freedreno/ir3: convert block->predecessors to set
[mesa.git] / src / freedreno / ir3 / ir3.h
1 /*
2 * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #ifndef IR3_H_
25 #define IR3_H_
26
27 #include <stdint.h>
28 #include <stdbool.h>
29
30 #include "compiler/shader_enums.h"
31
32 #include "util/bitscan.h"
33 #include "util/list.h"
34 #include "util/set.h"
35 #include "util/u_debug.h"
36
37 #include "instr-a3xx.h"
38
39 /* low level intermediate representation of an adreno shader program */
40
41 struct ir3_compiler;
42 struct ir3;
43 struct ir3_instruction;
44 struct ir3_block;
45
46 struct ir3_info {
47 uint32_t gpu_id;
48 uint16_t sizedwords;
49 uint16_t instrs_count; /* expanded to account for rpt's */
50 /* NOTE: max_reg, etc, does not include registers not touched
51 * by the shader (ie. vertex fetched via VFD_DECODE but not
52 * touched by shader)
53 */
54 int8_t max_reg; /* highest GPR # used by shader */
55 int8_t max_half_reg;
56 int16_t max_const;
57
58 /* number of sync bits: */
59 uint16_t ss, sy;
60 };
61
62 struct ir3_register {
63 enum {
64 IR3_REG_CONST = 0x001,
65 IR3_REG_IMMED = 0x002,
66 IR3_REG_HALF = 0x004,
67 /* high registers are used for some things in compute shaders,
68 * for example. Seems to be for things that are global to all
69 * threads in a wave, so possibly these are global/shared by
70 * all the threads in the wave?
71 */
72 IR3_REG_HIGH = 0x008,
73 IR3_REG_RELATIV= 0x010,
74 IR3_REG_R = 0x020,
75 /* Most instructions, it seems, can do float abs/neg but not
76 * integer. The CP pass needs to know what is intended (int or
77 * float) in order to do the right thing. For this reason the
78 * abs/neg flags are split out into float and int variants. In
79 * addition, .b (bitwise) operations, the negate is actually a
80 * bitwise not, so split that out into a new flag to make it
81 * more clear.
82 */
83 IR3_REG_FNEG = 0x040,
84 IR3_REG_FABS = 0x080,
85 IR3_REG_SNEG = 0x100,
86 IR3_REG_SABS = 0x200,
87 IR3_REG_BNOT = 0x400,
88 IR3_REG_EVEN = 0x800,
89 IR3_REG_POS_INF= 0x1000,
90 /* (ei) flag, end-input? Set on last bary, presumably to signal
91 * that the shader needs no more input:
92 */
93 IR3_REG_EI = 0x2000,
94 /* meta-flags, for intermediate stages of IR, ie.
95 * before register assignment is done:
96 */
97 IR3_REG_SSA = 0x4000, /* 'instr' is ptr to assigning instr */
98 IR3_REG_ARRAY = 0x8000,
99
100 } flags;
101
102 bool merged : 1; /* half-regs conflict with full regs (ie >= a6xx) */
103
104 /* normal registers:
105 * the component is in the low two bits of the reg #, so
106 * rN.x becomes: (N << 2) | x
107 */
108 uint16_t num;
109 union {
110 /* immediate: */
111 int32_t iim_val;
112 uint32_t uim_val;
113 float fim_val;
114 /* relative: */
115 struct {
116 uint16_t id;
117 int16_t offset;
118 } array;
119 };
120
121 /* For IR3_REG_SSA, src registers contain ptr back to assigning
122 * instruction.
123 *
124 * For IR3_REG_ARRAY, the pointer is back to the last dependent
125 * array access (although the net effect is the same, it points
126 * back to a previous instruction that we depend on).
127 */
128 struct ir3_instruction *instr;
129
130 union {
131 /* used for cat5 instructions, but also for internal/IR level
132 * tracking of what registers are read/written by an instruction.
133 * wrmask may be a bad name since it is used to represent both
134 * src and dst that touch multiple adjacent registers.
135 */
136 unsigned wrmask;
137 /* for relative addressing, 32bits for array size is too small,
138 * but otoh we don't need to deal with disjoint sets, so instead
139 * use a simple size field (number of scalar components).
140 */
141 unsigned size;
142 };
143 };
144
145 /*
146 * Stupid/simple growable array implementation:
147 */
148 #define DECLARE_ARRAY(type, name) \
149 unsigned name ## _count, name ## _sz; \
150 type * name;
151
152 #define array_insert(ctx, arr, val) do { \
153 if (arr ## _count == arr ## _sz) { \
154 arr ## _sz = MAX2(2 * arr ## _sz, 16); \
155 arr = reralloc_size(ctx, arr, arr ## _sz * sizeof(arr[0])); \
156 } \
157 arr[arr ##_count++] = val; \
158 } while (0)
159
160 struct ir3_instruction {
161 struct ir3_block *block;
162 opc_t opc;
163 enum {
164 /* (sy) flag is set on first instruction, and after sample
165 * instructions (probably just on RAW hazard).
166 */
167 IR3_INSTR_SY = 0x001,
168 /* (ss) flag is set on first instruction, and first instruction
169 * to depend on the result of "long" instructions (RAW hazard):
170 *
171 * rcp, rsq, log2, exp2, sin, cos, sqrt
172 *
173 * It seems to synchronize until all in-flight instructions are
174 * completed, for example:
175 *
176 * rsq hr1.w, hr1.w
177 * add.f hr2.z, (neg)hr2.z, hc0.y
178 * mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
179 * rsq hr2.x, hr2.x
180 * (rpt1)nop
181 * mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
182 * nop
183 * mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
184 * (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
185 * (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
186 *
187 * The last mul.f does not have (ss) set, presumably because the
188 * (ss) on the previous instruction does the job.
189 *
190 * The blob driver also seems to set it on WAR hazards, although
191 * not really clear if this is needed or just blob compiler being
192 * sloppy. So far I haven't found a case where removing the (ss)
193 * causes problems for WAR hazard, but I could just be getting
194 * lucky:
195 *
196 * rcp r1.y, r3.y
197 * (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
198 *
199 */
200 IR3_INSTR_SS = 0x002,
201 /* (jp) flag is set on jump targets:
202 */
203 IR3_INSTR_JP = 0x004,
204 IR3_INSTR_UL = 0x008,
205 IR3_INSTR_3D = 0x010,
206 IR3_INSTR_A = 0x020,
207 IR3_INSTR_O = 0x040,
208 IR3_INSTR_P = 0x080,
209 IR3_INSTR_S = 0x100,
210 IR3_INSTR_S2EN = 0x200,
211 IR3_INSTR_G = 0x400,
212 IR3_INSTR_SAT = 0x800,
213 /* meta-flags, for intermediate stages of IR, ie.
