvSourceLanguageGLSL: lang = "GLSL"; break;
3526 case SpvSourceLanguageOpenCL_C: lang = "OpenCL C"; break;
3527 case SpvSourceLanguageOpenCL_CPP: lang = "OpenCL C++"; break;
3528 case SpvSourceLanguageHLSL: lang = "HLSL"; break;
3529 }
3530
3531 uint32_t version = w[2];
3532
3533 const char *file =
3534 (count > 3) ? vtn_value(b, w[3], vtn_value_type_string)->str : "";
3535
3536 vtn_info("Parsing SPIR-V from %s %u source file %s", lang, version, file);
3537 break;
3538 }
3539
3540 case SpvOpSourceExtension:
3541 case SpvOpSourceContinued:
3542 case SpvOpExtension:
3543 case SpvOpModuleProcessed:
3544 /* Unhandled, but these are for debug so that's ok. */
3545 break;
3546
3547 case SpvOpCapability: {
3548 SpvCapability cap = w[1];
3549 switch (cap) {
3550 case SpvCapabilityMatrix:
3551 case SpvCapabilityShader:
3552 case SpvCapabilityGeometry:
3553 case SpvCapabilityGeometryPointSize:
3554 case SpvCapabilityUniformBufferArrayDynamicIndexing:
3555 case SpvCapabilitySampledImageArrayDynamicIndexing:
3556 case SpvCapabilityStorageBufferArrayDynamicIndexing:
3557 case SpvCapabilityStorageImageArrayDynamicIndexing:
3558 case SpvCapabilityImageRect:
3559 case SpvCapabilitySampledRect:
3560 case SpvCapabilitySampled1D:
3561 case SpvCapabilityImage1D:
3562 case SpvCapabilitySampledCubeArray:
3563 case SpvCapabilityImageCubeArray:
3564 case SpvCapabilitySampledBuffer:
3565 case SpvCapabilityImageBuffer:
3566 case SpvCapabilityImageQuery:
3567 case SpvCapabilityDerivativeControl:
3568 case SpvCapabilityInterpolationFunction:
3569 case SpvCapabilityMultiViewport:
3570 case SpvCapabilitySampleRateShading:
3571 case SpvCapabilityClipDistance:
3572 case SpvCapabilityCullDistance:
3573 case SpvCapabilityInputAttachment:
3574 case SpvCapabilityImageGatherExtended:
3575 case SpvCapabilityStorageImageExtendedFormats:
3576 break;
3577
3578 case SpvCapabilityLinkage:
3579 case SpvCapabilityVector16:
3580 case SpvCapabilityFloat16Buffer:
3581 case SpvCapabilitySparseResidency:
3582 vtn_warn("Unsupported SPIR-V capability: %s",
3583 spirv_capability_to_string(cap));
3584 break;
3585
3586 case SpvCapabilityMinLod:
3587 spv_check_supported(min_lod, cap);
3588 break;
3589
3590 case SpvCapabilityAtomicStorage:
3591 spv_check_supported(atomic_storage, cap);
3592 break;
3593
3594 case SpvCapabilityFloat64:
3595 spv_check_supported(float64, cap);
3596 break;
3597 case SpvCapabilityInt64:
3598 spv_check_supported(int64, cap);
3599 break;
3600 case SpvCapabilityInt16:
3601 spv_check_supported(int16, cap);
3602 break;
3603 case SpvCapabilityInt8:
3604 spv_check_supported(int8, cap);
3605 break;
3606
3607 case SpvCapabilityTransformFeedback:
3608 spv_check_supported(transform_feedback, cap);
3609 break;
3610
3611 case SpvCapabilityGeometryStreams:
3612 spv_check_supported(geometry_streams, cap);
3613 break;
3614
3615 case SpvCapabilityInt64Atomics:
3616 spv_check_supported(int64_atomics, cap);
3617 break;
3618
3619 case SpvCapabilityStorageImageMultisample:
3620 spv_check_supported(storage_image_ms, cap);
3621 break;
3622
3623 case SpvCapabilityAddresses:
3624 spv_check_supported(address, cap);
3625 break;
3626
3627 case SpvCapabilityKernel:
3628 spv_check_supported(kernel, cap);
3629 break;
3630
3631 case SpvCapabilityImageBasic:
3632 case SpvCapabilityImageReadWrite:
3633 case SpvCapabilityImageMipmap:
3634 case SpvCapabilityPipes:
3635 case SpvCapabilityDeviceEnqueue:
3636 case SpvCapabilityLiteralSampler:
3637 case SpvCapabilityGenericPointer:
3638 vtn_warn("Unsupported OpenCL-style SPIR-V capability: %s",
3639 spirv_capability_to_string(cap));
3640 break;
3641
3642 case SpvCapabilityImageMSArray:
3643 spv_check_supported(image_ms_array, cap);
3644 break;
3645
3646 case SpvCapabilityTessellation:
3647 case SpvCapabilityTessellationPointSize:
3648 spv_check_supported(tessellation, cap);
3649 break;
3650
3651 case SpvCapabilityDrawParameters:
3652 spv_check_supported(draw_parameters, cap);
3653 break;
3654
3655 case SpvCapabilityStorageImageReadWithoutFormat:
3656 spv_check_supported(image_read_without_format, cap);
3657 break;
3658
3659 case SpvCapabilityStorageImageWriteWithoutFormat:
3660 spv_check_supported(image_write_without_format, cap);
3661 break;
3662
3663 case SpvCapabilityDeviceGroup:
3664 spv_check_supported(device_group, cap);
3665 break;
3666
3667 case SpvCapabilityMultiView:
3668 spv_check_supported(multiview, cap);
3669 break;
3670
3671 case SpvCapabilityGroupNonUniform:
3672 spv_check_supported(subgroup_basic, cap);
3673 break;
3674
3675 case SpvCapabilitySubgroupVoteKHR:
3676 case SpvCapabilityGroupNonUniformVote:
3677 spv_check_supported(subgroup_vote, cap);
3678 break;
3679
3680 case SpvCapabilitySubgroupBallotKHR:
3681 case SpvCapabilityGroupNonUniformBallot:
3682 spv_check_supported(subgroup_ballot, cap);
3683 break;
3684
3685 case SpvCapabilityGroupNonUniformShuffle:
3686 case SpvCapabilityGroupNonUniformShuffleRelative:
3687 spv_check_supported(subgroup_shuffle, cap);
3688 break;
3689
3690 case SpvCapabilityGroupNonUniformQuad:
3691 spv_check_supported(subgroup_quad, cap);
3692 break;
3693
3694 case SpvCapabilityGroupNonUniformArithmetic:
3695 case SpvCapabilityGroupNonUniformClustered:
3696 spv_check_supported(subgroup_arithmetic, cap);
3697 break;
3698
3699 case SpvCapabilityGroups:
3700 spv_check_supported(amd_shader_ballot, cap);
3701 break;
3702
3703 case SpvCapabilityVariablePointersStorageBuffer:
3704 case SpvCapabilityVariablePointers:
3705 spv_check_supported(variable_pointers, cap);
3706 b->variable_pointers = true;
3707 break;
3708
3709 case SpvCapabilityStorageUniformBufferBlock16:
3710 case SpvCapabilityStorageUniform16:
3711 case SpvCapabilityStoragePushConstant16:
3712 case SpvCapabilityStorageInputOutput16:
3713 spv_check_supported(storage_16bit, cap);
3714 break;
3715
3716 case SpvCapabilityShaderLayer:
3717 case SpvCapabilityShaderViewportIndex:
3718 case SpvCapabilityShaderViewportIndexLayerEXT:
3719 spv_check_supported(shader_viewport_index_layer, cap);
3720 break;
3721
3722 case SpvCapabilityStorageBuffer8BitAccess:
3723 case SpvCapabilityUniformAndStorageBuffer8BitAccess:
3724 case SpvCapabilityStoragePushConstant8:
3725 spv_check_supported(storage_8bit, cap);
3726 break;
3727
3728 case SpvCapabilityShaderNonUniformEXT:
3729 spv_check_supported(descriptor_indexing, cap);
3730 break;
