freedreno/ir3: don't overwrite wrmask in ir3_SAM
[mesa.git] / src / freedreno / ir3 / ir3.h
1 /*
2 * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #ifndef IR3_H_
25 #define IR3_H_
26
27 #include <stdint.h>
28 #include <stdbool.h>
29
30 #include "compiler/shader_enums.h"
31
32 #include "util/bitscan.h"
33 #include "util/list.h"
34 #include "util/set.h"
35 #include "util/u_debug.h"
36
37 #include "instr-a3xx.h"
38
39 /* low level intermediate representation of an adreno shader program */
40
41 struct ir3_compiler;
42 struct ir3;
43 struct ir3_instruction;
44 struct ir3_block;
45
46 struct ir3_info {
47 uint32_t gpu_id;
48 uint16_t sizedwords;
49 uint16_t instrs_count; /* expanded to account for rpt's */
50 uint16_t nops_count; /* # of nop instructions, including nopN */
51 uint16_t mov_count;
52 uint16_t cov_count;
53 /* NOTE: max_reg, etc, does not include registers not touched
54 * by the shader (ie. vertex fetched via VFD_DECODE but not
55 * touched by shader)
56 */
57 int8_t max_reg; /* highest GPR # used by shader */
58 int8_t max_half_reg;
59 int16_t max_const;
60
61 /* number of sync bits: */
62 uint16_t ss, sy;
63
64 /* estimate of number of cycles stalled on (ss) */
65 uint16_t sstall;
66
67 uint16_t last_baryf; /* instruction # of last varying fetch */
68 };
69
70 struct ir3_register {
71 enum {
72 IR3_REG_CONST = 0x001,
73 IR3_REG_IMMED = 0x002,
74 IR3_REG_HALF = 0x004,
75 /* high registers are used for some things in compute shaders,
76 * for example. Seems to be for things that are global to all
77 * threads in a wave, so possibly these are global/shared by
78 * all the threads in the wave?
79 */
80 IR3_REG_HIGH = 0x008,
81 IR3_REG_RELATIV= 0x010,
82 IR3_REG_R = 0x020,
83 /* Most instructions, it seems, can do float abs/neg but not
84 * integer. The CP pass needs to know what is intended (int or
85 * float) in order to do the right thing. For this reason the
86 * abs/neg flags are split out into float and int variants. In
87 * addition, .b (bitwise) operations, the negate is actually a
88 * bitwise not, so split that out into a new flag to make it
89 * more clear.
90 */
91 IR3_REG_FNEG = 0x040,
92 IR3_REG_FABS = 0x080,
93 IR3_REG_SNEG = 0x100,
94 IR3_REG_SABS = 0x200,
95 IR3_REG_BNOT = 0x400,
96 IR3_REG_EVEN = 0x800,
97 IR3_REG_POS_INF= 0x1000,
98 /* (ei) flag, end-input? Set on last bary, presumably to signal
99 * that the shader needs no more input:
100 */
101 IR3_REG_EI = 0x2000,
102 /* meta-flags, for intermediate stages of IR, ie.
103 * before register assignment is done:
104 */
105 IR3_REG_SSA = 0x4000, /* 'instr' is ptr to assigning instr */
106 IR3_REG_ARRAY = 0x8000,
107
108 } flags;
109
110 /* used for cat5 instructions, but also for internal/IR level
111 * tracking of what registers are read/written by an instruction.
112 * wrmask may be a bad name since it is used to represent both
113 * src and dst that touch multiple adjacent registers.
114 */
115 unsigned wrmask : 16; /* up to vec16 */
116
117 /* for relative addressing, 32bits for array size is too small,
118 * but otoh we don't need to deal with disjoint sets, so instead
119 * use a simple size field (number of scalar components).
120 *
121 * Note the size field isn't important for relative const (since
122 * we don't have to do register allocation for constants).
123 */
124 unsigned size : 15;
125
126 bool merged : 1; /* half-regs conflict with full regs (ie >= a6xx) */
127
128 /* normal registers:
129 * the component is in the low two bits of the reg #, so
130 * rN.x becomes: (N << 2) | x
131 */
132 uint16_t num;
133 union {
134 /* immediate: */
135 int32_t iim_val;
136 uint32_t uim_val;
137 float fim_val;
138 /* relative: */
139 struct {
140 uint16_t id;
141 int16_t offset;
142 } array;
143 };
144
145 /* For IR3_REG_SSA, src registers contain ptr back to assigning
146 * instruction.
147 *
148 * For IR3_REG_ARRAY, the pointer is back to the last dependent
149 * array access (although the net effect is the same, it points
150 * back to a previous instruction that we depend on).
151 */
152 struct ir3_instruction *instr;
153 };
154
155 /*
156 * Stupid/simple growable array implementation:
157 */
158 #define DECLARE_ARRAY(type, name) \
159 unsigned name ## _count, name ## _sz; \
160 type * name;
161
162 #define array_insert(ctx, arr, val) do { \
163 if (arr ## _count == arr ## _sz) { \
164 arr ## _sz = MAX2(2 * arr ## _sz, 16); \
165 arr = reralloc_size(ctx, arr, arr ## _sz * sizeof(arr[0])); \
166 } \
167 arr[arr ##_count++] = val; \
168 } while (0)
169
170 struct ir3_instruction {
171 struct ir3_block *block;
172 opc_t opc;
173 enum {
174 /* (sy) flag is set on first instruction, and after sample
175 * instructions (probably just on RAW hazard).
176 */
177 IR3_INSTR_SY = 0x001,
178 /* (ss) flag is set on first instruction, and first instruction
179 * to depend on the result of "long" instructions (RAW hazard):
180 *
181 * rcp, rsq, log2, exp2, sin, cos, sqrt
182 *
183 * It seems to synchronize until all in-flight instructions are
184 * completed, for example:
185 *
186 * rsq hr1.w, hr1.w
187 * add.f hr2.z, (neg)hr2.z, hc0.y
188 * mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
189 * rsq hr2.x, hr2.x
190 * (rpt1)nop
191 * mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
192 * nop
193 * mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
194 * (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
195 * (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
196 *
197 * The last mul.f does not have (ss) set, presumably because the
198 * (ss) on the previous instruction does the job.
