freedreno/ir3: don't DCE ij_pix if used for pre-fs-texture-fetch
[mesa.git] / src / freedreno / ir3 / ir3.h
1 /*
2 * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #ifndef IR3_H_
25 #define IR3_H_
26
27 #include <stdint.h>
28 #include <stdbool.h>
29
30 #include "compiler/shader_enums.h"
31
32 #include "util/bitscan.h"
33 #include "util/list.h"
34 #include "util/set.h"
35 #include "util/u_debug.h"
36
37 #include "instr-a3xx.h"
38
39 /* low level intermediate representation of an adreno shader program */
40
41 struct ir3_compiler;
42 struct ir3;
43 struct ir3_instruction;
44 struct ir3_block;
45
46 struct ir3_info {
47 uint32_t gpu_id;
48 uint16_t sizedwords;
49 uint16_t instrs_count; /* expanded to account for rpt's */
50 /* NOTE: max_reg, etc, does not include registers not touched
51 * by the shader (ie. vertex fetched via VFD_DECODE but not
52 * touched by shader)
53 */
54 int8_t max_reg; /* highest GPR # used by shader */
55 int8_t max_half_reg;
56 int16_t max_const;
57
58 /* number of sync bits: */
59 uint16_t ss, sy;
60 };
61
62 struct ir3_register {
63 enum {
64 IR3_REG_CONST = 0x001,
65 IR3_REG_IMMED = 0x002,
66 IR3_REG_HALF = 0x004,
67 /* high registers are used for some things in compute shaders,
68 * for example. Seems to be for things that are global to all
69 * threads in a wave, so possibly these are global/shared by
70 * all the threads in the wave?
71 */
72 IR3_REG_HIGH = 0x008,
73 IR3_REG_RELATIV= 0x010,
74 IR3_REG_R = 0x020,
75 /* Most instructions, it seems, can do float abs/neg but not
76 * integer. The CP pass needs to know what is intended (int or
77 * float) in order to do the right thing. For this reason the
78 * abs/neg flags are split out into float and int variants. In
79 * addition, .b (bitwise) operations, the negate is actually a
80 * bitwise not, so split that out into a new flag to make it
81 * more clear.
82 */
83 IR3_REG_FNEG = 0x040,
84 IR3_REG_FABS = 0x080,
85 IR3_REG_SNEG = 0x100,
86 IR3_REG_SABS = 0x200,
87 IR3_REG_BNOT = 0x400,
88 IR3_REG_EVEN = 0x800,
89 IR3_REG_POS_INF= 0x1000,
90 /* (ei) flag, end-input? Set on last bary, presumably to signal
91 * that the shader needs no more input:
92 */
93 IR3_REG_EI = 0x2000,
94 /* meta-flags, for intermediate stages of IR, ie.
95 * before register assignment is done:
96 */
97 IR3_REG_SSA = 0x4000, /* 'instr' is ptr to assigning instr */
98 IR3_REG_ARRAY = 0x8000,
99
100 } flags;
101
102 bool merged : 1; /* half-regs conflict with full regs (ie >= a6xx) */
103
104 /* normal registers:
105 * the component is in the low two bits of the reg #, so
106 * rN.x becomes: (N << 2) | x
107 */
108 uint16_t num;
109 union {
110 /* immediate: */
111 int32_t iim_val;
112 uint32_t uim_val;
113 float fim_val;
114 /* relative: */
115 struct {
116 uint16_t id;
117 int16_t offset;
118 } array;
119 };
120
121 /* For IR3_REG_SSA, src registers contain ptr back to assigning
122 * instruction.
123 *
124 * For IR3_REG_ARRAY, the pointer is back to the last dependent
125 * array access (although the net effect is the same, it points
126 * back to a previous instruction that we depend on).
127 */
128 struct ir3_instruction *instr;
129
130 union {
131 /* used for cat5 instructions, but also for internal/IR level
132 * tracking of what registers are read/written by an instruction.
133 * wrmask may be a bad name since it is used to represent both
134 * src and dst that touch multiple adjacent registers.
135 */
136 unsigned wrmask;
137 /* for relative addressing, 32bits for array size is too small,
138 * but otoh we don't need to deal with disjoint sets, so instead
139 * use a simple size field (number of scalar components).
140 */
141 unsigned size;
142 };
143 };
144
145 /*
146 * Stupid/simple growable array implementation:
147 */
148 #define DECLARE_ARRAY(type, name) \
149 unsigned name ## _count, name ## _sz; \
150 type * name;
151
152 #define array_insert(ctx, arr, val) do { \
153 if (arr ## _count == arr ## _sz) { \
154 arr ## _sz = MAX2(2 * arr ## _sz, 16); \
155 arr = reralloc_size(ctx, arr, arr ## _sz * sizeof(arr[0])); \
156 } \
157 arr[arr ##_count++] = val; \
158 } while (0)
159
160 struct ir3_instruction {
161 struct ir3_block *block;
162 opc_t opc;
163 enum {
164 /* (sy) flag is set on first instruction, and after sample
165 * instructions (probably just on RAW hazard).
166 */
167 IR3_INSTR_SY = 0x001,
168 /* (ss) flag is set on first instruction, and first instruction
169 * to depend on the result of "long" instructions (RAW hazard):
170 *
171 * rcp, rsq, log2, exp2, sin, cos, sqrt
172 *
173 * It seems to synchronize until all in-flight instructions are
174 * completed, for example:
175 *
176 * rsq hr1.w, hr1.w
177 * add.f hr2.z, (neg)hr2.z, hc0.y
178 * mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
179 * rsq hr2.x, hr2.x
180 * (rpt1)nop
181 * mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
182 * nop
183 * mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
184 * (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
185 * (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
186 *
187 * The last mul.f does not have (ss) set, presumably because the
188 * (ss) on the previous instruction does the job.
189 *
190 * The blob driver also seems to set it on WAR hazards, although
191 * not really clear if this is needed or just blob compiler being
192 * sloppy. So far I haven't found a case where removing the (ss)
193 * causes problems for WAR hazard, but I could just be getting
194 * lucky:
195 *
196 * rcp r1.y, r3.y
197 * (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
198 *
199 */
200 IR3_INSTR_SS = 0x002,
201 /* (jp) flag is set on jump targets:
202 */
203 IR3_INSTR_JP = 0x004,
204 IR3_INSTR_UL = 0x008,
205 IR3_INSTR_3D = 0x010,
206 IR3_INSTR_A = 0x020,
207 IR3_INSTR_O = 0x040,
208 IR3_INSTR_P = 0x080,
209 IR3_INSTR_S = 0x100,
210 IR3_INSTR_S2EN = 0x200,
211 IR3_INSTR_G = 0x400,
212 IR3_INSTR_SAT = 0x800,
213 /* meta-flags, for intermediate stages of IR, ie.
