freedreno/computerator: Set SP_MODE_CONTROL to the same value as vulkan/GL
[mesa.git] / src / freedreno / computerator / a6xx.c
1 /*
2 * Copyright © 2020 Google, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "ir3/ir3_compiler.h"
25
26 #include "util/u_math.h"
27
28 #include "adreno_pm4.xml.h"
29 #include "adreno_common.xml.h"
30 #include "a6xx.xml.h"
31
32 #include "main.h"
33 #include "ir3_asm.h"
34
35 struct a6xx_backend {
36 struct backend base;
37
38 struct ir3_compiler *compiler;
39 struct fd_device *dev;
40
41 unsigned seqno;
42 struct fd_bo *control_mem;
43
44 struct fd_bo *query_mem;
45 const struct perfcntr *perfcntrs;
46 unsigned num_perfcntrs;
47 };
48 define_cast(backend, a6xx_backend);
49
50 /*
51 * Data structures shared with GPU:
52 */
53
54 /* This struct defines the layout of the fd6_context::control buffer: */
55 struct fd6_control {
56 uint32_t seqno; /* seqno for async CP_EVENT_WRITE, etc */
57 uint32_t _pad0;
58 volatile uint32_t vsc_overflow;
59 uint32_t _pad1;
60 /* flag set from cmdstream when VSC overflow detected: */
61 uint32_t vsc_scratch;
62 uint32_t _pad2;
63 uint32_t _pad3;
64 uint32_t _pad4;
65
66 /* scratch space for VPC_SO[i].FLUSH_BASE_LO/HI, start on 32 byte boundary. */
67 struct {
68 uint32_t offset;
69 uint32_t pad[7];
70 } flush_base[4];
71 };
72
73 #define control_ptr(a6xx_backend, member) \
74 (a6xx_backend)->control_mem, offsetof(struct fd6_control, member), 0, 0
75
76
77 struct PACKED fd6_query_sample {
78 uint64_t start;
79 uint64_t result;
80 uint64_t stop;
81 };
82
83
84 /* offset of a single field of an array of fd6_query_sample: */
85 #define query_sample_idx(a6xx_backend, idx, field) \
86 (a6xx_backend)->query_mem, \
87 (idx * sizeof(struct fd6_query_sample)) + \
88 offsetof(struct fd6_query_sample, field), \
89 0, 0
90
91
92 /*
93 * Backend implementation:
94 */
95
96 static struct kernel *
97 a6xx_assemble(struct backend *b, FILE *in)
98 {
99 struct a6xx_backend *a6xx_backend = to_a6xx_backend(b);
100 struct ir3_kernel *ir3_kernel =
101 ir3_asm_assemble(a6xx_backend->compiler, in);
102 ir3_kernel->backend = b;
103 return &ir3_kernel->base;
104 }
105
106 static void
107 a6xx_disassemble(struct kernel *kernel, FILE *out)
108 {
109 ir3_asm_disassemble(to_ir3_kernel(kernel), out);
110 }
111
112 static void
113 cs_program_emit(struct fd_ringbuffer *ring, struct kernel *kernel)
114 {
115 struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
116 struct ir3_shader_variant *v = ir3_kernel->v;
117 const struct ir3_info *i = &v->info;
118 enum a3xx_threadsize thrsz = FOUR_QUADS;
119
120 OUT_PKT4(ring, REG_A6XX_SP_MODE_CONTROL, 1);
121 OUT_RING(ring, A6XX_SP_MODE_CONTROL_CONSTANT_DEMOTION_ENABLE | 4);
122
123 OUT_PKT4(ring, REG_A6XX_HLSQ_INVALIDATE_CMD, 1);
124 OUT_RING(ring, A6XX_HLSQ_INVALIDATE_CMD_VS_STATE |
125 A6XX_HLSQ_INVALIDATE_CMD_HS_STATE |
126 A6XX_HLSQ_INVALIDATE_CMD_DS_STATE |
127 A6XX_HLSQ_INVALIDATE_CMD_GS_STATE |
128 A6XX_HLSQ_INVALIDATE_CMD_FS_STATE |
129 A6XX_HLSQ_INVALIDATE_CMD_CS_STATE |
130 A6XX_HLSQ_INVALIDATE_CMD_CS_IBO |
131 A6XX_HLSQ_INVALIDATE_CMD_GFX_IBO);
132
133 unsigned constlen = align(v->constlen, 4);
134 OUT_PKT4(ring, REG_A6XX_HLSQ_CS_CNTL, 1);
135 OUT_RING(ring, A6XX_HLSQ_CS_CNTL_CONSTLEN(constlen) |