199 *
200 * The blob driver also seems to set it on WAR hazards, although
201 * not really clear if this is needed or just blob compiler being
202 * sloppy. So far I haven't found a case where removing the (ss)
203 * causes problems for WAR hazard, but I could just be getting
204 * lucky:
205 *
206 * rcp r1.y, r3.y
207 * (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
208 *
209 */
210 IR3_INSTR_SS = 0x002,
211 /* (jp) flag is set on jump targets:
212 */
213 IR3_INSTR_JP = 0x004,
214 IR3_INSTR_UL = 0x008,
215 IR3_INSTR_3D = 0x010,
216 IR3_INSTR_A = 0x020,
217 IR3_INSTR_O = 0x040,
218 IR3_INSTR_P = 0x080,
219 IR3_INSTR_S = 0x100,
220 IR3_INSTR_S2EN = 0x200,
221 IR3_INSTR_G = 0x400,
222 IR3_INSTR_SAT = 0x800,
223 /* (cat5/cat6) Bindless */
224 IR3_INSTR_B = 0x1000,
225 /* (cat5-only) Get some parts of the encoding from a1.x */
226 IR3_INSTR_A1EN = 0x2000,
227 /* meta-flags, for intermediate stages of IR, ie.
228 * before register assignment is done:
229 */
230 IR3_INSTR_MARK = 0x4000,
231 IR3_INSTR_UNUSED= 0x8000,
232 } flags;
233 uint8_t repeat;
234 uint8_t nop;
235 #ifdef DEBUG
236 unsigned regs_max;
237 #endif
238 unsigned regs_count;
239 struct ir3_register **regs;
240 union {
241 struct {
242 char inv;
243 char comp;
244 int immed;
245 struct ir3_block *target;
246 } cat0;
247 struct {
248 type_t src_type, dst_type;
249 } cat1;
250 struct {
251 enum {
252 IR3_COND_LT = 0,
253 IR3_COND_LE = 1,
254 IR3_COND_GT = 2,
255 IR3_COND_GE = 3,
256 IR3_COND_EQ = 4,
257 IR3_COND_NE = 5,
258 } condition;
259 } cat2;
260 struct {
261 unsigned samp, tex;
262 unsigned tex_base : 3;
263 type_t type;
264 } cat5;
265 struct {
266 type_t type;
267 int src_offset;
268 int dst_offset;
269 int iim_val : 3; /* for ldgb/stgb, # of components */
270 unsigned d : 3;
271 bool typed : 1;
272 unsigned base : 3;
273 } cat6;
274 struct {
275 unsigned w : 1; /* write */
276 unsigned r : 1; /* read */
277 unsigned l : 1; /* local */
278 unsigned g : 1; /* global */
279 } cat7;
280 /* for meta-instructions, just used to hold extra data
281 * before instruction scheduling, etc
282 */
283 struct {
284 int off; /* component/offset */
285 } split;
286 struct {
287 /* for output collects, this maps back to the entry in the
288 * ir3_shader_variant::outputs table.
289 */
290 int outidx;
291 } collect;
292 struct {
293 unsigned samp, tex;
294 unsigned input_offset;
295 unsigned samp_base : 3;
296 unsigned tex_base : 3;
297 } prefetch;
298 struct {
299 /* maps back to entry in ir3_shader_variant::inputs table: */
300 int inidx;
301 /* for sysvals, identifies the sysval type. Mostly so we can
302 * identify the special cases where a sysval should not be DCE'd
303 * (currently, just pre-fs texture fetch)
304 */
305 gl_system_value sysval;
306 } input;
307 };
308
309 /* When we get to the RA stage, we need instruction's position/name: */
310 uint16_t ip;
311 uint16_t name;
312
313 /* used for per-pass extra instruction data.
314 *
315 * TODO we should remove the per-pass data like this and 'use_count'
316 * and do something similar to what RA does w/ ir3_ra_instr_data..
317 * ie. use the ir3_count_instructions pass, and then use instr->ip
318 * to index into a table of pass-private data.
319 */
320 void *data;
321
322 /**
323 * Valid if pass calls ir3_find_ssa_uses().. see foreach_ssa_use()
324 */
325 struct set *uses;
326
327 int sun; /* Sethi–Ullman number, used by sched */
328 int use_count; /* currently just updated/used by cp */
329
330 /* Used during CP and RA stages. For collect and shader inputs/
331 * outputs where we need a sequence of consecutive registers,
332 * keep track of each src instructions left (ie 'n-1') and right
333 * (ie 'n+1') neighbor. The front-end must insert enough mov's
334 * to ensure that each instruction has at most one left and at
335 * most one right neighbor. During the copy-propagation pass,
336 * we only remove mov's when we can preserve this constraint.
337 * And during the RA stage, we use the neighbor information to
338 * allocate a block of registers in one shot.
339 *
340 * TODO: maybe just add something like:
341 * struct ir3_instruction_ref {
342 * struct ir3_instruction *instr;
343 * unsigned cnt;
344 * }
345 *
346 * Or can we get away without the refcnt stuff? It seems like
347 * it should be overkill.. the problem is if, potentially after
348 * already eliminating some mov's, if you have a single mov that
349 * needs to be grouped with it's neighbors in two different
350 * places (ex. shader output and a collect).
351 */
352 struct {
353 struct ir3_instruction *left, *right;
354 uint16_t left_cnt, right_cnt;
355 } cp;
356
357 /* an instruction can reference at most one address register amongst
358 * it's src/dst registers. Beyond that, you need to insert mov's.
359 *
360 * NOTE: do not write this directly, use ir3_instr_set_address()
361 */
362 struct ir3_instruction *address;
363
364 /* Tracking for additional dependent instructions. Used to handle
365 * barriers, WAR hazards for arrays/SSBOs/etc.
366 */
367 DECLARE_ARRAY(struct ir3_instruction *, deps);
368
369 /*
370 * From PoV of instruction scheduling, not execution (ie. ignores global/
371 * local distinction):
372 * shared image atomic SSBO everything
373 * barrier()/ - R/W R/W R/W R/W X
374 * groupMemoryBarrier()
375 * memoryBarrier() - R/W R/W
376 * (but only images declared coherent?)