214 * before register assignment is done:
215 */
216 IR3_INSTR_MARK = 0x1000,
217 IR3_INSTR_UNUSED= 0x2000,
218 } flags;
219 uint8_t repeat;
220 uint8_t nop;
221 #ifdef DEBUG
222 unsigned regs_max;
223 #endif
224 unsigned regs_count;
225 struct ir3_register **regs;
226 union {
227 struct {
228 char inv;
229 char comp;
230 int immed;
231 struct ir3_block *target;
232 } cat0;
233 struct {
234 type_t src_type, dst_type;
235 } cat1;
236 struct {
237 enum {
238 IR3_COND_LT = 0,
239 IR3_COND_LE = 1,
240 IR3_COND_GT = 2,
241 IR3_COND_GE = 3,
242 IR3_COND_EQ = 4,
243 IR3_COND_NE = 5,
244 } condition;
245 } cat2;
246 struct {
247 unsigned samp, tex;
248 type_t type;
249 } cat5;
250 struct {
251 type_t type;
252 int src_offset;
253 int dst_offset;
254 int iim_val : 3; /* for ldgb/stgb, # of components */
255 unsigned d : 3;
256 bool typed : 1;
257 } cat6;
258 struct {
259 unsigned w : 1; /* write */
260 unsigned r : 1; /* read */
261 unsigned l : 1; /* local */
262 unsigned g : 1; /* global */
263 } cat7;
264 /* for meta-instructions, just used to hold extra data
265 * before instruction scheduling, etc
266 */
267 struct {
268 int off; /* component/offset */
269 } fo;
270 struct {
271 struct ir3_block *block;
272 } inout;
273 };
274
275 /* transient values used during various algorithms: */
276 union {
277 /* The instruction depth is the max dependency distance to output.
278 *
279 * You can also think of it as the "cost", if we did any sort of
280 * optimization for register footprint. Ie. a value that is just
281 * result of moving a const to a reg would have a low cost, so to
282 * it could make sense to duplicate the instruction at various
283 * points where the result is needed to reduce register footprint.
284 */
285 unsigned depth;
286 /* When we get to the RA stage, we no longer need depth, but
287 * we do need instruction's position/name:
288 */
289 struct {
290 uint16_t ip;
291 uint16_t name;
292 };
293 };
294
295 /* used for per-pass extra instruction data.
296 *
297 * TODO we should remove the per-pass data like this and 'use_count'
298 * and do something similar to what RA does w/ ir3_ra_instr_data..
299 * ie. use the ir3_count_instructions pass, and then use instr->ip
300 * to index into a table of pass-private data.
301 */
302 void *data;
303
304 int sun; /* Sethi–Ullman number, used by sched */
305 int use_count; /* currently just updated/used by cp */
306
307 /* Used during CP and RA stages. For fanin and shader inputs/
308 * outputs where we need a sequence of consecutive registers,
309 * keep track of each src instructions left (ie 'n-1') and right
310 * (ie 'n+1') neighbor. The front-end must insert enough mov's
311 * to ensure that each instruction has at most one left and at
312 * most one right neighbor. During the copy-propagation pass,
313 * we only remove mov's when we can preserve this constraint.
314 * And during the RA stage, we use the neighbor information to
315 * allocate a block of registers in one shot.
316 *
317 * TODO: maybe just add something like:
318 * struct ir3_instruction_ref {
319 * struct ir3_instruction *instr;
320 * unsigned cnt;
321 * }
322 *
323 * Or can we get away without the refcnt stuff? It seems like
324 * it should be overkill.. the problem is if, potentially after
325 * already eliminating some mov's, if you have a single mov that
326 * needs to be grouped with it's neighbors in two different
327 * places (ex. shader output and a fanin).
328 */
329 struct {
330 struct ir3_instruction *left, *right;
331 uint16_t left_cnt, right_cnt;
332 } cp;
333
334 /* an instruction can reference at most one address register amongst
335 * it's src/dst registers. Beyond that, you need to insert mov's.
336 *
337 * NOTE: do not write this directly, use ir3_instr_set_address()
338 */
339 struct ir3_instruction *address;
340
341 /* Tracking for additional dependent instructions. Used to handle
342 * barriers, WAR hazards for arrays/SSBOs/etc.
343 */
344 DECLARE_ARRAY(struct ir3_instruction *, deps);
345
346 /*
347 * From PoV of instruction scheduling, not execution (ie. ignores global/
348 * local distinction):
349 * shared image atomic SSBO everything
350 * barrier()/ - R/W R/W R/W R/W X
351 * groupMemoryBarrier()
352 * memoryBarrier() - R/W R/W
353 * (but only images declared coherent?)
354 * memoryBarrierAtomic() - R/W
355 * memoryBarrierBuffer() - R/W
356 * memoryBarrierImage() - R/W
357 * memoryBarrierShared() - R/W
358 *
359 * TODO I think for SSBO/image/shared, in cases where we can determine
360 * which variable is accessed, we don't need to care about accesses to
361 * different variables (unless declared coherent??)
362 */
363 enum {
364 IR3_BARRIER_EVERYTHING = 1 << 0,
365 IR3_BARRIER_SHARED_R = 1 << 1,
366 IR3_BARRIER_SHARED_W = 1 << 2,
367 IR3_BARRIER_IMAGE_R = 1 << 3,
368 IR3_BARRIER_IMAGE_W = 1 << 4,
369 IR3_BARRIER_BUFFER_R = 1 << 5,
370 IR3_BARRIER_BUFFER_W = 1 << 6,
371 IR3_BARRIER_ARRAY_R = 1 << 7,
372 IR3_BARRIER_ARRAY_W = 1 << 8,
373 } barrier_class, barrier_conflict;
374
375 /* Entry in ir3_block's instruction list: */
376 struct list_head node;
377
378 #ifdef DEBUG
379 uint32_t serialno;
380 #endif
381 };
382
383 static inline struct ir3_instruction *
384 ir3_neighbor_first(struct ir3_instruction *instr)
385 {
386 int cnt = 0;
387 while (instr->cp.left) {
388 instr = instr->cp.left;
389 if (++cnt > 0xffff) {
390 debug_assert(0);
391 break;
392 }
393 }
394 return instr;
395 }
396
397 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
398 {
399 int num = 1;
400
401 debug_assert(!instr->cp.left);
402
403 while (instr->cp.right) {
404 num++;
405 instr = instr->cp.right;
406 if (num > 0xffff) {
407 debug_assert(0);
408 break;
409 }
410 }
411
412 return num;
413 }
414
415 struct ir3 {
416 struct ir3_compiler *compiler;
417 gl_shader_stage type;
418
419 unsigned ninputs, noutputs;
420 struct ir3_instruction **inputs;
421 struct ir3_instruction **outputs;
422
423 /* Track bary.f (and ldlv) instructions.. this is needed in
424 * scheduling to ensure that all varying fetches happen before
425 * any potential kill instructions. The hw gets grumpy if all
426 * threads in a group are killed before the last bary.f gets
427 * a chance to signal end of input (ei).