136 A6XX_HLSQ_CS_CNTL_ENABLED);
137
138 OUT_PKT4(ring, REG_A6XX_SP_CS_CONFIG, 2);
139 OUT_RING(ring, A6XX_SP_CS_CONFIG_ENABLED |
140 A6XX_SP_CS_CONFIG_NIBO(kernel->num_bufs) |
141 A6XX_SP_CS_CONFIG_NTEX(v->num_samp) |
142 A6XX_SP_CS_CONFIG_NSAMP(v->num_samp)); /* SP_VS_CONFIG */
143 OUT_RING(ring, v->instrlen); /* SP_VS_INSTRLEN */
144
145 OUT_PKT4(ring, REG_A6XX_SP_CS_CTRL_REG0, 1);
146 OUT_RING(ring, A6XX_SP_CS_CTRL_REG0_THREADSIZE(thrsz) |
147 A6XX_SP_CS_CTRL_REG0_FULLREGFOOTPRINT(i->max_reg + 1) |
148 A6XX_SP_CS_CTRL_REG0_HALFREGFOOTPRINT(i->max_half_reg + 1) |
149 COND(v->mergedregs, A6XX_SP_CS_CTRL_REG0_MERGEDREGS) |
150 A6XX_SP_CS_CTRL_REG0_BRANCHSTACK(v->branchstack) |
151 COND(v->need_pixlod, A6XX_SP_CS_CTRL_REG0_PIXLODENABLE));
152
153 OUT_PKT4(ring, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
154 OUT_RING(ring, 0x41);
155
156 uint32_t local_invocation_id, work_group_id;
157 local_invocation_id = ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
158 work_group_id = ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID);
159
160 OUT_PKT4(ring, REG_A6XX_HLSQ_CS_CNTL_0, 2);
161 OUT_RING(ring, A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
162 A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) |
163 A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) |
164 A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
165 OUT_RING(ring, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */
166
167 OUT_PKT4(ring, REG_A6XX_SP_CS_OBJ_START_LO, 2);
168 OUT_RELOC(ring, v->bo, 0, 0, 0); /* SP_CS_OBJ_START_LO/HI */
169
170 OUT_PKT4(ring, REG_A6XX_SP_CS_INSTRLEN, 1);
171 OUT_RING(ring, v->instrlen);
172
173 OUT_PKT4(ring, REG_A6XX_SP_CS_OBJ_START_LO, 2);
174 OUT_RELOC(ring, v->bo, 0, 0, 0);
175
176 OUT_PKT7(ring, CP_LOAD_STATE6_FRAG, 3);
177 OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) |
178 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
179 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
180 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_CS_SHADER) |
181 CP_LOAD_STATE6_0_NUM_UNIT(v->instrlen));
182 OUT_RELOC(ring, v->bo, 0, 0, 0);
183 }
184
185 static void
186 emit_const(struct fd_ringbuffer *ring, uint32_t regid,
187 uint32_t sizedwords, const uint32_t *dwords)
188 {
189 uint32_t align_sz;
190
191 debug_assert((regid % 4) == 0);
192
193 align_sz = align(sizedwords, 4);
194
195 OUT_PKT7(ring, CP_LOAD_STATE6_FRAG, 3 + align_sz);
196 OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(regid/4) |
197 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
198 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
199 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_CS_SHADER) |
200 CP_LOAD_STATE6_0_NUM_UNIT(DIV_ROUND_UP(sizedwords, 4)));
201 OUT_RING(ring, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
202 OUT_RING(ring, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
203
204 for (uint32_t i = 0; i < sizedwords; i++) {
205 OUT_RING(ring, dwords[i]);
206 }
207
208 /* Zero-pad to multiple of 4 dwords */
209 for (uint32_t i = sizedwords; i < align_sz; i++) {
210 OUT_RING(ring, 0);
211 }
212 }
213
214
215 static void
216 cs_const_emit(struct fd_ringbuffer *ring, struct kernel *kernel, uint32_t grid[3])
