nir: Support sysval tess levels in SPIR-V to NIR
[mesa.git] / src / compiler / spirv / vtn_variables.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "vtn_private.h"
29 #include "spirv_info.h"
30 #include "nir_deref.h"
31 #include <vulkan/vulkan_core.h>
32
33 static void
34 ptr_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member,
35 const struct vtn_decoration *dec, void *void_ptr)
36 {
37 struct vtn_pointer *ptr = void_ptr;
38
39 switch (dec->decoration) {
40 case SpvDecorationNonUniformEXT:
41 ptr->access |= ACCESS_NON_UNIFORM;
42 break;
43
44 default:
45 break;
46 }
47 }
48
49 static struct vtn_pointer*
50 vtn_decorate_pointer(struct vtn_builder *b, struct vtn_value *val,
51 struct vtn_pointer *ptr)
52 {
53 struct vtn_pointer dummy = { .access = 0 };
54 vtn_foreach_decoration(b, val, ptr_decoration_cb, &dummy);
55
56 /* If we're adding access flags, make a copy of the pointer. We could
57 * probably just OR them in without doing so but this prevents us from
58 * leaking them any further than actually specified in the SPIR-V.
59 */
60 if (dummy.access & ~ptr->access) {
61 struct vtn_pointer *copy = ralloc(b, struct vtn_pointer);
62 *copy = *ptr;
63 copy->access |= dummy.access;
64 return copy;
65 }
66
67 return ptr;
68 }
69
70 struct vtn_value *
71 vtn_push_value_pointer(struct vtn_builder *b, uint32_t value_id,
72 struct vtn_pointer *ptr)
73 {
74 struct vtn_value *val = vtn_push_value(b, value_id, vtn_value_type_pointer);
75 val->pointer = vtn_decorate_pointer(b, val, ptr);
76 return val;
77 }
78
79 static void
80 ssa_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member,
81 const struct vtn_decoration *dec, void *void_ctx)
82 {
83 switch (dec->decoration) {
84 case SpvDecorationNonUniformEXT:
85 if (val->value_type == vtn_value_type_ssa) {
86 val->ssa->access |= ACCESS_NON_UNIFORM;
87 } else if (val->value_type == vtn_value_type_pointer) {
88 val->pointer->access |= ACCESS_NON_UNIFORM;
89 } else if (val->value_type == vtn_value_type_sampled_image) {
90 val->sampled_image->image->access |= ACCESS_NON_UNIFORM;
91 } else if (val->value_type == vtn_value_type_image_pointer) {
92 val->image->image->access |= ACCESS_NON_UNIFORM;
93 }
94 break;
95
96 default:
97 break;
98 }
99 }
100
101 struct vtn_value *
102 vtn_push_ssa(struct vtn_builder *b, uint32_t value_id,
103 struct vtn_type *type, struct vtn_ssa_value *ssa)
104 {
105 struct vtn_value *val;
106 if (type->base_type == vtn_base_type_pointer) {
107 val = vtn_push_value_pointer(b, value_id, vtn_pointer_from_ssa(b, ssa->def, type));
108 } else {
109 val = vtn_push_value(b, value_id, vtn_value_type_ssa);
110 val->ssa = ssa;
111 vtn_foreach_decoration(b, val, ssa_decoration_cb, NULL);
112 }
113 return val;
114 }
115
116 void
117 vtn_copy_value(struct vtn_builder *b, uint32_t src_value_id,
118 uint32_t dst_value_id)
119 {
120 struct vtn_value *src = vtn_untyped_value(b, src_value_id);
121 struct vtn_value *dst = vtn_push_value(b, dst_value_id, src->value_type);
122 struct vtn_value src_copy = *src;
123
124 vtn_fail_if(dst->type->id != src->type->id,
125 "Result Type must equal Operand type");
126
127 src_copy.name = dst->name;
128 src_copy.decoration = dst->decoration;
129 src_copy.type = dst->type;
130 *dst = src_copy;
131
132 vtn_foreach_decoration(b, dst, ssa_decoration_cb, NULL);
133 }
134
135 static struct vtn_access_chain *
136 vtn_access_chain_create(struct vtn_builder *b, unsigned length)
137 {
138 struct vtn_access_chain *chain;
139
140 /* Subtract 1 from the length since there's already one built in */
141 size_t size = sizeof(*chain) +
142 (MAX2(length, 1) - 1) * sizeof(chain->link[0]);
143 chain = rzalloc_size(b, size);
144 chain->length = length;
145
146 return chain;
147 }
148
149 bool
150 vtn_mode_uses_ssa_offset(struct vtn_builder *b,
151 enum vtn_variable_mode mode)
152 {
153 return ((mode == vtn_variable_mode_ubo ||
154 mode == vtn_variable_mode_ssbo) &&
155 b->options->lower_ubo_ssbo_access_to_offsets) ||
156 mode == vtn_variable_mode_push_constant;
157 }
158
159 static bool
160 vtn_pointer_is_external_block(struct vtn_builder *b,
161 struct vtn_pointer *ptr)
162 {
163 return ptr->mode == vtn_variable_mode_ssbo ||
164 ptr->mode == vtn_variable_mode_ubo ||
165 ptr->mode == vtn_variable_mode_phys_ssbo ||
166 ptr->mode == vtn_variable_mode_push_constant;
167 }
168
169 static nir_ssa_def *
170 vtn_access_link_as_ssa(struct vtn_builder *b, struct vtn_access_link link,
171 unsigned stride, unsigned bit_size)
172 {
173 vtn_assert(stride > 0);
174 if (link.mode == vtn_access_mode_literal) {
175 return nir_imm_intN_t(&b->nb, link.id * stride, bit_size);
176 } else {
177 nir_ssa_def *ssa = vtn_ssa_value(b, link.id)->def;
178 if (ssa->bit_size != bit_size)
179 ssa = nir_i2i(&b->nb, ssa, bit_size);
180 return nir_imul_imm(&b->nb, ssa, stride);
181 }
182 }
183
184 static VkDescriptorType
185 vk_desc_type_for_mode(struct vtn_builder *b, enum vtn_variable_mode mode)
186 {
187 switch (mode) {
188 case vtn_variable_mode_ubo:
189 return VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
190 case vtn_variable_mode_ssbo:
191 return VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
192 default:
193 vtn_fail("Invalid mode for vulkan_resource_index");
194 }
195 }
196
197 static nir_ssa_def *
198 vtn_variable_resource_index(struct vtn_builder *b, struct vtn_variable *var,
199 nir_ssa_def *desc_array_index)
200 {
201 vtn_assert(b->options->environment == NIR_SPIRV_VULKAN);
202
203 if (!desc_array_index) {
204 vtn_assert(glsl_type_is_struct_or_ifc(var->type->type));
205 desc_array_index = nir_imm_int(&b->nb, 0);
206 }
207
208 nir_intrinsic_instr *instr =
209 nir_intrinsic_instr_create(b->nb.shader,
210 nir_intrinsic_vulkan_resource_index);
211 instr->src[0] = nir_src_for_ssa(desc_array_index);
212 nir_intrinsic_set_desc_set(instr, var->descriptor_set);
213 nir_intrinsic_set_binding(instr, var->binding);
214 nir_intrinsic_set_desc_type(instr, vk_desc_type_for_mode(b, var->mode));
215
216 vtn_fail_if(var->mode != vtn_variable_mode_ubo &&
217 var->mode != vtn_variable_mode_ssbo,
218 "Invalid mode for vulkan_resource_index");
219
220 nir_address_format addr_format = vtn_mode_to_address_format(b, var->mode);
221 const struct glsl_type *index_type =
222 b->options->lower_ubo_ssbo_access_to_offsets ?
223 glsl_uint_type() : nir_address_format_to_glsl_type(addr_format);
224
225 instr->num_components = glsl_get_vector_elements(index_type);
226 nir_ssa_dest_init(&instr->instr, &instr->dest, instr->num_components,
227 glsl_get_bit_size(index_type), NULL);
228 nir_builder_instr_insert(&b->nb, &instr->instr);
229
230 return &instr->dest.ssa;
231 }
232
233 static nir_ssa_def *
234 vtn_resource_reindex(struct vtn_builder *b, enum vtn_variable_mode mode,
235 nir_ssa_def *base_index, nir_ssa_def *offset_index)
236 {
237 vtn_assert(b->options->environment == NIR_SPIRV_VULKAN);
238
239 nir_intrinsic_instr *instr =
240 nir_intrinsic_instr_create(b->nb.shader,
241 nir_intrinsic_vulkan_resource_reindex);
242 instr->src[0] = nir_src_for_ssa(base_index);
243 instr->src[1] = nir_src_for_ssa(offset_index);
244 nir_intrinsic_set_desc_type(instr, vk_desc_type_for_mode(b, mode));
245
246 vtn_fail_if(mode != vtn_variable_mode_ubo && mode != vtn_variable_mode_ssbo,
247 "Invalid mode for vulkan_resource_reindex");
248
249 nir_address_format addr_format = vtn_mode_to_address_format(b, mode);
250 const struct glsl_type *index_type =
251 b->options->lower_ubo_ssbo_access_to_offsets ?
252 glsl_uint_type() : nir_address_format_to_glsl_type(addr_format);
253
254 instr->num_components = glsl_get_vector_elements(index_type);
255 nir_ssa_dest_init(&instr->instr, &instr->dest, instr->num_components,
256 glsl_get_bit_size(index_type), NULL);
257 nir_builder_instr_insert(&b->nb, &instr->instr);
258
259 return &instr->dest.ssa;
260 }
261
262 static nir_ssa_def *
263 vtn_descriptor_load(struct vtn_builder *b, enum vtn_variable_mode mode,
264 nir_ssa_def *desc_index)
265 {
266 vtn_assert(b->options->environment == NIR_SPIRV_VULKAN);
267
268 nir_intrinsic_instr *desc_load =
269 nir_intrinsic_instr_create(b->nb.shader,
270 nir_intrinsic_load_vulkan_descriptor);
271 desc_load->src[0] = nir_src_for_ssa(desc_index);
272 nir_intrinsic_set_desc_type(desc_load, vk_desc_type_for_mode(b, mode));
273
274 vtn_fail_if(mode != vtn_variable_mode_ubo && mode != vtn_variable_mode_ssbo,
275 "Invalid mode for load_vulkan_descriptor");
276
277 nir_address_format addr_format = vtn_mode_to_address_format(b, mode);
278 const struct glsl_type *ptr_type =
279 nir_address_format_to_glsl_type(addr_format);
280
281 desc_load->num_components = glsl_get_vector_elements(ptr_type);
282 nir_ssa_dest_init(&desc_load->instr, &desc_load->dest,
283 desc_load->num_components,
284 glsl_get_bit_size(ptr_type), NULL);
285 nir_builder_instr_insert(&b->nb, &desc_load->instr);
286
287 return &desc_load->dest.ssa;
288 }
289
290 /* Dereference the given base pointer by the access chain */
291 static struct vtn_pointer *
292 vtn_nir_deref_pointer_dereference(struct vtn_builder *b,
293 struct vtn_pointer *base,
294 struct vtn_access_chain *deref_chain)
295 {
296 struct vtn_type *type = base->type;
297 enum gl_access_qualifier access = base->access | deref_chain->access;
298 unsigned idx = 0;
299
300 nir_deref_instr *tail;
301 if (base->deref) {
302 tail = base->deref;
303 } else if (b->options->environment == NIR_SPIRV_VULKAN &&
304 vtn_pointer_is_external_block(b, base)) {
305 nir_ssa_def *block_index = base->block_index;
306
307 /* We dereferencing an external block pointer. Correctness of this
308 * operation relies on one particular line in the SPIR-V spec, section
309 * entitled "Validation Rules for Shader Capabilities":
310 *
311 * "Block and BufferBlock decorations cannot decorate a structure
312 * type that is nested at any level inside another structure type
313 * decorated with Block or BufferBlock."
314 *
315 * This means that we can detect the point where we cross over from
316 * descriptor indexing to buffer indexing by looking for the block
317 * decorated struct type. Anything before the block decorated struct
318 * type is a descriptor indexing operation and anything after the block
319 * decorated struct is a buffer offset operation.
320 */
321
322 /* Figure out the descriptor array index if any
323 *
324 * Some of the Vulkan CTS tests with hand-rolled SPIR-V have been known
325 * to forget the Block or BufferBlock decoration from time to time.
326 * It's more robust if we check for both !block_index and for the type
327 * to contain a block. This way there's a decent chance that arrays of
328 * UBOs/SSBOs will work correctly even if variable pointers are
329 * completley toast.
330 */
331 nir_ssa_def *desc_arr_idx = NULL;
332 if (!block_index || vtn_type_contains_block(b, type)) {
333 /* If our type contains a block, then we're still outside the block
334 * and we need to process enough levels of dereferences to get inside
335 * of it.
336 */
337 if (deref_chain->ptr_as_array) {
338 unsigned aoa_size = glsl_get_aoa_size(type->type);
339 desc_arr_idx = vtn_access_link_as_ssa(b, deref_chain->link[idx],
340 MAX2(aoa_size, 1), 32);
341 idx++;
342 }
343
344 for (; idx < deref_chain->length; idx++) {
345 if (type->base_type != vtn_base_type_array) {
346 vtn_assert(type->base_type == vtn_base_type_struct);
347 break;
348 }
349
350 unsigned aoa_size = glsl_get_aoa_size(type->array_element->type);
351 nir_ssa_def *arr_offset =
352 vtn_access_link_as_ssa(b, deref_chain->link[idx],
353 MAX2(aoa_size, 1), 32);
354 if (desc_arr_idx)
355 desc_arr_idx = nir_iadd(&b->nb, desc_arr_idx, arr_offset);
356 else
357 desc_arr_idx = arr_offset;
358
359 type = type->array_element;
360 access |= type->access;
361 }
362 }
363
364 if (!block_index) {
365 vtn_assert(base->var && base->type);
366 block_index = vtn_variable_resource_index(b, base->var, desc_arr_idx);
367 } else if (desc_arr_idx) {
368 block_index = vtn_resource_reindex(b, base->mode,
369 block_index, desc_arr_idx);
370 }
371
372 if (idx == deref_chain->length) {
373 /* The entire deref was consumed in finding the block index. Return
374 * a pointer which just has a block index and a later access chain
375 * will dereference deeper.