377 * memoryBarrierAtomic() - R/W
378 * memoryBarrierBuffer() - R/W
379 * memoryBarrierImage() - R/W
380 * memoryBarrierShared() - R/W
381 *
382 * TODO I think for SSBO/image/shared, in cases where we can determine
383 * which variable is accessed, we don't need to care about accesses to
384 * different variables (unless declared coherent??)
385 */
386 enum {
387 IR3_BARRIER_EVERYTHING = 1 << 0,
388 IR3_BARRIER_SHARED_R = 1 << 1,
389 IR3_BARRIER_SHARED_W = 1 << 2,
390 IR3_BARRIER_IMAGE_R = 1 << 3,
391 IR3_BARRIER_IMAGE_W = 1 << 4,
392 IR3_BARRIER_BUFFER_R = 1 << 5,
393 IR3_BARRIER_BUFFER_W = 1 << 6,
394 IR3_BARRIER_ARRAY_R = 1 << 7,
395 IR3_BARRIER_ARRAY_W = 1 << 8,
396 } barrier_class, barrier_conflict;
397
398 /* Entry in ir3_block's instruction list: */
399 struct list_head node;
400
401 #ifdef DEBUG
402 uint32_t serialno;
403 #endif
404
405 // TODO only computerator/assembler:
406 int line;
407 };
408
409 static inline struct ir3_instruction *
410 ir3_neighbor_first(struct ir3_instruction *instr)
411 {
412 int cnt = 0;
413 while (instr->cp.left) {
414 instr = instr->cp.left;
415 if (++cnt > 0xffff) {
416 debug_assert(0);
417 break;
418 }
419 }
420 return instr;
421 }
422
423 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
424 {
425 int num = 1;
426
427 debug_assert(!instr->cp.left);
428
429 while (instr->cp.right) {
430 num++;
431 instr = instr->cp.right;
432 if (num > 0xffff) {
433 debug_assert(0);
434 break;
435 }
436 }
437
438 return num;
439 }
440
441 struct ir3 {
442 struct ir3_compiler *compiler;
443 gl_shader_stage type;
444
445 DECLARE_ARRAY(struct ir3_instruction *, inputs);
446 DECLARE_ARRAY(struct ir3_instruction *, outputs);
447
448 /* Track bary.f (and ldlv) instructions.. this is needed in
449 * scheduling to ensure that all varying fetches happen before
450 * any potential kill instructions. The hw gets grumpy if all
451 * threads in a group are killed before the last bary.f gets
452 * a chance to signal end of input (ei).
453 */
454 DECLARE_ARRAY(struct ir3_instruction *, baryfs);
455
456 /* Track all indirect instructions (read and write). To avoid
457 * deadlock scenario where an address register gets scheduled,
458 * but other dependent src instructions cannot be scheduled due
459 * to dependency on a *different* address register value, the
460 * scheduler needs to ensure that all dependencies other than
461 * the instruction other than the address register are scheduled
462 * before the one that writes the address register. Having a
463 * convenient list of instructions that reference some address
464 * register simplifies this.
465 */
466 DECLARE_ARRAY(struct ir3_instruction *, a0_users);
467
468 /* same for a1.x: */
469 DECLARE_ARRAY(struct ir3_instruction *, a1_users);
470
471 /* and same for instructions that consume predicate register: */
472 DECLARE_ARRAY(struct ir3_instruction *, predicates);
473
474 /* Track texture sample instructions which need texture state
475 * patched in (for astc-srgb workaround):
476 */
477 DECLARE_ARRAY(struct ir3_instruction *, astc_srgb);
478
479 /* List of blocks: */
480 struct list_head block_list;
481
482 /* List of ir3_array's: */
483 struct list_head array_list;
484
485 unsigned max_sun; /* max Sethi–Ullman number */
486
487 #ifdef DEBUG
488 unsigned block_count, instr_count;
489 #endif
490 };
491
492 struct ir3_array {
493 struct list_head node;
494 unsigned length;
495 unsigned id;
496
497 struct nir_register *r;
498
499 /* To avoid array write's from getting DCE'd, keep track of the
500 * most recent write. Any array access depends on the most
501 * recent write. This way, nothing depends on writes after the
502 * last read. But all the writes that happen before that have
503 * something depending on them
504 */
505 struct ir3_instruction *last_write;
506
507 /* extra stuff used in RA pass: */
508 unsigned base; /* base vreg name */
509 unsigned reg; /* base physical reg */
510 uint16_t start_ip, end_ip;
511
512 /* Indicates if half-precision */
513 bool half;
514 };
515
516 struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
517
518 struct ir3_block {
519 struct list_head node;
520 struct ir3 *shader;
521
522 const struct nir_block *nblock;
523
524 struct list_head instr_list; /* list of ir3_instruction */
525
526 /* each block has either one or two successors.. in case of
527 * two successors, 'condition' decides which one to follow.
528 * A block preceding an if/else has two successors.
529 */
530 struct ir3_instruction *condition;
531 struct ir3_block *successors[2];
532
533 struct set *predecessors; /* set of ir3_block */
534
535 uint16_t start_ip, end_ip;
536
537 /* Track instructions which do not write a register but other-
538 * wise must not be discarded (such as kill, stg, etc)
539 */
540 DECLARE_ARRAY(struct ir3_instruction *, keeps);
541
542 /* used for per-pass extra block data. Mainly used right
543 * now in RA step to track livein/liveout.
