spirv: Implement NoSignedWrap and NoUnsignedWrap decorations
[mesa.git] / src / compiler / spirv / vtn_alu.c
1 /*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <math.h>
25 #include "vtn_private.h"
26 #include "spirv_info.h"
27
28 /*
29 * Normally, column vectors in SPIR-V correspond to a single NIR SSA
30 * definition. But for matrix multiplies, we want to do one routine for
31 * multiplying a matrix by a matrix and then pretend that vectors are matrices
32 * with one column. So we "wrap" these things, and unwrap the result before we
33 * send it off.
34 */
35
36 static struct vtn_ssa_value *
37 wrap_matrix(struct vtn_builder *b, struct vtn_ssa_value *val)
38 {
39 if (val == NULL)
40 return NULL;
41
42 if (glsl_type_is_matrix(val->type))
43 return val;
44
45 struct vtn_ssa_value *dest = rzalloc(b, struct vtn_ssa_value);
46 dest->type = val->type;
47 dest->elems = ralloc_array(b, struct vtn_ssa_value *, 1);
48 dest->elems[0] = val;
49
50 return dest;
51 }
52
53 static struct vtn_ssa_value *
54 unwrap_matrix(struct vtn_ssa_value *val)
55 {
56 if (glsl_type_is_matrix(val->type))
57 return val;
58
59 return val->elems[0];
60 }
61
62 static struct vtn_ssa_value *
63 matrix_multiply(struct vtn_builder *b,
64 struct vtn_ssa_value *_src0, struct vtn_ssa_value *_src1)
65 {
66
67 struct vtn_ssa_value *src0 = wrap_matrix(b, _src0);
68 struct vtn_ssa_value *src1 = wrap_matrix(b, _src1);
69 struct vtn_ssa_value *src0_transpose = wrap_matrix(b, _src0->transposed);
70 struct vtn_ssa_value *src1_transpose = wrap_matrix(b, _src1->transposed);
71
72 unsigned src0_rows = glsl_get_vector_elements(src0->type);
73 unsigned src0_columns = glsl_get_matrix_columns(src0->type);
74 unsigned src1_columns = glsl_get_matrix_columns(src1->type);
75
76 const struct glsl_type *dest_type;
77 if (src1_columns > 1) {
78 dest_type = glsl_matrix_type(glsl_get_base_type(src0->type),
79 src0_rows, src1_columns);
80 } else {
81 dest_type = glsl_vector_type(glsl_get_base_type(src0->type), src0_rows);
82 }
83 struct vtn_ssa_value *dest = vtn_create_ssa_value(b, dest_type);
84
85 dest = wrap_matrix(b, dest);
86
87 bool transpose_result = false;
88 if (src0_transpose && src1_transpose) {
89 /* transpose(A) * transpose(B) = transpose(B * A) */
90 src1 = src0_transpose;
91 src0 = src1_transpose;
92 src0_transpose = NULL;
93 src1_transpose = NULL;
94 transpose_result = true;
95 }
96
97 if (src0_transpose && !src1_transpose &&
98 glsl_get_base_type(src0->type) == GLSL_TYPE_FLOAT) {
99 /* We already have the rows of src0 and the columns of src1 available,
100 * so we can just take the dot product of each row with each column to
101 * get the result.
102 */
103
104 for (unsigned i = 0; i < src1_columns; i++) {
105 nir_ssa_def *vec_src[4];
106 for (unsigned j = 0; j < src0_rows; j++) {
107 vec_src[j] = nir_fdot(&b->nb, src0_transpose->elems[j]->def,
108 src1->elems[i]->def);
109 }
110 dest->elems[i]->def = nir_vec(&b->nb, vec_src, src0_rows);
111 }
112 } else {
113 /* We don't handle the case where src1 is transposed but not src0, since
114 * the general case only uses individual components of src1 so the
115 * optimizer should chew through the transpose we emitted for src1.