428 */
429 DECLARE_ARRAY(struct ir3_instruction *, baryfs);
430
431 /* Track all indirect instructions (read and write). To avoid
432 * deadlock scenario where an address register gets scheduled,
433 * but other dependent src instructions cannot be scheduled due
434 * to dependency on a *different* address register value, the
435 * scheduler needs to ensure that all dependencies other than
436 * the instruction other than the address register are scheduled
437 * before the one that writes the address register. Having a
438 * convenient list of instructions that reference some address
439 * register simplifies this.
440 */
441 DECLARE_ARRAY(struct ir3_instruction *, indirects);
442
443 /* and same for instructions that consume predicate register: */
444 DECLARE_ARRAY(struct ir3_instruction *, predicates);
445
446 /* Track texture sample instructions which need texture state
447 * patched in (for astc-srgb workaround):
448 */
449 DECLARE_ARRAY(struct ir3_instruction *, astc_srgb);
450
451 /* List of blocks: */
452 struct list_head block_list;
453
454 /* List of ir3_array's: */
455 struct list_head array_list;
456
457 unsigned max_sun; /* max Sethi–Ullman number */
458
459 #ifdef DEBUG
460 unsigned block_count, instr_count;
461 #endif
462 };
463
464 struct ir3_array {
465 struct list_head node;
466 unsigned length;
467 unsigned id;
468
469 struct nir_register *r;
470
471 /* To avoid array write's from getting DCE'd, keep track of the
472 * most recent write. Any array access depends on the most
473 * recent write. This way, nothing depends on writes after the
474 * last read. But all the writes that happen before that have
475 * something depending on them
476 */
477 struct ir3_instruction *last_write;
478
479 /* extra stuff used in RA pass: */
480 unsigned base; /* base vreg name */
481 unsigned reg; /* base physical reg */
482 uint16_t start_ip, end_ip;
483 };
484
485 struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
486
487 struct ir3_block {
488 struct list_head node;
489 struct ir3 *shader;
490
491 const struct nir_block *nblock;
492
493 struct list_head instr_list; /* list of ir3_instruction */
494
495 /* each block has either one or two successors.. in case of
496 * two successors, 'condition' decides which one to follow.
497 * A block preceding an if/else has two successors.
498 */
499 struct ir3_instruction *condition;
500 struct ir3_block *successors[2];
501
502 struct set *predecessors; /* set of ir3_block */
503
504 uint16_t start_ip, end_ip;
505
506 /* Track instructions which do not write a register but other-
507 * wise must not be discarded (such as kill, stg, etc)
508 */
509 DECLARE_ARRAY(struct ir3_instruction *, keeps);
510
511 /* used for per-pass extra block data. Mainly used right
512 * now in RA step to track livein/liveout.
513 */
514 void *data;
515
516 #ifdef DEBUG
517 uint32_t serialno;
518 #endif
519 };
520
521 static inline uint32_t
522 block_id(struct ir3_block *block)
523 {
524 #ifdef DEBUG
525 return block->serialno;
526 #else
527 return (uint32_t)(unsigned long)block;
528 #endif
529 }
530
531 struct ir3 * ir3_create(struct ir3_compiler *compiler,
532 gl_shader_stage type, unsigned nin, unsigned nout);
533 void ir3_destroy(struct ir3 *shader);
534 void * ir3_assemble(struct ir3 *shader,
535 struct ir3_info *info, uint32_t gpu_id);
536 void * ir3_alloc(struct ir3 *shader, int sz);
537
538 struct ir3_block * ir3_block_create(struct ir3 *shader);
539
540 struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
541 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
542 opc_t opc, int nreg);
543 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
544 void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep);
545 const char *ir3_instr_name(struct ir3_instruction *instr);
546
547 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
548 int num, int flags);
549 struct ir3_register * ir3_reg_clone(struct ir3 *shader,
550 struct ir3_register *reg);
551
552 void ir3_instr_set_address(struct ir3_instruction *instr,
553 struct ir3_instruction *addr);
554
555 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
556 {
557 if (instr->flags & IR3_INSTR_MARK)
558 return true; /* already visited */
559 instr->flags |= IR3_INSTR_MARK;
560 return false;
561 }
562
563 void ir3_block_clear_mark(struct ir3_block *block);
564 void ir3_clear_mark(struct ir3 *shader);
565
566 unsigned ir3_count_instructions(struct ir3 *ir);
567
568 static inline int ir3_instr_regno(struct ir3_instruction *instr,
569 struct ir3_register *reg)
570 {
571 unsigned i;
572 for (i = 0; i < instr->regs_count; i++)
573 if (reg == instr->regs[i])
574 return i;
575 return -1;
576 }
577
578
579 #define MAX_ARRAYS 16
580
581 /* comp:
582 * 0 - x
583 * 1 - y
584 * 2 - z
585 * 3 - w
586 */
587 static inline uint32_t regid(int num, int comp)
588 {
589 return (num << 2) | (comp & 0x3);
590 }
591
592 static inline uint32_t reg_num(struct ir3_register *reg)
593 {
594 return reg->num >> 2;
595 }
596
597 static inline uint32_t reg_comp(struct ir3_register *reg)
598 {
599 return reg->num & 0x3;
600 }
601
602 static inline bool is_flow(struct ir3_instruction *instr)
603 {
604 return (opc_cat(instr->opc) == 0);
605 }
606
607 static inline bool is_kill(struct ir3_instruction *instr)
608 {
609 return instr->opc == OPC_KILL;
610 }
611
612 static inline bool is_nop(struct ir3_instruction *instr)
613 {
614 return instr->opc == OPC_NOP;
615 }
616
617 static inline bool is_same_type_reg(struct ir3_register *reg1,
618 struct ir3_register *reg2)
619 {
620 unsigned type_reg1 = (reg1->flags & (IR3_REG_HIGH | IR3_REG_HALF));
621 unsigned type_reg2 = (reg2->flags & (IR3_REG_HIGH | IR3_REG_HALF));
622
623 if (type_reg1 ^ type_reg2)
624 return false;
625 else
626 return true;
627 }
628
629 /* Is it a non-transformative (ie. not type changing) mov? This can
630 * also include absneg.s/absneg.f, which for the most part can be
631 * treated as a mov (single src argument).