217 {
218 struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
219 struct ir3_shader_variant *v = ir3_kernel->v;
220
221 const struct ir3_const_state *const_state = ir3_const_state(v);
222 uint32_t base = const_state->offsets.immediate;
223 int size = const_state->immediates_count;
224
225 if (ir3_kernel->info.numwg != INVALID_REG) {
226 assert((ir3_kernel->info.numwg & 0x3) == 0);
227 int idx = ir3_kernel->info.numwg >> 2;
228 const_state->immediates[idx].val[0] = grid[0];
229 const_state->immediates[idx].val[1] = grid[1];
230 const_state->immediates[idx].val[2] = grid[2];
231 }
232
233 /* truncate size to avoid writing constants that shader
234 * does not use:
235 */
236 size = MIN2(size + base, v->constlen) - base;
237
238 /* convert out of vec4: */
239 base *= 4;
240 size *= 4;
241
242 if (size > 0) {
243 emit_const(ring, base, size, const_state->immediates[0].val);
244 }
245 }
246
247 static void
248 cs_ibo_emit(struct fd_ringbuffer *ring, struct fd_submit *submit,
249 struct kernel *kernel)
250 {
251 struct fd_ringbuffer *state =
252 fd_submit_new_ringbuffer(submit,
253 kernel->num_bufs * 16 * 4,
254 FD_RINGBUFFER_STREAMING);
255
256 for (unsigned i = 0; i < kernel->num_bufs; i++) {
257 /* size is encoded with low 15b in WIDTH and high bits in HEIGHT,
258 * in units of elements:
259 */
260 unsigned sz = kernel->buf_sizes[i];
261 unsigned width = sz & MASK(15);
262 unsigned height = sz >> 15;
263
264 OUT_RING(state, A6XX_IBO_0_FMT(FMT6_32_UINT) |
265 A6XX_IBO_0_TILE_MODE(0));
266 OUT_RING(state, A6XX_IBO_1_WIDTH(width) |
267 A6XX_IBO_1_HEIGHT(height));
268 OUT_RING(state, A6XX_IBO_2_PITCH(0) |
269 A6XX_IBO_2_UNK4 | A6XX_IBO_2_UNK31 |
270 A6XX_IBO_2_TYPE(A6XX_TEX_1D));
271 OUT_RING(state, A6XX_IBO_3_ARRAY_PITCH(0));
272 OUT_RELOC(state, kernel->bufs[i], 0, 0, 0);
273 OUT_RING(state, 0x00000000);
274 OUT_RING(state, 0x00000000);
275 OUT_RING(state, 0x00000000);
276 OUT_RING(state, 0x00000000);
277 OUT_RING(state, 0x00000000);
278 OUT_RING(state, 0x00000000);
279 OUT_RING(state, 0x00000000);
280 OUT_RING(state, 0x00000000);
281 OUT_RING(state, 0x00000000);
282 OUT_RING(state, 0x00000000);
283 }
284
285 OUT_PKT7(ring, CP_LOAD_STATE6_FRAG, 3);
286 OUT_RING(ring, CP_LOAD_STATE6_0_DST_OFF(0) |
287 CP_LOAD_STATE6_0_STATE_TYPE(ST6_IBO) |
288 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
289 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_CS_SHADER) |
290 CP_LOAD_STATE6_0_NUM_UNIT(kernel->num_bufs));
291 OUT_RB(ring, state);
292
293 OUT_PKT4(ring, REG_A6XX_SP_CS_IBO_LO, 2);
294 OUT_RB(ring, state);
295
296 OUT_PKT4(ring, REG_A6XX_SP_CS_IBO_COUNT, 1);
297 OUT_RING(ring, kernel->num_bufs);
298
299 fd_ringbuffer_del(state);
300 }
301
302 static inline unsigned
303 event_write(struct fd_ringbuffer *ring, struct kernel *kernel,
304 enum vgt_event_type evt, bool timestamp)
305 {
306 unsigned seqno = 0;
307
308 OUT_PKT7(ring, CP_EVENT_WRITE, timestamp ? 4 : 1);
309 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(evt));
310 if (timestamp) {
311 struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
312 struct a6xx_backend *a6xx_backend = to_a6xx_backend(ir3_kernel->backend);
313 seqno = ++a6xx_backend->seqno;
314 OUT_RELOC(ring, control_ptr(a6xx_backend, seqno)); /* ADDR_LO/HI */