376 */
377 struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer);
378 ptr->mode = base->mode;
379 ptr->type = type;
380 ptr->block_index = block_index;
381 ptr->access = access;
382 return ptr;
383 }
384
385 /* If we got here, there's more access chain to handle and we have the
386 * final block index. Insert a descriptor load and cast to a deref to
387 * start the deref chain.
388 */
389 nir_ssa_def *desc = vtn_descriptor_load(b, base->mode, block_index);
390
391 assert(base->mode == vtn_variable_mode_ssbo ||
392 base->mode == vtn_variable_mode_ubo);
393 nir_variable_mode nir_mode =
394 base->mode == vtn_variable_mode_ssbo ? nir_var_mem_ssbo : nir_var_mem_ubo;
395
396 tail = nir_build_deref_cast(&b->nb, desc, nir_mode, type->type,
397 base->ptr_type->stride);
398 } else {
399 assert(base->var && base->var->var);
400 tail = nir_build_deref_var(&b->nb, base->var->var);
401 if (base->ptr_type && base->ptr_type->type) {
402 tail->dest.ssa.num_components =
403 glsl_get_vector_elements(base->ptr_type->type);
404 tail->dest.ssa.bit_size = glsl_get_bit_size(base->ptr_type->type);
405 }
406 }
407
408 if (idx == 0 && deref_chain->ptr_as_array) {
409 /* We start with a deref cast to get the stride. Hopefully, we'll be
410 * able to delete that cast eventually.
411 */
412 tail = nir_build_deref_cast(&b->nb, &tail->dest.ssa, tail->mode,
413 tail->type, base->ptr_type->stride);
414
415 nir_ssa_def *index = vtn_access_link_as_ssa(b, deref_chain->link[0], 1,
416 tail->dest.ssa.bit_size);
417 tail = nir_build_deref_ptr_as_array(&b->nb, tail, index);
418 idx++;
419 }
420
421 for (; idx < deref_chain->length; idx++) {
422 if (glsl_type_is_struct_or_ifc(type->type)) {
423 vtn_assert(deref_chain->link[idx].mode == vtn_access_mode_literal);
424 unsigned field = deref_chain->link[idx].id;
425 tail = nir_build_deref_struct(&b->nb, tail, field);
426 type = type->members[field];
427 } else {
428 nir_ssa_def *arr_index =
429 vtn_access_link_as_ssa(b, deref_chain->link[idx], 1,
430 tail->dest.ssa.bit_size);
431 tail = nir_build_deref_array(&b->nb, tail, arr_index);
432 type = type->array_element;
433 }
434
435 access |= type->access;
436 }
437
438 struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer);
439 ptr->mode = base->mode;
440 ptr->type = type;
441 ptr->var = base->var;
442 ptr->deref = tail;
443 ptr->access = access;
444
445 return ptr;
446 }
447
448 static struct vtn_pointer *
449 vtn_ssa_offset_pointer_dereference(struct vtn_builder *b,
450 struct vtn_pointer *base,
451 struct vtn_access_chain *deref_chain)
452 {
453 nir_ssa_def *block_index = base->block_index;
454 nir_ssa_def *offset = base->offset;
455 struct vtn_type *type = base->type;
456 enum gl_access_qualifier access = base->access;
457
458 unsigned idx = 0;
459 if (base->mode == vtn_variable_mode_ubo ||
460 base->mode == vtn_variable_mode_ssbo) {
461 if (!block_index) {
462 vtn_assert(base->var && base->type);
463 nir_ssa_def *desc_arr_idx;
464 if (glsl_type_is_array(type->type)) {
465 if (deref_chain->length >= 1) {
466 desc_arr_idx =
467 vtn_access_link_as_ssa(b, deref_chain->link[0], 1, 32);
468 idx++;
469 /* This consumes a level of type */
470 type = type->array_element;
471 access |= type->access;
472 } else {
473 /* This is annoying. We've been asked for a pointer to the
474 * array of UBOs/SSBOs and not a specifc buffer. Return a
475 * pointer with a descriptor index of 0 and we'll have to do
476 * a reindex later to adjust it to the right thing.
477 */
478 desc_arr_idx = nir_imm_int(&b->nb, 0);
479 }
480 } else if (deref_chain->ptr_as_array) {
481 /* You can't have a zero-length OpPtrAccessChain */
482 vtn_assert(deref_chain->length >= 1);
483 desc_arr_idx = vtn_access_link_as_ssa(b, deref_chain->link[0], 1, 32);
484 } else {
485 /* We have a regular non-array SSBO. */
486 desc_arr_idx = NULL;
487 }
488 block_index = vtn_variable_resource_index(b, base->var, desc_arr_idx);
489 } else if (deref_chain->ptr_as_array &&
490 type->base_type == vtn_base_type_struct && type->block) {
491 /* We are doing an OpPtrAccessChain on a pointer to a struct that is
492 * decorated block. This is an interesting corner in the SPIR-V
493 * spec. One interpretation would be that they client is clearly
494 * trying to treat that block as if it's an implicit array of blocks
495 * repeated in the buffer. However, the SPIR-V spec for the
496 * OpPtrAccessChain says:
497 *
498 * "Base is treated as the address of the first element of an
499 * array, and the Element element’s address is computed to be the
500 * base for the Indexes, as per OpAccessChain."
501 *
502 * Taken literally, that would mean that your struct type is supposed
503 * to be treated as an array of such a struct and, since it's
504 * decorated block, that means an array of blocks which corresponds
505 * to an array descriptor. Therefore, we need to do a reindex
506 * operation to add the index from the first link in the access chain
507 * to the index we recieved.
508 *
509 * The downside to this interpretation (there always is one) is that
510 * this might be somewhat surprising behavior to apps if they expect
511 * the implicit array behavior described above.
512 */
513 vtn_assert(deref_chain->length >= 1);
514 nir_ssa_def *offset_index =
515 vtn_access_link_as_ssa(b, deref_chain->link[0], 1, 32);
516 idx++;
517
518 block_index = vtn_resource_reindex(b, base->mode,
519 block_index, offset_index);
520 }
521 }
522
523 if (!offset) {
524 if (base->mode == vtn_variable_mode_workgroup) {
525 /* SLM doesn't need nor have a block index */
526 vtn_assert(!block_index);
527
528 /* We need the variable for the base offset */
529 vtn_assert(base->var);
530
531 /* We need ptr_type for size and alignment */
532 vtn_assert(base->ptr_type);
533
534 /* Assign location on first use so that we don't end up bloating SLM
535 * address space for variables which are never statically used.
536 */
537 if (base->var->shared_location < 0) {
538 vtn_assert(base->ptr_type->length > 0 && base->ptr_type->align > 0);
539 b->shader->num_shared = vtn_align_u32(b->shader->num_shared,
540 base->ptr_type->align);
541 base->var->shared_location = b->shader->num_shared;
542 b->shader->num_shared += base->ptr_type->length;
543 }
544
545 offset = nir_imm_int(&b->nb, base->var->shared_location);
546 } else if (base->mode == vtn_variable_mode_push_constant) {
547 /* Push constants neither need nor have a block index */
548 vtn_assert(!block_index);
549
550 /* Start off with at the start of the push constant block. */
551 offset = nir_imm_int(&b->nb, 0);
552 } else {
553 /* The code above should have ensured a block_index when needed. */
554 vtn_assert(block_index);
555
556 /* Start off with at the start of the buffer. */
557 offset = nir_imm_int(&b->nb, 0);
558 }
559 }
560
561 if (deref_chain->ptr_as_array && idx == 0) {
562 /* We need ptr_type for the stride */
563 vtn_assert(base->ptr_type);
564
565 /* We need at least one element in the chain */
566 vtn_assert(deref_chain->length >= 1);
567
568 nir_ssa_def *elem_offset =
569 vtn_access_link_as_ssa(b, deref_chain->link[idx],
570 base->ptr_type->stride, offset->bit_size);
571 offset = nir_iadd(&b->nb, offset, elem_offset);
572 idx++;
573 }
574
575 for (; idx < deref_chain->length; idx++) {
576 switch (glsl_get_base_type(type->type)) {
577 case GLSL_TYPE_UINT:
578 case GLSL_TYPE_INT:
579 case GLSL_TYPE_UINT16:
580 case GLSL_TYPE_INT16:
581 case GLSL_TYPE_UINT8:
582 case GLSL_TYPE_INT8:
583 case GLSL_TYPE_UINT64:
584 case GLSL_TYPE_INT64:
585 case GLSL_TYPE_FLOAT:
586 case GLSL_TYPE_FLOAT16:
587 case GLSL_TYPE_DOUBLE:
588 case GLSL_TYPE_BOOL:
589 case GLSL_TYPE_ARRAY: {
590 nir_ssa_def *elem_offset =
591 vtn_access_link_as_ssa(b, deref_chain->link[idx],
592 type->stride, offset->bit_size);
593 offset = nir_iadd(&b->nb, offset, elem_offset);
594 type = type->array_element;
595 access |= type->access;
596 break;
597 }
598
599 case GLSL_TYPE_INTERFACE:
600 case GLSL_TYPE_STRUCT: {
601 vtn_assert(deref_chain->link[idx].mode == vtn_access_mode_literal);
602 unsigned member = deref_chain->link[idx].id;
603 offset = nir_iadd_imm(&b->nb, offset, type->offsets[member]);
604 type = type->members[member];
605 access |= type->access;
606 break;
607 }
608
609 default:
610 vtn_fail("Invalid type for deref");
611 }
612 }
613
614 struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer);
615 ptr->mode = base->mode;
616 ptr->type = type;
617 ptr->block_index = block_index;
618 ptr->offset = offset;
619 ptr->access = access;
620
621 return ptr;
622 }
623
624 /* Dereference the given base pointer by the access chain */
625 static struct vtn_pointer *
626 vtn_pointer_dereference(struct vtn_builder *b,
627 struct vtn_pointer *base,
628 struct vtn_access_chain *deref_chain)
629 {
630 if (vtn_pointer_uses_ssa_offset(b, base)) {
631 return vtn_ssa_offset_pointer_dereference(b, base, deref_chain);
632 } else {
633 return vtn_nir_deref_pointer_dereference(b, base, deref_chain);
634 }
635 }
636
637 /* Returns an atomic_uint type based on the original uint type. The returned
638 * type will be equivalent to the original one but will have an atomic_uint
639 * type as leaf instead of an uint.
640 *
641 * Manages uint scalars, arrays, and arrays of arrays of any nested depth.
642 */
643 static const struct glsl_type *
644 repair_atomic_type(const struct glsl_type *type)
645 {
646 assert(glsl_get_base_type(glsl_without_array(type)) == GLSL_TYPE_UINT);
647 assert(glsl_type_is_scalar(glsl_without_array(type)));
648
649 if (glsl_type_is_array(type)) {
650 const struct glsl_type *atomic =
651 repair_atomic_type(glsl_get_array_element(type));
652
653 return glsl_array_type(atomic, glsl_get_length(type),
654 glsl_get_explicit_stride(type));
655 } else {
656 return glsl_atomic_uint_type();
657 }
658 }
659
660 nir_deref_instr *
661 vtn_pointer_to_deref(struct vtn_builder *b, struct vtn_pointer *ptr)
662 {
663 if (b->wa_glslang_179) {
664 /* Do on-the-fly copy propagation for samplers. */
665 if (ptr->var && ptr->var->copy_prop_sampler)
666 return vtn_pointer_to_deref(b, ptr->var->copy_prop_sampler);
667 }
668
669 vtn_assert(!vtn_pointer_uses_ssa_offset(b, ptr));
670 if (!ptr->deref) {
671 struct vtn_access_chain chain = {
672 .length = 0,
673 };
674 ptr = vtn_nir_deref_pointer_dereference(b, ptr, &chain);
675 }
676
677 return ptr->deref;
678 }
679
680 static void
681 _vtn_local_load_store(struct vtn_builder *b, bool load, nir_deref_instr *deref,
682 struct vtn_ssa_value *inout,
683 enum gl_access_qualifier access)
684 {
685 if (glsl_type_is_vector_or_scalar(deref->type)) {
686 if (load) {
687 inout->def = nir_load_deref_with_access(&b->nb, deref, access);
688 } else {
689 nir_store_deref_with_access(&b->nb, deref, inout->def, ~0, access);
690 }
691 } else if (glsl_type_is_array(deref->type) ||
692 glsl_type_is_matrix(deref->type)) {
693 unsigned elems = glsl_get_length(deref->type);
694 for (unsigned i = 0; i < elems; i++) {
695 nir_deref_instr *child =
696 nir_build_deref_array_imm(&b->nb, deref, i);
697 _vtn_local_load_store(b, load, child, inout->elems[i], access);
698 }
699 } else {
700 vtn_assert(glsl_type_is_struct_or_ifc(deref->type));
701 unsigned elems = glsl_get_length(deref->type);
702 for (unsigned i = 0; i < elems; i++) {
703 nir_deref_instr *child = nir_build_deref_struct(&b->nb, deref, i);
704 _vtn_local_load_store(b, load, child, inout->elems[i], access);
705 }
706 }
707 }
708
709 nir_deref_instr *
710 vtn_nir_deref(struct vtn_builder *b, uint32_t id)
711 {
712 struct vtn_pointer *ptr = vtn_value(b, id, vtn_value_type_pointer)->pointer;
713 return vtn_pointer_to_deref(b, ptr);
714 }
715
716 /*
717 * Gets the NIR-level deref tail, which may have as a child an array deref
718 * selecting which component due to OpAccessChain supporting per-component
719 * indexing in SPIR-V.