632 */
633 static inline bool is_same_type_mov(struct ir3_instruction *instr)
634 {
635 struct ir3_register *dst;
636
637 switch (instr->opc) {
638 case OPC_MOV:
639 if (instr->cat1.src_type != instr->cat1.dst_type)
640 return false;
641 break;
642 case OPC_ABSNEG_F:
643 case OPC_ABSNEG_S:
644 if (instr->flags & IR3_INSTR_SAT)
645 return false;
646 /* If the type of dest reg and src reg are different,
647 * it shouldn't be considered as same type mov */
648 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
649 return false;
650 break;
651 default:
652 return false;
653 }
654
655 dst = instr->regs[0];
656
657 /* mov's that write to a0.x or p0.x are special: */
658 if (dst->num == regid(REG_P0, 0))
659 return false;
660 if (dst->num == regid(REG_A0, 0))
661 return false;
662
663 if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
664 return false;
665
666 return true;
667 }
668
669 static inline bool is_alu(struct ir3_instruction *instr)
670 {
671 return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
672 }
673
674 static inline bool is_sfu(struct ir3_instruction *instr)
675 {
676 return (opc_cat(instr->opc) == 4);
677 }
678
679 static inline bool is_tex(struct ir3_instruction *instr)
680 {
681 return (opc_cat(instr->opc) == 5);
682 }
683
684 static inline bool is_mem(struct ir3_instruction *instr)
685 {
686 return (opc_cat(instr->opc) == 6);
687 }
688
689 static inline bool is_barrier(struct ir3_instruction *instr)
690 {
691 return (opc_cat(instr->opc) == 7);
692 }
693
694 static inline bool
695 is_store(struct ir3_instruction *instr)
696 {
697 /* these instructions, the "destination" register is
698 * actually a source, the address to store to.
699 */
700 switch (instr->opc) {
701 case OPC_STG:
702 case OPC_STGB:
703 case OPC_STIB:
704 case OPC_STP:
705 case OPC_STL:
706 case OPC_STLW:
707 case OPC_L2G:
708 case OPC_G2L:
709 return true;
710 default:
711 return false;
712 }
713 }
714
715 static inline bool is_load(struct ir3_instruction *instr)
716 {
717 switch (instr->opc) {
718 case OPC_LDG:
719 case OPC_LDGB:
720 case OPC_LDIB:
721 case OPC_LDL:
722 case OPC_LDP:
723 case OPC_L2G:
724 case OPC_LDLW:
725 case OPC_LDC:
726 case OPC_LDLV:
727 /* probably some others too.. */
728 return true;
729 default:
730 return false;
731 }
732 }
733
734 static inline bool is_input(struct ir3_instruction *instr)
735 {
736 /* in some cases, ldlv is used to fetch varying without
737 * interpolation.. fortunately inloc is the first src
738 * register in either case
739 */
740 switch (instr->opc) {
741 case OPC_LDLV:
742 case OPC_BARY_F:
743 return true;
744 default:
745 return false;
746 }
747 }
748
749 static inline bool is_bool(struct ir3_instruction *instr)
750 {
751 switch (instr->opc) {
752 case OPC_CMPS_F:
753 case OPC_CMPS_S:
754 case OPC_CMPS_U:
755 return true;
756 default:
757 return false;
758 }
759 }
760
761 static inline bool is_meta(struct ir3_instruction *instr)
762 {
763 /* TODO how should we count PHI (and maybe fan-in/out) which
764 * might actually contribute some instructions to the final
765 * result?
766 */
767 return (opc_cat(instr->opc) == -1);
768 }
769
770 static inline unsigned dest_regs(struct ir3_instruction *instr)
771 {
772 if ((instr->regs_count == 0) || is_store(instr))
773 return 0;
774
775 return util_last_bit(instr->regs[0]->wrmask);
776 }
777
778 static inline bool writes_addr(struct ir3_instruction *instr)
779 {
780 if (instr->regs_count > 0) {
781 struct ir3_register *dst = instr->regs[0];
782 return reg_num(dst) == REG_A0;
783 }
784 return false;
785 }
786
787 static inline bool writes_pred(struct ir3_instruction *instr)
788 {
789 if (instr->regs_count > 0) {
790 struct ir3_register *dst = instr->regs[0];
791 return reg_num(dst) == REG_P0;
792 }
793 return false;
794 }
795
796 /* returns defining instruction for reg */
797 /* TODO better name */
798 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
799 {
800 if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
801 return reg->instr;
802 }
803 return NULL;
804 }
805
806 static inline bool conflicts(struct ir3_instruction *a,
807 struct ir3_instruction *b)
808 {
809 return (a && b) && (a != b);
810 }
811
812 static inline bool reg_gpr(struct ir3_register *r)
813 {
814 if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
815 return false;
816 if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
817 return false;
818 return true;
819 }
820
821 static inline type_t half_type(type_t type)
822 {
823 switch (type) {
824 case TYPE_F32: return TYPE_F16;
825 case TYPE_U32: return TYPE_U16;
826 case TYPE_S32: return TYPE_S16;
827 case TYPE_F16:
828 case TYPE_U16:
829 case TYPE_S16:
830 return type;
831 default:
832 assert(0);
833 return ~0;
834 }
835 }
836
837 /* some cat2 instructions (ie. those which are not float) can embed an
838 * immediate:
839 */
840 static inline bool ir3_cat2_int(opc_t opc)
841 {