544 */
545 void *data;
546
547 #ifdef DEBUG
548 uint32_t serialno;
549 #endif
550 };
551
552 static inline uint32_t
553 block_id(struct ir3_block *block)
554 {
555 #ifdef DEBUG
556 return block->serialno;
557 #else
558 return (uint32_t)(unsigned long)block;
559 #endif
560 }
561
562 struct ir3 * ir3_create(struct ir3_compiler *compiler, gl_shader_stage type);
563 void ir3_destroy(struct ir3 *shader);
564 void * ir3_assemble(struct ir3 *shader,
565 struct ir3_info *info, uint32_t gpu_id);
566 void * ir3_alloc(struct ir3 *shader, int sz);
567
568 struct ir3_block * ir3_block_create(struct ir3 *shader);
569
570 struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
571 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
572 opc_t opc, int nreg);
573 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
574 void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep);
575 const char *ir3_instr_name(struct ir3_instruction *instr);
576
577 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
578 int num, int flags);
579 struct ir3_register * ir3_reg_clone(struct ir3 *shader,
580 struct ir3_register *reg);
581
582 void ir3_instr_set_address(struct ir3_instruction *instr,
583 struct ir3_instruction *addr);
584
585 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
586 {
587 if (instr->flags & IR3_INSTR_MARK)
588 return true; /* already visited */
589 instr->flags |= IR3_INSTR_MARK;
590 return false;
591 }
592
593 void ir3_block_clear_mark(struct ir3_block *block);
594 void ir3_clear_mark(struct ir3 *shader);
595
596 unsigned ir3_count_instructions(struct ir3 *ir);
597
598 void ir3_find_ssa_uses(struct ir3 *ir, void *mem_ctx, bool falsedeps);
599
600 #include "util/set.h"
601 #define foreach_ssa_use(__use, __instr) \
602 for (struct ir3_instruction *__use = (void *)~0; \
603 __use && (__instr)->uses; __use = NULL) \
604 set_foreach ((__instr)->uses, __entry) \
605 if ((__use = (void *)__entry->key))
606
607 #define MAX_ARRAYS 16
608
609 /* comp:
610 * 0 - x
611 * 1 - y
612 * 2 - z
613 * 3 - w
614 */
615 static inline uint32_t regid(int num, int comp)
616 {
617 return (num << 2) | (comp & 0x3);
618 }
619
620 static inline uint32_t reg_num(struct ir3_register *reg)
621 {
622 return reg->num >> 2;
623 }
624
625 static inline uint32_t reg_comp(struct ir3_register *reg)
626 {
627 return reg->num & 0x3;
628 }
629
630 #define INVALID_REG regid(63, 0)
631 #define VALIDREG(r) ((r) != INVALID_REG)
632 #define CONDREG(r, val) COND(VALIDREG(r), (val))
633
634 static inline bool is_flow(struct ir3_instruction *instr)
635 {
636 return (opc_cat(instr->opc) == 0);
637 }
638
639 static inline bool is_kill(struct ir3_instruction *instr)
640 {
641 return instr->opc == OPC_KILL;
642 }
643
644 static inline bool is_nop(struct ir3_instruction *instr)
645 {
646 return instr->opc == OPC_NOP;
647 }
648
649 static inline bool is_same_type_reg(struct ir3_register *reg1,
650 struct ir3_register *reg2)
651 {
652 unsigned type_reg1 = (reg1->flags & (IR3_REG_HIGH | IR3_REG_HALF));
653 unsigned type_reg2 = (reg2->flags & (IR3_REG_HIGH | IR3_REG_HALF));
654
655 if (type_reg1 ^ type_reg2)
656 return false;
657 else
658 return true;
659 }
660
661 /* Is it a non-transformative (ie. not type changing) mov? This can
662 * also include absneg.s/absneg.f, which for the most part can be
663 * treated as a mov (single src argument).
664 */
665 static inline bool is_same_type_mov(struct ir3_instruction *instr)
666 {
667 struct ir3_register *dst;
668
669 switch (instr->opc) {
670 case OPC_MOV:
671 if (instr->cat1.src_type != instr->cat1.dst_type)
672 return false;
673 /* If the type of dest reg and src reg are different,
674 * it shouldn't be considered as same type mov
675 */
676 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
677 return false;
678 break;
679 case OPC_ABSNEG_F:
680 case OPC_ABSNEG_S:
681 if (instr->flags & IR3_INSTR_SAT)
682 return false;
683 /* If the type of dest reg and src reg are different,
684 * it shouldn't be considered as same type mov
685 */
686 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
687 return false;
688 break;
689 default:
690 return false;
691 }
692
693 dst = instr->regs[0];
694
695 /* mov's that write to a0 or p0.x are special: */
696 if (dst->num == regid(REG_P0, 0))
697 return false;
698 if (reg_num(dst) == REG_A0)
699 return false;
700
701 if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
702 return false;
703
704 return true;
705 }
706
707 /* A move from const, which changes size but not type, can also be
708 * folded into dest instruction in some cases.
709 */
710 static inline bool is_const_mov(struct ir3_instruction *instr)
711 {
712 if (instr->opc != OPC_MOV)
713 return false;
714
715 if (!(instr->regs[1]->flags & IR3_REG_CONST))
716 return false;
717
718 type_t src_type = instr->cat1.src_type;
719 type_t dst_type = instr->cat1.dst_type;
720
721 return (type_float(src_type) && type_float(dst_type)) ||
722 (type_uint(src_type) && type_uint(dst_type)) ||
723 (type_sint(src_type) && type_sint(dst_type));
724 }
725
726 static inline bool is_alu(struct ir3_instruction *instr)
727 {
728 return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
729 }
730
731 static inline bool is_sfu(struct ir3_instruction *instr)
732 {
733 return (opc_cat(instr->opc) == 4);
734 }
735
736 static inline bool is_tex(struct ir3_instruction *instr)
737 {
738 return (opc_cat(instr->opc) == 5);
739 }
740
741 static inline bool is_tex_or_prefetch(struct ir3_instruction *instr)
742 {
743 return is_tex(instr) || (instr->opc == OPC_META_TEX_PREFETCH);
744 }
745
746 static inline bool is_mem(struct ir3_instruction *instr)
747 {
748 return (opc_cat(instr->opc) == 6);
749 }
750
751 static inline bool is_barrier(struct ir3_instruction *instr)
752 {
753 return (opc_cat(instr->opc) == 7);
754 }
755
756 static inline bool
757 is_half(struct ir3_instruction *instr)
758 {
759 return !!(instr->regs[0]->flags & IR3_REG_HALF);
760 }
761
762 static inline bool
763 is_high(struct ir3_instruction *instr)
764 {
765 return !!(instr->regs[0]->flags & IR3_REG_HIGH);
766 }
767
768 static inline bool
769 is_store(struct ir3_instruction *instr)
770 {
771 /* these instructions, the "destination" register is
772 * actually a source, the address to store to.