315 OUT_RING(ring, seqno);
316 }
317
318 return seqno;
319 }
320
321 static inline void
322 cache_flush(struct fd_ringbuffer *ring, struct kernel *kernel)
323 {
324 struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
325 struct a6xx_backend *a6xx_backend = to_a6xx_backend(ir3_kernel->backend);
326 unsigned seqno;
327
328 seqno = event_write(ring, kernel, RB_DONE_TS, true);
329
330 OUT_PKT7(ring, CP_WAIT_REG_MEM, 6);
331 OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
332 CP_WAIT_REG_MEM_0_POLL_MEMORY);
333 OUT_RELOC(ring, control_ptr(a6xx_backend, seqno));
334 OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(seqno));
335 OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(~0));
336 OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(16));
337
338 seqno = event_write(ring, kernel, CACHE_FLUSH_TS, true);
339
340 OUT_PKT7(ring, CP_WAIT_MEM_GTE, 4);
341 OUT_RING(ring, CP_WAIT_MEM_GTE_0_RESERVED(0));
342 OUT_RELOC(ring, control_ptr(a6xx_backend, seqno));
343 OUT_RING(ring, CP_WAIT_MEM_GTE_3_REF(seqno));
344 }
345
346 static void
347 a6xx_emit_grid(struct kernel *kernel, uint32_t grid[3], struct fd_submit *submit)
348 {
349 struct ir3_kernel *ir3_kernel = to_ir3_kernel(kernel);
350 struct a6xx_backend *a6xx_backend = to_a6xx_backend(ir3_kernel->backend);
351 struct fd_ringbuffer *ring = fd_submit_new_ringbuffer(submit, 0,
352 FD_RINGBUFFER_PRIMARY | FD_RINGBUFFER_GROWABLE);
353
354 cs_program_emit(ring, kernel);
355 cs_const_emit(ring, kernel, grid);
356 cs_ibo_emit(ring, submit, kernel);
357
358 OUT_PKT7(ring, CP_SET_MARKER, 1);
359 OUT_RING(ring, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
360
361 const unsigned *local_size = kernel->local_size;
362 const unsigned *num_groups = grid;
363
364 unsigned work_dim = 0;
365 for (int i = 0; i < 3; i++) {
366 if (!grid[i])
367 break;
368 work_dim++;
369 }
370
371 OUT_PKT4(ring, REG_A6XX_HLSQ_CS_NDRANGE_0, 7);
372 OUT_RING(ring, A6XX_HLSQ_CS_NDRANGE_0_KERNELDIM(work_dim) |
373 A6XX_HLSQ_CS_NDRANGE_0_LOCALSIZEX(local_size[0] - 1) |
374 A6XX_HLSQ_CS_NDRANGE_0_LOCALSIZEY(local_size[1] - 1) |
375 A6XX_HLSQ_CS_NDRANGE_0_LOCALSIZEZ(local_size[2] - 1));
376 OUT_RING(ring, A6XX_HLSQ_CS_NDRANGE_1_GLOBALSIZE_X(local_size[0] * num_groups[0]));
377 OUT_RING(ring, 0); /* HLSQ_CS_NDRANGE_2_GLOBALOFF_X */
378 OUT_RING(ring, A6XX_HLSQ_CS_NDRANGE_3_GLOBALSIZE_Y(local_size[1] * num_groups[1]));
379 OUT_RING(ring, 0); /* HLSQ_CS_NDRANGE_4_GLOBALOFF_Y */
380 OUT_RING(ring, A6XX_HLSQ_CS_NDRANGE_5_GLOBALSIZE_Z(local_size[2] * num_groups[2]));
381 OUT_RING(ring, 0); /* HLSQ_CS_NDRANGE_6_GLOBALOFF_Z */
382
383 OUT_PKT4(ring, REG_A6XX_HLSQ_CS_KERNEL_GROUP_X, 3);
384 OUT_RING(ring, 1); /* HLSQ_CS_KERNEL_GROUP_X */
385 OUT_RING(ring, 1); /* HLSQ_CS_KERNEL_GROUP_Y */
386 OUT_RING(ring, 1); /* HLSQ_CS_KERNEL_GROUP_Z */
387
388 if (a6xx_backend->num_perfcntrs > 0) {
389 a6xx_backend->query_mem = fd_bo_new(a6xx_backend->dev,
390 a6xx_backend->num_perfcntrs * sizeof(struct fd6_query_sample),
391 DRM_FREEDRENO_GEM_TYPE_KMEM, "query");
392
393 /* configure the performance counters to count the requested
394 * countables:
395 */
396 for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