720 */
721 static nir_deref_instr *
722 get_deref_tail(nir_deref_instr *deref)
723 {
724 if (deref->deref_type != nir_deref_type_array)
725 return deref;
726
727 nir_deref_instr *parent =
728 nir_instr_as_deref(deref->parent.ssa->parent_instr);
729
730 if (glsl_type_is_vector(parent->type))
731 return parent;
732 else
733 return deref;
734 }
735
736 struct vtn_ssa_value *
737 vtn_local_load(struct vtn_builder *b, nir_deref_instr *src,
738 enum gl_access_qualifier access)
739 {
740 nir_deref_instr *src_tail = get_deref_tail(src);
741 struct vtn_ssa_value *val = vtn_create_ssa_value(b, src_tail->type);
742 _vtn_local_load_store(b, true, src_tail, val, access);
743
744 if (src_tail != src) {
745 val->type = src->type;
746 val->def = nir_vector_extract(&b->nb, val->def, src->arr.index.ssa);
747 }
748
749 return val;
750 }
751
752 void
753 vtn_local_store(struct vtn_builder *b, struct vtn_ssa_value *src,
754 nir_deref_instr *dest, enum gl_access_qualifier access)
755 {
756 nir_deref_instr *dest_tail = get_deref_tail(dest);
757
758 if (dest_tail != dest) {
759 struct vtn_ssa_value *val = vtn_create_ssa_value(b, dest_tail->type);
760 _vtn_local_load_store(b, true, dest_tail, val, access);
761
762 val->def = nir_vector_insert(&b->nb, val->def, src->def,
763 dest->arr.index.ssa);
764 _vtn_local_load_store(b, false, dest_tail, val, access);
765 } else {
766 _vtn_local_load_store(b, false, dest_tail, src, access);
767 }
768 }
769
770 nir_ssa_def *
771 vtn_pointer_to_offset(struct vtn_builder *b, struct vtn_pointer *ptr,
772 nir_ssa_def **index_out)
773 {
774 assert(vtn_pointer_uses_ssa_offset(b, ptr));
775 if (!ptr->offset) {
776 struct vtn_access_chain chain = {
777 .length = 0,
778 };
779 ptr = vtn_ssa_offset_pointer_dereference(b, ptr, &chain);
780 }
781 *index_out = ptr->block_index;
782 return ptr->offset;
783 }
784
785 /* Tries to compute the size of an interface block based on the strides and
786 * offsets that are provided to us in the SPIR-V source.
787 */
788 static unsigned
789 vtn_type_block_size(struct vtn_builder *b, struct vtn_type *type)
790 {
791 enum glsl_base_type base_type = glsl_get_base_type(type->type);
792 switch (base_type) {
793 case GLSL_TYPE_UINT:
794 case GLSL_TYPE_INT:
795 case GLSL_TYPE_UINT16:
796 case GLSL_TYPE_INT16:
797 case GLSL_TYPE_UINT8:
798 case GLSL_TYPE_INT8:
799 case GLSL_TYPE_UINT64:
800 case GLSL_TYPE_INT64:
801 case GLSL_TYPE_FLOAT:
802 case GLSL_TYPE_FLOAT16:
803 case GLSL_TYPE_BOOL:
804 case GLSL_TYPE_DOUBLE: {
805 unsigned cols = type->row_major ? glsl_get_vector_elements(type->type) :
806 glsl_get_matrix_columns(type->type);
807 if (cols > 1) {
808 vtn_assert(type->stride > 0);
809 return type->stride * cols;
810 } else {
811 unsigned type_size = glsl_get_bit_size(type->type) / 8;
812 return glsl_get_vector_elements(type->type) * type_size;
813 }
814 }
815
816 case GLSL_TYPE_STRUCT:
817 case GLSL_TYPE_INTERFACE: {
818 unsigned size = 0;
819 unsigned num_fields = glsl_get_length(type->type);
820 for (unsigned f = 0; f < num_fields; f++) {
821 unsigned field_end = type->offsets[f] +
822 vtn_type_block_size(b, type->members[f]);
823 size = MAX2(size, field_end);
824 }
825 return size;
826 }
827
828 case GLSL_TYPE_ARRAY:
829 vtn_assert(type->stride > 0);
830 vtn_assert(glsl_get_length(type->type) > 0);
831 return type->stride * glsl_get_length(type->type);
832
833 default:
834 vtn_fail("Invalid block type");
835 return 0;
836 }
837 }
838
839 static void
840 _vtn_load_store_tail(struct vtn_builder *b, nir_intrinsic_op op, bool load,
841 nir_ssa_def *index, nir_ssa_def *offset,
842 unsigned access_offset, unsigned access_size,
843 struct vtn_ssa_value **inout, const struct glsl_type *type,
844 enum gl_access_qualifier access)
845 {
846 nir_intrinsic_instr *instr = nir_intrinsic_instr_create(b->nb.shader, op);
847 instr->num_components = glsl_get_vector_elements(type);
848
849 /* Booleans usually shouldn't show up in external memory in SPIR-V.
850 * However, they do for certain older GLSLang versions and can for shared
851 * memory when we lower access chains internally.
852 */
853 const unsigned data_bit_size = glsl_type_is_boolean(type) ? 32 :
854 glsl_get_bit_size(type);
855
856 int src = 0;
857 if (!load) {
858 nir_intrinsic_set_write_mask(instr, (1 << instr->num_components) - 1);
859 instr->src[src++] = nir_src_for_ssa((*inout)->def);
860 }
861
862 if (op == nir_intrinsic_load_push_constant) {
863 nir_intrinsic_set_base(instr, access_offset);
864 nir_intrinsic_set_range(instr, access_size);
865 }
866
867 if (op == nir_intrinsic_load_ubo ||
868 op == nir_intrinsic_load_ssbo ||
869 op == nir_intrinsic_store_ssbo) {
870 nir_intrinsic_set_access(instr, access);
871 }
872
873 /* With extensions like relaxed_block_layout, we really can't guarantee
874 * much more than scalar alignment.
875 */
876 if (op != nir_intrinsic_load_push_constant)
877 nir_intrinsic_set_align(instr, data_bit_size / 8, 0);
878
879 if (index)
880 instr->src[src++] = nir_src_for_ssa(index);
881
882 if (op == nir_intrinsic_load_push_constant) {
883 /* We need to subtract the offset from where the intrinsic will load the
884 * data. */
885 instr->src[src++] =
886 nir_src_for_ssa(nir_isub(&b->nb, offset,
887 nir_imm_int(&b->nb, access_offset)));
888 } else {
889 instr->src[src++] = nir_src_for_ssa(offset);
890 }
891
892 if (load) {
893 nir_ssa_dest_init(&instr->instr, &instr->dest,
894 instr->num_components, data_bit_size, NULL);
895 (*inout)->def = &instr->dest.ssa;
896 }
897
898 nir_builder_instr_insert(&b->nb, &instr->instr);
899
900 if (load && glsl_get_base_type(type) == GLSL_TYPE_BOOL)
901 (*inout)->def = nir_ine(&b->nb, (*inout)->def, nir_imm_int(&b->nb, 0));
902 }
903
904 static void
905 _vtn_block_load_store(struct vtn_builder *b, nir_intrinsic_op op, bool load,
906 nir_ssa_def *index, nir_ssa_def *offset,
907 unsigned access_offset, unsigned access_size,
908 struct vtn_type *type, enum gl_access_qualifier access,
909 struct vtn_ssa_value **inout)
910 {
911 if (load && *inout == NULL)
912 *inout = vtn_create_ssa_value(b, type->type);
913
914 enum glsl_base_type base_type = glsl_get_base_type(type->type);
915 switch (base_type) {
916 case GLSL_TYPE_UINT:
917 case GLSL_TYPE_INT:
918 case GLSL_TYPE_UINT16:
919 case GLSL_TYPE_INT16:
920 case GLSL_TYPE_UINT8:
921 case GLSL_TYPE_INT8:
922 case GLSL_TYPE_UINT64:
923 case GLSL_TYPE_INT64:
924 case GLSL_TYPE_FLOAT:
925 case GLSL_TYPE_FLOAT16:
926 case GLSL_TYPE_DOUBLE:
927 case GLSL_TYPE_BOOL:
928 /* This is where things get interesting. At this point, we've hit
929 * a vector, a scalar, or a matrix.
930 */
931 if (glsl_type_is_matrix(type->type)) {
932 /* Loading the whole matrix */
933 struct vtn_ssa_value *transpose;
934 unsigned num_ops, vec_width, col_stride;
935 if (type->row_major) {
936 num_ops = glsl_get_vector_elements(type->type);
937 vec_width = glsl_get_matrix_columns(type->type);
938 col_stride = type->array_element->stride;
939 if (load) {
940 const struct glsl_type *transpose_type =
941 glsl_matrix_type(base_type, vec_width, num_ops);
942 *inout = vtn_create_ssa_value(b, transpose_type);
943 } else {
944 transpose = vtn_ssa_transpose(b, *inout);
945 inout = &transpose;
946 }
947 } else {
948 num_ops = glsl_get_matrix_columns(type->type);
949 vec_width = glsl_get_vector_elements(type->type);
950 col_stride = type->stride;
951 }
952
953 for (unsigned i = 0; i < num_ops; i++) {
954 nir_ssa_def *elem_offset =
955 nir_iadd_imm(&b->nb, offset, i * col_stride);
956 _vtn_load_store_tail(b, op, load, index, elem_offset,
957 access_offset, access_size,
958 &(*inout)->elems[i],
959 glsl_vector_type(base_type, vec_width),
960 type->access | access);
961 }
962
963 if (load && type->row_major)
964 *inout = vtn_ssa_transpose(b, *inout);
965 } else {
966 unsigned elems = glsl_get_vector_elements(type->type);
967 unsigned type_size = glsl_get_bit_size(type->type) / 8;
968 if (elems == 1 || type->stride == type_size) {
969 /* This is a tightly-packed normal scalar or vector load */
970 vtn_assert(glsl_type_is_vector_or_scalar(type->type));
971 _vtn_load_store_tail(b, op, load, index, offset,
972 access_offset, access_size,
973 inout, type->type,
974 type->access | access);
975 } else {
976 /* This is a strided load. We have to load N things separately.
977 * This is the single column of a row-major matrix case.
978 */
979 vtn_assert(type->stride > type_size);
980 vtn_assert(type->stride % type_size == 0);
981
982 nir_ssa_def *per_comp[4];
983 for (unsigned i = 0; i < elems; i++) {
984 nir_ssa_def *elem_offset =
985 nir_iadd_imm(&b->nb, offset, i * type->stride);
986 struct vtn_ssa_value *comp, temp_val;
987 if (!load) {
988 temp_val.def = nir_channel(&b->nb, (*inout)->def, i);
989 temp_val.type = glsl_scalar_type(base_type);
990 }
991 comp = &temp_val;
992 _vtn_load_store_tail(b, op, load, index, elem_offset,
993 access_offset, access_size,
994 &comp, glsl_scalar_type(base_type),
995 type->access | access);
996 per_comp[i] = comp->def;
997 }
998
999 if (load) {
1000 if (*inout == NULL)
1001 *inout = vtn_create_ssa_value(b, type->type);
1002 (*inout)->def = nir_vec(&b->nb, per_comp, elems);
1003 }
1004 }
1005 }
1006 return;
1007
1008 case GLSL_TYPE_ARRAY: {
1009 unsigned elems = glsl_get_length(type->type);
1010 for (unsigned i = 0; i < elems; i++) {
1011 nir_ssa_def *elem_off =
1012 nir_iadd_imm(&b->nb, offset, i * type->stride);
1013 _vtn_block_load_store(b, op, load, index, elem_off,
1014 access_offset, access_size,
1015 type->array_element,
1016 type->array_element->access | access,
1017 &(*inout)->elems[i]);
1018 }
1019 return;
1020 }
1021
1022 case GLSL_TYPE_INTERFACE:
1023 case GLSL_TYPE_STRUCT: {
1024 unsigned elems = glsl_get_length(type->type);
1025 for (unsigned i = 0; i < elems; i++) {
1026 nir_ssa_def *elem_off =
1027 nir_iadd_imm(&b->nb, offset, type->offsets[i]);
1028 _vtn_block_load_store(b, op, load, index, elem_off,
1029 access_offset, access_size,
1030 type->members[i],
1031 type->members[i]->access | access,
1032 &(*inout)->elems[i]);
1033 }
1034 return;
1035 }
1036
1037 default:
1038 vtn_fail("Invalid block member type");
1039 }
1040 }
1041
1042 static struct vtn_ssa_value *
1043 vtn_block_load(struct vtn_builder *b, struct vtn_pointer *src)
1044 {
1045 nir_intrinsic_op op;
1046 unsigned access_offset = 0, access_size = 0;
1047 switch (src->mode) {
1048 case vtn_variable_mode_ubo:
1049 op = nir_intrinsic_load_ubo;
1050 break;
1051 case vtn_variable_mode_ssbo:
1052 op = nir_intrinsic_load_ssbo;
1053 break;
1054 case vtn_variable_mode_push_constant:
1055 op = nir_intrinsic_load_push_constant;
1056 access_size = b->shader->num_uniforms;
1057 break;
1058 case vtn_variable_mode_workgroup:
1059 op = nir_intrinsic_load_shared;
1060 break;
1061 default:
1062 vtn_fail("Invalid block variable mode");
1063 }
1064
1065 nir_ssa_def *offset, *index = NULL;
1066 offset = vtn_pointer_to_offset(b, src, &index);
1067
1068 struct vtn_ssa_value *value = NULL;
1069 _vtn_block_load_store(b, op, true, index, offset,
1070 access_offset, access_size,
1071 src->type, src->access, &value);
1072 return value;
1073 }
1074
1075 static void
1076 vtn_block_store(struct vtn_builder *b, struct vtn_ssa_value *src,
1077 struct vtn_pointer *dst)
1078 {
1079 nir_intrinsic_op op;
1080 switch (dst->mode) {
1081 case vtn_variable_mode_ssbo:
1082 op = nir_intrinsic_store_ssbo;
1083 break;
1084 case vtn_variable_mode_workgroup:
1085 op = nir_intrinsic_store_shared;
1086 break;
1087 default:
1088 vtn_fail("Invalid block variable mode");
1089 }
1090
1091 nir_ssa_def *offset, *index = NULL;
1092 offset = vtn_pointer_to_offset(b, dst, &index);
1093
1094 _vtn_block_load_store(b, op, false, index, offset,
1095 0, 0, dst->type, dst->access, &src);
1096 }
1097
1098 static void
1099 _vtn_variable_load_store(struct vtn_builder *b, bool load,
1100 struct vtn_pointer *ptr,
1101 enum gl_access_qualifier access,
1102 struct vtn_ssa_value **inout)
1103 {
1104 enum glsl_base_type base_type = glsl_get_base_type(ptr->type->type);
1105 switch (base_type) {
1106 case GLSL_TYPE_UINT:
1107 case GLSL_TYPE_INT:
1108 case GLSL_TYPE_UINT16:
1109 case GLSL_TYPE_INT16:
1110 case GLSL_TYPE_UINT8:
1111 case GLSL_TYPE_INT8:
1112 case GLSL_TYPE_UINT64:
1113 case GLSL_TYPE_INT64:
1114 case GLSL_TYPE_FLOAT:
1115 case GLSL_TYPE_FLOAT16:
1116 case GLSL_TYPE_BOOL:
1117 case GLSL_TYPE_DOUBLE:
1118 if (glsl_type_is_vector_or_scalar(ptr->type->type)) {
1119 /* We hit a vector or scalar; go ahead and emit the load[s] */
1120 nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr);
1121 if (vtn_pointer_is_external_block(b, ptr)) {
1122 /* If it's external, we call nir_load/store_deref directly. The
1123 * vtn_local_load/store helpers are too clever and do magic to
1124 * avoid array derefs of vectors. That magic is both less
1125 * efficient than the direct load/store and, in the case of
1126 * stores, is broken because it creates a race condition if two
1127 * threads are writing to different components of the same vector
1128 * due to the load+insert+store it uses to emulate the array
1129 * deref.