3731
3732 case SpvCapabilityInputAttachmentArrayDynamicIndexingEXT:
3733 case SpvCapabilityUniformTexelBufferArrayDynamicIndexingEXT:
3734 case SpvCapabilityStorageTexelBufferArrayDynamicIndexingEXT:
3735 spv_check_supported(descriptor_array_dynamic_indexing, cap);
3736 break;
3737
3738 case SpvCapabilityUniformBufferArrayNonUniformIndexingEXT:
3739 case SpvCapabilitySampledImageArrayNonUniformIndexingEXT:
3740 case SpvCapabilityStorageBufferArrayNonUniformIndexingEXT:
3741 case SpvCapabilityStorageImageArrayNonUniformIndexingEXT:
3742 case SpvCapabilityInputAttachmentArrayNonUniformIndexingEXT:
3743 case SpvCapabilityUniformTexelBufferArrayNonUniformIndexingEXT:
3744 case SpvCapabilityStorageTexelBufferArrayNonUniformIndexingEXT:
3745 spv_check_supported(descriptor_array_non_uniform_indexing, cap);
3746 break;
3747
3748 case SpvCapabilityRuntimeDescriptorArrayEXT:
3749 spv_check_supported(runtime_descriptor_array, cap);
3750 break;
3751
3752 case SpvCapabilityStencilExportEXT:
3753 spv_check_supported(stencil_export, cap);
3754 break;
3755
3756 case SpvCapabilitySampleMaskPostDepthCoverage:
3757 spv_check_supported(post_depth_coverage, cap);
3758 break;
3759
3760 case SpvCapabilityDenormFlushToZero:
3761 case SpvCapabilityDenormPreserve:
3762 case SpvCapabilitySignedZeroInfNanPreserve:
3763 case SpvCapabilityRoundingModeRTE:
3764 case SpvCapabilityRoundingModeRTZ:
3765 spv_check_supported(float_controls, cap);
3766 break;
3767
3768 case SpvCapabilityPhysicalStorageBufferAddressesEXT:
3769 spv_check_supported(physical_storage_buffer_address, cap);
3770 break;
3771
3772 case SpvCapabilityComputeDerivativeGroupQuadsNV:
3773 case SpvCapabilityComputeDerivativeGroupLinearNV:
3774 spv_check_supported(derivative_group, cap);
3775 break;
3776
3777 case SpvCapabilityFloat16:
3778 spv_check_supported(float16, cap);
3779 break;
3780
3781 case SpvCapabilityFragmentShaderSampleInterlockEXT:
3782 spv_check_supported(fragment_shader_sample_interlock, cap);
3783 break;
3784
3785 case SpvCapabilityFragmentShaderPixelInterlockEXT:
3786 spv_check_supported(fragment_shader_pixel_interlock, cap);
3787 break;
3788
3789 case SpvCapabilityDemoteToHelperInvocationEXT:
3790 spv_check_supported(demote_to_helper_invocation, cap);
3791 break;
3792
3793 case SpvCapabilityShaderClockKHR:
3794 spv_check_supported(shader_clock, cap);
3795 break;
3796
3797 case SpvCapabilityVulkanMemoryModel:
3798 spv_check_supported(vk_memory_model, cap);
3799 break;
3800
3801 case SpvCapabilityVulkanMemoryModelDeviceScope:
3802 spv_check_supported(vk_memory_model_device_scope, cap);
3803 break;
3804
3805 default:
3806 vtn_fail("Unhandled capability: %s (%u)",
3807 spirv_capability_to_string(cap), cap);
3808 }
3809 break;
3810 }
3811
3812 case SpvOpExtInstImport:
3813 vtn_handle_extension(b, opcode, w, count);
3814 break;
3815
3816 case SpvOpMemoryModel:
3817 switch (w[1]) {
3818 case SpvAddressingModelPhysical32:
3819 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
3820 "AddressingModelPhysical32 only supported for kernels");
3821 b->shader->info.cs.ptr_size = 32;
3822 b->physical_ptrs = true;
3823 b->options->shared_addr_format = nir_address_format_32bit_global;
3824 b->options->global_addr_format = nir_address_format_32bit_global;
3825 b->options->temp_addr_format = nir_address_format_32bit_global;
3826 break;
3827 case SpvAddressingModelPhysical64:
3828 vtn_fail_if(b->shader->info.stage != MESA_SHADER_KERNEL,
3829 "AddressingModelPhysical64 only supported for kernels");
3830 b->shader->info.cs.ptr_size = 64;
3831 b->physical_ptrs = true;
3832 b->options->shared_addr_format = nir_address_format_64bit_global;
3833 b->options->global_addr_format = nir_address_format_64bit_global;
3834 b->options->temp_addr_format = nir_address_format_64bit_global;
3835 break;
3836 case SpvAddressingModelLogical:
3837 vtn_fail_if(b->shader->info.stage >= MESA_SHADER_STAGES,
3838 "AddressingModelLogical only supported for shaders");
3839 b->shader->info.cs.ptr_size = 0;
3840 b->physical_ptrs = false;
3841 break;
3842 case SpvAddressingModelPhysicalStorageBuffer64EXT:
3843 vtn_fail_if(!b->options ||
3844 !b->options->caps.physical_storage_buffer_address,
3845 "AddressingModelPhysicalStorageBuffer64EXT not supported");
3846 break;
3847 default:
3848 vtn_fail("Unknown addressing model: %s (%u)",
3849 spirv_addressingmodel_to_string(w[1]), w[1]);
3850 break;
3851 }
3852
3853 switch (w[2]) {
3854 case SpvMemoryModelSimple:
3855 case SpvMemoryModelGLSL450:
3856 case SpvMemoryModelOpenCL:
3857 break;
3858 case SpvMemoryModelVulkan:
3859 vtn_fail_if(!b->options->caps.vk_memory_model,
3860 "Vulkan memory model is unsupported by this driver");
3861 break;
3862 default:
3863 vtn_fail("Unsupported memory model: %s",
3864 spirv_memorymodel_to_string(w[2]));
3865 break;
3866 }
3867 break;
3868
3869 case SpvOpEntryPoint:
3870 vtn_handle_entry_point(b, w, count);
3871 break;
3872
3873 case SpvOpString:
3874 vtn_push_value(b, w[1], vtn_value_type_string)->str =
3875 vtn_string_literal(b, &w[2], count - 2, NULL);
3876 break;
3877
3878 case SpvOpName:
3879 b->values[w[1]].name = vtn_string_literal(b, &w[2], count - 2, NULL);
3880 break;
3881
3882 case SpvOpMemberName:
3883 /* TODO */
3884 break;
3885
3886 case SpvOpExecutionMode:
3887 case SpvOpExecutionModeId:
3888 case SpvOpDecorationGroup:
3889 case SpvOpDecorate:
3890 case SpvOpDecorateId:
3891 case SpvOpMemberDecorate:
3892 case SpvOpGroupDecorate:
3893 case SpvOpGroupMemberDecorate:
3894 case SpvOpDecorateString:
3895 case SpvOpMemberDecorateString:
3896 vtn_handle_decoration(b, opcode, w, count);
3897 break;
3898
3899 default:
3900 return false; /* End of preamble */
3901 }
3902
3903 return true;
3904 }
3905
3906 static void
3907 vtn_handle_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
3908 const struct vtn_decoration *mode, void *data)
3909 {
3910 vtn_assert(b->entry_point == entry_point);
3911
3912 switch(mode->exec_mode) {
3913 case SpvExecutionModeOriginUpperLeft:
3914 case SpvExecutionModeOriginLowerLeft:
3915 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3916 b->shader->info.fs.origin_upper_left =
3917 (mode->exec_mode == SpvExecutionModeOriginUpperLeft);
3918 break;
3919
3920 case SpvExecutionModeEarlyFragmentTests:
3921 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3922 b->shader->info.fs.early_fragment_tests = true;