842 switch (opc) {
843 case OPC_ADD_U:
844 case OPC_ADD_S:
845 case OPC_SUB_U:
846 case OPC_SUB_S:
847 case OPC_CMPS_U:
848 case OPC_CMPS_S:
849 case OPC_MIN_U:
850 case OPC_MIN_S:
851 case OPC_MAX_U:
852 case OPC_MAX_S:
853 case OPC_CMPV_U:
854 case OPC_CMPV_S:
855 case OPC_MUL_U:
856 case OPC_MUL_S:
857 case OPC_MULL_U:
858 case OPC_CLZ_S:
859 case OPC_ABSNEG_S:
860 case OPC_AND_B:
861 case OPC_OR_B:
862 case OPC_NOT_B:
863 case OPC_XOR_B:
864 case OPC_BFREV_B:
865 case OPC_CLZ_B:
866 case OPC_SHL_B:
867 case OPC_SHR_B:
868 case OPC_ASHR_B:
869 case OPC_MGEN_B:
870 case OPC_GETBIT_B:
871 case OPC_CBITS_B:
872 case OPC_BARY_F:
873 return true;
874
875 default:
876 return false;
877 }
878 }
879
880 static inline bool ir3_cat2_float(opc_t opc)
881 {
882 switch (opc) {
883 case OPC_ADD_F:
884 case OPC_MIN_F:
885 case OPC_MAX_F:
886 case OPC_MUL_F:
887 case OPC_SIGN_F:
888 case OPC_CMPS_F:
889 case OPC_ABSNEG_F:
890 case OPC_CMPV_F:
891 case OPC_FLOOR_F:
892 case OPC_CEIL_F:
893 case OPC_RNDNE_F:
894 case OPC_RNDAZ_F:
895 case OPC_TRUNC_F:
896 return true;
897
898 default:
899 return false;
900 }
901 }
902
903 static inline bool ir3_cat3_float(opc_t opc)
904 {
905 switch (opc) {
906 case OPC_MAD_F16:
907 case OPC_MAD_F32:
908 case OPC_SEL_F16:
909 case OPC_SEL_F32:
910 return true;
911 default:
912 return false;
913 }
914 }
915
916 /* map cat2 instruction to valid abs/neg flags: */
917 static inline unsigned ir3_cat2_absneg(opc_t opc)
918 {
919 switch (opc) {
920 case OPC_ADD_F:
921 case OPC_MIN_F:
922 case OPC_MAX_F:
923 case OPC_MUL_F:
924 case OPC_SIGN_F:
925 case OPC_CMPS_F:
926 case OPC_ABSNEG_F:
927 case OPC_CMPV_F:
928 case OPC_FLOOR_F:
929 case OPC_CEIL_F:
930 case OPC_RNDNE_F:
931 case OPC_RNDAZ_F:
932 case OPC_TRUNC_F:
933 case OPC_BARY_F:
934 return IR3_REG_FABS | IR3_REG_FNEG;
935
936 case OPC_ADD_U:
937 case OPC_ADD_S:
938 case OPC_SUB_U:
939 case OPC_SUB_S:
940 case OPC_CMPS_U:
941 case OPC_CMPS_S:
942 case OPC_MIN_U:
943 case OPC_MIN_S:
944 case OPC_MAX_U:
945 case OPC_MAX_S:
946 case OPC_CMPV_U:
947 case OPC_CMPV_S:
948 case OPC_MUL_U:
949 case OPC_MUL_S:
950 case OPC_MULL_U:
951 case OPC_CLZ_S:
952 return 0;
953
954 case OPC_ABSNEG_S:
955 return IR3_REG_SABS | IR3_REG_SNEG;
956
957 case OPC_AND_B:
958 case OPC_OR_B:
959 case OPC_NOT_B:
960 case OPC_XOR_B:
961 case OPC_BFREV_B:
962 case OPC_CLZ_B:
963 case OPC_SHL_B:
964 case OPC_SHR_B:
965 case OPC_ASHR_B:
966 case OPC_MGEN_B:
967 case OPC_GETBIT_B:
968 case OPC_CBITS_B:
969 return IR3_REG_BNOT;
970
971 default:
972 return 0;
973 }
974 }
975
976 /* map cat3 instructions to valid abs/neg flags: */
977 static inline unsigned ir3_cat3_absneg(opc_t opc)
978 {
979 switch (opc) {
980 case OPC_MAD_F16:
981 case OPC_MAD_F32:
982 case OPC_SEL_F16:
983 case OPC_SEL_F32:
984 return IR3_REG_FNEG;
985
986 case OPC_MAD_U16:
987 case OPC_MADSH_U16:
988 case OPC_MAD_S16:
989 case OPC_MADSH_M16:
990 case OPC_MAD_U24:
991 case OPC_MAD_S24:
992 case OPC_SEL_S16:
993 case OPC_SEL_S32:
994 case OPC_SAD_S16:
995 case OPC_SAD_S32:
996 /* neg *may* work on 3rd src.. */
997
998 case OPC_SEL_B16:
999 case OPC_SEL_B32:
1000
1001 default:
1002 return 0;
1003 }
1004 }
1005
1006 #define MASK(n) ((1 << (n)) - 1)
1007
1008 /* iterator for an instructions's sources (reg), also returns src #: */
1009 #define foreach_src_n(__srcreg, __n, __instr) \
1010 if ((__instr)->regs_count) \
1011 for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
1012 if ((__srcreg = (__instr)->regs[__n + 1]))
1013
1014 /* iterator for an instructions's sources (reg): */
1015 #define foreach_src(__srcreg, __instr) \
1016 foreach_src_n(__srcreg, __i, __instr)
1017
1018 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
1019 {
1020 unsigned cnt = instr->regs_count + instr->deps_count;
1021 if (instr->address)
1022 cnt++;
1023 return cnt;
1024 }
1025
1026 static inline struct ir3_instruction * __ssa_src_n(struct ir3_instruction *instr, unsigned n)
1027 {
1028 if (n == (instr->regs_count + instr->deps_count))
1029 return instr->address;
1030 if (n >= instr->regs_count)
1031 return instr->deps[n - instr->regs_count];
1032 return ssa(instr->regs[n]);
1033 }
1034
1035 static inline bool __is_false_dep(struct ir3_instruction *instr, unsigned n)
1036 {
1037 if (n == (instr->regs_count + instr->deps_count))
1038 return false;
1039 if (n >= instr->regs_count)
1040 return true;
1041 return false;
1042 }
1043
1044 #define __src_cnt(__instr) ((__instr)->address ? (__instr)->regs_count : (__instr)->regs_count - 1)
1045
1046 /* iterator for an instruction's SSA sources (instr), also returns src #: */
1047 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
1048 for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
1049 if ((__srcinst = __ssa_src_n(__instr, __n)))
1050
1051 /* iterator for an instruction's SSA sources (instr): */
1052 #define foreach_ssa_src(__srcinst, __instr) \
1053 foreach_ssa_src_n(__srcinst, __i, __instr)