214 * before register assignment is done:
215 */
216 IR3_INSTR_MARK = 0x1000,
217 IR3_INSTR_UNUSED= 0x2000,
218 } flags;
219 uint8_t repeat;
220 uint8_t nop;
221 #ifdef DEBUG
222 unsigned regs_max;
223 #endif
224 unsigned regs_count;
225 struct ir3_register **regs;
226 union {
227 struct {
228 char inv;
229 char comp;
230 int immed;
231 struct ir3_block *target;
232 } cat0;
233 struct {
234 type_t src_type, dst_type;
235 } cat1;
236 struct {
237 enum {
238 IR3_COND_LT = 0,
239 IR3_COND_LE = 1,
240 IR3_COND_GT = 2,
241 IR3_COND_GE = 3,
242 IR3_COND_EQ = 4,
243 IR3_COND_NE = 5,
244 } condition;
245 } cat2;
246 struct {
247 unsigned samp, tex;
248 type_t type;
249 } cat5;
250 struct {
251 type_t type;
252 int src_offset;
253 int dst_offset;
254 int iim_val : 3; /* for ldgb/stgb, # of components */
255 unsigned d : 3;
256 bool typed : 1;
257 } cat6;
258 struct {
259 unsigned w : 1; /* write */
260 unsigned r : 1; /* read */
261 unsigned l : 1; /* local */
262 unsigned g : 1; /* global */
263 } cat7;
264 /* for meta-instructions, just used to hold extra data
265 * before instruction scheduling, etc
266 */
267 struct {
268 int off; /* component/offset */
269 } fo;
270 struct {
271 /* for sysvals, identifies the sysval type. Mostly so we can
272 * identify the special cases where a sysval should not be DCE'd
273 * (currently, just pre-fs texture fetch)
274 */
275 gl_system_value sysval;
276 } input;
277 };
278
279 /* transient values used during various algorithms: */
280 union {
281 /* The instruction depth is the max dependency distance to output.
282 *
283 * You can also think of it as the "cost", if we did any sort of
284 * optimization for register footprint. Ie. a value that is just
285 * result of moving a const to a reg would have a low cost, so to
286 * it could make sense to duplicate the instruction at various
287 * points where the result is needed to reduce register footprint.
288 */
289 unsigned depth;
290 /* When we get to the RA stage, we no longer need depth, but
291 * we do need instruction's position/name:
292 */
293 struct {
294 uint16_t ip;
295 uint16_t name;
296 };
297 };
298
299 /* used for per-pass extra instruction data.
300 *
301 * TODO we should remove the per-pass data like this and 'use_count'
302 * and do something similar to what RA does w/ ir3_ra_instr_data..
303 * ie. use the ir3_count_instructions pass, and then use instr->ip
304 * to index into a table of pass-private data.
305 */
306 void *data;
307
308 int sun; /* Sethi–Ullman number, used by sched */
309 int use_count; /* currently just updated/used by cp */
310
311 /* Used during CP and RA stages. For fanin and shader inputs/
312 * outputs where we need a sequence of consecutive registers,
313 * keep track of each src instructions left (ie 'n-1') and right
314 * (ie 'n+1') neighbor. The front-end must insert enough mov's
315 * to ensure that each instruction has at most one left and at
316 * most one right neighbor. During the copy-propagation pass,
317 * we only remove mov's when we can preserve this constraint.
318 * And during the RA stage, we use the neighbor information to
319 * allocate a block of registers in one shot.
320 *
321 * TODO: maybe just add something like:
322 * struct ir3_instruction_ref {
323 * struct ir3_instruction *instr;
324 * unsigned cnt;
325 * }
326 *
327 * Or can we get away without the refcnt stuff? It seems like
328 * it should be overkill.. the problem is if, potentially after
329 * already eliminating some mov's, if you have a single mov that
330 * needs to be grouped with it's neighbors in two different
331 * places (ex. shader output and a fanin).
332 */
333 struct {
334 struct ir3_instruction *left, *right;
335 uint16_t left_cnt, right_cnt;
336 } cp;
337
338 /* an instruction can reference at most one address register amongst
339 * it's src/dst registers. Beyond that, you need to insert mov's.
340 *
341 * NOTE: do not write this directly, use ir3_instr_set_address()
342 */
343 struct ir3_instruction *address;
344
345 /* Tracking for additional dependent instructions. Used to handle
346 * barriers, WAR hazards for arrays/SSBOs/etc.
347 */
348 DECLARE_ARRAY(struct ir3_instruction *, deps);
349
350 /*
351 * From PoV of instruction scheduling, not execution (ie. ignores global/
352 * local distinction):
353 * shared image atomic SSBO everything
354 * barrier()/ - R/W R/W R/W R/W X
355 * groupMemoryBarrier()
356 * memoryBarrier() - R/W R/W
357 * (but only images declared coherent?)
358 * memoryBarrierAtomic() - R/W
359 * memoryBarrierBuffer() - R/W
360 * memoryBarrierImage() - R/W
361 * memoryBarrierShared() - R/W
362 *
363 * TODO I think for SSBO/image/shared, in cases where we can determine
364 * which variable is accessed, we don't need to care about accesses to
365 * different variables (unless declared coherent??)
366 */
367 enum {
368 IR3_BARRIER_EVERYTHING = 1 << 0,
369 IR3_BARRIER_SHARED_R = 1 << 1,
370 IR3_BARRIER_SHARED_W = 1 << 2,
371 IR3_BARRIER_IMAGE_R = 1 << 3,
372 IR3_BARRIER_IMAGE_W = 1 << 4,
373 IR3_BARRIER_BUFFER_R = 1 << 5,
374 IR3_BARRIER_BUFFER_W = 1 << 6,
375 IR3_BARRIER_ARRAY_R = 1 << 7,
376 IR3_BARRIER_ARRAY_W = 1 << 8,
377 } barrier_class, barrier_conflict;
378
379 /* Entry in ir3_block's instruction list: */
380 struct list_head node;
381
382 #ifdef DEBUG
383 uint32_t serialno;
384 #endif
385 };
386
387 static inline struct ir3_instruction *
388 ir3_neighbor_first(struct ir3_instruction *instr)
389 {
390 int cnt = 0;
391 while (instr->cp.left) {
392 instr = instr->cp.left;
393 if (++cnt > 0xffff) {
394 debug_assert(0);
395 break;
396 }
397 }
398 return instr;
399 }
400
401 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
402 {
403 int num = 1;
404
405 debug_assert(!instr->cp.left);
406
407 while (instr->cp.right) {
408 num++;
409 instr = instr->cp.right;
410 if (num > 0xffff) {
411 debug_assert(0);
412 break;
413 }
414 }
415
416 return num;
417 }
418
419 struct ir3 {
420 struct ir3_compiler *compiler;
421 gl_shader_stage type;
422
423 unsigned ninputs, noutputs;
424 struct ir3_instruction **inputs;
425 struct ir3_instruction **outputs;
426
427 /* Track bary.f (and ldlv) instructions.. this is needed in
428 * scheduling to ensure that all varying fetches happen before
429 * any potential kill instructions. The hw gets grumpy if all
430 * threads in a group are killed before the last bary.f gets
431 * a chance to signal end of input (ei).