3923 break;
3924
3925 case SpvExecutionModePostDepthCoverage:
3926 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3927 b->shader->info.fs.post_depth_coverage = true;
3928 break;
3929
3930 case SpvExecutionModeInvocations:
3931 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3932 b->shader->info.gs.invocations = MAX2(1, mode->operands[0]);
3933 break;
3934
3935 case SpvExecutionModeDepthReplacing:
3936 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3937 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_ANY;
3938 break;
3939 case SpvExecutionModeDepthGreater:
3940 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3941 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_GREATER;
3942 break;
3943 case SpvExecutionModeDepthLess:
3944 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3945 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_LESS;
3946 break;
3947 case SpvExecutionModeDepthUnchanged:
3948 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
3949 b->shader->info.fs.depth_layout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3950 break;
3951
3952 case SpvExecutionModeLocalSize:
3953 vtn_assert(gl_shader_stage_is_compute(b->shader->info.stage));
3954 b->shader->info.cs.local_size[0] = mode->operands[0];
3955 b->shader->info.cs.local_size[1] = mode->operands[1];
3956 b->shader->info.cs.local_size[2] = mode->operands[2];
3957 break;
3958
3959 case SpvExecutionModeLocalSizeId:
3960 b->shader->info.cs.local_size[0] = vtn_constant_uint(b, mode->operands[0]);
3961 b->shader->info.cs.local_size[1] = vtn_constant_uint(b, mode->operands[1]);
3962 b->shader->info.cs.local_size[2] = vtn_constant_uint(b, mode->operands[2]);
3963 break;
3964
3965 case SpvExecutionModeLocalSizeHint:
3966 case SpvExecutionModeLocalSizeHintId:
3967 break; /* Nothing to do with this */
3968
3969 case SpvExecutionModeOutputVertices:
3970 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3971 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3972 b->shader->info.tess.tcs_vertices_out = mode->operands[0];
3973 } else {
3974 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3975 b->shader->info.gs.vertices_out = mode->operands[0];
3976 }
3977 break;
3978
3979 case SpvExecutionModeInputPoints:
3980 case SpvExecutionModeInputLines:
3981 case SpvExecutionModeInputLinesAdjacency:
3982 case SpvExecutionModeTriangles:
3983 case SpvExecutionModeInputTrianglesAdjacency:
3984 case SpvExecutionModeQuads:
3985 case SpvExecutionModeIsolines:
3986 if (b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
3987 b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
3988 b->shader->info.tess.primitive_mode =
3989 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3990 } else {
3991 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
3992 b->shader->info.gs.vertices_in =
3993 vertices_in_from_spv_execution_mode(b, mode->exec_mode);
3994 b->shader->info.gs.input_primitive =
3995 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
3996 }
3997 break;
3998
3999 case SpvExecutionModeOutputPoints:
4000 case SpvExecutionModeOutputLineStrip:
4001 case SpvExecutionModeOutputTriangleStrip:
4002 vtn_assert(b->shader->info.stage == MESA_SHADER_GEOMETRY);
4003 b->shader->info.gs.output_primitive =
4004 gl_primitive_from_spv_execution_mode(b, mode->exec_mode);
4005 break;
4006
4007 case SpvExecutionModeSpacingEqual:
4008 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4009 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4010 b->shader->info.tess.spacing = TESS_SPACING_EQUAL;
4011 break;
4012 case SpvExecutionModeSpacingFractionalEven:
4013 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4014 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4015 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_EVEN;
4016 break;
4017 case SpvExecutionModeSpacingFractionalOdd:
4018 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4019 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4020 b->shader->info.tess.spacing = TESS_SPACING_FRACTIONAL_ODD;
4021 break;
4022 case SpvExecutionModeVertexOrderCw:
4023 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4024 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4025 b->shader->info.tess.ccw = false;
4026 break;
4027 case SpvExecutionModeVertexOrderCcw:
4028 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4029 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4030 b->shader->info.tess.ccw = true;
4031 break;
4032 case SpvExecutionModePointMode:
4033 vtn_assert(b->shader->info.stage == MESA_SHADER_TESS_CTRL ||
4034 b->shader->info.stage == MESA_SHADER_TESS_EVAL);
4035 b->shader->info.tess.point_mode = true;
4036 break;
4037
4038 case SpvExecutionModePixelCenterInteger:
4039 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4040 b->shader->info.fs.pixel_center_integer = true;
4041 break;
4042
4043 case SpvExecutionModeXfb:
4044 b->shader->info.has_transform_feedback_varyings = true;
4045 break;
4046
4047 case SpvExecutionModeVecTypeHint:
4048 break; /* OpenCL */
4049
4050 case SpvExecutionModeContractionOff:
4051 if (b->shader->info.stage != MESA_SHADER_KERNEL)
4052 vtn_warn("ExectionMode only allowed for CL-style kernels: %s",
4053 spirv_executionmode_to_string(mode->exec_mode));
4054 else
4055 b->exact = true;
4056 break;
4057
4058 case SpvExecutionModeStencilRefReplacingEXT:
4059 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4060 break;
4061
4062 case SpvExecutionModeDerivativeGroupQuadsNV:
4063 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
4064 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_QUADS;
4065 break;
4066
4067 case SpvExecutionModeDerivativeGroupLinearNV:
4068 vtn_assert(b->shader->info.stage == MESA_SHADER_COMPUTE);
4069 b->shader->info.cs.derivative_group = DERIVATIVE_GROUP_LINEAR;
4070 break;
4071
4072 case SpvExecutionModePixelInterlockOrderedEXT:
4073 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4074 b->shader->info.fs.pixel_interlock_ordered = true;
4075 break;
4076
4077 case SpvExecutionModePixelInterlockUnorderedEXT:
4078 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4079 b->shader->info.fs.pixel_interlock_unordered = true;
4080 break;
4081
4082 case SpvExecutionModeSampleInterlockOrderedEXT:
4083 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4084 b->shader->info.fs.sample_interlock_ordered = true;
4085 break;
4086
4087 case SpvExecutionModeSampleInterlockUnorderedEXT:
4088 vtn_assert(b->shader->info.stage == MESA_SHADER_FRAGMENT);
4089 b->shader->info.fs.sample_interlock_unordered = true;
4090 break;
4091
4092 case SpvExecutionModeDenormPreserve:
4093 case SpvExecutionModeDenormFlushToZero:
4094 case SpvExecutionModeSignedZeroInfNanPreserve:
4095 case SpvExecutionModeRoundingModeRTE:
4096 case SpvExecutionModeRoundingModeRTZ:
4097 /* Already handled in vtn_handle_rounding_mode_in_execution_mode() */
4098 break;
4099
4100 default:
4101 vtn_fail("Unhandled execution mode: %s (%u)",
4102 spirv_executionmode_to_string(mode->exec_mode),
4103 mode->exec_mode);
4104 }
4105 }
4106
4107 static void
4108 vtn_handle_rounding_mode_in_execution_mode(struct vtn_builder *b, struct vtn_value *entry_point,
4109 const struct vtn_decoration *mode, void *data)
4110 {
4111 vtn_assert(b->entry_point == entry_point);
4112
4113 unsigned execution_mode = 0;
4114
4115 switch(mode->exec_mode) {
4116 case SpvExecutionModeDenormPreserve:
4117 switch (mode->operands[0]) {
4118 case 16: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP16; break;
4119 case 32: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP32; break;
4120 case 64: execution_mode = FLOAT_CONTROLS_DENORM_PRESERVE_FP64; break;
4121 default: vtn_fail("Floating point type not supported");
4122 }
4123 break;
4124 case SpvExecutionModeDenormFlushToZero:
4125 switch (mode->operands[0]) {
4126 case 16: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16; break;
4127 case 32: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32; break;
4128 case 64: execution_mode = FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64; break;
4129 default: vtn_fail("Floating point type not supported");
4130 }
4131 break;
4132 case SpvExecutionModeSignedZeroInfNanPreserve:
4133 switch (mode->operands[0]) {
4134 case 16: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16; break;
4135 case 32: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32; break;
4136 case 64: execution_mode = FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64; break;
4137 default: vtn_fail("Floating point type not supported");
4138 }
4139 break;
4140 case SpvExecutionModeRoundingModeRTE:
4141 switch (mode->operands[0]) {
4142 case 16: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16; break;
4143 case 32: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32; break;
4144 case 64: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64; break;
4145 default: vtn_fail("Floating point type not supported");
4146 }
4147 break;
4148 case SpvExecutionModeRoundingModeRTZ:
4149 switch (mode->operands[0]) {
4150 case 16: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16; break;
4151 case 32: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32; break;
4152 case 64: execution_mode = FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64; break;
4153 default: vtn_fail("Floating point type not supported");
4154 }
4155 break;
4156
4157 default:
4158 break;
4159 }
4160
4161 b->shader->info.float_controls_execution_mode |= execution_mode;
4162 }
4163
4164 static bool
4165 vtn_handle_variable_or_type_instruction(struct vtn_builder *b, SpvOp opcode,
4166 const uint32_t *w, unsigned count)
4167 {
4168 vtn_set_instruction_result_type(b, opcode, w, count);
4169
4170 switch (opcode) {
4171 case SpvOpSource:
4172 case SpvOpSourceContinued:
4173 case SpvOpSourceExtension:
4174 case SpvOpExtension:
4175 case SpvOpCapability:
4176 case SpvOpExtInstImport:
4177 case SpvOpMemoryModel:
4178 case SpvOpEntryPoint:
4179 case SpvOpExecutionMode:
4180 case SpvOpString:
4181 case SpvOpName:
4182 case SpvOpMemberName:
4183 case SpvOpDecorationGroup:
4184 case SpvOpDecorate:
4185 case SpvOpDecorateId:
4186 case SpvOpMemberDecorate:
4187 case SpvOpGroupDecorate:
4188 case SpvOpGroupMemberDecorate:
4189 case SpvOpDecorateString:
4190 case SpvOpMemberDecorateString:
4191 vtn_fail("Invalid opcode types and variables section");
4192 break;
4193
4194 case SpvOpTypeVoid:
4195 case SpvOpTypeBool:
4196 case SpvOpTypeInt:
4197 case SpvOpTypeFloat:
4198 case SpvOpTypeVector:
4199 case SpvOpTypeMatrix:
4200 case SpvOpTypeImage:
4201 case SpvOpTypeSampler:
4202 case SpvOpTypeSampledImage:
4203 case SpvOpTypeArray:
4204 case SpvOpTypeRuntimeArray:
4205 case SpvOpTypeStruct:
4206 case SpvOpTypeOpaque:
4207 case SpvOpTypePointer:
4208 case SpvOpTypeForwardPointer:
4209 case SpvOpTypeFunction:
4210 case SpvOpTypeEvent:
4211 case SpvOpTypeDeviceEvent:
4212 case SpvOpTypeReserveId:
4213 case SpvOpTypeQueue:
4214 case SpvOpTypePipe:
4215 vtn_handle_type(b, opcode, w, count);
4216 break;
4217
4218 case SpvOpConstantTrue:
4219 case SpvOpConstantFalse:
4220 case SpvOpConstant:
4221 case SpvOpConstantComposite:
4222 case SpvOpConstantSampler:
4223 case SpvOpConstantNull:
4224 case SpvOpSpecConstantTrue:
4225 case SpvOpSpecConstantFalse:
4226 case SpvOpSpecConstant:
4227 case SpvOpSpecConstantComposite:
4228 case SpvOpSpecConstantOp:
4229 vtn_handle_constant(b, opcode, w, count);
4230 break;
4231
4232 case SpvOpUndef:
4233 case SpvOpVariable:
4234 vtn_handle_variables(b, opcode, w, count);
4235 break;
4236
4237 default:
4238 return false; /* End of preamble */
4239 }
4240
4241 return true;
4242 }
4243
4244 static struct vtn_ssa_value *
4245 vtn_nir_select(struct vtn_builder *b, struct vtn_ssa_value *src0,
4246 struct vtn_ssa_value *src1, struct vtn_ssa_value *src2)
4247 {
4248 struct vtn_ssa_value *dest = rzalloc(b, struct vtn_ssa_value);
4249 dest->type = src1->type;
4250
4251 if (glsl_type_is_vector_or_scalar(src1->type)) {
4252 dest->def = nir_bcsel(&b->nb, src0->def, src1->def, src2->def);
4253 } else {
4254 unsigned elems = glsl_get_length(src1->type);
4255
4256 dest->elems = ralloc_array(b, struct vtn_ssa_value *, elems);
4257 for (unsigned i = 0; i < elems; i++) {
4258 dest->elems[i] = vtn_nir_select(b, src0,
4259 src1->elems[i], src2->elems[i]);
4260 }
4261 }
4262
4263 return dest;
4264 }
4265
4266 static void
4267 vtn_handle_select(struct vtn_builder *b, SpvOp opcode,
4268 const uint32_t *w, unsigned count)
4269 {
4270 /* Handle OpSelect up-front here because it needs to be able to handle
4271 * pointers and not just regular vectors and scalars.