1054
1055
1056 /* dump: */
1057 void ir3_print(struct ir3 *ir);
1058 void ir3_print_instr(struct ir3_instruction *instr);
1059
1060 /* depth calculation: */
1061 int ir3_delayslots(struct ir3_instruction *assigner,
1062 struct ir3_instruction *consumer, unsigned n);
1063 void ir3_insert_by_depth(struct ir3_instruction *instr, struct list_head *list);
1064 void ir3_depth(struct ir3 *ir);
1065
1066 /* copy-propagate: */
1067 struct ir3_shader_variant;
1068 void ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so);
1069
1070 /* group neighbors and insert mov's to resolve conflicts: */
1071 void ir3_group(struct ir3 *ir);
1072
1073 /* Sethi–Ullman numbering: */
1074 void ir3_sun(struct ir3 *ir);
1075
1076 /* scheduling: */
1077 void ir3_sched_add_deps(struct ir3 *ir);
1078 int ir3_sched(struct ir3 *ir);
1079
1080 void ir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so);
1081
1082 /* register assignment: */
1083 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(struct ir3_compiler *compiler);
1084 int ir3_ra(struct ir3_shader_variant *v);
1085
1086 /* legalize: */
1087 void ir3_legalize(struct ir3 *ir, bool *has_ssbo, bool *need_pixlod, int *max_bary);
1088
1089 /* ************************************************************************* */
1090 /* instruction helpers */
1091
1092 static inline struct ir3_instruction *
1093 create_immed_typed(struct ir3_block *block, uint32_t val, type_t type)
1094 {
1095 struct ir3_instruction *mov;
1096 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1097
1098 mov = ir3_instr_create(block, OPC_MOV);
1099 mov->cat1.src_type = type;
1100 mov->cat1.dst_type = type;
1101 ir3_reg_create(mov, 0, flags);
1102 ir3_reg_create(mov, 0, IR3_REG_IMMED)->uim_val = val;
1103
1104 return mov;
1105 }
1106
1107 static inline struct ir3_instruction *
1108 create_immed(struct ir3_block *block, uint32_t val)
1109 {
1110 return create_immed_typed(block, val, TYPE_U32);
1111 }
1112
1113 static inline struct ir3_instruction *
1114 create_uniform_typed(struct ir3_block *block, unsigned n, type_t type)
1115 {
1116 struct ir3_instruction *mov;
1117 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1118
1119 mov = ir3_instr_create(block, OPC_MOV);
1120 mov->cat1.src_type = type;
1121 mov->cat1.dst_type = type;
1122 ir3_reg_create(mov, 0, flags);
1123 ir3_reg_create(mov, n, IR3_REG_CONST | flags);
1124
1125 return mov;
1126 }
1127
1128 static inline struct ir3_instruction *
1129 create_uniform(struct ir3_block *block, unsigned n)
1130 {
1131 return create_uniform_typed(block, n, TYPE_F32);
1132 }
1133
1134 static inline struct ir3_instruction *
1135 create_uniform_indirect(struct ir3_block *block, int n,
1136 struct ir3_instruction *address)
1137 {
1138 struct ir3_instruction *mov;
1139
1140 mov = ir3_instr_create(block, OPC_MOV);
1141 mov->cat1.src_type = TYPE_U32;
1142 mov->cat1.dst_type = TYPE_U32;
1143 ir3_reg_create(mov, 0, 0);
1144 ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
1145
1146 ir3_instr_set_address(mov, address);
1147
1148 return mov;
1149 }
1150
1151 /* creates SSA src of correct type (ie. half vs full precision) */
1152 static inline struct ir3_register * __ssa_src(struct ir3_instruction *instr,
1153 struct ir3_instruction *src, unsigned flags)
1154 {
1155 struct ir3_register *reg;
1156 if (src->regs[0]->flags & IR3_REG_HALF)
1157 flags |= IR3_REG_HALF;
1158 reg = ir3_reg_create(instr, 0, IR3_REG_SSA | flags);
1159 reg->instr = src;
1160 reg->wrmask = src->regs[0]->wrmask;
1161 return reg;
1162 }
1163
1164 static inline struct ir3_instruction *
1165 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
1166 {
1167 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1168 ir3_reg_create(instr, 0, 0); /* dst */
1169 if (src->regs[0]->flags & IR3_REG_ARRAY) {
1170 struct ir3_register *src_reg = __ssa_src(instr, src, IR3_REG_ARRAY);
1171 src_reg->array = src->regs[0]->array;
1172 } else {
1173 __ssa_src(instr, src, src->regs[0]->flags & IR3_REG_HIGH);
1174 }
1175 debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
1176 instr->cat1.src_type = type;
1177 instr->cat1.dst_type = type;
1178 return instr;
1179 }
1180
1181 static inline struct ir3_instruction *
1182 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
1183 type_t src_type, type_t dst_type)
1184 {
1185 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1186 unsigned dst_flags = (type_size(dst_type) < 32) ? IR3_REG_HALF : 0;
1187 unsigned src_flags = (type_size(src_type) < 32) ? IR3_REG_HALF : 0;
1188
1189 debug_assert((src->regs[0]->flags & IR3_REG_HALF) == src_flags);
1190
1191 ir3_reg_create(instr, 0, dst_flags); /* dst */
1192 __ssa_src(instr, src, 0);
1193 instr->cat1.src_type = src_type;
1194 instr->cat1.dst_type = dst_type;
1195 debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
1196 return instr;
1197 }
1198
1199 static inline struct ir3_instruction *