1130 */
1131 if (load) {
1132 *inout = vtn_create_ssa_value(b, ptr->type->type);
1133 (*inout)->def = nir_load_deref_with_access(&b->nb, deref,
1134 ptr->type->access | access);
1135 } else {
1136 nir_store_deref_with_access(&b->nb, deref, (*inout)->def, ~0,
1137 ptr->type->access | access);
1138 }
1139 } else {
1140 if (load) {
1141 *inout = vtn_local_load(b, deref, ptr->type->access | access);
1142 } else {
1143 vtn_local_store(b, *inout, deref, ptr->type->access | access);
1144 }
1145 }
1146 return;
1147 }
1148 /* Fall through */
1149
1150 case GLSL_TYPE_INTERFACE:
1151 case GLSL_TYPE_ARRAY:
1152 case GLSL_TYPE_STRUCT: {
1153 unsigned elems = glsl_get_length(ptr->type->type);
1154 if (load) {
1155 vtn_assert(*inout == NULL);
1156 *inout = rzalloc(b, struct vtn_ssa_value);
1157 (*inout)->type = ptr->type->type;
1158 (*inout)->elems = rzalloc_array(b, struct vtn_ssa_value *, elems);
1159 }
1160
1161 struct vtn_access_chain chain = {
1162 .length = 1,
1163 .link = {
1164 { .mode = vtn_access_mode_literal, },
1165 }
1166 };
1167 for (unsigned i = 0; i < elems; i++) {
1168 chain.link[0].id = i;
1169 struct vtn_pointer *elem = vtn_pointer_dereference(b, ptr, &chain);
1170 _vtn_variable_load_store(b, load, elem, ptr->type->access | access,
1171 &(*inout)->elems[i]);
1172 }
1173 return;
1174 }
1175
1176 default:
1177 vtn_fail("Invalid access chain type");
1178 }
1179 }
1180
1181 struct vtn_ssa_value *
1182 vtn_variable_load(struct vtn_builder *b, struct vtn_pointer *src)
1183 {
1184 if (vtn_pointer_uses_ssa_offset(b, src)) {
1185 return vtn_block_load(b, src);
1186 } else {
1187 struct vtn_ssa_value *val = NULL;
1188 _vtn_variable_load_store(b, true, src, src->access, &val);
1189 return val;
1190 }
1191 }
1192
1193 void
1194 vtn_variable_store(struct vtn_builder *b, struct vtn_ssa_value *src,
1195 struct vtn_pointer *dest)
1196 {
1197 if (vtn_pointer_uses_ssa_offset(b, dest)) {
1198 vtn_assert(dest->mode == vtn_variable_mode_ssbo ||
1199 dest->mode == vtn_variable_mode_workgroup);
1200 vtn_block_store(b, src, dest);
1201 } else {
1202 _vtn_variable_load_store(b, false, dest, dest->access, &src);
1203 }
1204 }
1205
1206 static void
1207 _vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest,
1208 struct vtn_pointer *src)
1209 {
1210 vtn_assert(src->type->type == dest->type->type);
1211 enum glsl_base_type base_type = glsl_get_base_type(src->type->type);
1212 switch (base_type) {
1213 case GLSL_TYPE_UINT:
1214 case GLSL_TYPE_INT:
1215 case GLSL_TYPE_UINT16:
1216 case GLSL_TYPE_INT16:
1217 case GLSL_TYPE_UINT8:
1218 case GLSL_TYPE_INT8:
1219 case GLSL_TYPE_UINT64:
1220 case GLSL_TYPE_INT64:
1221 case GLSL_TYPE_FLOAT:
1222 case GLSL_TYPE_FLOAT16:
1223 case GLSL_TYPE_DOUBLE:
1224 case GLSL_TYPE_BOOL:
1225 /* At this point, we have a scalar, vector, or matrix so we know that
1226 * there cannot be any structure splitting still in the way. By
1227 * stopping at the matrix level rather than the vector level, we
1228 * ensure that matrices get loaded in the optimal way even if they
1229 * are storred row-major in a UBO.
1230 */
1231 vtn_variable_store(b, vtn_variable_load(b, src), dest);
1232 return;
1233
1234 case GLSL_TYPE_INTERFACE:
1235 case GLSL_TYPE_ARRAY:
1236 case GLSL_TYPE_STRUCT: {
1237 struct vtn_access_chain chain = {
1238 .length = 1,
1239 .link = {
1240 { .mode = vtn_access_mode_literal, },
1241 }
1242 };
1243 unsigned elems = glsl_get_length(src->type->type);
1244 for (unsigned i = 0; i < elems; i++) {
1245 chain.link[0].id = i;
1246 struct vtn_pointer *src_elem =
1247 vtn_pointer_dereference(b, src, &chain);
1248 struct vtn_pointer *dest_elem =
1249 vtn_pointer_dereference(b, dest, &chain);
1250
1251 _vtn_variable_copy(b, dest_elem, src_elem);
1252 }
1253 return;
1254 }
1255
1256 default:
1257 vtn_fail("Invalid access chain type");
1258 }
1259 }
1260
1261 static void
1262 vtn_variable_copy(struct vtn_builder *b, struct vtn_pointer *dest,
1263 struct vtn_pointer *src)
1264 {
1265 /* TODO: At some point, we should add a special-case for when we can
1266 * just emit a copy_var intrinsic.
1267 */
1268 _vtn_variable_copy(b, dest, src);
1269 }
1270
1271 static void
1272 set_mode_system_value(struct vtn_builder *b, nir_variable_mode *mode)
1273 {
1274 vtn_assert(*mode == nir_var_system_value || *mode == nir_var_shader_in);
1275 *mode = nir_var_system_value;
1276 }
1277
1278 static void
1279 vtn_get_builtin_location(struct vtn_builder *b,
1280 SpvBuiltIn builtin, int *location,
1281 nir_variable_mode *mode)
1282 {
1283 switch (builtin) {
1284 case SpvBuiltInPosition:
1285 *location = VARYING_SLOT_POS;
1286 break;
1287 case SpvBuiltInPointSize:
1288 *location = VARYING_SLOT_PSIZ;
1289 break;
1290 case SpvBuiltInClipDistance:
1291 *location = VARYING_SLOT_CLIP_DIST0; /* XXX CLIP_DIST1? */
1292 break;
1293 case SpvBuiltInCullDistance:
1294 *location = VARYING_SLOT_CULL_DIST0;
1295 break;
1296 case SpvBuiltInVertexId:
1297 case SpvBuiltInVertexIndex:
1298 /* The Vulkan spec defines VertexIndex to be non-zero-based and doesn't
1299 * allow VertexId. The ARB_gl_spirv spec defines VertexId to be the
1300 * same as gl_VertexID, which is non-zero-based, and removes
1301 * VertexIndex. Since they're both defined to be non-zero-based, we use
1302 * SYSTEM_VALUE_VERTEX_ID for both.
1303 */
1304 *location = SYSTEM_VALUE_VERTEX_ID;
1305 set_mode_system_value(b, mode);
1306 break;
1307 case SpvBuiltInInstanceIndex:
1308 *location = SYSTEM_VALUE_INSTANCE_INDEX;
1309 set_mode_system_value(b, mode);
1310 break;
1311 case SpvBuiltInInstanceId:
1312 *location = SYSTEM_VALUE_INSTANCE_ID;
1313 set_mode_system_value(b, mode);
1314 break;
1315 case SpvBuiltInPrimitiveId:
1316 if (b->shader->info.stage == MESA_SHADER_FRAGMENT) {
1317 vtn_assert(*mode == nir_var_shader_in);
1318 *location = VARYING_SLOT_PRIMITIVE_ID;
1319 } else if (*mode == nir_var_shader_out) {
1320 *location = VARYING_SLOT_PRIMITIVE_ID;
1321 } else {
1322 *location = SYSTEM_VALUE_PRIMITIVE_ID;
1323 set_mode_system_value(b, mode);
1324 }
1325 break;
1326 case SpvBuiltInInvocationId:
1327 *location = SYSTEM_VALUE_INVOCATION_ID;
1328 set_mode_system_value(b, mode);
1329 break;
1330 case SpvBuiltInLayer:
1331 *location = VARYING_SLOT_LAYER;
1332 if (b->shader->info.stage == MESA_SHADER_FRAGMENT)
1333 *mode = nir_var_shader_in;
1334 else if (b->shader->info.stage == MESA_SHADER_GEOMETRY)
1335 *mode = nir_var_shader_out;
1336 else if (b->options && b->options->caps.shader_viewport_index_layer &&
1337 (b->shader->info.stage == MESA_SHADER_VERTEX ||
1338 b->shader->info.stage == MESA_SHADER_TESS_EVAL))
1339 *mode = nir_var_shader_out;
1340 else
1341 vtn_fail("invalid stage for SpvBuiltInLayer");
1342 break;
1343 case SpvBuiltInViewportIndex:
1344 *location = VARYING_SLOT_VIEWPORT;
1345 if (b->shader->info.stage == MESA_SHADER_GEOMETRY)
1346 *mode = nir_var_shader_out;
1347 else if (b->options && b->options->caps.shader_viewport_index_layer &&
1348 (b->shader->info.stage == MESA_SHADER_VERTEX ||
1349 b->shader->info.stage == MESA_SHADER_TESS_EVAL))
1350 *mode = nir_var_shader_out;
1351 else if (b->shader->info.stage == MESA_SHADER_FRAGMENT)
1352 *mode = nir_var_shader_in;
1353 else
1354 vtn_fail("invalid stage for SpvBuiltInViewportIndex");
1355 break;
1356 case SpvBuiltInTessLevelOuter:
1357 if (b->options && b->options->tess_levels_are_sysvals &&
1358 *mode == nir_var_shader_in) {
1359 *location = SYSTEM_VALUE_TESS_LEVEL_OUTER;
1360 set_mode_system_value(b, mode);
1361 } else {
1362 *location = VARYING_SLOT_TESS_LEVEL_OUTER;
1363 }
1364 break;
1365 case SpvBuiltInTessLevelInner:
1366 if (b->options && b->options->tess_levels_are_sysvals &&
1367 *mode == nir_var_shader_in) {
1368 *location = SYSTEM_VALUE_TESS_LEVEL_INNER;
1369 set_mode_system_value(b, mode);
1370 } else {
1371 *location = VARYING_SLOT_TESS_LEVEL_INNER;
1372 }
1373 break;
1374 case SpvBuiltInTessCoord:
1375 *location = SYSTEM_VALUE_TESS_COORD;
1376 set_mode_system_value(b, mode);
1377 break;
1378 case SpvBuiltInPatchVertices:
1379 *location = SYSTEM_VALUE_VERTICES_IN;
1380 set_mode_system_value(b, mode);
1381 break;
1382 case SpvBuiltInFragCoord:
1383 vtn_assert(*mode == nir_var_shader_in);
1384 if (b->options && b->options->frag_coord_is_sysval) {
1385 *mode = nir_var_system_value;
1386 *location = SYSTEM_VALUE_FRAG_COORD;
1387 } else {
1388 *location = VARYING_SLOT_POS;
1389 }
1390 break;
1391 case SpvBuiltInPointCoord:
1392 *location = VARYING_SLOT_PNTC;
1393 vtn_assert(*mode == nir_var_shader_in);
1394 break;
1395 case SpvBuiltInFrontFacing:
1396 *location = SYSTEM_VALUE_FRONT_FACE;
1397 set_mode_system_value(b, mode);
1398 break;
1399 case SpvBuiltInSampleId:
1400 *location = SYSTEM_VALUE_SAMPLE_ID;
1401 set_mode_system_value(b, mode);
1402 break;
1403 case SpvBuiltInSamplePosition:
1404 *location = SYSTEM_VALUE_SAMPLE_POS;
1405 set_mode_system_value(b, mode);
1406 break;
1407 case SpvBuiltInSampleMask:
1408 if (*mode == nir_var_shader_out) {
1409 *location = FRAG_RESULT_SAMPLE_MASK;
1410 } else {
1411 *location = SYSTEM_VALUE_SAMPLE_MASK_IN;
1412 set_mode_system_value(b, mode);
1413 }
1414 break;
1415 case SpvBuiltInFragDepth:
1416 *location = FRAG_RESULT_DEPTH;
1417 vtn_assert(*mode == nir_var_shader_out);
1418 break;
1419 case SpvBuiltInHelperInvocation:
1420 *location = SYSTEM_VALUE_HELPER_INVOCATION;
1421 set_mode_system_value(b, mode);
1422 break;
1423 case SpvBuiltInNumWorkgroups:
1424 *location = SYSTEM_VALUE_NUM_WORK_GROUPS;
1425 set_mode_system_value(b, mode);
1426 break;
1427 case SpvBuiltInWorkgroupSize:
1428 *location = SYSTEM_VALUE_LOCAL_GROUP_SIZE;
1429 set_mode_system_value(b, mode);
1430 break;
1431 case SpvBuiltInWorkgroupId:
1432 *location = SYSTEM_VALUE_WORK_GROUP_ID;
1433 set_mode_system_value(b, mode);
1434 break;
1435 case SpvBuiltInLocalInvocationId:
1436 *location = SYSTEM_VALUE_LOCAL_INVOCATION_ID;
1437 set_mode_system_value(b, mode);
1438 break;
1439 case SpvBuiltInLocalInvocationIndex:
1440 *location = SYSTEM_VALUE_LOCAL_INVOCATION_INDEX;
1441 set_mode_system_value(b, mode);
1442 break;
1443 case SpvBuiltInGlobalInvocationId:
1444 *location = SYSTEM_VALUE_GLOBAL_INVOCATION_ID;
1445 set_mode_system_value(b, mode);
1446 break;
1447 case SpvBuiltInGlobalLinearId:
1448 *location = SYSTEM_VALUE_GLOBAL_INVOCATION_INDEX;
1449 set_mode_system_value(b, mode);
1450 break;
1451 case SpvBuiltInBaseVertex:
1452 /* OpenGL gl_BaseVertex (SYSTEM_VALUE_BASE_VERTEX) is not the same
1453 * semantic as Vulkan BaseVertex (SYSTEM_VALUE_FIRST_VERTEX).