432 */
433 DECLARE_ARRAY(struct ir3_instruction *, baryfs);
434
435 /* Track all indirect instructions (read and write). To avoid
436 * deadlock scenario where an address register gets scheduled,
437 * but other dependent src instructions cannot be scheduled due
438 * to dependency on a *different* address register value, the
439 * scheduler needs to ensure that all dependencies other than
440 * the instruction other than the address register are scheduled
441 * before the one that writes the address register. Having a
442 * convenient list of instructions that reference some address
443 * register simplifies this.
444 */
445 DECLARE_ARRAY(struct ir3_instruction *, indirects);
446
447 /* and same for instructions that consume predicate register: */
448 DECLARE_ARRAY(struct ir3_instruction *, predicates);
449
450 /* Track texture sample instructions which need texture state
451 * patched in (for astc-srgb workaround):
452 */
453 DECLARE_ARRAY(struct ir3_instruction *, astc_srgb);
454
455 /* List of blocks: */
456 struct list_head block_list;
457
458 /* List of ir3_array's: */
459 struct list_head array_list;
460
461 unsigned max_sun; /* max Sethi–Ullman number */
462
463 #ifdef DEBUG
464 unsigned block_count, instr_count;
465 #endif
466 };
467
468 struct ir3_array {
469 struct list_head node;
470 unsigned length;
471 unsigned id;
472
473 struct nir_register *r;
474
475 /* To avoid array write's from getting DCE'd, keep track of the
476 * most recent write. Any array access depends on the most
477 * recent write. This way, nothing depends on writes after the
478 * last read. But all the writes that happen before that have
479 * something depending on them
480 */
481 struct ir3_instruction *last_write;
482
483 /* extra stuff used in RA pass: */
484 unsigned base; /* base vreg name */
485 unsigned reg; /* base physical reg */
486 uint16_t start_ip, end_ip;
487 };
488
489 struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
490
491 struct ir3_block {
492 struct list_head node;
493 struct ir3 *shader;
494
495 const struct nir_block *nblock;
496
497 struct list_head instr_list; /* list of ir3_instruction */
498
499 /* each block has either one or two successors.. in case of
500 * two successors, 'condition' decides which one to follow.
501 * A block preceding an if/else has two successors.
502 */
503 struct ir3_instruction *condition;
504 struct ir3_block *successors[2];
505
506 struct set *predecessors; /* set of ir3_block */
507
508 uint16_t start_ip, end_ip;
509
510 /* Track instructions which do not write a register but other-
511 * wise must not be discarded (such as kill, stg, etc)
512 */
513 DECLARE_ARRAY(struct ir3_instruction *, keeps);
514
515 /* used for per-pass extra block data. Mainly used right
516 * now in RA step to track livein/liveout.
517 */
518 void *data;
519
520 #ifdef DEBUG
521 uint32_t serialno;
522 #endif
523 };
524
525 static inline uint32_t
526 block_id(struct ir3_block *block)
527 {
528 #ifdef DEBUG
529 return block->serialno;
530 #else
531 return (uint32_t)(unsigned long)block;
532 #endif
533 }
534
535 struct ir3 * ir3_create(struct ir3_compiler *compiler,
536 gl_shader_stage type, unsigned nin, unsigned nout);
537 void ir3_destroy(struct ir3 *shader);
538 void * ir3_assemble(struct ir3 *shader,
539 struct ir3_info *info, uint32_t gpu_id);
540 void * ir3_alloc(struct ir3 *shader, int sz);
541
542 struct ir3_block * ir3_block_create(struct ir3 *shader);
543
544 struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
545 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
546 opc_t opc, int nreg);
547 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
548 void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep);
549 const char *ir3_instr_name(struct ir3_instruction *instr);
550
551 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
552 int num, int flags);
553 struct ir3_register * ir3_reg_clone(struct ir3 *shader,
554 struct ir3_register *reg);
555
556 void ir3_instr_set_address(struct ir3_instruction *instr,
557 struct ir3_instruction *addr);
558
559 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
560 {
561 if (instr->flags & IR3_INSTR_MARK)
562 return true; /* already visited */
563 instr->flags |= IR3_INSTR_MARK;
564 return false;
565 }
566
567 void ir3_block_clear_mark(struct ir3_block *block);
568 void ir3_clear_mark(struct ir3 *shader);
569
570 unsigned ir3_count_instructions(struct ir3 *ir);
571
572 static inline int ir3_instr_regno(struct ir3_instruction *instr,
573 struct ir3_register *reg)
574 {
575 unsigned i;
576 for (i = 0; i < instr->regs_count; i++)
577 if (reg == instr->regs[i])
578 return i;
579 return -1;
580 }
581
582
583 #define MAX_ARRAYS 16
584
585 /* comp:
586 * 0 - x
587 * 1 - y
588 * 2 - z
589 * 3 - w
590 */
591 static inline uint32_t regid(int num, int comp)
592 {
593 return (num << 2) | (comp & 0x3);
594 }
595
596 static inline uint32_t reg_num(struct ir3_register *reg)
597 {
598 return reg->num >> 2;
599 }
600
601 static inline uint32_t reg_comp(struct ir3_register *reg)
602 {
603 return reg->num & 0x3;
604 }
605
606 static inline bool is_flow(struct ir3_instruction *instr)
607 {
608 return (opc_cat(instr->opc) == 0);
609 }
610
611 static inline bool is_kill(struct ir3_instruction *instr)
612 {
613 return instr->opc == OPC_KILL;
614 }
615
616 static inline bool is_nop(struct ir3_instruction *instr)
617 {
618 return instr->opc == OPC_NOP;
619 }
620
621 static inline bool is_same_type_reg(struct ir3_register *reg1,
622 struct ir3_register *reg2)
623 {
624 unsigned type_reg1 = (reg1->flags & (IR3_REG_HIGH | IR3_REG_HALF));
625 unsigned type_reg2 = (reg2->flags & (IR3_REG_HIGH | IR3_REG_HALF));
626
627 if (type_reg1 ^ type_reg2)
628 return false;
629 else
630 return true;
631 }
632
633 /* Is it a non-transformative (ie. not type changing) mov? This can
634 * also include absneg.s/absneg.f, which for the most part can be
635 * treated as a mov (single src argument).