1200 ir3_NOP(struct ir3_block *block)
1201 {
1202 return ir3_instr_create(block, OPC_NOP);
1203 }
1204
1205 #define IR3_INSTR_0 0
1206
1207 #define __INSTR0(flag, name, opc) \
1208 static inline struct ir3_instruction * \
1209 ir3_##name(struct ir3_block *block) \
1210 { \
1211 struct ir3_instruction *instr = \
1212 ir3_instr_create(block, opc); \
1213 instr->flags |= flag; \
1214 return instr; \
1215 }
1216 #define INSTR0F(f, name) __INSTR0(IR3_INSTR_##f, name##_##f, OPC_##name)
1217 #define INSTR0(name) __INSTR0(0, name, OPC_##name)
1218
1219 #define __INSTR1(flag, name, opc) \
1220 static inline struct ir3_instruction * \
1221 ir3_##name(struct ir3_block *block, \
1222 struct ir3_instruction *a, unsigned aflags) \
1223 { \
1224 struct ir3_instruction *instr = \
1225 ir3_instr_create(block, opc); \
1226 ir3_reg_create(instr, 0, 0); /* dst */ \
1227 __ssa_src(instr, a, aflags); \
1228 instr->flags |= flag; \
1229 return instr; \
1230 }
1231 #define INSTR1F(f, name) __INSTR1(IR3_INSTR_##f, name##_##f, OPC_##name)
1232 #define INSTR1(name) __INSTR1(0, name, OPC_##name)
1233
1234 #define __INSTR2(flag, name, opc) \
1235 static inline struct ir3_instruction * \
1236 ir3_##name(struct ir3_block *block, \
1237 struct ir3_instruction *a, unsigned aflags, \
1238 struct ir3_instruction *b, unsigned bflags) \
1239 { \
1240 struct ir3_instruction *instr = \
1241 ir3_instr_create(block, opc); \
1242 ir3_reg_create(instr, 0, 0); /* dst */ \
1243 __ssa_src(instr, a, aflags); \
1244 __ssa_src(instr, b, bflags); \
1245 instr->flags |= flag; \
1246 return instr; \
1247 }
1248 #define INSTR2F(f, name) __INSTR2(IR3_INSTR_##f, name##_##f, OPC_##name)
1249 #define INSTR2(name) __INSTR2(0, name, OPC_##name)
1250
1251 #define __INSTR3(flag, name, opc) \
1252 static inline struct ir3_instruction * \
1253 ir3_##name(struct ir3_block *block, \
1254 struct ir3_instruction *a, unsigned aflags, \
1255 struct ir3_instruction *b, unsigned bflags, \
1256 struct ir3_instruction *c, unsigned cflags) \
1257 { \
1258 struct ir3_instruction *instr = \
1259 ir3_instr_create2(block, opc, 4); \
1260 ir3_reg_create(instr, 0, 0); /* dst */ \
1261 __ssa_src(instr, a, aflags); \
1262 __ssa_src(instr, b, bflags); \
1263 __ssa_src(instr, c, cflags); \
1264 instr->flags |= flag; \
1265 return instr; \
1266 }
1267 #define INSTR3F(f, name) __INSTR3(IR3_INSTR_##f, name##_##f, OPC_##name)
1268 #define INSTR3(name) __INSTR3(0, name, OPC_##name)
1269
1270 #define __INSTR4(flag, name, opc) \
1271 static inline struct ir3_instruction * \
1272 ir3_##name(struct ir3_block *block, \
1273 struct ir3_instruction *a, unsigned aflags, \
1274 struct ir3_instruction *b, unsigned bflags, \
1275 struct ir3_instruction *c, unsigned cflags, \
1276 struct ir3_instruction *d, unsigned dflags) \
1277 { \
1278 struct ir3_instruction *instr = \
1279 ir3_instr_create2(block, opc, 5); \
1280 ir3_reg_create(instr, 0, 0); /* dst */ \
1281 __ssa_src(instr, a, aflags); \
1282 __ssa_src(instr, b, bflags); \
1283 __ssa_src(instr, c, cflags); \
1284 __ssa_src(instr, d, dflags); \
1285 instr->flags |= flag; \
1286 return instr; \
1287 }
1288 #define INSTR4F(f, name) __INSTR4(IR3_INSTR_##f, name##_##f, OPC_##name)
1289 #define INSTR4(name) __INSTR4(0, name, OPC_##name)
1290
1291 /* cat0 instructions: */
1292 INSTR0(BR)
1293 INSTR0(JUMP)
1294 INSTR1(KILL)
1295 INSTR0(END)
1296
1297 /* cat2 instructions, most 2 src but some 1 src: */
1298 INSTR2(ADD_F)
1299 INSTR2(MIN_F)
1300 INSTR2(MAX_F)
1301 INSTR2(MUL_F)
1302 INSTR1(SIGN_F)
1303 INSTR2(CMPS_F)
1304 INSTR1(ABSNEG_F)
1305 INSTR2(CMPV_F)
1306 INSTR1(FLOOR_F)
1307 INSTR1(CEIL_F)
1308 INSTR1(RNDNE_F)
1309 INSTR1(RNDAZ_F)
1310 INSTR1(TRUNC_F)
1311 INSTR2(ADD_U)
1312 INSTR2(ADD_S)
1313 INSTR2(SUB_U)
1314 INSTR2(SUB_S)
1315 INSTR2(CMPS_U)
1316 INSTR2(CMPS_S)
1317 INSTR2(MIN_U)
1318 INSTR2(MIN_S)
1319 INSTR2(MAX_U)
1320 INSTR2(MAX_S)
1321 INSTR1(ABSNEG_S)
1322 INSTR2(AND_B)
1323 INSTR2(OR_B)
1324 INSTR1(NOT_B)
1325 INSTR2(XOR_B)
1326 INSTR2(CMPV_U)
1327 INSTR2(CMPV_S)
1328 INSTR2(MUL_U)
1329 INSTR2(MUL_S)
1330 INSTR2(MULL_U)
1331 INSTR1(BFREV_B)
1332 INSTR1(CLZ_S)
1333 INSTR1(CLZ_B)
1334 INSTR2(SHL_B)
1335 INSTR2(SHR_B)
1336 INSTR2(ASHR_B)
1337 INSTR2(BARY_F)
1338 INSTR2(MGEN_B)
1339 INSTR2(GETBIT_B)
1340 INSTR1(SETRM)
1341 INSTR1(CBITS_B)
1342 INSTR2(SHB)
1343 INSTR2(MSAD)
1344
1345 /* cat3 instructions: */
1346 INSTR3(MAD_U16)
1347 INSTR3(MADSH_U16)
1348 INSTR3(MAD_S16)
1349 INSTR3(MADSH_M16)
1350 INSTR3(MAD_U24)
1351 INSTR3(MAD_S24)
1352 INSTR3(MAD_F16)
1353 INSTR3(MAD_F32)
1354 INSTR3(SEL_B16)
1355 INSTR3(SEL_B32)
1356 INSTR3(SEL_S16)
1357 INSTR3(SEL_S32)
1358 INSTR3(SEL_F16)
1359 INSTR3(SEL_F32)
1360 INSTR3(SAD_S16)
1361 INSTR3(SAD_S32)
1362
1363 /* cat4 instructions: */
1364 INSTR1(RCP)
1365 INSTR1(RSQ)
1366 INSTR1(LOG2)
1367 INSTR1(EXP2)
1368 INSTR1(SIN)
1369 INSTR1(COS)
1370 INSTR1(SQRT)
1371
1372 /* cat5 instructions: */
1373 INSTR1(DSX)