1454 */
1455 if (b->options->environment == NIR_SPIRV_OPENGL)
1456 *location = SYSTEM_VALUE_BASE_VERTEX;
1457 else
1458 *location = SYSTEM_VALUE_FIRST_VERTEX;
1459 set_mode_system_value(b, mode);
1460 break;
1461 case SpvBuiltInBaseInstance:
1462 *location = SYSTEM_VALUE_BASE_INSTANCE;
1463 set_mode_system_value(b, mode);
1464 break;
1465 case SpvBuiltInDrawIndex:
1466 *location = SYSTEM_VALUE_DRAW_ID;
1467 set_mode_system_value(b, mode);
1468 break;
1469 case SpvBuiltInSubgroupSize:
1470 *location = SYSTEM_VALUE_SUBGROUP_SIZE;
1471 set_mode_system_value(b, mode);
1472 break;
1473 case SpvBuiltInSubgroupId:
1474 *location = SYSTEM_VALUE_SUBGROUP_ID;
1475 set_mode_system_value(b, mode);
1476 break;
1477 case SpvBuiltInSubgroupLocalInvocationId:
1478 *location = SYSTEM_VALUE_SUBGROUP_INVOCATION;
1479 set_mode_system_value(b, mode);
1480 break;
1481 case SpvBuiltInNumSubgroups:
1482 *location = SYSTEM_VALUE_NUM_SUBGROUPS;
1483 set_mode_system_value(b, mode);
1484 break;
1485 case SpvBuiltInDeviceIndex:
1486 *location = SYSTEM_VALUE_DEVICE_INDEX;
1487 set_mode_system_value(b, mode);
1488 break;
1489 case SpvBuiltInViewIndex:
1490 *location = SYSTEM_VALUE_VIEW_INDEX;
1491 set_mode_system_value(b, mode);
1492 break;
1493 case SpvBuiltInSubgroupEqMask:
1494 *location = SYSTEM_VALUE_SUBGROUP_EQ_MASK,
1495 set_mode_system_value(b, mode);
1496 break;
1497 case SpvBuiltInSubgroupGeMask:
1498 *location = SYSTEM_VALUE_SUBGROUP_GE_MASK,
1499 set_mode_system_value(b, mode);
1500 break;
1501 case SpvBuiltInSubgroupGtMask:
1502 *location = SYSTEM_VALUE_SUBGROUP_GT_MASK,
1503 set_mode_system_value(b, mode);
1504 break;
1505 case SpvBuiltInSubgroupLeMask:
1506 *location = SYSTEM_VALUE_SUBGROUP_LE_MASK,
1507 set_mode_system_value(b, mode);
1508 break;
1509 case SpvBuiltInSubgroupLtMask:
1510 *location = SYSTEM_VALUE_SUBGROUP_LT_MASK,
1511 set_mode_system_value(b, mode);
1512 break;
1513 case SpvBuiltInFragStencilRefEXT:
1514 *location = FRAG_RESULT_STENCIL;
1515 vtn_assert(*mode == nir_var_shader_out);
1516 break;
1517 case SpvBuiltInWorkDim:
1518 *location = SYSTEM_VALUE_WORK_DIM;
1519 set_mode_system_value(b, mode);
1520 break;
1521 case SpvBuiltInGlobalSize:
1522 *location = SYSTEM_VALUE_GLOBAL_GROUP_SIZE;
1523 set_mode_system_value(b, mode);
1524 break;
1525 case SpvBuiltInBaryCoordNoPerspAMD:
1526 *location = SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL;
1527 set_mode_system_value(b, mode);
1528 break;
1529 case SpvBuiltInBaryCoordNoPerspCentroidAMD:
1530 *location = SYSTEM_VALUE_BARYCENTRIC_LINEAR_CENTROID;
1531 set_mode_system_value(b, mode);
1532 break;
1533 case SpvBuiltInBaryCoordNoPerspSampleAMD:
1534 *location = SYSTEM_VALUE_BARYCENTRIC_LINEAR_SAMPLE;
1535 set_mode_system_value(b, mode);
1536 break;
1537 case SpvBuiltInBaryCoordSmoothAMD:
1538 *location = SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
1539 set_mode_system_value(b, mode);
1540 break;
1541 case SpvBuiltInBaryCoordSmoothCentroidAMD:
1542 *location = SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID;
1543 set_mode_system_value(b, mode);
1544 break;
1545 case SpvBuiltInBaryCoordSmoothSampleAMD:
1546 *location = SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE;
1547 set_mode_system_value(b, mode);
1548 break;
1549 case SpvBuiltInBaryCoordPullModelAMD:
1550 *location = SYSTEM_VALUE_BARYCENTRIC_PULL_MODEL;
1551 set_mode_system_value(b, mode);
1552 break;
1553 default:
1554 vtn_fail("Unsupported builtin: %s (%u)",
1555 spirv_builtin_to_string(builtin), builtin);
1556 }
1557 }
1558
1559 static void
1560 apply_var_decoration(struct vtn_builder *b,
1561 struct nir_variable_data *var_data,
1562 const struct vtn_decoration *dec)
1563 {
1564 switch (dec->decoration) {
1565 case SpvDecorationRelaxedPrecision:
1566 break; /* FIXME: Do nothing with this for now. */
1567 case SpvDecorationNoPerspective:
1568 var_data->interpolation = INTERP_MODE_NOPERSPECTIVE;
1569 break;
1570 case SpvDecorationFlat:
1571 var_data->interpolation = INTERP_MODE_FLAT;
1572 break;
1573 case SpvDecorationExplicitInterpAMD:
1574 var_data->interpolation = INTERP_MODE_EXPLICIT;
1575 break;
1576 case SpvDecorationCentroid:
1577 var_data->centroid = true;
1578 break;
1579 case SpvDecorationSample:
1580 var_data->sample = true;
1581 break;
1582 case SpvDecorationInvariant:
1583 var_data->invariant = true;
1584 break;
1585 case SpvDecorationConstant:
1586 var_data->read_only = true;
1587 break;
1588 case SpvDecorationNonReadable:
1589 var_data->access |= ACCESS_NON_READABLE;
1590 break;
1591 case SpvDecorationNonWritable:
1592 var_data->read_only = true;
1593 var_data->access |= ACCESS_NON_WRITEABLE;
1594 break;
1595 case SpvDecorationRestrict:
1596 var_data->access |= ACCESS_RESTRICT;
1597 break;
1598 case SpvDecorationVolatile:
1599 var_data->access |= ACCESS_VOLATILE;
1600 break;
1601 case SpvDecorationCoherent:
1602 var_data->access |= ACCESS_COHERENT;
1603 break;
1604 case SpvDecorationComponent:
1605 var_data->location_frac = dec->operands[0];
1606 break;
1607 case SpvDecorationIndex:
1608 var_data->index = dec->operands[0];
1609 break;
1610 case SpvDecorationBuiltIn: {
1611 SpvBuiltIn builtin = dec->operands[0];
1612
1613 nir_variable_mode mode = var_data->mode;
1614 vtn_get_builtin_location(b, builtin, &var_data->location, &mode);
1615 var_data->mode = mode;
1616
1617 switch (builtin) {
1618 case SpvBuiltInTessLevelOuter:
1619 case SpvBuiltInTessLevelInner:
1620 case SpvBuiltInClipDistance:
1621 case SpvBuiltInCullDistance:
1622 var_data->compact = true;
1623 break;
1624 default:
1625 break;
1626 }
1627 }
1628
1629 case SpvDecorationSpecId:
1630 case SpvDecorationRowMajor:
1631 case SpvDecorationColMajor:
1632 case SpvDecorationMatrixStride:
1633 case SpvDecorationAliased:
1634 case SpvDecorationUniform:
1635 case SpvDecorationUniformId:
1636 case SpvDecorationLinkageAttributes:
1637 break; /* Do nothing with these here */
1638
1639 case SpvDecorationPatch:
1640 var_data->patch = true;
1641 break;
1642
1643 case SpvDecorationLocation:
1644 vtn_fail("Handled above");
1645
1646 case SpvDecorationBlock:
1647 case SpvDecorationBufferBlock:
1648 case SpvDecorationArrayStride:
1649 case SpvDecorationGLSLShared:
1650 case SpvDecorationGLSLPacked:
1651 break; /* These can apply to a type but we don't care about them */
1652
1653 case SpvDecorationBinding:
1654 case SpvDecorationDescriptorSet:
1655 case SpvDecorationNoContraction:
1656 case SpvDecorationInputAttachmentIndex:
1657 vtn_warn("Decoration not allowed for variable or structure member: %s",
1658 spirv_decoration_to_string(dec->decoration));
1659 break;
1660
1661 case SpvDecorationXfbBuffer:
1662 var_data->explicit_xfb_buffer = true;
1663 var_data->xfb.buffer = dec->operands[0];
1664 var_data->always_active_io = true;
1665 break;
1666 case SpvDecorationXfbStride:
1667 var_data->explicit_xfb_stride = true;
1668 var_data->xfb.stride = dec->operands[0];
1669 break;
1670 case SpvDecorationOffset:
1671 var_data->explicit_offset = true;
1672 var_data->offset = dec->operands[0];
1673 break;
1674
1675 case SpvDecorationStream:
1676 var_data->stream = dec->operands[0];
1677 break;
1678
1679 case SpvDecorationCPacked:
1680 case SpvDecorationSaturatedConversion:
1681 case SpvDecorationFuncParamAttr:
1682 case SpvDecorationFPRoundingMode:
1683 case SpvDecorationFPFastMathMode:
1684 case SpvDecorationAlignment:
1685 if (b->shader->info.stage != MESA_SHADER_KERNEL) {
1686 vtn_warn("Decoration only allowed for CL-style kernels: %s",
1687 spirv_decoration_to_string(dec->decoration));
1688 }
1689 break;
1690
1691 case SpvDecorationUserSemantic:
1692 case SpvDecorationUserTypeGOOGLE:
1693 /* User semantic decorations can safely be ignored by the driver. */
1694 break;
1695
1696 case SpvDecorationRestrictPointerEXT:
1697 case SpvDecorationAliasedPointerEXT:
1698 /* TODO: We should actually plumb alias information through NIR. */
1699 break;
1700
1701 default:
1702 vtn_fail_with_decoration("Unhandled decoration", dec->decoration);
1703 }
1704 }
1705
1706 static void
1707 var_is_patch_cb(struct vtn_builder *b, struct vtn_value *val, int member,
1708 const struct vtn_decoration *dec, void *out_is_patch)
1709 {
1710 if (dec->decoration == SpvDecorationPatch) {
1711 *((bool *) out_is_patch) = true;
1712 }
1713 }
1714
1715 static void
1716 var_decoration_cb(struct vtn_builder *b, struct vtn_value *val, int member,
1717 const struct vtn_decoration *dec, void *void_var)
1718 {
1719 struct vtn_variable *vtn_var = void_var;
1720
1721 /* Handle decorations that apply to a vtn_variable as a whole */
1722 switch (dec->decoration) {
1723 case SpvDecorationBinding:
1724 vtn_var->binding = dec->operands[0];
1725 vtn_var->explicit_binding = true;
1726 return;
1727 case SpvDecorationDescriptorSet:
1728 vtn_var->descriptor_set = dec->operands[0];
1729 return;
1730 case SpvDecorationInputAttachmentIndex:
1731 vtn_var->input_attachment_index = dec->operands[0];
1732 return;
1733 case SpvDecorationPatch:
1734 vtn_var->patch = true;
1735 break;
1736 case SpvDecorationOffset:
1737 vtn_var->offset = dec->operands[0];
1738 break;
1739 case SpvDecorationNonWritable:
1740 vtn_var->access |= ACCESS_NON_WRITEABLE;
1741 break;
1742 case SpvDecorationNonReadable:
1743 vtn_var->access |= ACCESS_NON_READABLE;
1744 break;
1745 case SpvDecorationVolatile:
1746 vtn_var->access |= ACCESS_VOLATILE;
1747 break;
1748 case SpvDecorationCoherent:
1749 vtn_var->access |= ACCESS_COHERENT;
1750 break;
1751 case SpvDecorationCounterBuffer:
1752 /* Counter buffer decorations can safely be ignored by the driver. */
1753 return;
1754 default:
1755 break;
1756 }
1757
1758 if (val->value_type == vtn_value_type_pointer) {
1759 assert(val->pointer->var == void_var);
1760 assert(member == -1);
1761 } else {
1762 assert(val->value_type == vtn_value_type_type);
1763 }
1764
1765 /* Location is odd. If applied to a split structure, we have to walk the
1766 * whole thing and accumulate the location. It's easier to handle as a
1767 * special case.
1768 */
1769 if (dec->decoration == SpvDecorationLocation) {
1770 unsigned location = dec->operands[0];
1771 if (b->shader->info.stage == MESA_SHADER_FRAGMENT &&
1772 vtn_var->mode == vtn_variable_mode_output) {
1773 location += FRAG_RESULT_DATA0;
1774 } else if (b->shader->info.stage == MESA_SHADER_VERTEX &&
1775 vtn_var->mode == vtn_variable_mode_input) {
1776 location += VERT_ATTRIB_GENERIC0;
1777 } else if (vtn_var->mode == vtn_variable_mode_input ||
1778 vtn_var->mode == vtn_variable_mode_output) {
1779 location += vtn_var->patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0;
1780 } else if (vtn_var->mode != vtn_variable_mode_uniform) {
1781 vtn_warn("Location must be on input, output, uniform, sampler or "
1782 "image variable");
1783 return;
1784 }
1785
1786 if (vtn_var->var->num_members == 0) {
1787 /* This handles the member and lone variable cases */
1788 vtn_var->var->data.location = location;
1789 } else {
1790 /* This handles the structure member case */
1791 assert(vtn_var->var->members);
1792
1793 if (member == -1)
1794 vtn_var->base_location = location;
1795 else
1796 vtn_var->var->members[member].location = location;
1797 }
1798
1799 return;
1800 } else {
1801 if (vtn_var->var) {
1802 if (vtn_var->var->num_members == 0) {
1803 /* We call this function on types as well as variables and not all
1804 * struct types get split so we can end up having stray member
1805 * decorations; just ignore them.