773 */
774 switch (instr->opc) {
775 case OPC_STG:
776 case OPC_STGB:
777 case OPC_STIB:
778 case OPC_STP:
779 case OPC_STL:
780 case OPC_STLW:
781 case OPC_L2G:
782 case OPC_G2L:
783 return true;
784 default:
785 return false;
786 }
787 }
788
789 static inline bool is_load(struct ir3_instruction *instr)
790 {
791 switch (instr->opc) {
792 case OPC_LDG:
793 case OPC_LDGB:
794 case OPC_LDIB:
795 case OPC_LDL:
796 case OPC_LDP:
797 case OPC_L2G:
798 case OPC_LDLW:
799 case OPC_LDC:
800 case OPC_LDLV:
801 /* probably some others too.. */
802 return true;
803 default:
804 return false;
805 }
806 }
807
808 static inline bool is_input(struct ir3_instruction *instr)
809 {
810 /* in some cases, ldlv is used to fetch varying without
811 * interpolation.. fortunately inloc is the first src
812 * register in either case
813 */
814 switch (instr->opc) {
815 case OPC_LDLV:
816 case OPC_BARY_F:
817 return true;
818 default:
819 return false;
820 }
821 }
822
823 static inline bool is_bool(struct ir3_instruction *instr)
824 {
825 switch (instr->opc) {
826 case OPC_CMPS_F:
827 case OPC_CMPS_S:
828 case OPC_CMPS_U:
829 return true;
830 default:
831 return false;
832 }
833 }
834
835 static inline bool is_meta(struct ir3_instruction *instr)
836 {
837 return (opc_cat(instr->opc) == -1);
838 }
839
840 static inline unsigned dest_regs(struct ir3_instruction *instr)
841 {
842 if ((instr->regs_count == 0) || is_store(instr) || is_flow(instr))
843 return 0;
844
845 return util_last_bit(instr->regs[0]->wrmask);
846 }
847
848 static inline bool writes_addr0(struct ir3_instruction *instr)
849 {
850 if (instr->regs_count > 0) {
851 struct ir3_register *dst = instr->regs[0];
852 return dst->num == regid(REG_A0, 0);
853 }
854 return false;
855 }
856
857 static inline bool writes_addr1(struct ir3_instruction *instr)
858 {
859 if (instr->regs_count > 0) {
860 struct ir3_register *dst = instr->regs[0];
861 return dst->num == regid(REG_A0, 1);
862 }
863 return false;
864 }
865
866 static inline bool writes_pred(struct ir3_instruction *instr)
867 {
868 if (instr->regs_count > 0) {
869 struct ir3_register *dst = instr->regs[0];
870 return reg_num(dst) == REG_P0;
871 }
872 return false;
873 }
874
875 /* returns defining instruction for reg */
876 /* TODO better name */
877 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
878 {
879 if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
880 return reg->instr;
881 }
882 return NULL;
883 }
884
885 static inline bool conflicts(struct ir3_instruction *a,
886 struct ir3_instruction *b)
887 {
888 return (a && b) && (a != b);
889 }
890
891 static inline bool reg_gpr(struct ir3_register *r)
892 {
893 if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
894 return false;
895 if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
896 return false;
897 return true;
898 }
899
900 static inline type_t half_type(type_t type)
901 {
902 switch (type) {
903 case TYPE_F32: return TYPE_F16;
904 case TYPE_U32: return TYPE_U16;
905 case TYPE_S32: return TYPE_S16;
906 case TYPE_F16:
907 case TYPE_U16:
908 case TYPE_S16:
909 return type;
910 default:
911 assert(0);
912 return ~0;
913 }
914 }
915
916 /* some cat2 instructions (ie. those which are not float) can embed an
917 * immediate:
918 */
919 static inline bool ir3_cat2_int(opc_t opc)
920 {
921 switch (opc) {
922 case OPC_ADD_U:
923 case OPC_ADD_S:
924 case OPC_SUB_U:
925 case OPC_SUB_S:
926 case OPC_CMPS_U:
927 case OPC_CMPS_S:
928 case OPC_MIN_U:
929 case OPC_MIN_S:
930 case OPC_MAX_U:
931 case OPC_MAX_S:
932 case OPC_CMPV_U:
933 case OPC_CMPV_S:
934 case OPC_MUL_U24:
935 case OPC_MUL_S24:
936 case OPC_MULL_U:
937 case OPC_CLZ_S:
938 case OPC_ABSNEG_S:
939 case OPC_AND_B:
940 case OPC_OR_B:
941 case OPC_NOT_B:
942 case OPC_XOR_B:
943 case OPC_BFREV_B:
944 case OPC_CLZ_B:
945 case OPC_SHL_B:
946 case OPC_SHR_B:
947 case OPC_ASHR_B:
948 case OPC_MGEN_B:
949 case OPC_GETBIT_B:
950 case OPC_CBITS_B:
951 case OPC_BARY_F:
952 return true;
953
954 default:
955 return false;
956 }
957 }
958
959 static inline bool ir3_cat2_float(opc_t opc)
960 {
961 switch (opc) {
962 case OPC_ADD_F:
963 case OPC_MIN_F:
964 case OPC_MAX_F:
965 case OPC_MUL_F:
966 case OPC_SIGN_F:
967 case OPC_CMPS_F:
968 case OPC_ABSNEG_F:
969 case OPC_CMPV_F:
970 case OPC_FLOOR_F:
971 case OPC_CEIL_F:
972 case OPC_RNDNE_F:
973 case OPC_RNDAZ_F:
974 case OPC_TRUNC_F:
975 return true;
976
977 default:
978 return false;
979 }
980 }
981
982 static inline bool ir3_cat3_float(opc_t opc)
983 {
984 switch (opc) {
985 case OPC_MAD_F16:
986 case OPC_MAD_F32:
987 case OPC_SEL_F16:
988 case OPC_SEL_F32:
989 return true;
990 default:
991 return false;
992 }
993 }
994
995 /* map cat2 instruction to valid abs/neg flags: */
996 static inline unsigned ir3_cat2_absneg(opc_t opc)
997 {
998 switch (opc) {
999 case OPC_ADD_F:
1000 case OPC_MIN_F:
1001 case OPC_MAX_F:
1002 case OPC_MUL_F:
1003 case OPC_SIGN_F:
1004 case OPC_CMPS_F:
1005 case OPC_ABSNEG_F:
1006 case OPC_CMPV_F:
1007 case OPC_FLOOR_F:
1008 case OPC_CEIL_F:
1009 case OPC_RNDNE_F:
1010 case OPC_RNDAZ_F:
1011 case OPC_TRUNC_F:
1012 case OPC_BARY_F:
1013 return IR3_REG_FABS | IR3_REG_FNEG;
1014
1015 case OPC_ADD_U:
1016 case OPC_ADD_S:
1017 case OPC_SUB_U:
1018 case OPC_SUB_S:
1019 case OPC_CMPS_U:
1020 case OPC_CMPS_S:
1021 case OPC_MIN_U:
1022 case OPC_MIN_S:
1023 case OPC_MAX_U:
1024 case OPC_MAX_S:
1025 case OPC_CMPV_U:
1026 case OPC_CMPV_S:
1027 case OPC_MUL_U24:
1028 case OPC_MUL_S24:
1029 case OPC_MULL_U:
1030 case OPC_CLZ_S:
1031 return 0;
1032
1033 case OPC_ABSNEG_S:
1034 return IR3_REG_SABS | IR3_REG_SNEG;
1035
1036 case OPC_AND_B:
1037 case OPC_OR_B:
1038 case OPC_NOT_B:
1039 case OPC_XOR_B:
1040 case OPC_BFREV_B:
1041 case OPC_CLZ_B:
1042 case OPC_SHL_B:
1043 case OPC_SHR_B:
1044 case OPC_ASHR_B:
1045 case OPC_MGEN_B:
1046 case OPC_GETBIT_B:
1047 case OPC_CBITS_B:
1048 return IR3_REG_BNOT;
1049
1050 default:
1051 return 0;
1052 }
1053 }
1054
1055 /* map cat3 instructions to valid abs/neg flags: */
1056 static inline unsigned ir3_cat3_absneg(opc_t opc)
1057 {
1058 switch (opc) {
1059 case OPC_MAD_F16:
1060 case OPC_MAD_F32:
1061 case OPC_SEL_F16:
1062 case OPC_SEL_F32:
1063 return IR3_REG_FNEG;
1064
1065 case OPC_MAD_U16:
1066 case OPC_MADSH_U16:
1067 case OPC_MAD_S16:
1068 case OPC_MADSH_M16:
1069 case OPC_MAD_U24:
1070 case OPC_MAD_S24:
1071 case OPC_SEL_S16:
1072 case OPC_SEL_S32:
1073 case OPC_SAD_S16:
1074 case OPC_SAD_S32:
1075 /* neg *may* work on 3rd src.. */
1076
1077 case OPC_SEL_B16:
1078 case OPC_SEL_B32:
1079
1080 default:
1081 return 0;
1082 }
1083 }
1084
1085 #define MASK(n) ((1 << (n)) - 1)
1086
1087 /* iterator for an instructions's sources (reg), also returns src #: */
1088 #define foreach_src_n(__srcreg, __n, __instr) \
1089 if ((__instr)->regs_count) \
1090 for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
1091 if ((__srcreg = (__instr)->regs[__n + 1]))
1092
1093 /* iterator for an instructions's sources (reg): */
1094 #define foreach_src(__srcreg, __instr) \
1095 foreach_src_n(__srcreg, __i, __instr)
1096
1097 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
1098 {
1099 unsigned cnt = instr->regs_count + instr->deps_count;
1100 if (instr->address)
1101 cnt++;
1102 return cnt;
1103 }
1104
1105 static inline struct ir3_instruction **
1106 __ssa_srcp_n(struct ir3_instruction *instr, unsigned n)
1107 {
1108 if (n == (instr->regs_count + instr->deps_count))
1109 return &instr->address;
1110 if (n >= instr->regs_count)
1111 return &instr->deps[n - instr->regs_count];
1112 if (ssa(instr->regs[n]))
1113 return &instr->regs[n]->instr;
1114 return NULL;
1115 }
1116
1117 static inline bool __is_false_dep(struct ir3_instruction *instr, unsigned n)
1118 {
1119 if (n == (instr->regs_count + instr->deps_count))
1120 return false;
1121 if (n >= instr->regs_count)
1122 return true;
1123 return false;
1124 }
1125
1126 #define foreach_ssa_srcp_n(__srcp, __n, __instr) \
1127 for (struct ir3_instruction **__srcp = (void *)~0; __srcp; __srcp = NULL) \
1128 for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
1129 if ((__srcp = __ssa_srcp_n(__instr, __n)))
1130
1131 #define foreach_ssa_srcp(__srcp, __instr) \
1132 foreach_ssa_srcp_n(__srcp, __i, __instr)
1133
1134 /* iterator for an instruction's SSA sources (instr), also returns src #: */
1135 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
1136 foreach_ssa_srcp_n(__srcp, __n, __instr) \
1137 if ((__srcinst = *__srcp))
1138
1139 /* iterator for an instruction's SSA sources (instr): */
1140 #define foreach_ssa_src(__srcinst, __instr) \
1141 foreach_ssa_src_n(__srcinst, __i, __instr)
1142
1143 /* iterators for shader inputs: */
1144 #define foreach_input_n(__ininstr, __cnt, __ir) \
1145 for (unsigned __cnt = 0; __cnt < (__ir)->inputs_count; __cnt++) \
1146 if ((__ininstr = (__ir)->inputs[__cnt]))
1147 #define foreach_input(__ininstr, __ir) \
1148 foreach_input_n(__ininstr, __i, __ir)
1149
1150 /* iterators for shader outputs: */
1151 #define foreach_output_n(__outinstr, __cnt, __ir) \
1152 for (unsigned __cnt = 0; __cnt < (__ir)->outputs_count; __cnt++) \
1153 if ((__outinstr = (__ir)->outputs[__cnt]))
1154 #define foreach_output(__outinstr, __ir) \
1155 foreach_output_n(__outinstr, __i, __ir)
1156
1157 /* iterators for instructions: */
1158 #define foreach_instr(__instr, __list) \
1159 list_for_each_entry(struct ir3_instruction, __instr, __list, node)
1160 #define foreach_instr_rev(__instr, __list) \
1161 list_for_each_entry_rev(struct ir3_instruction, __instr, __list, node)
1162 #define foreach_instr_safe(__instr, __list) \
1163 list_for_each_entry_safe(struct ir3_instruction, __instr, __list, node)
1164