397 const struct perfcntr *counter = &a6xx_backend->perfcntrs[i];
398
399 OUT_PKT4(ring, counter->select_reg, 1);
400 OUT_RING(ring, counter->selector);
401 }
402
403 OUT_PKT7(ring, CP_WAIT_FOR_IDLE, 0);
404
405 /* and snapshot the start values: */
406 for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
407 const struct perfcntr *counter = &a6xx_backend->perfcntrs[i];
408
409 OUT_PKT7(ring, CP_REG_TO_MEM, 3);
410 OUT_RING(ring, CP_REG_TO_MEM_0_64B |
411 CP_REG_TO_MEM_0_REG(counter->counter_reg_lo));
412 OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, start));
413 }
414 }
415
416 OUT_PKT7(ring, CP_EXEC_CS, 4);
417 OUT_RING(ring, 0x00000000);
418 OUT_RING(ring, CP_EXEC_CS_1_NGROUPS_X(grid[0]));
419 OUT_RING(ring, CP_EXEC_CS_2_NGROUPS_Y(grid[1]));
420 OUT_RING(ring, CP_EXEC_CS_3_NGROUPS_Z(grid[2]));
421
422 OUT_PKT7(ring, CP_WAIT_FOR_IDLE, 0);
423
424 if (a6xx_backend->num_perfcntrs > 0) {
425 /* snapshot the end values: */
426 for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
427 const struct perfcntr *counter = &a6xx_backend->perfcntrs[i];
428
429 OUT_PKT7(ring, CP_REG_TO_MEM, 3);
430 OUT_RING(ring, CP_REG_TO_MEM_0_64B |
431 CP_REG_TO_MEM_0_REG(counter->counter_reg_lo));
432 OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, stop));
433 }
434
435 /* and compute the result: */
436 for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
437 /* result += stop - start: */
438 OUT_PKT7(ring, CP_MEM_TO_MEM, 9);
439 OUT_RING(ring, CP_MEM_TO_MEM_0_DOUBLE |
440 CP_MEM_TO_MEM_0_NEG_C);
441 OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, result)); /* dst */
442 OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, result)); /* srcA */
443 OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, stop)); /* srcB */
444 OUT_RELOC(ring, query_sample_idx(a6xx_backend, i, start)); /* srcC */
445 }
446 }
447
448 cache_flush(ring, kernel);
449 }
450
451 static void
452 a6xx_set_perfcntrs(struct backend *b, const struct perfcntr *perfcntrs,
453 unsigned num_perfcntrs)
454 {
455 struct a6xx_backend *a6xx_backend = to_a6xx_backend(b);
456
457 a6xx_backend->perfcntrs = perfcntrs;
458 a6xx_backend->num_perfcntrs = num_perfcntrs;
459 }
460
461 static void
462 a6xx_read_perfcntrs(struct backend *b, uint64_t *results)
463 {
464 struct a6xx_backend *a6xx_backend = to_a6xx_backend(b);
465
466 fd_bo_cpu_prep(a6xx_backend->query_mem, NULL, DRM_FREEDRENO_PREP_READ);
467 struct fd6_query_sample *samples = fd_bo_map(a6xx_backend->query_mem);
468
469 for (unsigned i = 0; i < a6xx_backend->num_perfcntrs; i++) {
470 results[i] = samples[i].result;
471 }
472 }
473
474 struct backend *
475 a6xx_init(struct fd_device *dev, uint32_t gpu_id)
476 {
477 struct a6xx_backend *a6xx_backend = calloc(1, sizeof(*a6xx_backend));
478
479 a6xx_backend->base = (struct backend) {
480 .assemble = a6xx_assemble,
481 .disassemble = a6xx_disassemble,
482 .emit_grid = a6xx_emit_grid,
483 .set_perfcntrs = a6xx_set_perfcntrs,
484 .read_perfcntrs = a6xx_read_perfcntrs,
485 };
486
487 a6xx_backend->compiler = ir3_compiler_create(dev, gpu_id);
488 a6xx_backend->dev = dev;
489
490 a6xx_backend->control_mem = fd_bo_new(dev, 0x1000,
491 DRM_FREEDRENO_GEM_TYPE_KMEM, "control");
492
493 return &a6xx_backend->base;
494 }