1806 */
1807 if (member == -1)
1808 apply_var_decoration(b, &vtn_var->var->data, dec);
1809 } else if (member >= 0) {
1810 /* Member decorations must come from a type */
1811 assert(val->value_type == vtn_value_type_type);
1812 apply_var_decoration(b, &vtn_var->var->members[member], dec);
1813 } else {
1814 unsigned length =
1815 glsl_get_length(glsl_without_array(vtn_var->type->type));
1816 for (unsigned i = 0; i < length; i++)
1817 apply_var_decoration(b, &vtn_var->var->members[i], dec);
1818 }
1819 } else {
1820 /* A few variables, those with external storage, have no actual
1821 * nir_variables associated with them. Fortunately, all decorations
1822 * we care about for those variables are on the type only.
1823 */
1824 vtn_assert(vtn_var->mode == vtn_variable_mode_ubo ||
1825 vtn_var->mode == vtn_variable_mode_ssbo ||
1826 vtn_var->mode == vtn_variable_mode_push_constant);
1827 }
1828 }
1829 }
1830
1831 enum vtn_variable_mode
1832 vtn_storage_class_to_mode(struct vtn_builder *b,
1833 SpvStorageClass class,
1834 struct vtn_type *interface_type,
1835 nir_variable_mode *nir_mode_out)
1836 {
1837 enum vtn_variable_mode mode;
1838 nir_variable_mode nir_mode;
1839 switch (class) {
1840 case SpvStorageClassUniform:
1841 /* Assume it's an UBO if we lack the interface_type. */
1842 if (!interface_type || interface_type->block) {
1843 mode = vtn_variable_mode_ubo;
1844 nir_mode = nir_var_mem_ubo;
1845 } else if (interface_type->buffer_block) {
1846 mode = vtn_variable_mode_ssbo;
1847 nir_mode = nir_var_mem_ssbo;
1848 } else {
1849 /* Default-block uniforms, coming from gl_spirv */
1850 mode = vtn_variable_mode_uniform;
1851 nir_mode = nir_var_uniform;
1852 }
1853 break;
1854 case SpvStorageClassStorageBuffer:
1855 mode = vtn_variable_mode_ssbo;
1856 nir_mode = nir_var_mem_ssbo;
1857 break;
1858 case SpvStorageClassPhysicalStorageBuffer:
1859 mode = vtn_variable_mode_phys_ssbo;
1860 nir_mode = nir_var_mem_global;
1861 break;
1862 case SpvStorageClassUniformConstant:
1863 if (b->shader->info.stage == MESA_SHADER_KERNEL) {
1864 if (b->options->constant_as_global) {
1865 mode = vtn_variable_mode_cross_workgroup;
1866 nir_mode = nir_var_mem_global;
1867 } else {
1868 mode = vtn_variable_mode_ubo;
1869 nir_mode = nir_var_mem_ubo;
1870 }
1871 } else {
1872 mode = vtn_variable_mode_uniform;
1873 nir_mode = nir_var_uniform;
1874 }
1875 break;
1876 case SpvStorageClassPushConstant:
1877 mode = vtn_variable_mode_push_constant;
1878 nir_mode = nir_var_uniform;
1879 break;
1880 case SpvStorageClassInput:
1881 mode = vtn_variable_mode_input;
1882 nir_mode = nir_var_shader_in;
1883 break;
1884 case SpvStorageClassOutput:
1885 mode = vtn_variable_mode_output;
1886 nir_mode = nir_var_shader_out;
1887 break;
1888 case SpvStorageClassPrivate:
1889 mode = vtn_variable_mode_private;
1890 nir_mode = nir_var_shader_temp;
1891 break;
1892 case SpvStorageClassFunction:
1893 mode = vtn_variable_mode_function;
1894 nir_mode = nir_var_function_temp;
1895 break;
1896 case SpvStorageClassWorkgroup:
1897 mode = vtn_variable_mode_workgroup;
1898 nir_mode = nir_var_mem_shared;
1899 break;
1900 case SpvStorageClassAtomicCounter:
1901 mode = vtn_variable_mode_uniform;
1902 nir_mode = nir_var_uniform;
1903 break;
1904 case SpvStorageClassCrossWorkgroup:
1905 mode = vtn_variable_mode_cross_workgroup;
1906 nir_mode = nir_var_mem_global;
1907 break;
1908 case SpvStorageClassImage:
1909 mode = vtn_variable_mode_image;
1910 nir_mode = nir_var_mem_ubo;
1911 break;
1912 case SpvStorageClassGeneric:
1913 default:
1914 vtn_fail("Unhandled variable storage class: %s (%u)",
1915 spirv_storageclass_to_string(class), class);
1916 }
1917
1918 if (nir_mode_out)
1919 *nir_mode_out = nir_mode;
1920
1921 return mode;
1922 }
1923
1924 nir_address_format
1925 vtn_mode_to_address_format(struct vtn_builder *b, enum vtn_variable_mode mode)
1926 {
1927 switch (mode) {
1928 case vtn_variable_mode_ubo:
1929 return b->options->ubo_addr_format;
1930
1931 case vtn_variable_mode_ssbo:
1932 return b->options->ssbo_addr_format;
1933
1934 case vtn_variable_mode_phys_ssbo:
1935 return b->options->phys_ssbo_addr_format;
1936
1937 case vtn_variable_mode_push_constant:
1938 return b->options->push_const_addr_format;
1939
1940 case vtn_variable_mode_workgroup:
1941 return b->options->shared_addr_format;
1942
1943 case vtn_variable_mode_cross_workgroup:
1944 return b->options->global_addr_format;
1945
1946 case vtn_variable_mode_function:
1947 if (b->physical_ptrs)
1948 return b->options->temp_addr_format;
1949 /* Fall through. */
1950
1951 case vtn_variable_mode_private:
1952 case vtn_variable_mode_uniform:
1953 case vtn_variable_mode_input:
1954 case vtn_variable_mode_output:
1955 case vtn_variable_mode_image:
1956 return nir_address_format_logical;
1957 }
1958
1959 unreachable("Invalid variable mode");
1960 }
1961
1962 nir_ssa_def *
1963 vtn_pointer_to_ssa(struct vtn_builder *b, struct vtn_pointer *ptr)
1964 {
1965 if (vtn_pointer_uses_ssa_offset(b, ptr)) {
1966 /* This pointer needs to have a pointer type with actual storage */
1967 vtn_assert(ptr->ptr_type);
1968 vtn_assert(ptr->ptr_type->type);
1969
1970 if (!ptr->offset) {
1971 /* If we don't have an offset then we must be a pointer to the variable
1972 * itself.
1973 */
1974 vtn_assert(!ptr->offset && !ptr->block_index);
1975
1976 struct vtn_access_chain chain = {
1977 .length = 0,
1978 };
1979 ptr = vtn_ssa_offset_pointer_dereference(b, ptr, &chain);
1980 }
1981
1982 vtn_assert(ptr->offset);
1983 if (ptr->block_index) {
1984 vtn_assert(ptr->mode == vtn_variable_mode_ubo ||
1985 ptr->mode == vtn_variable_mode_ssbo);
1986 return nir_vec2(&b->nb, ptr->block_index, ptr->offset);
1987 } else {
1988 vtn_assert(ptr->mode == vtn_variable_mode_workgroup);
1989 return ptr->offset;
1990 }
1991 } else {
1992 if (vtn_pointer_is_external_block(b, ptr) &&
1993 vtn_type_contains_block(b, ptr->type) &&
1994 ptr->mode != vtn_variable_mode_phys_ssbo) {
1995 /* In this case, we're looking for a block index and not an actual
1996 * deref.
1997 *
1998 * For PhysicalStorageBuffer pointers, we don't have a block index
1999 * at all because we get the pointer directly from the client. This
2000 * assumes that there will never be a SSBO binding variable using the
2001 * PhysicalStorageBuffer storage class. This assumption appears
2002 * to be correct according to the Vulkan spec because the table,
2003 * "Shader Resource and Storage Class Correspondence," the only the
2004 * Uniform storage class with BufferBlock or the StorageBuffer
2005 * storage class with Block can be used.
2006 */
2007 if (!ptr->block_index) {
2008 /* If we don't have a block_index then we must be a pointer to the
2009 * variable itself.
2010 */
2011 vtn_assert(!ptr->deref);
2012
2013 struct vtn_access_chain chain = {
2014 .length = 0,
2015 };
2016 ptr = vtn_nir_deref_pointer_dereference(b, ptr, &chain);
2017 }
2018
2019 return ptr->block_index;
2020 } else {
2021 return &vtn_pointer_to_deref(b, ptr)->dest.ssa;
2022 }
2023 }
2024 }
2025
2026 struct vtn_pointer *
2027 vtn_pointer_from_ssa(struct vtn_builder *b, nir_ssa_def *ssa,
2028 struct vtn_type *ptr_type)
2029 {
2030 vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
2031
2032 struct vtn_pointer *ptr = rzalloc(b, struct vtn_pointer);
2033 struct vtn_type *without_array =
2034 vtn_type_without_array(ptr_type->deref);
2035
2036 nir_variable_mode nir_mode;
2037 ptr->mode = vtn_storage_class_to_mode(b, ptr_type->storage_class,
2038 without_array, &nir_mode);
2039 ptr->type = ptr_type->deref;
2040 ptr->ptr_type = ptr_type;
2041
2042 if (b->wa_glslang_179) {
2043 /* To work around https://github.com/KhronosGroup/glslang/issues/179 we
2044 * need to whack the mode because it creates a function parameter with
2045 * the Function storage class even though it's a pointer to a sampler.
2046 * If we don't do this, then NIR won't get rid of the deref_cast for us.
2047 */
2048 if (ptr->mode == vtn_variable_mode_function &&
2049 (ptr->type->base_type == vtn_base_type_sampler ||
2050 ptr->type->base_type == vtn_base_type_sampled_image)) {
2051 ptr->mode = vtn_variable_mode_uniform;
2052 nir_mode = nir_var_uniform;
2053 }
2054 }
2055
2056 if (vtn_pointer_uses_ssa_offset(b, ptr)) {
2057 /* This pointer type needs to have actual storage */
2058 vtn_assert(ptr_type->type);
2059 if (ptr->mode == vtn_variable_mode_ubo ||
2060 ptr->mode == vtn_variable_mode_ssbo) {
2061 vtn_assert(ssa->num_components == 2);
2062 ptr->block_index = nir_channel(&b->nb, ssa, 0);
2063 ptr->offset = nir_channel(&b->nb, ssa, 1);
2064 } else {
2065 vtn_assert(ssa->num_components == 1);
2066 ptr->block_index = NULL;
2067 ptr->offset = ssa;
2068 }
2069 } else {
2070 const struct glsl_type *deref_type = ptr_type->deref->type;
2071 if (!vtn_pointer_is_external_block(b, ptr)) {
2072 ptr->deref = nir_build_deref_cast(&b->nb, ssa, nir_mode,
2073 deref_type, ptr_type->stride);
2074 } else if (vtn_type_contains_block(b, ptr->type) &&
2075 ptr->mode != vtn_variable_mode_phys_ssbo) {
2076 /* This is a pointer to somewhere in an array of blocks, not a
2077 * pointer to somewhere inside the block. Set the block index
2078 * instead of making a cast.
2079 */
2080 ptr->block_index = ssa;
2081 } else {
2082 /* This is a pointer to something internal or a pointer inside a
2083 * block. It's just a regular cast.
2084 *
2085 * For PhysicalStorageBuffer pointers, we don't have a block index
2086 * at all because we get the pointer directly from the client. This
2087 * assumes that there will never be a SSBO binding variable using the
2088 * PhysicalStorageBuffer storage class. This assumption appears
2089 * to be correct according to the Vulkan spec because the table,
2090 * "Shader Resource and Storage Class Correspondence," the only the
2091 * Uniform storage class with BufferBlock or the StorageBuffer
2092 * storage class with Block can be used.
2093 */
2094 ptr->deref = nir_build_deref_cast(&b->nb, ssa, nir_mode,
2095 ptr_type->deref->type,
2096 ptr_type->stride);
2097 ptr->deref->dest.ssa.num_components =
2098 glsl_get_vector_elements(ptr_type->type);
2099 ptr->deref->dest.ssa.bit_size = glsl_get_bit_size(ptr_type->type);
2100 }
2101 }
2102
2103 return ptr;
2104 }
2105
2106 static bool
2107 is_per_vertex_inout(const struct vtn_variable *var, gl_shader_stage stage)
2108 {
2109 if (var->patch || !glsl_type_is_array(var->type->type))
2110 return false;
2111
2112 if (var->mode == vtn_variable_mode_input) {
2113 return stage == MESA_SHADER_TESS_CTRL ||
2114 stage == MESA_SHADER_TESS_EVAL ||
2115 stage == MESA_SHADER_GEOMETRY;
2116 }
2117
2118 if (var->mode == vtn_variable_mode_output)
2119 return stage == MESA_SHADER_TESS_CTRL;
2120
2121 return false;
2122 }
2123
2124 static void
2125 assign_missing_member_locations(struct vtn_variable *var)
2126 {
2127 unsigned length =
2128 glsl_get_length(glsl_without_array(var->type->type));
2129 int location = var->base_location;
2130
2131 for (unsigned i = 0; i < length; i++) {
2132 /* From the Vulkan spec:
2133 *
2134 * “If the structure type is a Block but without a Location, then each
2135 * of its members must have a Location decoration.”
2136 *
2137 */
2138 if (var->type->block) {
2139 assert(var->base_location != -1 ||
2140 var->var->members[i].location != -1);
2141 }
2142
2143 /* From the Vulkan spec:
2144 *
2145 * “Any member with its own Location decoration is assigned that
2146 * location. Each remaining member is assigned the location after the
2147 * immediately preceding member in declaration order.”