1165 /* iterators for blocks: */
1166 #define foreach_block(__block, __list) \
1167 list_for_each_entry(struct ir3_block, __block, __list, node)
1168 #define foreach_block_safe(__block, __list) \
1169 list_for_each_entry_safe(struct ir3_block, __block, __list, node)
1170
1171 /* iterators for arrays: */
1172 #define foreach_array(__array, __list) \
1173 list_for_each_entry(struct ir3_array, __array, __list, node)
1174
1175 /* dump: */
1176 void ir3_print(struct ir3 *ir);
1177 void ir3_print_instr(struct ir3_instruction *instr);
1178
1179 /* delay calculation: */
1180 int ir3_delayslots(struct ir3_instruction *assigner,
1181 struct ir3_instruction *consumer, unsigned n, bool soft);
1182 unsigned ir3_delay_calc(struct ir3_block *block, struct ir3_instruction *instr,
1183 bool soft, bool pred);
1184 void ir3_remove_nops(struct ir3 *ir);
1185
1186 /* dead code elimination: */
1187 struct ir3_shader_variant;
1188 void ir3_dce(struct ir3 *ir, struct ir3_shader_variant *so);
1189
1190 /* fp16 conversion folding */
1191 void ir3_cf(struct ir3 *ir);
1192
1193 /* copy-propagate: */
1194 void ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so);
1195
1196 /* group neighbors and insert mov's to resolve conflicts: */
1197 void ir3_group(struct ir3 *ir);
1198
1199 /* Sethi–Ullman numbering: */
1200 void ir3_sun(struct ir3 *ir);
1201
1202 /* scheduling: */
1203 void ir3_sched_add_deps(struct ir3 *ir);
1204 int ir3_sched(struct ir3 *ir);
1205
1206 struct ir3_context;
1207 int ir3_postsched(struct ir3_context *ctx);
1208
1209 bool ir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so);
1210
1211 /* register assignment: */
1212 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(struct ir3_compiler *compiler);
1213 int ir3_ra(struct ir3_shader_variant *v, struct ir3_instruction **precolor, unsigned nprecolor);
1214
1215 /* legalize: */
1216 void ir3_legalize(struct ir3 *ir, struct ir3_shader_variant *so, int *max_bary);
1217
1218 static inline bool
1219 ir3_has_latency_to_hide(struct ir3 *ir)
1220 {
1221 /* VS/GS/TCS/TESS co-exist with frag shader invocations, but we don't
1222 * know the nature of the fragment shader. Just assume it will have
1223 * latency to hide:
1224 */
1225 if (ir->type != MESA_SHADER_FRAGMENT)
1226 return true;
1227
1228 foreach_block (block, &ir->block_list) {
1229 foreach_instr (instr, &block->instr_list) {
1230 if (is_tex_or_prefetch(instr))
1231 return true;
1232
1233 if (is_load(instr)) {
1234 switch (instr->opc) {
1235 case OPC_LDLV:
1236 case OPC_LDL:
1237 case OPC_LDLW:
1238 break;
1239 default:
1240 return true;
1241 }
1242 }
1243 }
1244 }
1245
1246 return false;
1247 }
1248
1249 /* ************************************************************************* */
1250 /* instruction helpers */
1251
1252 /* creates SSA src of correct type (ie. half vs full precision) */
1253 static inline struct ir3_register * __ssa_src(struct ir3_instruction *instr,
1254 struct ir3_instruction *src, unsigned flags)
1255 {
1256 struct ir3_register *reg;
1257 if (src->regs[0]->flags & IR3_REG_HALF)
1258 flags |= IR3_REG_HALF;
1259 reg = ir3_reg_create(instr, 0, IR3_REG_SSA | flags);
1260 reg->instr = src;
1261 reg->wrmask = src->regs[0]->wrmask;
1262 return reg;
1263 }
1264
1265 static inline struct ir3_register * __ssa_dst(struct ir3_instruction *instr)
1266 {
1267 struct ir3_register *reg = ir3_reg_create(instr, 0, 0);
1268 reg->flags |= IR3_REG_SSA;
1269 return reg;
1270 }
1271
1272 static inline struct ir3_instruction *
1273 create_immed_typed(struct ir3_block *block, uint32_t val, type_t type)
1274 {
1275 struct ir3_instruction *mov;
1276 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1277
1278 mov = ir3_instr_create(block, OPC_MOV);
1279 mov->cat1.src_type = type;
1280 mov->cat1.dst_type = type;
1281 __ssa_dst(mov)->flags |= flags;
1282 ir3_reg_create(mov, 0, IR3_REG_IMMED | flags)->uim_val = val;
1283
1284 return mov;
1285 }
1286
1287 static inline struct ir3_instruction *
1288 create_immed(struct ir3_block *block, uint32_t val)
1289 {
1290 return create_immed_typed(block, val, TYPE_U32);
1291 }
1292
1293 static inline struct ir3_instruction *
1294 create_uniform_typed(struct ir3_block *block, unsigned n, type_t type)
1295 {
1296 struct ir3_instruction *mov;
1297 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1298
1299 mov = ir3_instr_create(block, OPC_MOV);
1300 mov->cat1.src_type = type;
1301 mov->cat1.dst_type = type;
1302 __ssa_dst(mov)->flags |= flags;
1303 ir3_reg_create(mov, n, IR3_REG_CONST | flags);
1304
1305 return mov;
1306 }
1307
1308 static inline struct ir3_instruction *
1309 create_uniform(struct ir3_block *block, unsigned n)
1310 {
1311 return create_uniform_typed(block, n, TYPE_F32);
1312 }
1313
1314 static inline struct ir3_instruction *
1315 create_uniform_indirect(struct ir3_block *block, int n,