1374 INSTR1(DSY)
1375 INSTR1F(3D, DSX)
1376 INSTR1F(3D, DSY)
1377 INSTR1(RGETPOS)
1378
1379 static inline struct ir3_instruction *
1380 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
1381 unsigned wrmask, unsigned flags, struct ir3_instruction *samp_tex,
1382 struct ir3_instruction *src0, struct ir3_instruction *src1)
1383 {
1384 struct ir3_instruction *sam;
1385 struct ir3_register *reg;
1386
1387 sam = ir3_instr_create(block, opc);
1388 sam->flags |= flags | IR3_INSTR_S2EN;
1389 ir3_reg_create(sam, 0, 0)->wrmask = wrmask;
1390 __ssa_src(sam, samp_tex, IR3_REG_HALF);
1391 if (src0) {
1392 reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
1393 reg->wrmask = (1 << (src0->regs_count - 1)) - 1;
1394 reg->instr = src0;
1395 }
1396 if (src1) {
1397 reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
1398 reg->instr = src1;
1399 reg->wrmask = (1 << (src1->regs_count - 1)) - 1;
1400 }
1401 sam->cat5.type = type;
1402
1403 return sam;
1404 }
1405
1406 /* cat6 instructions: */
1407 INSTR2(LDLV)
1408 INSTR2(LDG)
1409 INSTR2(LDL)
1410 INSTR3(STG)
1411 INSTR3(STL)
1412 INSTR1(RESINFO)
1413 INSTR1(RESFMT)
1414 INSTR2(ATOMIC_ADD)
1415 INSTR2(ATOMIC_SUB)
1416 INSTR2(ATOMIC_XCHG)
1417 INSTR2(ATOMIC_INC)
1418 INSTR2(ATOMIC_DEC)
1419 INSTR2(ATOMIC_CMPXCHG)
1420 INSTR2(ATOMIC_MIN)
1421 INSTR2(ATOMIC_MAX)
1422 INSTR2(ATOMIC_AND)
1423 INSTR2(ATOMIC_OR)
1424 INSTR2(ATOMIC_XOR)
1425 #if GPU >= 600
1426 INSTR3(STIB);
1427 INSTR2(LDIB);
1428 INSTR3F(G, ATOMIC_ADD)
1429 INSTR3F(G, ATOMIC_SUB)
1430 INSTR3F(G, ATOMIC_XCHG)
1431 INSTR3F(G, ATOMIC_INC)
1432 INSTR3F(G, ATOMIC_DEC)
1433 INSTR3F(G, ATOMIC_CMPXCHG)
1434 INSTR3F(G, ATOMIC_MIN)
1435 INSTR3F(G, ATOMIC_MAX)
1436 INSTR3F(G, ATOMIC_AND)
1437 INSTR3F(G, ATOMIC_OR)
1438 INSTR3F(G, ATOMIC_XOR)
1439 #elif GPU >= 400
1440 INSTR3(LDGB)
1441 INSTR4(STGB)
1442 INSTR4(STIB)
1443 INSTR4F(G, ATOMIC_ADD)
1444 INSTR4F(G, ATOMIC_SUB)
1445 INSTR4F(G, ATOMIC_XCHG)
1446 INSTR4F(G, ATOMIC_INC)
1447 INSTR4F(G, ATOMIC_DEC)
1448 INSTR4F(G, ATOMIC_CMPXCHG)
1449 INSTR4F(G, ATOMIC_MIN)
1450 INSTR4F(G, ATOMIC_MAX)
1451 INSTR4F(G, ATOMIC_AND)
1452 INSTR4F(G, ATOMIC_OR)
1453 INSTR4F(G, ATOMIC_XOR)
1454 #endif
1455
1456 /* cat7 instructions: */
1457 INSTR0(BAR)
1458 INSTR0(FENCE)
1459
1460 /* ************************************************************************* */
1461 /* split this out or find some helper to use.. like main/bitset.h.. */
1462
1463 #include <string.h>
1464
1465 #define MAX_REG 256
1466
1467 typedef uint8_t regmask_t[2 * MAX_REG / 8];
1468
1469 static inline unsigned regmask_idx(struct ir3_register *reg)
1470 {
1471 unsigned num = (reg->flags & IR3_REG_RELATIV) ? reg->array.offset : reg->num;
1472 debug_assert(num < MAX_REG);
1473 if (reg->flags & IR3_REG_HALF) {
1474 if (reg->merged) {
1475 num /= 2;
1476 } else {
1477 num += MAX_REG;
1478 }
1479 }
1480 return num;
1481 }
1482
1483 static inline void regmask_init(regmask_t *regmask)
1484 {
1485 memset(regmask, 0, sizeof(*regmask));
1486 }
1487
1488 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1489 {
1490 unsigned idx = regmask_idx(reg);
1491 if (reg->flags & IR3_REG_RELATIV) {
1492 unsigned i;
1493 for (i = 0; i < reg->size; i++, idx++)
1494 (*regmask)[idx / 8] |= 1 << (idx % 8);
1495 } else {
1496 unsigned mask;
1497 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1498 if (mask & 1)
1499 (*regmask)[idx / 8] |= 1 << (idx % 8);
1500 }
1501 }
1502
1503 static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
1504 {
1505 unsigned i;
1506 for (i = 0; i < ARRAY_SIZE(*dst); i++)
1507 (*dst)[i] = (*a)[i] | (*b)[i];
1508 }
1509
1510 /* set bits in a if not set in b, conceptually:
1511 * a |= (reg & ~b)
1512 */
1513 static inline void regmask_set_if_not(regmask_t *a,
1514 struct ir3_register *reg, regmask_t *b)
1515 {
1516 unsigned idx = regmask_idx(reg);
1517 if (reg->flags & IR3_REG_RELATIV) {
1518 unsigned i;
1519 for (i = 0; i < reg->size; i++, idx++)
1520 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1521 (*a)[idx / 8] |= 1 << (idx % 8);
1522 } else {
1523 unsigned mask;
1524 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1525 if (mask & 1)
1526 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1527 (*a)[idx / 8] |= 1 << (idx % 8);
1528 }
1529 }
1530
1531 static inline bool regmask_get(regmask_t *regmask,
1532 struct ir3_register *reg)
1533 {
1534 unsigned idx = regmask_idx(reg);
1535 if (reg->flags & IR3_REG_RELATIV) {
1536 unsigned i;
1537 for (i = 0; i < reg->size; i++, idx++)
1538 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1539 return true;
1540 } else {
1541 unsigned mask;
1542 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1543 if (mask & 1)
1544 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1545 return true;
1546 }
1547 return false;
1548 }
1549
1550 /* ************************************************************************* */
1551
1552 #endif /* IR3_H_ */