4272 */
4273 struct vtn_value *res_val = vtn_untyped_value(b, w[2]);
4274 struct vtn_value *cond_val = vtn_untyped_value(b, w[3]);
4275 struct vtn_value *obj1_val = vtn_untyped_value(b, w[4]);
4276 struct vtn_value *obj2_val = vtn_untyped_value(b, w[5]);
4277
4278 vtn_fail_if(obj1_val->type != res_val->type ||
4279 obj2_val->type != res_val->type,
4280 "Object types must match the result type in OpSelect");
4281
4282 vtn_fail_if((cond_val->type->base_type != vtn_base_type_scalar &&
4283 cond_val->type->base_type != vtn_base_type_vector) ||
4284 !glsl_type_is_boolean(cond_val->type->type),
4285 "OpSelect must have either a vector of booleans or "
4286 "a boolean as Condition type");
4287
4288 vtn_fail_if(cond_val->type->base_type == vtn_base_type_vector &&
4289 (res_val->type->base_type != vtn_base_type_vector ||
4290 res_val->type->length != cond_val->type->length),
4291 "When Condition type in OpSelect is a vector, the Result "
4292 "type must be a vector of the same length");
4293
4294 switch (res_val->type->base_type) {
4295 case vtn_base_type_scalar:
4296 case vtn_base_type_vector:
4297 case vtn_base_type_matrix:
4298 case vtn_base_type_array:
4299 case vtn_base_type_struct:
4300 /* OK. */
4301 break;
4302 case vtn_base_type_pointer:
4303 /* We need to have actual storage for pointer types. */
4304 vtn_fail_if(res_val->type->type == NULL,
4305 "Invalid pointer result type for OpSelect");
4306 break;
4307 default:
4308 vtn_fail("Result type of OpSelect must be a scalar, composite, or pointer");
4309 }
4310
4311 struct vtn_type *res_type = vtn_value(b, w[1], vtn_value_type_type)->type;
4312 struct vtn_ssa_value *ssa = vtn_nir_select(b,
4313 vtn_ssa_value(b, w[3]), vtn_ssa_value(b, w[4]), vtn_ssa_value(b, w[5]));
4314
4315 vtn_push_ssa(b, w[2], res_type, ssa);
4316 }
4317
4318 static void
4319 vtn_handle_ptr(struct vtn_builder *b, SpvOp opcode,
4320 const uint32_t *w, unsigned count)
4321 {
4322 struct vtn_type *type1 = vtn_untyped_value(b, w[3])->type;
4323 struct vtn_type *type2 = vtn_untyped_value(b, w[4])->type;
4324 vtn_fail_if(type1->base_type != vtn_base_type_pointer ||
4325 type2->base_type != vtn_base_type_pointer,
4326 "%s operands must have pointer types",
4327 spirv_op_to_string(opcode));
4328 vtn_fail_if(type1->storage_class != type2->storage_class,
4329 "%s operands must have the same storage class",
4330 spirv_op_to_string(opcode));
4331
4332 struct vtn_type *vtn_type =
4333 vtn_value(b, w[1], vtn_value_type_type)->type;
4334 const struct glsl_type *type = vtn_type->type;
4335
4336 nir_address_format addr_format = vtn_mode_to_address_format(
4337 b, vtn_storage_class_to_mode(b, type1->storage_class, NULL, NULL));
4338
4339 nir_ssa_def *def;
4340
4341 switch (opcode) {
4342 case SpvOpPtrDiff: {
4343 /* OpPtrDiff returns the difference in number of elements (not byte offset). */
4344 unsigned elem_size, elem_align;
4345 glsl_get_natural_size_align_bytes(type1->deref->type,
4346 &elem_size, &elem_align);
4347
4348 def = nir_build_addr_isub(&b->nb,
4349 vtn_ssa_value(b, w[3])->def,
4350 vtn_ssa_value(b, w[4])->def,
4351 addr_format);
4352 def = nir_idiv(&b->nb, def, nir_imm_intN_t(&b->nb, elem_size, def->bit_size));
4353 def = nir_i2i(&b->nb, def, glsl_get_bit_size(type));
4354 break;
4355 }
4356
4357 case SpvOpPtrEqual:
4358 case SpvOpPtrNotEqual: {
4359 def = nir_build_addr_ieq(&b->nb,
4360 vtn_ssa_value(b, w[3])->def,
4361 vtn_ssa_value(b, w[4])->def,
4362 addr_format);
4363 if (opcode == SpvOpPtrNotEqual)
4364 def = nir_inot(&b->nb, def);
4365 break;
4366 }
4367
4368 default:
4369 unreachable("Invalid ptr operation");
4370 }
4371
4372 struct vtn_ssa_value *ssa_value = vtn_create_ssa_value(b, type);
4373 ssa_value->def = def;
4374 vtn_push_ssa(b, w[2], vtn_type, ssa_value);
4375 }
4376
4377 static bool
4378 vtn_handle_body_instruction(struct vtn_builder *b, SpvOp opcode,
4379 const uint32_t *w, unsigned count)
4380 {
4381 switch (opcode) {
4382 case SpvOpLabel:
4383 break;
4384
4385 case SpvOpLoopMerge:
4386 case SpvOpSelectionMerge:
4387 /* This is handled by cfg pre-pass and walk_blocks */
4388 break;
4389
4390 case SpvOpUndef: {
4391 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
4392 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
4393 break;
4394 }
4395
4396 case SpvOpExtInst:
4397 vtn_handle_extension(b, opcode, w, count);
4398 break;
4399
4400 case SpvOpVariable:
4401 case SpvOpLoad:
4402 case SpvOpStore:
4403 case SpvOpCopyMemory:
4404 case SpvOpCopyMemorySized:
4405 case SpvOpAccessChain:
4406 case SpvOpPtrAccessChain:
4407 case SpvOpInBoundsAccessChain:
4408 case SpvOpInBoundsPtrAccessChain:
4409 case SpvOpArrayLength:
4410 case SpvOpConvertPtrToU:
4411 case SpvOpConvertUToPtr:
4412 vtn_handle_variables(b, opcode, w, count);
4413 break;
4414
4415 case SpvOpFunctionCall:
4416 vtn_handle_function_call(b, opcode, w, count);
4417 break;
4418
4419 case SpvOpSampledImage:
4420 case SpvOpImage:
4421 case SpvOpImageSampleImplicitLod:
4422 case SpvOpImageSampleExplicitLod:
4423 case SpvOpImageSampleDrefImplicitLod:
4424 case SpvOpImageSampleDrefExplicitLod:
4425 case SpvOpImageSampleProjImplicitLod:
4426 case SpvOpImageSampleProjExplicitLod:
4427 case SpvOpImageSampleProjDrefImplicitLod:
4428 case SpvOpImageSampleProjDrefExplicitLod:
4429 case SpvOpImageFetch:
4430 case SpvOpImageGather:
4431 case SpvOpImageDrefGather:
4432 case SpvOpImageQuerySizeLod:
4433 case SpvOpImageQueryLod:
4434 case SpvOpImageQueryLevels:
4435 case SpvOpImageQuerySamples:
4436 vtn_handle_texture(b, opcode, w, count);
4437 break;
4438
4439 case SpvOpImageRead:
4440 case SpvOpImageWrite:
4441 case SpvOpImageTexelPointer:
4442 vtn_handle_image(b, opcode, w, count);
4443 break;
4444
4445 case SpvOpImageQuerySize: {
4446 struct vtn_pointer *image =
4447 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
4448 if (glsl_type_is_image(image->type->type)) {
4449 vtn_handle_image(b, opcode, w, count);
4450 } else {
4451 vtn_assert(glsl_type_is_sampler(image->type->type));
4452 vtn_handle_texture(b, opcode, w, count);
4453 }
4454 break;
4455 }
4456
4457 case SpvOpAtomicLoad:
4458 case SpvOpAtomicExchange:
4459 case SpvOpAtomicCompareExchange:
4460 case SpvOpAtomicCompareExchangeWeak:
4461 case SpvOpAtomicIIncrement:
4462 case SpvOpAtomicIDecrement:
4463 case SpvOpAtomicIAdd:
4464 case SpvOpAtomicISub:
4465 case SpvOpAtomicSMin:
4466 case SpvOpAtomicUMin:
4467 case SpvOpAtomicSMax:
4468 case SpvOpAtomicUMax:
4469 case SpvOpAtomicAnd:
4470 case SpvOpAtomicOr:
4471 case SpvOpAtomicXor: {
4472 struct vtn_value *pointer = vtn_untyped_value(b, w[3]);
4473 if (pointer->value_type == vtn_value_type_image_pointer) {
4474 vtn_handle_image(b, opcode, w, count);
4475 } else {
4476 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4477 vtn_handle_atomics(b, opcode, w, count);
4478 }
4479 break;
4480 }
4481
4482 case SpvOpAtomicStore: {
4483 struct vtn_value *pointer = vtn_untyped_value(b, w[1]);
4484 if (pointer->value_type == vtn_value_type_image_pointer) {
4485 vtn_handle_image(b, opcode, w, count);
4486 } else {
4487 vtn_assert(pointer->value_type == vtn_value_type_pointer);
4488 vtn_handle_atomics(b, opcode, w, count);
4489 }
4490 break;
4491 }
4492
4493 case SpvOpSelect:
4494 vtn_handle_select(b, opcode, w, count);
4495 break;
4496
4497 case SpvOpSNegate:
4498 case SpvOpFNegate:
4499 case SpvOpNot:
4500 case SpvOpAny:
4501 case SpvOpAll:
4502 case SpvOpConvertFToU:
4503 case SpvOpConvertFToS:
4504 case SpvOpConvertSToF:
4505 case SpvOpConvertUToF:
4506 case SpvOpUConvert:
4507 case SpvOpSConvert:
4508 case SpvOpFConvert:
4509 case SpvOpQuantizeToF16:
4510 case SpvOpPtrCastToGeneric:
4511 case SpvOpGenericCastToPtr:
4512 case SpvOpIsNan:
4513 case SpvOpIsInf:
4514 case SpvOpIsFinite:
4515 case SpvOpIsNormal:
4516 case SpvOpSignBitSet:
4517 case SpvOpLessOrGreater:
4518 case SpvOpOrdered:
4519 case SpvOpUnordered:
4520 case SpvOpIAdd:
4521 case SpvOpFAdd:
4522 case SpvOpISub:
4523 case SpvOpFSub:
4524 case SpvOpIMul:
4525 case SpvOpFMul:
4526 case SpvOpUDiv:
4527 case SpvOpSDiv:
4528 case SpvOpFDiv:
4529 case SpvOpUMod:
4530 case SpvOpSRem:
4531 case SpvOpSMod:
4532 case SpvOpFRem:
4533 case SpvOpFMod:
4534 case SpvOpVectorTimesScalar:
4535 case SpvOpDot:
4536 case SpvOpIAddCarry:
4537 case SpvOpISubBorrow:
4538 case SpvOpUMulExtended:
4539 case SpvOpSMulExtended:
4540 case SpvOpShiftRightLogical:
4541 case SpvOpShiftRightArithmetic:
4542 case SpvOpShiftLeftLogical:
4543 case SpvOpLogicalEqual:
4544 case SpvOpLogicalNotEqual:
4545 case SpvOpLogicalOr:
4546 case SpvOpLogicalAnd:
4547 case SpvOpLogicalNot:
4548 case SpvOpBitwiseOr:
4549 case SpvOpBitwiseXor:
4550 case SpvOpBitwiseAnd:
4551 case SpvOpIEqual:
4552 case SpvOpFOrdEqual:
4553 case SpvOpFUnordEqual:
4554 case SpvOpINotEqual:
4555 case SpvOpFOrdNotEqual:
4556 case SpvOpFUnordNotEqual:
4557 case SpvOpULessThan:
4558 case SpvOpSLessThan:
4559 case SpvOpFOrdLessThan:
4560 case SpvOpFUnordLessThan:
4561 case SpvOpUGreaterThan:
4562 case SpvOpSGreaterThan:
4563 case SpvOpFOrdGreaterThan:
4564 case SpvOpFUnordGreaterThan:
4565 case SpvOpULessThanEqual:
4566 case SpvOpSLessThanEqual:
4567 case SpvOpFOrdLessThanEqual:
4568 case SpvOpFUnordLessThanEqual:
4569 case SpvOpUGreaterThanEqual:
4570 case SpvOpSGreaterThanEqual:
4571 case SpvOpFOrdGreaterThanEqual:
4572 case SpvOpFUnordGreaterThanEqual:
4573 case SpvOpDPdx:
4574 case SpvOpDPdy:
4575 case SpvOpFwidth:
4576 case SpvOpDPdxFine:
4577 case SpvOpDPdyFine:
4578 case SpvOpFwidthFine:
4579 case SpvOpDPdxCoarse:
4580 case SpvOpDPdyCoarse:
4581 case SpvOpFwidthCoarse:
4582 case SpvOpBitFieldInsert:
4583 case SpvOpBitFieldSExtract:
4584 case SpvOpBitFieldUExtract:
4585 case SpvOpBitReverse:
4586 case SpvOpBitCount:
4587 case SpvOpTranspose:
4588 case SpvOpOuterProduct:
4589 case SpvOpMatrixTimesScalar:
4590 case SpvOpVectorTimesMatrix:
4591 case SpvOpMatrixTimesVector:
4592 case SpvOpMatrixTimesMatrix:
4593 vtn_handle_alu(b, opcode, w, count);
4594 break;
4595
4596 case SpvOpBitcast:
4597 vtn_handle_bitcast(b, w, count);
4598 break;
4599
4600 case SpvOpVectorExtractDynamic:
4601 case SpvOpVectorInsertDynamic:
4602 case SpvOpVectorShuffle:
4603 case SpvOpCompositeConstruct:
4604 case SpvOpCompositeExtract:
4605 case SpvOpCompositeInsert:
4606 case SpvOpCopyLogical:
4607 case SpvOpCopyObject:
4608 vtn_handle_composite(b, opcode, w, count);
4609 break;
4610
4611 case SpvOpEmitVertex:
4612 case SpvOpEndPrimitive:
4613 case SpvOpEmitStreamVertex:
4614 case SpvOpEndStreamPrimitive:
4615 case SpvOpControlBarrier:
4616 case SpvOpMemoryBarrier:
4617 vtn_handle_barrier(b, opcode, w, count);
4618 break;
4619
4620 case SpvOpGroupNonUniformElect:
4621 case SpvOpGroupNonUniformAll:
4622 case SpvOpGroupNonUniformAny:
4623 case SpvOpGroupNonUniformAllEqual:
4624 case SpvOpGroupNonUniformBroadcast:
4625 case SpvOpGroupNonUniformBroadcastFirst:
4626 case SpvOpGroupNonUniformBallot:
4627 case SpvOpGroupNonUniformInverseBallot:
4628 case SpvOpGroupNonUniformBallotBitExtract:
4629 case SpvOpGroupNonUniformBallotBitCount:
4630 case SpvOpGroupNonUniformBallotFindLSB:
4631 case SpvOpGroupNonUniformBallotFindMSB:
4632 case SpvOpGroupNonUniformShuffle:
4633 case SpvOpGroupNonUniformShuffleXor:
4634 case SpvOpGroupNonUniformShuffleUp:
4635 case SpvOpGroupNonUniformShuffleDown:
4636 case SpvOpGroupNonUniformIAdd:
4637 case SpvOpGroupNonUniformFAdd:
4638 case SpvOpGroupNonUniformIMul:
4639 case SpvOpGroupNonUniformFMul:
4640 case SpvOpGroupNonUniformSMin:
4641 case SpvOpGroupNonUniformUMin:
4642 case SpvOpGroupNonUniformFMin:
4643 case SpvOpGroupNonUniformSMax:
4644 case SpvOpGroupNonUniformUMax:
4645 case SpvOpGroupNonUniformFMax:
4646 case SpvOpGroupNonUniformBitwiseAnd:
4647 case SpvOpGroupNonUniformBitwiseOr:
4648 case SpvOpGroupNonUniformBitwiseXor:
4649 case SpvOpGroupNonUniformLogicalAnd:
4650 case SpvOpGroupNonUniformLogicalOr:
4651 case SpvOpGroupNonUniformLogicalXor:
4652 case SpvOpGroupNonUniformQuadBroadcast:
4653 case SpvOpGroupNonUniformQuadSwap:
4654 case SpvOpGroupAll:
4655 case SpvOpGroupAny:
4656 case SpvOpGroupBroadcast:
4657 case SpvOpGroupIAdd:
4658 case SpvOpGroupFAdd:
4659 case SpvOpGroupFMin:
4660 case SpvOpGroupUMin:
4661 case SpvOpGroupSMin:
4662 case SpvOpGroupFMax:
4663 case SpvOpGroupUMax:
4664 case SpvOpGroupSMax:
4665 case SpvOpSubgroupBallotKHR:
4666 case SpvOpSubgroupFirstInvocationKHR:
4667 case SpvOpSubgroupReadInvocationKHR:
4668 case SpvOpSubgroupAllKHR:
4669 case SpvOpSubgroupAnyKHR:
4670 case SpvOpSubgroupAllEqualKHR:
4671 case SpvOpGroupIAddNonUniformAMD:
4672 case SpvOpGroupFAddNonUniformAMD:
4673 case SpvOpGroupFMinNonUniformAMD:
4674 case SpvOpGroupUMinNonUniformAMD:
4675 case SpvOpGroupSMinNonUniformAMD:
4676 case SpvOpGroupFMaxNonUniformAMD:
4677 case SpvOpGroupUMaxNonUniformAMD:
4678 case SpvOpGroupSMaxNonUniformAMD:
4679 vtn_handle_subgroup(b, opcode, w, count);
4680 break;
4681
4682 case SpvOpPtrDiff:
4683 case SpvOpPtrEqual:
4684 case SpvOpPtrNotEqual:
4685 vtn_handle_ptr(b, opcode, w, count);
4686 break;
4687
4688 case SpvOpBeginInvocationInterlockEXT:
4689 vtn_emit_barrier(b, nir_intrinsic_begin_invocation_interlock);
4690 break;
4691
4692 case SpvOpEndInvocationInterlockEXT:
4693 vtn_emit_barrier(b, nir_intrinsic_end_invocation_interlock);
4694 break;
4695
4696 case SpvOpDemoteToHelperInvocationEXT: {
4697 nir_intrinsic_instr *intrin =
4698 nir_intrinsic_instr_create(b->shader, nir_intrinsic_demote);
4699 nir_builder_instr_insert(&b->nb, &intrin->instr);
4700 break;
4701 }
4702
4703 case SpvOpIsHelperInvocationEXT: {
4704 nir_intrinsic_instr *intrin =
4705 nir_intrinsic_instr_create(b->shader, nir_intrinsic_is_helper_invocation);
4706 nir_ssa_dest_init(&intrin->instr, &intrin->dest, 1, 1, NULL);
4707 nir_builder_instr_insert(&b->nb, &intrin->instr);
4708
4709 struct vtn_type *res_type =
4710 vtn_value(b, w[1], vtn_value_type_type)->type;
4711 struct vtn_ssa_value *val = vtn_create_ssa_value(b, res_type->type);
4712 val->def = &intrin->dest.ssa;
4713
4714 vtn_push_ssa(b, w[2], res_type, val);
4715 break;
4716 }
4717
4718 case SpvOpReadClockKHR: {
4719 assert(vtn_constant_uint(b, w[3]) == SpvScopeSubgroup);
4720
4721 /* Operation supports two result types: uvec2 and uint64_t. The NIR
4722 * intrinsic gives uvec2, so pack the result for the other case.
4723 */
4724 nir_intrinsic_instr *intrin =
4725 nir_intrinsic_instr_create(b->nb.shader, nir_intrinsic_shader_clock);
4726 nir_ssa_dest_init(&intrin->instr, &intrin->dest, 2, 32, NULL);
4727 nir_builder_instr_insert(&b->nb, &intrin->instr);
4728
4729 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
4730 const struct glsl_type *dest_type = type->type;
4731 nir_ssa_def *result;
4732
4733 if (glsl_type_is_vector(dest_type)) {
4734 assert(dest_type == glsl_vector_type(GLSL_TYPE_UINT, 2));
4735 result = &intrin->dest.ssa;
4736 } else {
4737 assert(glsl_type_is_scalar(dest_type));
4738 assert(glsl_get_base_type(dest_type) == GLSL_TYPE_UINT64);
4739 result = nir_pack_64_2x32(&b->nb, &intrin->dest.ssa);
4740 }
4741
4742 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
4743 val->type = type;
4744 val->ssa = vtn_create_ssa_value(b, dest_type);
4745 val->ssa->def = result;
4746 break;
4747 }
4748
4749 default:
4750 vtn_fail_with_opcode("Unhandled opcode", opcode);
4751 }
4752
4753 return true;
4754 }
4755
4756 struct vtn_builder*
4757 vtn_create_builder(const uint32_t *words, size_t word_count,
4758 gl_shader_stage stage, const char *entry_point_name,
4759 const struct spirv_to_nir_options *options)
4760 {
4761 /* Initialize the vtn_builder object */
4762 struct vtn_builder *b = rzalloc(NULL, struct vtn_builder);
4763 struct spirv_to_nir_options *dup_options =
4764 ralloc(b, struct spirv_to_nir_options);
4765 *dup_options = *options;
4766
4767 b->spirv = words;
4768 b->spirv_word_count = word_count;
4769 b->file = NULL;
4770 b->line = -1;
4771 b->col = -1;
4772 exec_list_make_empty(&b->functions);
4773 b->entry_point_stage = stage;
4774 b->entry_point_name = entry_point_name;
4775 b->options = dup_options;
4776
4777 /*
4778 * Handle the SPIR-V header (first 5 dwords).
4779 * Can't use vtx_assert() as the setjmp(3) target isn't initialized yet.
4780 */
4781 if (word_count <= 5)
4782 goto fail;
4783
4784 if (words[0] != SpvMagicNumber) {
4785 vtn_err("words[0] was 0x%x, want 0x%x", words[0], SpvMagicNumber);
4786 goto fail;
4787 }
4788 if (words[1] < 0x10000) {
4789 vtn_err("words[1] was 0x%x, want >= 0x10000", words[1]);
4790 goto fail;
4791 }
4792
4793 uint16_t generator_id = words[2] >> 16;
4794 uint16_t generator_version = words[2];
4795
4796 /* The first GLSLang version bump actually 1.5 years after #179 was fixed
4797 * but this should at least let us shut the workaround off for modern
4798 * versions of GLSLang.