116 */
117
118 for (unsigned i = 0; i < src1_columns; i++) {
119 /* dest[i] = sum(src0[j] * src1[i][j] for all j) */
120 dest->elems[i]->def =
121 nir_fmul(&b->nb, src0->elems[0]->def,
122 nir_channel(&b->nb, src1->elems[i]->def, 0));
123 for (unsigned j = 1; j < src0_columns; j++) {
124 dest->elems[i]->def =
125 nir_fadd(&b->nb, dest->elems[i]->def,
126 nir_fmul(&b->nb, src0->elems[j]->def,
127 nir_channel(&b->nb, src1->elems[i]->def, j)));
128 }
129 }
130 }
131
132 dest = unwrap_matrix(dest);
133
134 if (transpose_result)
135 dest = vtn_ssa_transpose(b, dest);
136
137 return dest;
138 }
139
140 static struct vtn_ssa_value *
141 mat_times_scalar(struct vtn_builder *b,
142 struct vtn_ssa_value *mat,
143 nir_ssa_def *scalar)
144 {
145 struct vtn_ssa_value *dest = vtn_create_ssa_value(b, mat->type);
146 for (unsigned i = 0; i < glsl_get_matrix_columns(mat->type); i++) {
147 if (glsl_base_type_is_integer(glsl_get_base_type(mat->type)))
148 dest->elems[i]->def = nir_imul(&b->nb, mat->elems[i]->def, scalar);
149 else
150 dest->elems[i]->def = nir_fmul(&b->nb, mat->elems[i]->def, scalar);
151 }
152
153 return dest;
154 }
155
156 static void
157 vtn_handle_matrix_alu(struct vtn_builder *b, SpvOp opcode,
158 struct vtn_value *dest,
159 struct vtn_ssa_value *src0, struct vtn_ssa_value *src1)
160 {
161 switch (opcode) {
162 case SpvOpFNegate: {
163 dest->ssa = vtn_create_ssa_value(b, src0->type);
164 unsigned cols = glsl_get_matrix_columns(src0->type);
165 for (unsigned i = 0; i < cols; i++)
166 dest->ssa->elems[i]->def = nir_fneg(&b->nb, src0->elems[i]->def);
167 break;
168 }
169
170 case SpvOpFAdd: {
171 dest->ssa = vtn_create_ssa_value(b, src0->type);
172 unsigned cols = glsl_get_matrix_columns(src0->type);
173 for (unsigned i = 0; i < cols; i++)
174 dest->ssa->elems[i]->def =
175 nir_fadd(&b->nb, src0->elems[i]->def, src1->elems[i]->def);
176 break;
177 }
178
179 case SpvOpFSub: {
180 dest->ssa = vtn_create_ssa_value(b, src0->type);
181 unsigned cols = glsl_get_matrix_columns(src0->type);
182 for (unsigned i = 0; i < cols; i++)
183 dest->ssa->elems[i]->def =
184 nir_fsub(&b->nb, src0->elems[i]->def, src1->elems[i]->def);
185 break;
186 }
187
188 case SpvOpTranspose:
189 dest->ssa = vtn_ssa_transpose(b, src0);
190 break;
191
192 case SpvOpMatrixTimesScalar:
193 if (src0->transposed) {
194 dest->ssa = vtn_ssa_transpose(b, mat_times_scalar(b, src0->transposed,
195 src1->def));
196 } else {
197 dest->ssa = mat_times_scalar(b, src0, src1->def);
198 }
199 break;
200
201 case SpvOpVectorTimesMatrix:
202 case SpvOpMatrixTimesVector:
203 case SpvOpMatrixTimesMatrix:
204 if (opcode == SpvOpVectorTimesMatrix) {
205 dest->ssa = matrix_multiply(b, vtn_ssa_transpose(b, src1), src0);
206 } else {
207 dest->ssa = matrix_multiply(b, src0, src1);
208 }
209 break;
210
211 default: vtn_fail_with_opcode("unknown matrix opcode", opcode);
212 }
213 }
214
215 nir_op
216 vtn_nir_alu_op_for_spirv_opcode(struct vtn_builder *b,
217 SpvOp opcode, bool *swap,
218 unsigned src_bit_size, unsigned dst_bit_size)
219 {
220 /* Indicates that the first two arguments should be swapped. This is
221 * used for implementing greater-than and less-than-or-equal.