636 */
637 static inline bool is_same_type_mov(struct ir3_instruction *instr)
638 {
639 struct ir3_register *dst;
640
641 switch (instr->opc) {
642 case OPC_MOV:
643 if (instr->cat1.src_type != instr->cat1.dst_type)
644 return false;
645 break;
646 case OPC_ABSNEG_F:
647 case OPC_ABSNEG_S:
648 if (instr->flags & IR3_INSTR_SAT)
649 return false;
650 /* If the type of dest reg and src reg are different,
651 * it shouldn't be considered as same type mov */
652 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
653 return false;
654 break;
655 default:
656 return false;
657 }
658
659 dst = instr->regs[0];
660
661 /* mov's that write to a0.x or p0.x are special: */
662 if (dst->num == regid(REG_P0, 0))
663 return false;
664 if (dst->num == regid(REG_A0, 0))
665 return false;
666
667 if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
668 return false;
669
670 return true;
671 }
672
673 static inline bool is_alu(struct ir3_instruction *instr)
674 {
675 return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
676 }
677
678 static inline bool is_sfu(struct ir3_instruction *instr)
679 {
680 return (opc_cat(instr->opc) == 4);
681 }
682
683 static inline bool is_tex(struct ir3_instruction *instr)
684 {
685 return (opc_cat(instr->opc) == 5);
686 }
687
688 static inline bool is_mem(struct ir3_instruction *instr)
689 {
690 return (opc_cat(instr->opc) == 6);
691 }
692
693 static inline bool is_barrier(struct ir3_instruction *instr)
694 {
695 return (opc_cat(instr->opc) == 7);
696 }
697
698 static inline bool
699 is_store(struct ir3_instruction *instr)
700 {
701 /* these instructions, the "destination" register is
702 * actually a source, the address to store to.
703 */
704 switch (instr->opc) {
705 case OPC_STG:
706 case OPC_STGB:
707 case OPC_STIB:
708 case OPC_STP:
709 case OPC_STL:
710 case OPC_STLW:
711 case OPC_L2G:
712 case OPC_G2L:
713 return true;
714 default:
715 return false;
716 }
717 }
718
719 static inline bool is_load(struct ir3_instruction *instr)
720 {
721 switch (instr->opc) {
722 case OPC_LDG:
723 case OPC_LDGB:
724 case OPC_LDIB:
725 case OPC_LDL:
726 case OPC_LDP:
727 case OPC_L2G:
728 case OPC_LDLW:
729 case OPC_LDC:
730 case OPC_LDLV:
731 /* probably some others too.. */
732 return true;
733 default:
734 return false;
735 }
736 }
737
738 static inline bool is_input(struct ir3_instruction *instr)
739 {
740 /* in some cases, ldlv is used to fetch varying without
741 * interpolation.. fortunately inloc is the first src
742 * register in either case
743 */
744 switch (instr->opc) {
745 case OPC_LDLV:
746 case OPC_BARY_F:
747 return true;
748 default:
749 return false;
750 }
751 }
752
753 static inline bool is_bool(struct ir3_instruction *instr)
754 {
755 switch (instr->opc) {
756 case OPC_CMPS_F:
757 case OPC_CMPS_S:
758 case OPC_CMPS_U:
759 return true;
760 default:
761 return false;
762 }
763 }
764
765 static inline bool is_meta(struct ir3_instruction *instr)
766 {
767 /* TODO how should we count PHI (and maybe fan-in/out) which
768 * might actually contribute some instructions to the final
769 * result?
770 */
771 return (opc_cat(instr->opc) == -1);
772 }
773
774 static inline unsigned dest_regs(struct ir3_instruction *instr)
775 {
776 if ((instr->regs_count == 0) || is_store(instr))
777 return 0;
778
779 return util_last_bit(instr->regs[0]->wrmask);
780 }
781
782 static inline bool writes_addr(struct ir3_instruction *instr)
783 {
784 if (instr->regs_count > 0) {
785 struct ir3_register *dst = instr->regs[0];
786 return reg_num(dst) == REG_A0;
787 }
788 return false;
789 }
790
791 static inline bool writes_pred(struct ir3_instruction *instr)
792 {
793 if (instr->regs_count > 0) {
794 struct ir3_register *dst = instr->regs[0];
795 return reg_num(dst) == REG_P0;
796 }
797 return false;
798 }
799
800 /* returns defining instruction for reg */
801 /* TODO better name */
802 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
803 {
804 if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
805 return reg->instr;
806 }
807 return NULL;
808 }
809
810 static inline bool conflicts(struct ir3_instruction *a,
811 struct ir3_instruction *b)
812 {
813 return (a && b) && (a != b);
814 }
815
816 static inline bool reg_gpr(struct ir3_register *r)
817 {
818 if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
819 return false;
820 if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
821 return false;
822 return true;
823 }
824
825 static inline type_t half_type(type_t type)
826 {
827 switch (type) {
828 case TYPE_F32: return TYPE_F16;
829 case TYPE_U32: return TYPE_U16;
830 case TYPE_S32: return TYPE_S16;
831 case TYPE_F16:
832 case TYPE_U16:
833 case TYPE_S16:
834 return type;
835 default:
836 assert(0);
837 return ~0;
838 }
839 }
840
841 /* some cat2 instructions (ie. those which are not float) can embed an
842 * immediate:
843 */
844 static inline bool ir3_cat2_int(opc_t opc)
845 {
846 switch (opc) {
847 case OPC_ADD_U:
848 case OPC_ADD_S:
849 case OPC_SUB_U:
850 case OPC_SUB_S:
851 case OPC_CMPS_U:
852 case OPC_CMPS_S:
853 case OPC_MIN_U:
854 case OPC_MIN_S:
855 case OPC_MAX_U:
856 case OPC_MAX_S:
857 case OPC_CMPV_U:
858 case OPC_CMPV_S:
859 case OPC_MUL_U:
860 case OPC_MUL_S:
861 case OPC_MULL_U:
862 case OPC_CLZ_S:
863 case OPC_ABSNEG_S:
864 case OPC_AND_B:
865 case OPC_OR_B:
866 case OPC_NOT_B:
867 case OPC_XOR_B:
868 case OPC_BFREV_B:
869 case OPC_CLZ_B:
870 case OPC_SHL_B:
871 case OPC_SHR_B:
872 case OPC_ASHR_B:
873 case OPC_MGEN_B:
874 case OPC_GETBIT_B:
875 case OPC_CBITS_B:
876 case OPC_BARY_F:
877 return true;
878
879 default:
880 return false;
881 }
882 }
883
884 static inline bool ir3_cat2_float(opc_t opc)
885 {
886 switch (opc) {
887 case OPC_ADD_F:
888 case OPC_MIN_F:
889 case OPC_MAX_F:
890 case OPC_MUL_F:
891 case OPC_SIGN_F:
892 case OPC_CMPS_F:
893 case OPC_ABSNEG_F:
894 case OPC_CMPV_F:
895 case OPC_FLOOR_F:
896 case OPC_CEIL_F:
897 case OPC_RNDNE_F:
898 case OPC_RNDAZ_F:
899 case OPC_TRUNC_F:
900 return true;
901
902 default:
903 return false;
904 }
905 }
906
907 static inline bool ir3_cat3_float(opc_t opc)
908 {
909 switch (opc) {
910 case OPC_MAD_F16:
911 case OPC_MAD_F32:
912 case OPC_SEL_F16:
913 case OPC_SEL_F32:
914 return true;
915 default:
916 return false;
917 }
918 }
919
920 /* map cat2 instruction to valid abs/neg flags: */
921 static inline unsigned ir3_cat2_absneg(opc_t opc)
922 {
923 switch (opc) {
924 case OPC_ADD_F:
925 case OPC_MIN_F:
926 case OPC_MAX_F:
927 case OPC_MUL_F:
928 case OPC_SIGN_F:
929 case OPC_CMPS_F:
930 case OPC_ABSNEG_F:
931 case OPC_CMPV_F:
932 case OPC_FLOOR_F:
933 case OPC_CEIL_F:
934 case OPC_RNDNE_F:
935 case OPC_RNDAZ_F:
936 case OPC_TRUNC_F:
937 case OPC_BARY_F:
938 return IR3_REG_FABS | IR3_REG_FNEG;
939
940 case OPC_ADD_U:
941 case OPC_ADD_S:
942 case OPC_SUB_U:
943 case OPC_SUB_S:
944 case OPC_CMPS_U:
945 case OPC_CMPS_S:
946 case OPC_MIN_U:
947 case OPC_MIN_S:
948 case OPC_MAX_U:
949 case OPC_MAX_S:
950 case OPC_CMPV_U:
951 case OPC_CMPV_S:
952 case OPC_MUL_U:
953 case OPC_MUL_S:
954 case OPC_MULL_U:
955 case OPC_CLZ_S:
956 return 0;
957
958 case OPC_ABSNEG_S:
959 return IR3_REG_SABS | IR3_REG_SNEG;
960
961 case OPC_AND_B:
962 case OPC_OR_B:
963 case OPC_NOT_B:
964 case OPC_XOR_B:
965 case OPC_BFREV_B:
966 case OPC_CLZ_B:
967 case OPC_SHL_B:
968 case OPC_SHR_B:
969 case OPC_ASHR_B:
970 case OPC_MGEN_B:
971 case OPC_GETBIT_B:
972 case OPC_CBITS_B:
973 return IR3_REG_BNOT;
974
975 default:
976 return 0;
977 }
978 }
979
980 /* map cat3 instructions to valid abs/neg flags: */
981 static inline unsigned ir3_cat3_absneg(opc_t opc)
982 {
983 switch (opc) {
984 case OPC_MAD_F16:
985 case OPC_MAD_F32:
986 case OPC_SEL_F16:
987 case OPC_SEL_F32:
988 return IR3_REG_FNEG;
989
990 case OPC_MAD_U16:
991 case OPC_MADSH_U16:
992 case OPC_MAD_S16:
993 case OPC_MADSH_M16:
994 case OPC_MAD_U24:
995 case OPC_MAD_S24:
996 case OPC_SEL_S16:
997 case OPC_SEL_S32:
998 case OPC_SAD_S16:
999 case OPC_SAD_S32:
1000 /* neg *may* work on 3rd src.. */
1001
1002 case OPC_SEL_B16:
1003 case OPC_SEL_B32:
1004
1005 default:
1006 return 0;
1007 }
1008 }
1009
1010 #define MASK(n) ((1 << (n)) - 1)
1011
1012 /* iterator for an instructions's sources (reg), also returns src #: */
1013 #define foreach_src_n(__srcreg, __n, __instr) \
1014 if ((__instr)->regs_count) \
1015 for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
1016 if ((__srcreg = (__instr)->regs[__n + 1]))
1017
1018 /* iterator for an instructions's sources (reg): */
1019 #define foreach_src(__srcreg, __instr) \
1020 foreach_src_n(__srcreg, __i, __instr)
1021
1022 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
1023 {
1024 unsigned cnt = instr->regs_count + instr->deps_count;
1025 if (instr->address)
1026 cnt++;
1027 return cnt;
1028 }
1029
1030 static inline struct ir3_instruction * __ssa_src_n(struct ir3_instruction *instr, unsigned n)
1031 {
1032 if (n == (instr->regs_count + instr->deps_count))
1033 return instr->address;
1034 if (n >= instr->regs_count)
1035 return instr->deps[n - instr->regs_count];
1036 return ssa(instr->regs[n]);
1037 }
1038
1039 static inline bool __is_false_dep(struct ir3_instruction *instr, unsigned n)
1040 {
1041 if (n == (instr->regs_count + instr->deps_count))
1042 return false;
1043 if (n >= instr->regs_count)
1044 return true;
1045 return false;
1046 }
1047
1048 #define __src_cnt(__instr) ((__instr)->address ? (__instr)->regs_count : (__instr)->regs_count - 1)
1049
1050 /* iterator for an instruction's SSA sources (instr), also returns src #: */
1051 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
1052 for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
1053 if ((__srcinst = __ssa_src_n(__instr, __n)))
1054
1055 /* iterator for an instruction's SSA sources (instr): */
1056 #define foreach_ssa_src(__srcinst, __instr) \
1057 foreach_ssa_src_n(__srcinst, __i, __instr)
1058
1059
1060 /* dump: */