4799 */
4800 b->wa_glslang_179 = (generator_id == 8 && generator_version == 1);
4801
4802 /* words[2] == generator magic */
4803 unsigned value_id_bound = words[3];
4804 if (words[4] != 0) {
4805 vtn_err("words[4] was %u, want 0", words[4]);
4806 goto fail;
4807 }
4808
4809 b->value_id_bound = value_id_bound;
4810 b->values = rzalloc_array(b, struct vtn_value, value_id_bound);
4811
4812 return b;
4813 fail:
4814 ralloc_free(b);
4815 return NULL;
4816 }
4817
4818 static nir_function *
4819 vtn_emit_kernel_entry_point_wrapper(struct vtn_builder *b,
4820 nir_function *entry_point)
4821 {
4822 vtn_assert(entry_point == b->entry_point->func->impl->function);
4823 vtn_fail_if(!entry_point->name, "entry points are required to have a name");
4824 const char *func_name =
4825 ralloc_asprintf(b->shader, "__wrapped_%s", entry_point->name);
4826
4827 /* we shouldn't have any inputs yet */
4828 vtn_assert(!entry_point->shader->num_inputs);
4829 vtn_assert(b->shader->info.stage == MESA_SHADER_KERNEL);
4830
4831 nir_function *main_entry_point = nir_function_create(b->shader, func_name);
4832 main_entry_point->impl = nir_function_impl_create(main_entry_point);
4833 nir_builder_init(&b->nb, main_entry_point->impl);
4834 b->nb.cursor = nir_after_cf_list(&main_entry_point->impl->body);
4835 b->func_param_idx = 0;
4836
4837 nir_call_instr *call = nir_call_instr_create(b->nb.shader, entry_point);
4838
4839 for (unsigned i = 0; i < entry_point->num_params; ++i) {
4840 struct vtn_type *param_type = b->entry_point->func->type->params[i];
4841
4842 /* consider all pointers to function memory to be parameters passed
4843 * by value
4844 */
4845 bool is_by_val = param_type->base_type == vtn_base_type_pointer &&
4846 param_type->storage_class == SpvStorageClassFunction;
4847
4848 /* input variable */
4849 nir_variable *in_var = rzalloc(b->nb.shader, nir_variable);
4850 in_var->data.mode = nir_var_shader_in;
4851 in_var->data.read_only = true;
4852 in_var->data.location = i;
4853
4854 if (is_by_val)
4855 in_var->type = param_type->deref->type;
4856 else
4857 in_var->type = param_type->type;
4858
4859 nir_shader_add_variable(b->nb.shader, in_var);
4860 b->nb.shader->num_inputs++;
4861
4862 /* we have to copy the entire variable into function memory */
4863 if (is_by_val) {
4864 nir_variable *copy_var =
4865 nir_local_variable_create(main_entry_point->impl, in_var->type,
4866 "copy_in");
4867 nir_copy_var(&b->nb, copy_var, in_var);
4868 call->params[i] =
4869 nir_src_for_ssa(&nir_build_deref_var(&b->nb, copy_var)->dest.ssa);
4870 } else {
4871 call->params[i] = nir_src_for_ssa(nir_load_var(&b->nb, in_var));
4872 }
4873 }
4874
4875 nir_builder_instr_insert(&b->nb, &call->instr);
4876
4877 return main_entry_point;
4878 }
4879
4880 nir_shader *
4881 spirv_to_nir(const uint32_t *words, size_t word_count,
4882 struct nir_spirv_specialization *spec, unsigned num_spec,
4883 gl_shader_stage stage, const char *entry_point_name,
4884 const struct spirv_to_nir_options *options,
4885 const nir_shader_compiler_options *nir_options)
4886
4887 {
4888 const uint32_t *word_end = words + word_count;
4889
4890 struct vtn_builder *b = vtn_create_builder(words, word_count,
4891 stage, entry_point_name,
4892 options);
4893
4894 if (b == NULL)
4895 return NULL;
4896
4897 /* See also _vtn_fail() */
4898 if (setjmp(b->fail_jump)) {
4899 ralloc_free(b);
4900 return NULL;
4901 }
4902
4903 /* Skip the SPIR-V header, handled at vtn_create_builder */
4904 words+= 5;
4905
4906 b->shader = nir_shader_create(b, stage, nir_options, NULL);
4907
4908 /* Handle all the preamble instructions */
4909 words = vtn_foreach_instruction(b, words, word_end,
4910 vtn_handle_preamble_instruction);
4911
4912 if (b->entry_point == NULL) {
4913 vtn_fail("Entry point not found");
4914 ralloc_free(b);
4915 return NULL;
4916 }
4917
4918 /* Set shader info defaults */
4919 b->shader->info.gs.invocations = 1;
4920
4921 /* Parse rounding mode execution modes. This has to happen earlier than
4922 * other changes in the execution modes since they can affect, for example,
4923 * the result of the floating point constants.
4924 */
4925 vtn_foreach_execution_mode(b, b->entry_point,
4926 vtn_handle_rounding_mode_in_execution_mode, NULL);
4927
4928 b->specializations = spec;
4929 b->num_specializations = num_spec;
4930
4931 /* Handle all variable, type, and constant instructions */
4932 words = vtn_foreach_instruction(b, words, word_end,
4933 vtn_handle_variable_or_type_instruction);
4934
4935 /* Parse execution modes */
4936 vtn_foreach_execution_mode(b, b->entry_point,
4937 vtn_handle_execution_mode, NULL);
4938
4939 if (b->workgroup_size_builtin) {
4940 vtn_assert(b->workgroup_size_builtin->type->type ==
4941 glsl_vector_type(GLSL_TYPE_UINT, 3));
4942
4943 nir_const_value *const_size =
4944 b->workgroup_size_builtin->constant->values;
4945
4946 b->shader->info.cs.local_size[0] = const_size[0].u32;
4947 b->shader->info.cs.local_size[1] = const_size[1].u32;
4948 b->shader->info.cs.local_size[2] = const_size[2].u32;
4949 }
4950
4951 /* Set types on all vtn_values */
4952 vtn_foreach_instruction(b, words, word_end, vtn_set_instruction_result_type);
4953
4954 vtn_build_cfg(b, words, word_end);
4955
4956 assert(b->entry_point->value_type == vtn_value_type_function);
4957 b->entry_point->func->referenced = true;
4958
4959 bool progress;
4960 do {
4961 progress = false;
4962 foreach_list_typed(struct vtn_function, func, node, &b->functions) {
4963 if (func->referenced && !func->emitted) {
4964 b->const_table = _mesa_pointer_hash_table_create(b);
4965
4966 vtn_function_emit(b, func, vtn_handle_body_instruction);
4967 progress = true;
4968 }
4969 }
4970 } while (progress);
4971
4972 vtn_assert(b->entry_point->value_type == vtn_value_type_function);
4973 nir_function *entry_point = b->entry_point->func->impl->function;
4974 vtn_assert(entry_point);
4975
4976 /* post process entry_points with input params */
4977 if (entry_point->num_params && b->shader->info.stage == MESA_SHADER_KERNEL)
4978 entry_point = vtn_emit_kernel_entry_point_wrapper(b, entry_point);
4979
4980 entry_point->is_entrypoint = true;
4981
4982 /* When multiple shader stages exist in the same SPIR-V module, we
4983 * generate input and output variables for every stage, in the same
4984 * NIR program. These dead variables can be invalid NIR. For example,
4985 * TCS outputs must be per-vertex arrays (or decorated 'patch'), while
4986 * VS output variables wouldn't be.
4987 *
4988 * To ensure we have valid NIR, we eliminate any dead inputs and outputs
4989 * right away. In order to do so, we must lower any constant initializers
4990 * on outputs so nir_remove_dead_variables sees that they're written to.
4991 */
4992 nir_lower_constant_initializers(b->shader, nir_var_shader_out);
4993 nir_remove_dead_variables(b->shader,
4994 nir_var_shader_in | nir_var_shader_out);
4995
4996 /* We sometimes generate bogus derefs that, while never used, give the
4997 * validator a bit of heartburn. Run dead code to get rid of them.
4998 */
4999 nir_opt_dce(b->shader);
5000
5001 /* Unparent the shader from the vtn_builder before we delete the builder */
5002 ralloc_steal(NULL, b->shader);
5003
5004 nir_shader *shader = b->shader;
5005 ralloc_free(b);
5006
5007 return shader;
5008 }