222 */
223 *swap = false;
224
225 switch (opcode) {
226 case SpvOpSNegate: return nir_op_ineg;
227 case SpvOpFNegate: return nir_op_fneg;
228 case SpvOpNot: return nir_op_inot;
229 case SpvOpIAdd: return nir_op_iadd;
230 case SpvOpFAdd: return nir_op_fadd;
231 case SpvOpISub: return nir_op_isub;
232 case SpvOpFSub: return nir_op_fsub;
233 case SpvOpIMul: return nir_op_imul;
234 case SpvOpFMul: return nir_op_fmul;
235 case SpvOpUDiv: return nir_op_udiv;
236 case SpvOpSDiv: return nir_op_idiv;
237 case SpvOpFDiv: return nir_op_fdiv;
238 case SpvOpUMod: return nir_op_umod;
239 case SpvOpSMod: return nir_op_imod;
240 case SpvOpFMod: return nir_op_fmod;
241 case SpvOpSRem: return nir_op_irem;
242 case SpvOpFRem: return nir_op_frem;
243
244 case SpvOpShiftRightLogical: return nir_op_ushr;
245 case SpvOpShiftRightArithmetic: return nir_op_ishr;
246 case SpvOpShiftLeftLogical: return nir_op_ishl;
247 case SpvOpLogicalOr: return nir_op_ior;
248 case SpvOpLogicalEqual: return nir_op_ieq;
249 case SpvOpLogicalNotEqual: return nir_op_ine;
250 case SpvOpLogicalAnd: return nir_op_iand;
251 case SpvOpLogicalNot: return nir_op_inot;
252 case SpvOpBitwiseOr: return nir_op_ior;
253 case SpvOpBitwiseXor: return nir_op_ixor;
254 case SpvOpBitwiseAnd: return nir_op_iand;
255 case SpvOpSelect: return nir_op_bcsel;
256 case SpvOpIEqual: return nir_op_ieq;
257
258 case SpvOpBitFieldInsert: return nir_op_bitfield_insert;
259 case SpvOpBitFieldSExtract: return nir_op_ibitfield_extract;
260 case SpvOpBitFieldUExtract: return nir_op_ubitfield_extract;
261 case SpvOpBitReverse: return nir_op_bitfield_reverse;
262 case SpvOpBitCount: return nir_op_bit_count;
263
264 /* The ordered / unordered operators need special implementation besides
265 * the logical operator to use since they also need to check if operands are
266 * ordered.
267 */
268 case SpvOpFOrdEqual: return nir_op_feq;
269 case SpvOpFUnordEqual: return nir_op_feq;
270 case SpvOpINotEqual: return nir_op_ine;
271 case SpvOpFOrdNotEqual: return nir_op_fne;
272 case SpvOpFUnordNotEqual: return nir_op_fne;
273 case SpvOpULessThan: return nir_op_ult;
274 case SpvOpSLessThan: return nir_op_ilt;
275 case SpvOpFOrdLessThan: return nir_op_flt;
276 case SpvOpFUnordLessThan: return nir_op_flt;
277 case SpvOpUGreaterThan: *swap = true; return nir_op_ult;
278 case SpvOpSGreaterThan: *swap = true; return nir_op_ilt;
279 case SpvOpFOrdGreaterThan: *swap = true; return nir_op_flt;
280 case SpvOpFUnordGreaterThan: *swap = true; return nir_op_flt;
281 case SpvOpULessThanEqual: *swap = true; return nir_op_uge;
282 case SpvOpSLessThanEqual: *swap = true; return nir_op_ige;
283 case SpvOpFOrdLessThanEqual: *swap = true; return nir_op_fge;
284 case SpvOpFUnordLessThanEqual: *swap = true; return nir_op_fge;
285 case SpvOpUGreaterThanEqual: return nir_op_uge;
286 case SpvOpSGreaterThanEqual: return nir_op_ige;
287 case SpvOpFOrdGreaterThanEqual: return nir_op_fge;
288 case SpvOpFUnordGreaterThanEqual: return nir_op_fge;
289
290 /* Conversions: */
291 case SpvOpQuantizeToF16: return nir_op_fquantize2f16;
292 case SpvOpUConvert:
293 case SpvOpConvertFToU:
294 case SpvOpConvertFToS:
295 case SpvOpConvertSToF:
296 case SpvOpConvertUToF:
297 case SpvOpSConvert:
298 case SpvOpFConvert: {
299 nir_alu_type src_type;
300 nir_alu_type dst_type;
301
302 switch (opcode) {
303 case SpvOpConvertFToS:
304 src_type = nir_type_float;
305 dst_type = nir_type_int;
306 break;
307 case SpvOpConvertFToU:
308 src_type = nir_type_float;
309 dst_type = nir_type_uint;
310 break;
311 case SpvOpFConvert:
312 src_type = dst_type = nir_type_float;
313 break;
314 case SpvOpConvertSToF:
315 src_type = nir_type_int;
316 dst_type = nir_type_float;
317 break;
318 case SpvOpSConvert:
319 src_type = dst_type = nir_type_int;
320 break;
321 case SpvOpConvertUToF:
322 src_type = nir_type_uint;
323 dst_type = nir_type_float;
324 break;
325 case SpvOpUConvert:
326 src_type = dst_type = nir_type_uint;
327 break;
328 default:
329 unreachable("Invalid opcode");
330 }
331 src_type |= src_bit_size;
332 dst_type |= dst_bit_size;
333 return nir_type_conversion_op(src_type, dst_type, nir_rounding_mode_undef);
334 }
335 /* Derivatives: */
336 case SpvOpDPdx: return nir_op_fddx;
337 case SpvOpDPdy: return nir_op_fddy;
338 case SpvOpDPdxFine: return nir_op_fddx_fine;
339 case SpvOpDPdyFine: return nir_op_fddy_fine;
340 case SpvOpDPdxCoarse: return nir_op_fddx_coarse;
341 case SpvOpDPdyCoarse: return nir_op_fddy_coarse;
342
343 default:
344 vtn_fail("No NIR equivalent: %u", opcode);
345 }
346 }
347
348 static void
349 handle_no_contraction(struct vtn_builder *b, struct vtn_value *val, int member,
350 const struct vtn_decoration *dec, void *_void)
351 {
352 vtn_assert(dec->scope == VTN_DEC_DECORATION);
353 if (dec->decoration != SpvDecorationNoContraction)
354 return;
355
356 b->nb.exact = true;
357 }
358
359 static void
360 handle_rounding_mode(struct vtn_builder *b, struct vtn_value *val, int member,
361 const struct vtn_decoration *dec, void *_out_rounding_mode)
362 {
363 nir_rounding_mode *out_rounding_mode = _out_rounding_mode;
364 assert(dec->scope == VTN_DEC_DECORATION);
365 if (dec->decoration != SpvDecorationFPRoundingMode)
366 return;
367 switch (dec->operands[0]) {
368 case SpvFPRoundingModeRTE:
369 *out_rounding_mode = nir_rounding_mode_rtne;
370 break;
371 case SpvFPRoundingModeRTZ:
372 *out_rounding_mode = nir_rounding_mode_rtz;
373 break;
374 default:
375 unreachable("Not supported rounding mode");
376 break;
377 }
378 }
379
380 static void
381 handle_no_wrap(struct vtn_builder *b, struct vtn_value *val, int member,
382 const struct vtn_decoration *dec, void *_alu)
383 {
384 nir_alu_instr *alu = _alu;
385 switch (dec->decoration) {
386 case SpvDecorationNoSignedWrap:
387 alu->no_signed_wrap = true;
388 break;
389 case SpvDecorationNoUnsignedWrap:
390 alu->no_unsigned_wrap = true;
391 break;
392 default:
393 /* Do nothing. */
394 break;
395 }
396 }
397
398 void
399 vtn_handle_alu(struct vtn_builder *b, SpvOp opcode,
400 const uint32_t *w, unsigned count)
401 {
402 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
403 const struct glsl_type *type =
404 vtn_value(b, w[1], vtn_value_type_type)->type->type;
405
406 vtn_foreach_decoration(b, val, handle_no_contraction, NULL);
407
408 /* Collect the various SSA sources */
409 const unsigned num_inputs = count - 3;
410 struct vtn_ssa_value *vtn_src[4] = { NULL, };
411 for (unsigned i = 0; i < num_inputs; i++)
412 vtn_src[i] = vtn_ssa_value(b, w[i + 3]);
413
414 if (glsl_type_is_matrix(vtn_src[0]->type) ||
415 (num_inputs >= 2 && glsl_type_is_matrix(vtn_src[1]->type))) {
416 vtn_handle_matrix_alu(b, opcode, val, vtn_src[0], vtn_src[1]);
417 b->nb.exact = b->exact;
418 return;
419 }
420