2148 */
2149 if (var->var->members[i].location != -1)
2150 location = var->var->members[i].location;
2151 else
2152 var->var->members[i].location = location;
2153
2154 /* Below we use type instead of interface_type, because interface_type
2155 * is only available when it is a Block. This code also supports
2156 * input/outputs that are just structs
2157 */
2158 const struct glsl_type *member_type =
2159 glsl_get_struct_field(glsl_without_array(var->type->type), i);
2160
2161 location +=
2162 glsl_count_attribute_slots(member_type,
2163 false /* is_gl_vertex_input */);
2164 }
2165 }
2166
2167
2168 static void
2169 vtn_create_variable(struct vtn_builder *b, struct vtn_value *val,
2170 struct vtn_type *ptr_type, SpvStorageClass storage_class,
2171 nir_constant *const_initializer, nir_variable *var_initializer)
2172 {
2173 vtn_assert(ptr_type->base_type == vtn_base_type_pointer);
2174 struct vtn_type *type = ptr_type->deref;
2175
2176 struct vtn_type *without_array = vtn_type_without_array(ptr_type->deref);
2177
2178 enum vtn_variable_mode mode;
2179 nir_variable_mode nir_mode;
2180 mode = vtn_storage_class_to_mode(b, storage_class, without_array, &nir_mode);
2181
2182 switch (mode) {
2183 case vtn_variable_mode_ubo:
2184 /* There's no other way to get vtn_variable_mode_ubo */
2185 vtn_assert(without_array->block);
2186 b->shader->info.num_ubos++;
2187 break;
2188 case vtn_variable_mode_ssbo:
2189 if (storage_class == SpvStorageClassStorageBuffer &&
2190 !without_array->block) {
2191 if (b->variable_pointers) {
2192 vtn_fail("Variables in the StorageBuffer storage class must "
2193 "have a struct type with the Block decoration");
2194 } else {
2195 /* If variable pointers are not present, it's still malformed
2196 * SPIR-V but we can parse it and do the right thing anyway.
2197 * Since some of the 8-bit storage tests have bugs in this are,
2198 * just make it a warning for now.
2199 */
2200 vtn_warn("Variables in the StorageBuffer storage class must "
2201 "have a struct type with the Block decoration");
2202 }
2203 }
2204 b->shader->info.num_ssbos++;
2205 break;
2206 case vtn_variable_mode_uniform:
2207 if (glsl_type_is_image(without_array->type))
2208 b->shader->info.num_images++;
2209 else if (glsl_type_is_sampler(without_array->type))
2210 b->shader->info.num_textures++;
2211 break;
2212 case vtn_variable_mode_push_constant:
2213 b->shader->num_uniforms = vtn_type_block_size(b, type);
2214 break;
2215
2216 case vtn_variable_mode_image:
2217 vtn_fail("Cannot create a variable with the Image storage class");
2218 break;
2219
2220 case vtn_variable_mode_phys_ssbo:
2221 vtn_fail("Cannot create a variable with the "
2222 "PhysicalStorageBuffer storage class");
2223 break;
2224
2225 default:
2226 /* No tallying is needed */
2227 break;
2228 }
2229
2230 struct vtn_variable *var = rzalloc(b, struct vtn_variable);
2231 var->type = type;
2232 var->mode = mode;
2233 var->base_location = -1;
2234
2235 val->pointer = rzalloc(b, struct vtn_pointer);
2236 val->pointer->mode = var->mode;
2237 val->pointer->type = var->type;
2238 val->pointer->ptr_type = ptr_type;
2239 val->pointer->var = var;
2240 val->pointer->access = var->type->access;
2241
2242 switch (var->mode) {
2243 case vtn_variable_mode_function:
2244 case vtn_variable_mode_private:
2245 case vtn_variable_mode_uniform:
2246 /* For these, we create the variable normally */
2247 var->var = rzalloc(b->shader, nir_variable);
2248 var->var->name = ralloc_strdup(var->var, val->name);
2249
2250 if (storage_class == SpvStorageClassAtomicCounter) {
2251 /* Need to tweak the nir type here as at vtn_handle_type we don't
2252 * have the access to storage_class, that is the one that points us
2253 * that is an atomic uint.
2254 */
2255 var->var->type = repair_atomic_type(var->type->type);
2256 } else {
2257 /* Private variables don't have any explicit layout but some layouts
2258 * may have leaked through due to type deduplication in the SPIR-V.
2259 */
2260 var->var->type = var->type->type;
2261 }
2262 var->var->data.mode = nir_mode;
2263 var->var->data.location = -1;
2264 var->var->interface_type = NULL;
2265 break;
2266
2267 case vtn_variable_mode_ubo:
2268 case vtn_variable_mode_ssbo:
2269 var->var = rzalloc(b->shader, nir_variable);
2270 var->var->name = ralloc_strdup(var->var, val->name);
2271
2272 var->var->type = var->type->type;
2273 var->var->interface_type = var->type->type;
2274
2275 var->var->data.mode = nir_mode;
2276 var->var->data.location = -1;
2277
2278 break;
2279
2280 case vtn_variable_mode_workgroup:
2281 /* Create the variable normally */
2282 var->var = rzalloc(b->shader, nir_variable);
2283 var->var->name = ralloc_strdup(var->var, val->name);
2284 /* Workgroup variables don't have any explicit layout but some
2285 * layouts may have leaked through due to type deduplication in the
2286 * SPIR-V.
2287 */
2288 var->var->type = var->type->type;
2289 var->var->data.mode = nir_var_mem_shared;
2290 break;
2291
2292 case vtn_variable_mode_input:
2293 case vtn_variable_mode_output: {
2294 /* In order to know whether or not we're a per-vertex inout, we need
2295 * the patch qualifier. This means walking the variable decorations
2296 * early before we actually create any variables. Not a big deal.
2297 *
2298 * GLSLang really likes to place decorations in the most interior
2299 * thing it possibly can. In particular, if you have a struct, it
2300 * will place the patch decorations on the struct members. This
2301 * should be handled by the variable splitting below just fine.
2302 *
2303 * If you have an array-of-struct, things get even more weird as it
2304 * will place the patch decorations on the struct even though it's
2305 * inside an array and some of the members being patch and others not
2306 * makes no sense whatsoever. Since the only sensible thing is for
2307 * it to be all or nothing, we'll call it patch if any of the members
2308 * are declared patch.
2309 */
2310 var->patch = false;
2311 vtn_foreach_decoration(b, val, var_is_patch_cb, &var->patch);
2312 if (glsl_type_is_array(var->type->type) &&
2313 glsl_type_is_struct_or_ifc(without_array->type)) {
2314 vtn_foreach_decoration(b, vtn_value(b, without_array->id,
2315 vtn_value_type_type),
2316 var_is_patch_cb, &var->patch);
2317 }
2318
2319 /* For inputs and outputs, we immediately split structures. This
2320 * is for a couple of reasons. For one, builtins may all come in
2321 * a struct and we really want those split out into separate
2322 * variables. For another, interpolation qualifiers can be
2323 * applied to members of the top-level struct ane we need to be
2324 * able to preserve that information.
2325 */
2326
2327 struct vtn_type *per_vertex_type = var->type;
2328 if (is_per_vertex_inout(var, b->shader->info.stage)) {
2329 /* In Geometry shaders (and some tessellation), inputs come
2330 * in per-vertex arrays. However, some builtins come in
2331 * non-per-vertex, hence the need for the is_array check. In
2332 * any case, there are no non-builtin arrays allowed so this
2333 * check should be sufficient.
2334 */
2335 per_vertex_type = var->type->array_element;
2336 }
2337
2338 var->var = rzalloc(b->shader, nir_variable);
2339 var->var->name = ralloc_strdup(var->var, val->name);
2340 /* In Vulkan, shader I/O variables don't have any explicit layout but
2341 * some layouts may have leaked through due to type deduplication in
2342 * the SPIR-V. We do, however, keep the layouts in the variable's
2343 * interface_type because we need offsets for XFB arrays of blocks.
2344 */
2345 var->var->type = var->type->type;
2346 var->var->data.mode = nir_mode;
2347 var->var->data.patch = var->patch;
2348
2349 /* Figure out the interface block type. */
2350 struct vtn_type *iface_type = per_vertex_type;
2351 if (var->mode == vtn_variable_mode_output &&
2352 (b->shader->info.stage == MESA_SHADER_VERTEX ||
2353 b->shader->info.stage == MESA_SHADER_TESS_EVAL ||
2354 b->shader->info.stage == MESA_SHADER_GEOMETRY)) {
2355 /* For vertex data outputs, we can end up with arrays of blocks for
2356 * transform feedback where each array element corresponds to a
2357 * different XFB output buffer.
2358 */
2359 while (iface_type->base_type == vtn_base_type_array)
2360 iface_type = iface_type->array_element;
2361 }
2362 if (iface_type->base_type == vtn_base_type_struct && iface_type->block)
2363 var->var->interface_type = iface_type->type;
2364
2365 if (per_vertex_type->base_type == vtn_base_type_struct &&
2366 per_vertex_type->block) {
2367 /* It's a struct. Set it up as per-member. */
2368 var->var->num_members = glsl_get_length(per_vertex_type->type);
2369 var->var->members = rzalloc_array(var->var, struct nir_variable_data,
2370 var->var->num_members);
2371
2372 for (unsigned i = 0; i < var->var->num_members; i++) {
2373 var->var->members[i].mode = nir_mode;
2374 var->var->members[i].patch = var->patch;
2375 var->var->members[i].location = -1;
2376 }
2377 }
2378
2379 /* For inputs and outputs, we need to grab locations and builtin
2380 * information from the per-vertex type.
2381 */
2382 vtn_foreach_decoration(b, vtn_value(b, per_vertex_type->id,
2383 vtn_value_type_type),
2384 var_decoration_cb, var);
2385 break;
2386 }
2387
2388 case vtn_variable_mode_push_constant:
2389 case vtn_variable_mode_cross_workgroup:
2390 /* These don't need actual variables. */
2391 break;
2392
2393 case vtn_variable_mode_image:
2394 case vtn_variable_mode_phys_ssbo:
2395 unreachable("Should have been caught before");
2396 }
2397
2398 /* We can only have one type of initializer */
2399 assert(!(const_initializer && var_initializer));
2400 if (const_initializer) {
2401 var->var->constant_initializer =
2402 nir_constant_clone(const_initializer, var->var);
2403 }
2404 if (var_initializer)
2405 var->var->pointer_initializer = var_initializer;
2406
2407 vtn_foreach_decoration(b, val, var_decoration_cb, var);
2408 vtn_foreach_decoration(b, val, ptr_decoration_cb, val->pointer);
2409
2410 /* Propagate access flags from the OpVariable decorations. */
2411 val->pointer->access |= var->access;
2412
2413 if ((var->mode == vtn_variable_mode_input ||
2414 var->mode == vtn_variable_mode_output) &&
2415 var->var->members) {
2416 assign_missing_member_locations(var);
2417 }
2418
2419 if (var->mode == vtn_variable_mode_uniform ||
2420 var->mode == vtn_variable_mode_ubo ||
2421 var->mode == vtn_variable_mode_ssbo) {
2422 /* XXX: We still need the binding information in the nir_variable
2423 * for these. We should fix that.
2424 */
2425 var->var->data.binding = var->binding;
2426 var->var->data.explicit_binding = var->explicit_binding;
2427 var->var->data.descriptor_set = var->descriptor_set;
2428 var->var->data.index = var->input_attachment_index;
2429 var->var->data.offset = var->offset;
2430
2431 if (glsl_type_is_image(without_array->type))
2432 var->var->data.image.format = without_array->image_format;
2433 }
2434
2435 if (var->mode == vtn_variable_mode_function) {
2436 vtn_assert(var->var != NULL && var->var->members == NULL);
2437 nir_function_impl_add_variable(b->nb.impl, var->var);
2438 } else if (var->var) {
2439 nir_shader_add_variable(b->shader, var->var);
2440 } else {
2441 vtn_assert(vtn_pointer_is_external_block(b, val->pointer));
2442 }
2443 }
2444
2445 static void
2446 vtn_assert_types_equal(struct vtn_builder *b, SpvOp opcode,
2447 struct vtn_type *dst_type,
2448 struct vtn_type *src_type)
2449 {
2450 if (dst_type->id == src_type->id)
2451 return;
2452
2453 if (vtn_types_compatible(b, dst_type, src_type)) {
2454 /* Early versions of GLSLang would re-emit types unnecessarily and you
2455 * would end up with OpLoad, OpStore, or OpCopyMemory opcodes which have
2456 * mismatched source and destination types.
2457 *
2458 * https://github.com/KhronosGroup/glslang/issues/304
2459 * https://github.com/KhronosGroup/glslang/issues/307
2460 * https://bugs.freedesktop.org/show_bug.cgi?id=104338
2461 * https://bugs.freedesktop.org/show_bug.cgi?id=104424
2462 */
2463 vtn_warn("Source and destination types of %s do not have the same "
2464 "ID (but are compatible): %u vs %u",
2465 spirv_op_to_string(opcode), dst_type->id, src_type->id);
2466 return;
2467 }
2468
2469 vtn_fail("Source and destination types of %s do not match: %s vs. %s",
2470 spirv_op_to_string(opcode),
2471 glsl_get_type_name(dst_type->type),
2472 glsl_get_type_name(src_type->type));
2473 }
2474
2475 static nir_ssa_def *
2476 nir_shrink_zero_pad_vec(nir_builder *b, nir_ssa_def *val,
2477 unsigned num_components)
2478 {
2479 if (val->num_components == num_components)
2480 return val;
2481
2482 nir_ssa_def *comps[NIR_MAX_VEC_COMPONENTS];
2483 for (unsigned i = 0; i < num_components; i++) {
2484 if (i < val->num_components)
2485 comps[i] = nir_channel(b, val, i);
2486 else
2487 comps[i] = nir_imm_intN_t(b, 0, val->bit_size);
2488 }
2489 return nir_vec(b, comps, num_components);
2490 }
2491
2492 static nir_ssa_def *
2493 nir_sloppy_bitcast(nir_builder *b, nir_ssa_def *val,
2494 const struct glsl_type *type)
2495 {
2496 const unsigned num_components = glsl_get_vector_elements(type);
2497 const unsigned bit_size = glsl_get_bit_size(type);
2498
2499 /* First, zero-pad to ensure that the value is big enough that when we
2500 * bit-cast it, we don't loose anything.