1061 void ir3_print(struct ir3 *ir);
1062 void ir3_print_instr(struct ir3_instruction *instr);
1063
1064 /* depth calculation: */
1065 struct ir3_shader_variant;
1066 int ir3_delayslots(struct ir3_instruction *assigner,
1067 struct ir3_instruction *consumer, unsigned n);
1068 void ir3_insert_by_depth(struct ir3_instruction *instr, struct list_head *list);
1069 void ir3_depth(struct ir3 *ir, struct ir3_shader_variant *so);
1070
1071 /* copy-propagate: */
1072 void ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so);
1073
1074 /* group neighbors and insert mov's to resolve conflicts: */
1075 void ir3_group(struct ir3 *ir);
1076
1077 /* Sethi–Ullman numbering: */
1078 void ir3_sun(struct ir3 *ir);
1079
1080 /* scheduling: */
1081 void ir3_sched_add_deps(struct ir3 *ir);
1082 int ir3_sched(struct ir3 *ir);
1083
1084 void ir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so);
1085
1086 /* register assignment: */
1087 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(struct ir3_compiler *compiler);
1088 int ir3_ra(struct ir3_shader_variant *v, struct ir3_instruction **precolor, unsigned nprecolor);
1089
1090 /* legalize: */
1091 void ir3_legalize(struct ir3 *ir, bool *has_ssbo, bool *need_pixlod, int *max_bary);
1092
1093 /* ************************************************************************* */
1094 /* instruction helpers */
1095
1096 static inline struct ir3_instruction *
1097 create_immed_typed(struct ir3_block *block, uint32_t val, type_t type)
1098 {
1099 struct ir3_instruction *mov;
1100 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1101
1102 mov = ir3_instr_create(block, OPC_MOV);
1103 mov->cat1.src_type = type;
1104 mov->cat1.dst_type = type;
1105 ir3_reg_create(mov, 0, flags);
1106 ir3_reg_create(mov, 0, IR3_REG_IMMED)->uim_val = val;
1107
1108 return mov;
1109 }
1110
1111 static inline struct ir3_instruction *
1112 create_immed(struct ir3_block *block, uint32_t val)
1113 {
1114 return create_immed_typed(block, val, TYPE_U32);
1115 }
1116
1117 static inline struct ir3_instruction *
1118 create_uniform_typed(struct ir3_block *block, unsigned n, type_t type)
1119 {
1120 struct ir3_instruction *mov;
1121 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1122
1123 mov = ir3_instr_create(block, OPC_MOV);
1124 mov->cat1.src_type = type;
1125 mov->cat1.dst_type = type;
1126 ir3_reg_create(mov, 0, flags);
1127 ir3_reg_create(mov, n, IR3_REG_CONST | flags);
1128
1129 return mov;
1130 }
1131
1132 static inline struct ir3_instruction *
1133 create_uniform(struct ir3_block *block, unsigned n)
1134 {
1135 return create_uniform_typed(block, n, TYPE_F32);
1136 }
1137
1138 static inline struct ir3_instruction *
1139 create_uniform_indirect(struct ir3_block *block, int n,
1140 struct ir3_instruction *address)
1141 {
1142 struct ir3_instruction *mov;
1143
1144 mov = ir3_instr_create(block, OPC_MOV);
1145 mov->cat1.src_type = TYPE_U32;
1146 mov->cat1.dst_type = TYPE_U32;
1147 ir3_reg_create(mov, 0, 0);
1148 ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
1149
1150 ir3_instr_set_address(mov, address);
1151
1152 return mov;
1153 }
1154
1155 /* creates SSA src of correct type (ie. half vs full precision) */
1156 static inline struct ir3_register * __ssa_src(struct ir3_instruction *instr,
1157 struct ir3_instruction *src, unsigned flags)
1158 {
1159 struct ir3_register *reg;
1160 if (src->regs[0]->flags & IR3_REG_HALF)
1161 flags |= IR3_REG_HALF;
1162 reg = ir3_reg_create(instr, 0, IR3_REG_SSA | flags);
1163 reg->instr = src;
1164 reg->wrmask = src->regs[0]->wrmask;
1165 return reg;
1166 }
1167
1168 static inline struct ir3_instruction *
1169 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
1170 {
1171 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1172 ir3_reg_create(instr, 0, 0); /* dst */
1173 if (src->regs[0]->flags & IR3_REG_ARRAY) {
1174 struct ir3_register *src_reg = __ssa_src(instr, src, IR3_REG_ARRAY);
1175 src_reg->array = src->regs[0]->array;
1176 } else {
1177 __ssa_src(instr, src, src->regs[0]->flags & IR3_REG_HIGH);
1178 }
1179 debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
1180 instr->cat1.src_type = type;
1181 instr->cat1.dst_type = type;
1182 return instr;
1183 }
1184
1185 static inline struct ir3_instruction *
1186 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
1187 type_t src_type, type_t dst_type)
1188 {
1189 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1190 unsigned dst_flags = (type_size(dst_type) < 32) ? IR3_REG_HALF : 0;
1191 unsigned src_flags = (type_size(src_type) < 32) ? IR3_REG_HALF : 0;
1192
1193 debug_assert((src->regs[0]->flags & IR3_REG_HALF) == src_flags);
1194
1195 ir3_reg_create(instr, 0, dst_flags); /* dst */
1196 __ssa_src(instr, src, 0);
1197 instr->cat1.src_type = src_type;
1198 instr->cat1.dst_type = dst_type;
1199 debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
1200 return instr;
1201 }
1202
1203 static inline struct ir3_instruction *