421 val->ssa = vtn_create_ssa_value(b, type);
422 nir_ssa_def *src[4] = { NULL, };
423 for (unsigned i = 0; i < num_inputs; i++) {
424 vtn_assert(glsl_type_is_vector_or_scalar(vtn_src[i]->type));
425 src[i] = vtn_src[i]->def;
426 }
427
428 switch (opcode) {
429 case SpvOpAny:
430 if (src[0]->num_components == 1) {
431 val->ssa->def = nir_mov(&b->nb, src[0]);
432 } else {
433 nir_op op;
434 switch (src[0]->num_components) {
435 case 2: op = nir_op_bany_inequal2; break;
436 case 3: op = nir_op_bany_inequal3; break;
437 case 4: op = nir_op_bany_inequal4; break;
438 default: vtn_fail("invalid number of components");
439 }
440 val->ssa->def = nir_build_alu(&b->nb, op, src[0],
441 nir_imm_false(&b->nb),
442 NULL, NULL);
443 }
444 break;
445
446 case SpvOpAll:
447 if (src[0]->num_components == 1) {
448 val->ssa->def = nir_mov(&b->nb, src[0]);
449 } else {
450 nir_op op;
451 switch (src[0]->num_components) {
452 case 2: op = nir_op_ball_iequal2; break;
453 case 3: op = nir_op_ball_iequal3; break;
454 case 4: op = nir_op_ball_iequal4; break;
455 default: vtn_fail("invalid number of components");
456 }
457 val->ssa->def = nir_build_alu(&b->nb, op, src[0],
458 nir_imm_true(&b->nb),
459 NULL, NULL);
460 }
461 break;
462
463 case SpvOpOuterProduct: {
464 for (unsigned i = 0; i < src[1]->num_components; i++) {
465 val->ssa->elems[i]->def =
466 nir_fmul(&b->nb, src[0], nir_channel(&b->nb, src[1], i));
467 }
468 break;
469 }
470
471 case SpvOpDot:
472 val->ssa->def = nir_fdot(&b->nb, src[0], src[1]);
473 break;
474
475 case SpvOpIAddCarry:
476 vtn_assert(glsl_type_is_struct_or_ifc(val->ssa->type));
477 val->ssa->elems[0]->def = nir_iadd(&b->nb, src[0], src[1]);
478 val->ssa->elems[1]->def = nir_uadd_carry(&b->nb, src[0], src[1]);
479 break;
480
481 case SpvOpISubBorrow:
482 vtn_assert(glsl_type_is_struct_or_ifc(val->ssa->type));
483 val->ssa->elems[0]->def = nir_isub(&b->nb, src[0], src[1]);
484 val->ssa->elems[1]->def = nir_usub_borrow(&b->nb, src[0], src[1]);
485 break;
486
487 case SpvOpUMulExtended: {
488 vtn_assert(glsl_type_is_struct_or_ifc(val->ssa->type));
489 nir_ssa_def *umul = nir_umul_2x32_64(&b->nb, src[0], src[1]);
490 val->ssa->elems[0]->def = nir_unpack_64_2x32_split_x(&b->nb, umul);
491 val->ssa->elems[1]->def = nir_unpack_64_2x32_split_y(&b->nb, umul);
492 break;
493 }
494
495 case SpvOpSMulExtended: {
496 vtn_assert(glsl_type_is_struct_or_ifc(val->ssa->type));
497 nir_ssa_def *smul = nir_imul_2x32_64(&b->nb, src[0], src[1]);
498 val->ssa->elems[0]->def = nir_unpack_64_2x32_split_x(&b->nb, smul);
499 val->ssa->elems[1]->def = nir_unpack_64_2x32_split_y(&b->nb, smul);
500 break;
501 }
502
503 case SpvOpFwidth:
504 val->ssa->def = nir_fadd(&b->nb,
505 nir_fabs(&b->nb, nir_fddx(&b->nb, src[0])),
506 nir_fabs(&b->nb, nir_fddy(&b->nb, src[0])));
507 break;
508 case SpvOpFwidthFine:
509 val->ssa->def = nir_fadd(&b->nb,
510 nir_fabs(&b->nb, nir_fddx_fine(&b->nb, src[0])),
511 nir_fabs(&b->nb, nir_fddy_fine(&b->nb, src[0])));
512 break;
513 case SpvOpFwidthCoarse:
514 val->ssa->def = nir_fadd(&b->nb,
515 nir_fabs(&b->nb, nir_fddx_coarse(&b->nb, src[0])),
516 nir_fabs(&b->nb, nir_fddy_coarse(&b->nb, src[0])));
517 break;
518
519 case SpvOpVectorTimesScalar:
520 /* The builder will take care of splatting for us. */
521 val->ssa->def = nir_fmul(&b->nb, src[0], src[1]);
522 break;
523
524 case SpvOpIsNan:
525 val->ssa->def = nir_fne(&b->nb, src[0], src[0]);