2501 */
2502 if (val->bit_size < bit_size) {
2503 const unsigned src_num_components_needed =
2504 vtn_align_u32(val->num_components, bit_size / val->bit_size);
2505 val = nir_shrink_zero_pad_vec(b, val, src_num_components_needed);
2506 }
2507
2508 val = nir_bitcast_vector(b, val, bit_size);
2509
2510 return nir_shrink_zero_pad_vec(b, val, num_components);
2511 }
2512
2513 void
2514 vtn_handle_variables(struct vtn_builder *b, SpvOp opcode,
2515 const uint32_t *w, unsigned count)
2516 {
2517 switch (opcode) {
2518 case SpvOpUndef: {
2519 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_undef);
2520 val->type = vtn_value(b, w[1], vtn_value_type_type)->type;
2521 break;
2522 }
2523
2524 case SpvOpVariable: {
2525 struct vtn_type *ptr_type = vtn_value(b, w[1], vtn_value_type_type)->type;
2526
2527 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_pointer);
2528
2529 SpvStorageClass storage_class = w[3];
2530 nir_constant *const_initializer = NULL;
2531 nir_variable *var_initializer = NULL;
2532 if (count > 4) {
2533 struct vtn_value *init = vtn_untyped_value(b, w[4]);
2534 switch (init->value_type) {
2535 case vtn_value_type_constant:
2536 const_initializer = init->constant;
2537 break;
2538 case vtn_value_type_pointer:
2539 var_initializer = init->pointer->var->var;
2540 break;
2541 default:
2542 vtn_fail("SPIR-V variable initializer %u must be constant or pointer",
2543 w[4]);
2544 }
2545 }
2546
2547 vtn_create_variable(b, val, ptr_type, storage_class, const_initializer, var_initializer);
2548
2549 break;
2550 }
2551
2552 case SpvOpAccessChain:
2553 case SpvOpPtrAccessChain:
2554 case SpvOpInBoundsAccessChain:
2555 case SpvOpInBoundsPtrAccessChain: {
2556 struct vtn_access_chain *chain = vtn_access_chain_create(b, count - 4);
2557 enum gl_access_qualifier access = 0;
2558 chain->ptr_as_array = (opcode == SpvOpPtrAccessChain || opcode == SpvOpInBoundsPtrAccessChain);
2559
2560 unsigned idx = 0;
2561 for (int i = 4; i < count; i++) {
2562 struct vtn_value *link_val = vtn_untyped_value(b, w[i]);
2563 if (link_val->value_type == vtn_value_type_constant) {
2564 chain->link[idx].mode = vtn_access_mode_literal;
2565 chain->link[idx].id = vtn_constant_int(b, w[i]);
2566 } else {
2567 chain->link[idx].mode = vtn_access_mode_id;
2568 chain->link[idx].id = w[i];
2569 }
2570 access |= vtn_value_access(link_val);
2571 idx++;
2572 }
2573
2574 struct vtn_type *ptr_type = vtn_value(b, w[1], vtn_value_type_type)->type;
2575 struct vtn_value *base_val = vtn_untyped_value(b, w[3]);
2576 if (base_val->value_type == vtn_value_type_sampled_image) {
2577 /* This is rather insane. SPIR-V allows you to use OpSampledImage
2578 * to combine an array of images with a single sampler to get an
2579 * array of sampled images that all share the same sampler.
2580 * Fortunately, this means that we can more-or-less ignore the
2581 * sampler when crawling the access chain, but it does leave us
2582 * with this rather awkward little special-case.
2583 */
2584 struct vtn_value *val =
2585 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
2586 val->sampled_image = ralloc(b, struct vtn_sampled_image);
2587 val->sampled_image->image =
2588 vtn_pointer_dereference(b, base_val->sampled_image->image, chain);
2589 val->sampled_image->sampler = base_val->sampled_image->sampler;
2590 val->sampled_image->image =
2591 vtn_decorate_pointer(b, val, val->sampled_image->image);
2592 val->sampled_image->sampler =
2593 vtn_decorate_pointer(b, val, val->sampled_image->sampler);
2594 } else {
2595 vtn_assert(base_val->value_type == vtn_value_type_pointer);
2596 struct vtn_pointer *ptr =
2597 vtn_pointer_dereference(b, base_val->pointer, chain);
2598 ptr->ptr_type = ptr_type;
2599 ptr->access |= access;
2600 vtn_push_value_pointer(b, w[2], ptr);
2601 }
2602 break;
2603 }
2604
2605 case SpvOpCopyMemory: {
2606 struct vtn_value *dest = vtn_value(b, w[1], vtn_value_type_pointer);
2607 struct vtn_value *src = vtn_value(b, w[2], vtn_value_type_pointer);
2608
2609 vtn_assert_types_equal(b, opcode, dest->type->deref, src->type->deref);
2610
2611 vtn_variable_copy(b, dest->pointer, src->pointer);
2612 break;
2613 }
2614
2615 case SpvOpLoad: {
2616 struct vtn_type *res_type =
2617 vtn_value(b, w[1], vtn_value_type_type)->type;
2618 struct vtn_value *src_val = vtn_value(b, w[3], vtn_value_type_pointer);
2619 struct vtn_pointer *src = src_val->pointer;
2620
2621 vtn_assert_types_equal(b, opcode, res_type, src_val->type->deref);
2622
2623 if (res_type->base_type == vtn_base_type_image ||
2624 res_type->base_type == vtn_base_type_sampler) {
2625 vtn_push_value_pointer(b, w[2], src);
2626 return;
2627 } else if (res_type->base_type == vtn_base_type_sampled_image) {
2628 struct vtn_value *val =
2629 vtn_push_value(b, w[2], vtn_value_type_sampled_image);
2630 val->sampled_image = ralloc(b, struct vtn_sampled_image);
2631 val->sampled_image->image = val->sampled_image->sampler =
2632 vtn_decorate_pointer(b, val, src);
2633 return;
2634 }
2635
2636 if (count > 4) {
2637 unsigned idx = 5;
2638 SpvMemoryAccessMask access = w[4];
2639 if (access & SpvMemoryAccessAlignedMask)
2640 idx++;
2641
2642 if (access & SpvMemoryAccessMakePointerVisibleMask) {
2643 SpvMemorySemanticsMask semantics =
2644 SpvMemorySemanticsMakeVisibleMask |
2645 vtn_storage_class_to_memory_semantics(src->ptr_type->storage_class);
2646
2647 SpvScope scope = vtn_constant_uint(b, w[idx]);
2648 vtn_emit_memory_barrier(b, scope, semantics);
2649 }
2650 }
2651
2652 vtn_push_ssa(b, w[2], res_type, vtn_variable_load(b, src));
2653 break;
2654 }
2655
2656 case SpvOpStore: {
2657 struct vtn_value *dest_val = vtn_value(b, w[1], vtn_value_type_pointer);
2658 struct vtn_pointer *dest = dest_val->pointer;
2659 struct vtn_value *src_val = vtn_untyped_value(b, w[2]);
2660
2661 /* OpStore requires us to actually have a storage type */
2662 vtn_fail_if(dest->type->type == NULL,
2663 "Invalid destination type for OpStore");
2664
2665 if (glsl_get_base_type(dest->type->type) == GLSL_TYPE_BOOL &&
2666 glsl_get_base_type(src_val->type->type) == GLSL_TYPE_UINT) {
2667 /* Early versions of GLSLang would use uint types for UBOs/SSBOs but
2668 * would then store them to a local variable as bool. Work around
2669 * the issue by doing an implicit conversion.
2670 *
2671 * https://github.com/KhronosGroup/glslang/issues/170
2672 * https://bugs.freedesktop.org/show_bug.cgi?id=104424
2673 */
2674 vtn_warn("OpStore of value of type OpTypeInt to a pointer to type "
2675 "OpTypeBool. Doing an implicit conversion to work around "
2676 "the problem.");
2677 struct vtn_ssa_value *bool_ssa =
2678 vtn_create_ssa_value(b, dest->type->type);
2679 bool_ssa->def = nir_i2b(&b->nb, vtn_ssa_value(b, w[2])->def);
2680 vtn_variable_store(b, bool_ssa, dest);
2681 break;
2682 }
2683
2684 vtn_assert_types_equal(b, opcode, dest_val->type->deref, src_val->type);
2685
2686 if (glsl_type_is_sampler(dest->type->type)) {
2687 if (b->wa_glslang_179) {
2688 vtn_warn("OpStore of a sampler detected. Doing on-the-fly copy "
2689 "propagation to workaround the problem.");
2690 vtn_assert(dest->var->copy_prop_sampler == NULL);
2691 struct vtn_value *v = vtn_untyped_value(b, w[2]);
2692 if (v->value_type == vtn_value_type_sampled_image) {
2693 dest->var->copy_prop_sampler = v->sampled_image->sampler;
2694 } else {
2695 vtn_assert(v->value_type == vtn_value_type_pointer);
2696 dest->var->copy_prop_sampler = v->pointer;
2697 }
2698 } else {
2699 vtn_fail("Vulkan does not allow OpStore of a sampler or image.");
2700 }
2701 break;
2702 }
2703
2704 struct vtn_ssa_value *src = vtn_ssa_value(b, w[2]);
2705 vtn_variable_store(b, src, dest);
2706
2707 if (count > 3) {
2708 unsigned idx = 4;
2709 SpvMemoryAccessMask access = w[3];
2710
2711 if (access & SpvMemoryAccessAlignedMask)
2712 idx++;
2713
2714 if (access & SpvMemoryAccessMakePointerAvailableMask) {
2715 SpvMemorySemanticsMask semantics =
2716 SpvMemorySemanticsMakeAvailableMask |
2717 vtn_storage_class_to_memory_semantics(dest->ptr_type->storage_class);
2718 SpvScope scope = vtn_constant_uint(b, w[idx]);
2719 vtn_emit_memory_barrier(b, scope, semantics);
2720 }
2721 }
2722 break;
2723 }
2724
2725 case SpvOpArrayLength: {
2726 struct vtn_pointer *ptr =
2727 vtn_value(b, w[3], vtn_value_type_pointer)->pointer;
2728 const uint32_t field = w[4];
2729
2730 vtn_fail_if(ptr->type->base_type != vtn_base_type_struct,
2731 "OpArrayLength must take a pointer to a structure type");
2732 vtn_fail_if(field != ptr->type->length - 1 ||
2733 ptr->type->members[field]->base_type != vtn_base_type_array,
2734 "OpArrayLength must reference the last memeber of the "
2735 "structure and that must be an array");
2736
2737 const uint32_t offset = ptr->type->offsets[field];
2738 const uint32_t stride = ptr->type->members[field]->stride;
2739
2740 if (!ptr->block_index) {
2741 struct vtn_access_chain chain = {
2742 .length = 0,
2743 };
2744 ptr = vtn_pointer_dereference(b, ptr, &chain);
2745 vtn_assert(ptr->block_index);
2746 }
2747
2748 nir_intrinsic_instr *instr =
2749 nir_intrinsic_instr_create(b->nb.shader,
2750 nir_intrinsic_get_buffer_size);
2751 instr->src[0] = nir_src_for_ssa(ptr->block_index);
2752 nir_ssa_dest_init(&instr->instr, &instr->dest, 1, 32, NULL);
2753 nir_builder_instr_insert(&b->nb, &instr->instr);
2754 nir_ssa_def *buf_size = &instr->dest.ssa;
2755
2756 /* array_length = max(buffer_size - offset, 0) / stride */
2757 nir_ssa_def *array_length =
2758 nir_idiv(&b->nb,
2759 nir_imax(&b->nb,
2760 nir_isub(&b->nb,
2761 buf_size,
2762 nir_imm_int(&b->nb, offset)),
2763 nir_imm_int(&b->nb, 0u)),
2764 nir_imm_int(&b->nb, stride));
2765
2766 struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2767 val->ssa = vtn_create_ssa_value(b, glsl_uint_type());
2768 val->ssa->def = array_length;
2769 break;
2770 }
2771
2772 case SpvOpConvertPtrToU: {
2773 struct vtn_value *u_val = vtn_push_value(b, w[2], vtn_value_type_ssa);
2774
2775 vtn_fail_if(u_val->type->base_type != vtn_base_type_vector &&
2776 u_val->type->base_type != vtn_base_type_scalar,
2777 "OpConvertPtrToU can only be used to cast to a vector or "
2778 "scalar type");
2779
2780 /* The pointer will be converted to an SSA value automatically */
2781 struct vtn_ssa_value *ptr_ssa = vtn_ssa_value(b, w[3]);
2782
2783 u_val->ssa = vtn_create_ssa_value(b, u_val->type->type);
2784 u_val->ssa->def = nir_sloppy_bitcast(&b->nb, ptr_ssa->def, u_val->type->type);
2785 u_val->ssa->access |= ptr_ssa->access;
2786 break;
2787 }
2788
2789 case SpvOpConvertUToPtr: {
2790 struct vtn_value *ptr_val =
2791 vtn_push_value(b, w[2], vtn_value_type_pointer);
2792 struct vtn_value *u_val = vtn_untyped_value(b, w[3]);
2793
2794 vtn_fail_if(ptr_val->type->type == NULL,
2795 "OpConvertUToPtr can only be used on physical pointers");
2796
2797 vtn_fail_if(u_val->type->base_type != vtn_base_type_vector &&
2798 u_val->type->base_type != vtn_base_type_scalar,
2799 "OpConvertUToPtr can only be used to cast from a vector or "
2800 "scalar type");
2801
2802 struct vtn_ssa_value *u_ssa = vtn_ssa_value(b, w[3]);
2803 nir_ssa_def *ptr_ssa = nir_sloppy_bitcast(&b->nb, u_ssa->def,
2804 ptr_val->type->type);
2805 ptr_val->pointer = vtn_pointer_from_ssa(b, ptr_ssa, ptr_val->type);
2806 vtn_foreach_decoration(b, ptr_val, ptr_decoration_cb, ptr_val->pointer);
2807 ptr_val->pointer->access |= u_val->ssa->access;
2808 break;
2809 }
2810
2811 case SpvOpCopyMemorySized:
2812 default:
2813 vtn_fail_with_opcode("Unhandled opcode", opcode);
2814 }
2815 }