1204 ir3_NOP(struct ir3_block *block)
1205 {
1206 return ir3_instr_create(block, OPC_NOP);
1207 }
1208
1209 #define IR3_INSTR_0 0
1210
1211 #define __INSTR0(flag, name, opc) \
1212 static inline struct ir3_instruction * \
1213 ir3_##name(struct ir3_block *block) \
1214 { \
1215 struct ir3_instruction *instr = \
1216 ir3_instr_create(block, opc); \
1217 instr->flags |= flag; \
1218 return instr; \
1219 }
1220 #define INSTR0F(f, name) __INSTR0(IR3_INSTR_##f, name##_##f, OPC_##name)
1221 #define INSTR0(name) __INSTR0(0, name, OPC_##name)
1222
1223 #define __INSTR1(flag, name, opc) \
1224 static inline struct ir3_instruction * \
1225 ir3_##name(struct ir3_block *block, \
1226 struct ir3_instruction *a, unsigned aflags) \
1227 { \
1228 struct ir3_instruction *instr = \
1229 ir3_instr_create(block, opc); \
1230 ir3_reg_create(instr, 0, 0); /* dst */ \
1231 __ssa_src(instr, a, aflags); \
1232 instr->flags |= flag; \
1233 return instr; \
1234 }
1235 #define INSTR1F(f, name) __INSTR1(IR3_INSTR_##f, name##_##f, OPC_##name)
1236 #define INSTR1(name) __INSTR1(0, name, OPC_##name)
1237
1238 #define __INSTR2(flag, name, opc) \
1239 static inline struct ir3_instruction * \
1240 ir3_##name(struct ir3_block *block, \
1241 struct ir3_instruction *a, unsigned aflags, \
1242 struct ir3_instruction *b, unsigned bflags) \
1243 { \
1244 struct ir3_instruction *instr = \
1245 ir3_instr_create(block, opc); \
1246 ir3_reg_create(instr, 0, 0); /* dst */ \
1247 __ssa_src(instr, a, aflags); \
1248 __ssa_src(instr, b, bflags); \
1249 instr->flags |= flag; \
1250 return instr; \
1251 }
1252 #define INSTR2F(f, name) __INSTR2(IR3_INSTR_##f, name##_##f, OPC_##name)
1253 #define INSTR2(name) __INSTR2(0, name, OPC_##name)
1254
1255 #define __INSTR3(flag, name, opc) \
1256 static inline struct ir3_instruction * \
1257 ir3_##name(struct ir3_block *block, \
1258 struct ir3_instruction *a, unsigned aflags, \
1259 struct ir3_instruction *b, unsigned bflags, \
1260 struct ir3_instruction *c, unsigned cflags) \
1261 { \
1262 struct ir3_instruction *instr = \
1263 ir3_instr_create2(block, opc, 4); \
1264 ir3_reg_create(instr, 0, 0); /* dst */ \
1265 __ssa_src(instr, a, aflags); \
1266 __ssa_src(instr, b, bflags); \
1267 __ssa_src(instr, c, cflags); \
1268 instr->flags |= flag; \
1269 return instr; \
1270 }
1271 #define INSTR3F(f, name) __INSTR3(IR3_INSTR_##f, name##_##f, OPC_##name)
1272 #define INSTR3(name) __INSTR3(0, name, OPC_##name)
1273
1274 #define __INSTR4(flag, name, opc) \
1275 static inline struct ir3_instruction * \
1276 ir3_##name(struct ir3_block *block, \
1277 struct ir3_instruction *a, unsigned aflags, \
1278 struct ir3_instruction *b, unsigned bflags, \
1279 struct ir3_instruction *c, unsigned cflags, \
1280 struct ir3_instruction *d, unsigned dflags) \
1281 { \
1282 struct ir3_instruction *instr = \
1283 ir3_instr_create2(block, opc, 5); \
1284 ir3_reg_create(instr, 0, 0); /* dst */ \
1285 __ssa_src(instr, a, aflags); \
1286 __ssa_src(instr, b, bflags); \
1287 __ssa_src(instr, c, cflags); \
1288 __ssa_src(instr, d, dflags); \
1289 instr->flags |= flag; \
1290 return instr; \
1291 }
1292 #define INSTR4F(f, name) __INSTR4(IR3_INSTR_##f, name##_##f, OPC_##name)
1293 #define INSTR4(name) __INSTR4(0, name, OPC_##name)
1294
1295 /* cat0 instructions: */
1296 INSTR0(BR)
1297 INSTR0(JUMP)
1298 INSTR1(KILL)
1299 INSTR0(END)
1300 INSTR0(CHSH)
1301 INSTR0(CHMASK)
1302
1303 /* cat2 instructions, most 2 src but some 1 src: */
1304 INSTR2(ADD_F)
1305 INSTR2(MIN_F)
1306 INSTR2(MAX_F)
1307 INSTR2(MUL_F)
1308 INSTR1(SIGN_F)
1309 INSTR2(CMPS_F)
1310 INSTR1(ABSNEG_F)
1311 INSTR2(CMPV_F)
1312 INSTR1(FLOOR_F)
1313 INSTR1(CEIL_F)
1314 INSTR1(RNDNE_F)
1315 INSTR1(RNDAZ_F)
1316 INSTR1(TRUNC_F)
1317 INSTR2(ADD_U)
1318 INSTR2(ADD_S)
1319 INSTR2(SUB_U)
1320 INSTR2(SUB_S)
1321 INSTR2(CMPS_U)
1322 INSTR2(CMPS_S)
1323 INSTR2(MIN_U)
1324 INSTR2(MIN_S)
1325 INSTR2(MAX_U)
1326 INSTR2(MAX_S)
1327 INSTR1(ABSNEG_S)
1328 INSTR2(AND_B)
1329 INSTR2(OR_B)
1330 INSTR1(NOT_B)
1331 INSTR2(XOR_B)
1332 INSTR2(CMPV_U)
1333 INSTR2(CMPV_S)
1334 INSTR2(MUL_U)
1335 INSTR2(MUL_S)
1336 INSTR2(MULL_U)
1337 INSTR1(BFREV_B)
1338 INSTR1(CLZ_S)
1339 INSTR1(CLZ_B)
1340 INSTR2(SHL_B)
1341 INSTR2(SHR_B)
1342 INSTR2(ASHR_B)
1343 INSTR2(BARY_F)
1344 INSTR2(MGEN_B)
1345 INSTR2(GETBIT_B)
1346 INSTR1(SETRM)
1347 INSTR1(CBITS_B)
1348 INSTR2(SHB)
1349 INSTR2(MSAD)
1350
1351 /* cat3 instructions: */
1352 INSTR3(MAD_U16)
1353 INSTR3(MADSH_U16)
1354 INSTR3(MAD_S16)
1355 INSTR3(MADSH_M16)
1356 INSTR3(MAD_U24)
1357 INSTR3(MAD_S24)
1358 INSTR3(MAD_F16)
1359 INSTR3(MAD_F32)
1360 INSTR3(SEL_B16)
1361 INSTR3(SEL_B32)
1362 INSTR3(SEL_S16)
1363 INSTR3(SEL_S32)
1364 INSTR3(SEL_F16)
1365 INSTR3(SEL_F32)
1366 INSTR3(SAD_S16)
1367 INSTR3(SAD_S32)
1368
1369 /* cat4 instructions: */
1370 INSTR1(RCP)
1371 INSTR1(RSQ)
1372 INSTR1(LOG2)
1373 INSTR1(EXP2)
1374 INSTR1(SIN)
1375 INSTR1(COS)
1376 INSTR1(SQRT)
1377
1378 /* cat5 instructions: */
1379 INSTR1(DSX)