526 break;
527
528 case SpvOpIsInf: {
529 nir_ssa_def *inf = nir_imm_floatN_t(&b->nb, INFINITY, src[0]->bit_size);
530 val->ssa->def = nir_ieq(&b->nb, nir_fabs(&b->nb, src[0]), inf);
531 break;
532 }
533
534 case SpvOpFUnordEqual:
535 case SpvOpFUnordNotEqual:
536 case SpvOpFUnordLessThan:
537 case SpvOpFUnordGreaterThan:
538 case SpvOpFUnordLessThanEqual:
539 case SpvOpFUnordGreaterThanEqual: {
540 bool swap;
541 unsigned src_bit_size = glsl_get_bit_size(vtn_src[0]->type);
542 unsigned dst_bit_size = glsl_get_bit_size(type);
543 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
544 src_bit_size, dst_bit_size);
545
546 if (swap) {
547 nir_ssa_def *tmp = src[0];
548 src[0] = src[1];
549 src[1] = tmp;
550 }
551
552 val->ssa->def =
553 nir_ior(&b->nb,
554 nir_build_alu(&b->nb, op, src[0], src[1], NULL, NULL),
555 nir_ior(&b->nb,
556 nir_fne(&b->nb, src[0], src[0]),
557 nir_fne(&b->nb, src[1], src[1])));
558 break;
559 }
560
561 case SpvOpFOrdNotEqual: {
562 /* For all the SpvOpFOrd* comparisons apart from NotEqual, the value
563 * from the ALU will probably already be false if the operands are not
564 * ordered so we don’t need to handle it specially.
565 */
566 bool swap;
567 unsigned src_bit_size = glsl_get_bit_size(vtn_src[0]->type);
568 unsigned dst_bit_size = glsl_get_bit_size(type);
569 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
570 src_bit_size, dst_bit_size);
571
572 assert(!swap);
573
574 val->ssa->def =
575 nir_iand(&b->nb,
576 nir_build_alu(&b->nb, op, src[0], src[1], NULL, NULL),
577 nir_iand(&b->nb,
578 nir_feq(&b->nb, src[0], src[0]),
579 nir_feq(&b->nb, src[1], src[1])));
580 break;
581 }
582
583 case SpvOpFConvert: {
584 nir_alu_type src_alu_type = nir_get_nir_type_for_glsl_type(vtn_src[0]->type);
585 nir_alu_type dst_alu_type = nir_get_nir_type_for_glsl_type(type);
586 nir_rounding_mode rounding_mode = nir_rounding_mode_undef;
587
588 vtn_foreach_decoration(b, val, handle_rounding_mode, &rounding_mode);
589 nir_op op = nir_type_conversion_op(src_alu_type, dst_alu_type, rounding_mode);
590
591 val->ssa->def = nir_build_alu(&b->nb, op, src[0], src[1], NULL, NULL);
592 break;
593 }
594
595 case SpvOpBitFieldInsert:
596 case SpvOpBitFieldSExtract:
597 case SpvOpBitFieldUExtract:
598 case SpvOpShiftLeftLogical:
599 case SpvOpShiftRightArithmetic:
600 case SpvOpShiftRightLogical: {
601 bool swap;
602 unsigned src0_bit_size = glsl_get_bit_size(vtn_src[0]->type);
603 unsigned dst_bit_size = glsl_get_bit_size(type);
604 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
605 src0_bit_size, dst_bit_size);
606
607 assert (op == nir_op_ushr || op == nir_op_ishr || op == nir_op_ishl ||
608 op == nir_op_bitfield_insert || op == nir_op_ubitfield_extract ||
609 op == nir_op_ibitfield_extract);
610
611 for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++) {
612 unsigned src_bit_size =
613 nir_alu_type_get_type_size(nir_op_infos[op].input_types[i]);
614 if (src_bit_size == 0)
615 continue;
616 if (src_bit_size != src[i]->bit_size) {
617 assert(src_bit_size == 32);
618 /* Convert the Shift, Offset and Count operands to 32 bits, which is the bitsize
619 * supported by the NIR instructions. See discussion here:
620 *
621 * https://lists.freedesktop.org/archives/mesa-dev/2018-April/193026.html
622 */
623 src[i] = nir_u2u32(&b->nb, src[i]);
624 }
625 }
626 val->ssa->def = nir_build_alu(&b->nb, op, src[0], src[1], src[2], src[3]);
627 break;
628 }
629
630 case SpvOpSignBitSet: {
631 unsigned src_bit_size = glsl_get_bit_size(vtn_src[0]->type);
632 if (src[0]->num_components == 1)
633 val->ssa->def =
634 nir_ushr(&b->nb, src[0], nir_imm_int(&b->nb, src_bit_size - 1));
635 else
636 val->ssa->def =
637 nir_ishr(&b->nb, src[0], nir_imm_int(&b->nb, src_bit_size - 1));
638
639 val->ssa->def = nir_i2b(&b->nb, val->ssa->def);
640 break;
641 }
642
643 default: {
644 bool swap;
645 unsigned src_bit_size = glsl_get_bit_size(vtn_src[0]->type);
646 unsigned dst_bit_size = glsl_get_bit_size(type);
647 nir_op op = vtn_nir_alu_op_for_spirv_opcode(b, opcode, &swap,
648 src_bit_size, dst_bit_size);
649
650 if (swap) {
651 nir_ssa_def *tmp = src[0];
652 src[0] = src[1];
653 src[1] = tmp;
654 }
655
656 switch (op) {
657 case nir_op_ishl:
658 case nir_op_ishr:
659 case nir_op_ushr:
660 if (src[1]->bit_size != 32)
661 src[1] = nir_u2u32(&b->nb, src[1]);
662 break;
663 default:
664 break;
665 }
666
667 val->ssa->def = nir_build_alu(&b->nb, op, src[0], src[1], src[2], src[3]);
668 break;
669 } /* default */
670 }
671
672 switch (opcode) {
673 case SpvOpIAdd:
674 case SpvOpIMul:
675 case SpvOpISub:
676 case SpvOpShiftLeftLogical:
677 case SpvOpSNegate: {
678 nir_alu_instr *alu = nir_instr_as_alu(val->ssa->def->parent_instr);
679 vtn_foreach_decoration(b, val, handle_no_wrap, alu);
680 break;
681 }
682 default:
683 /* Do nothing. */
684 break;
685 }
686
687 b->nb.exact = b->exact;
688 }
689
690 void
691 vtn_handle_bitcast(struct vtn_builder *b, const uint32_t *w, unsigned count)
692 {
693 vtn_assert(count == 4);
694 /* From the definition of OpBitcast in the SPIR-V 1.2 spec:
695 *
696 * "If Result Type has the same number of components as Operand, they
697 * must also have the same component width, and results are computed per
698 * component.
699 *
700 * If Result Type has a different number of components than Operand, the
701 * total number of bits in Result Type must equal the total number of
702 * bits in Operand. Let L be the type, either Result Type or Operand’s
703 * type, that has the larger number of components. Let S be the other
704 * type, with the smaller number of components. The number of components
705 * in L must be an integer multiple of the number of components in S.
706 * The first component (that is, the only or lowest-numbered component)
707 * of S maps to the first components of L, and so on, up to the last
708 * component of S mapping to the last components of L. Within this
709 * mapping, any single component of S (mapping to multiple components of
710 * L) maps its lower-ordered bits to the lower-numbered components of L."
711 */
712
713 struct vtn_type *type = vtn_value(b, w[1], vtn_value_type_type)->type;
714 struct vtn_ssa_value *vtn_src = vtn_ssa_value(b, w[3]);
715 struct nir_ssa_def *src = vtn_src->def;
716 struct vtn_ssa_value *val = vtn_create_ssa_value(b, type->type);
717
718 vtn_assert(glsl_type_is_vector_or_scalar(vtn_src->type));
719
720 vtn_fail_if(src->num_components * src->bit_size !=
721 glsl_get_vector_elements(type->type) * glsl_get_bit_size(type->type),
722 "Source and destination of OpBitcast must have the same "
723 "total number of bits");
724 val->def = nir_bitcast_vector(&b->nb, src, glsl_get_bit_size(type->type));
725 vtn_push_ssa(b, w[2], type, val);
726 }