1380 INSTR1(DSY)
1381 INSTR1F(3D, DSX)
1382 INSTR1F(3D, DSY)
1383 INSTR1(RGETPOS)
1384
1385 static inline struct ir3_instruction *
1386 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
1387 unsigned wrmask, unsigned flags, struct ir3_instruction *samp_tex,
1388 struct ir3_instruction *src0, struct ir3_instruction *src1)
1389 {
1390 struct ir3_instruction *sam;
1391 struct ir3_register *reg;
1392
1393 sam = ir3_instr_create(block, opc);
1394 sam->flags |= flags | IR3_INSTR_S2EN;
1395 ir3_reg_create(sam, 0, 0)->wrmask = wrmask;
1396 __ssa_src(sam, samp_tex, IR3_REG_HALF);
1397 if (src0) {
1398 reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
1399 reg->wrmask = (1 << (src0->regs_count - 1)) - 1;
1400 reg->instr = src0;
1401 }
1402 if (src1) {
1403 reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
1404 reg->instr = src1;
1405 reg->wrmask = (1 << (src1->regs_count - 1)) - 1;
1406 }
1407 sam->cat5.type = type;
1408
1409 return sam;
1410 }
1411
1412 /* cat6 instructions: */
1413 INSTR2(LDLV)
1414 INSTR3(LDG)
1415 INSTR3(LDL)
1416 INSTR3(LDLW)
1417 INSTR3(STG)
1418 INSTR3(STL)
1419 INSTR3(STLW)
1420 INSTR1(RESINFO)
1421 INSTR1(RESFMT)
1422 INSTR2(ATOMIC_ADD)
1423 INSTR2(ATOMIC_SUB)
1424 INSTR2(ATOMIC_XCHG)
1425 INSTR2(ATOMIC_INC)
1426 INSTR2(ATOMIC_DEC)
1427 INSTR2(ATOMIC_CMPXCHG)
1428 INSTR2(ATOMIC_MIN)
1429 INSTR2(ATOMIC_MAX)
1430 INSTR2(ATOMIC_AND)
1431 INSTR2(ATOMIC_OR)
1432 INSTR2(ATOMIC_XOR)
1433 #if GPU >= 600
1434 INSTR3(STIB);
1435 INSTR2(LDIB);
1436 INSTR3F(G, ATOMIC_ADD)
1437 INSTR3F(G, ATOMIC_SUB)
1438 INSTR3F(G, ATOMIC_XCHG)
1439 INSTR3F(G, ATOMIC_INC)
1440 INSTR3F(G, ATOMIC_DEC)
1441 INSTR3F(G, ATOMIC_CMPXCHG)
1442 INSTR3F(G, ATOMIC_MIN)
1443 INSTR3F(G, ATOMIC_MAX)
1444 INSTR3F(G, ATOMIC_AND)
1445 INSTR3F(G, ATOMIC_OR)
1446 INSTR3F(G, ATOMIC_XOR)
1447 #elif GPU >= 400
1448 INSTR3(LDGB)
1449 INSTR4(STGB)
1450 INSTR4(STIB)
1451 INSTR4F(G, ATOMIC_ADD)
1452 INSTR4F(G, ATOMIC_SUB)
1453 INSTR4F(G, ATOMIC_XCHG)
1454 INSTR4F(G, ATOMIC_INC)
1455 INSTR4F(G, ATOMIC_DEC)
1456 INSTR4F(G, ATOMIC_CMPXCHG)
1457 INSTR4F(G, ATOMIC_MIN)
1458 INSTR4F(G, ATOMIC_MAX)
1459 INSTR4F(G, ATOMIC_AND)
1460 INSTR4F(G, ATOMIC_OR)
1461 INSTR4F(G, ATOMIC_XOR)
1462 #endif
1463
1464 /* cat7 instructions: */
1465 INSTR0(BAR)
1466 INSTR0(FENCE)
1467
1468 /* ************************************************************************* */
1469 /* split this out or find some helper to use.. like main/bitset.h.. */
1470
1471 #include <string.h>
1472
1473 #define MAX_REG 256
1474
1475 typedef uint8_t regmask_t[2 * MAX_REG / 8];
1476
1477 static inline unsigned regmask_idx(struct ir3_register *reg)
1478 {
1479 unsigned num = (reg->flags & IR3_REG_RELATIV) ? reg->array.offset : reg->num;
1480 debug_assert(num < MAX_REG);
1481 if (reg->flags & IR3_REG_HALF) {
1482 if (reg->merged) {
1483 num /= 2;
1484 } else {
1485 num += MAX_REG;
1486 }
1487 }
1488 return num;
1489 }
1490
1491 static inline void regmask_init(regmask_t *regmask)
1492 {
1493 memset(regmask, 0, sizeof(*regmask));
1494 }
1495
1496 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1497 {
1498 unsigned idx = regmask_idx(reg);
1499 if (reg->flags & IR3_REG_RELATIV) {
1500 unsigned i;
1501 for (i = 0; i < reg->size; i++, idx++)
1502 (*regmask)[idx / 8] |= 1 << (idx % 8);
1503 } else {
1504 unsigned mask;
1505 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1506 if (mask & 1)
1507 (*regmask)[idx / 8] |= 1 << (idx % 8);
1508 }
1509 }
1510
1511 static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
1512 {
1513 unsigned i;
1514 for (i = 0; i < ARRAY_SIZE(*dst); i++)
1515 (*dst)[i] = (*a)[i] | (*b)[i];
1516 }
1517
1518 /* set bits in a if not set in b, conceptually:
1519 * a |= (reg & ~b)
1520 */
1521 static inline void regmask_set_if_not(regmask_t *a,
1522 struct ir3_register *reg, regmask_t *b)
1523 {
1524 unsigned idx = regmask_idx(reg);
1525 if (reg->flags & IR3_REG_RELATIV) {
1526 unsigned i;
1527 for (i = 0; i < reg->size; i++, idx++)
1528 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1529 (*a)[idx / 8] |= 1 << (idx % 8);
1530 } else {
1531 unsigned mask;
1532 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1533 if (mask & 1)
1534 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1535 (*a)[idx / 8] |= 1 << (idx % 8);
1536 }
1537 }
1538
1539 static inline bool regmask_get(regmask_t *regmask,
1540 struct ir3_register *reg)
1541 {
1542 unsigned idx = regmask_idx(reg);
1543 if (reg->flags & IR3_REG_RELATIV) {
1544 unsigned i;
1545 for (i = 0; i < reg->size; i++, idx++)
1546 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1547 return true;
1548 } else {
1549 unsigned mask;
1550 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1551 if (mask & 1)
1552 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1553 return true;
1554 }
1555 return false;
1556 }
1557
1558 /* ************************************************************************* */
1559
1560 #endif /* IR3_H_ */