1316 struct ir3_instruction *address)
1317 {
1318 struct ir3_instruction *mov;
1319
1320 mov = ir3_instr_create(block, OPC_MOV);
1321 mov->cat1.src_type = TYPE_U32;
1322 mov->cat1.dst_type = TYPE_U32;
1323 __ssa_dst(mov);
1324 ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
1325
1326 ir3_instr_set_address(mov, address);
1327
1328 return mov;
1329 }
1330
1331 static inline struct ir3_instruction *
1332 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
1333 {
1334 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1335 __ssa_dst(instr);
1336 if (src->regs[0]->flags & IR3_REG_ARRAY) {
1337 struct ir3_register *src_reg = __ssa_src(instr, src, IR3_REG_ARRAY);
1338 src_reg->array = src->regs[0]->array;
1339 } else {
1340 __ssa_src(instr, src, src->regs[0]->flags & IR3_REG_HIGH);
1341 }
1342 debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
1343 instr->cat1.src_type = type;
1344 instr->cat1.dst_type = type;
1345 return instr;
1346 }
1347
1348 static inline struct ir3_instruction *
1349 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
1350 type_t src_type, type_t dst_type)
1351 {
1352 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1353 unsigned dst_flags = (type_size(dst_type) < 32) ? IR3_REG_HALF : 0;
1354 unsigned src_flags = (type_size(src_type) < 32) ? IR3_REG_HALF : 0;
1355
1356 debug_assert((src->regs[0]->flags & IR3_REG_HALF) == src_flags);
1357
1358 __ssa_dst(instr)->flags |= dst_flags;
1359 __ssa_src(instr, src, 0);
1360 instr->cat1.src_type = src_type;
1361 instr->cat1.dst_type = dst_type;
1362 debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
1363 return instr;
1364 }
1365
1366 static inline struct ir3_instruction *
1367 ir3_NOP(struct ir3_block *block)
1368 {
1369 return ir3_instr_create(block, OPC_NOP);
1370 }
1371
1372 #define IR3_INSTR_0 0
1373
1374 #define __INSTR0(flag, name, opc) \
1375 static inline struct ir3_instruction * \
1376 ir3_##name(struct ir3_block *block) \
1377 { \
1378 struct ir3_instruction *instr = \
1379 ir3_instr_create(block, opc); \
1380 instr->flags |= flag; \
1381 return instr; \
1382 }
1383 #define INSTR0F(f, name) __INSTR0(IR3_INSTR_##f, name##_##f, OPC_##name)
1384 #define INSTR0(name) __INSTR0(0, name, OPC_##name)
1385
1386 #define __INSTR1(flag, name, opc) \
1387 static inline struct ir3_instruction * \
1388 ir3_##name(struct ir3_block *block, \
1389 struct ir3_instruction *a, unsigned aflags) \
1390 { \
1391 struct ir3_instruction *instr = \
1392 ir3_instr_create(block, opc); \
1393 __ssa_dst(instr); \
1394 __ssa_src(instr, a, aflags); \
1395 instr->flags |= flag; \
1396 return instr; \
1397 }
1398 #define INSTR1F(f, name) __INSTR1(IR3_INSTR_##f, name##_##f, OPC_##name)
1399 #define INSTR1(name) __INSTR1(0, name, OPC_##name)
1400
1401 #define __INSTR2(flag, name, opc) \
1402 static inline struct ir3_instruction * \
1403 ir3_##name(struct ir3_block *block, \
1404 struct ir3_instruction *a, unsigned aflags, \
1405 struct ir3_instruction *b, unsigned bflags) \
1406 { \
1407 struct ir3_instruction *instr = \
1408 ir3_instr_create(block, opc); \
1409 __ssa_dst(instr); \
1410 __ssa_src(instr, a, aflags); \
1411 __ssa_src(instr, b, bflags); \
1412 instr->flags |= flag; \
1413 return instr; \
1414 }
1415 #define INSTR2F(f, name) __INSTR2(IR3_INSTR_##f, name##_##f, OPC_##name)
1416 #define INSTR2(name) __INSTR2(0, name, OPC_##name)
1417
1418 #define __INSTR3(flag, name, opc) \
1419 static inline struct ir3_instruction * \
1420 ir3_##name(struct ir3_block *block, \
1421 struct ir3_instruction *a, unsigned aflags, \
1422 struct ir3_instruction *b, unsigned bflags, \
1423 struct ir3_instruction *c, unsigned cflags) \
1424 { \
1425 struct ir3_instruction *instr = \
1426 ir3_instr_create2(block, opc, 4); \
1427 __ssa_dst(instr); \
1428 __ssa_src(instr, a, aflags); \
1429 __ssa_src(instr, b, bflags); \
1430 __ssa_src(instr, c, cflags); \
1431 instr->flags |= flag; \
1432 return instr; \
1433 }
1434 #define INSTR3F(f, name) __INSTR3(IR3_INSTR_##f, name##_##f, OPC_##name)
1435 #define INSTR3(name) __INSTR3(0, name, OPC_##name)
1436
1437 #define __INSTR4(flag, name, opc) \
1438 static inline struct ir3_instruction * \
1439 ir3_##name(struct ir3_block *block, \
1440 struct ir3_instruction *a, unsigned aflags, \
1441 struct ir3_instruction *b, unsigned bflags, \
1442 struct ir3_instruction *c, unsigned cflags, \
1443 struct ir3_instruction *d, unsigned dflags) \
1444 { \
1445 struct ir3_instruction *instr = \
1446 ir3_instr_create2(block, opc, 5); \
1447 __ssa_dst(instr); \
1448 __ssa_src(instr, a, aflags); \
1449 __ssa_src(instr, b, bflags); \
1450 __ssa_src(instr, c, cflags); \
1451 __ssa_src(instr, d, dflags); \
1452 instr->flags |= flag; \
1453 return instr; \
1454 }
1455 #define INSTR4F(f, name) __INSTR4(IR3_INSTR_##f, name##_##f, OPC_##name)
1456 #define INSTR4(name) __INSTR4(0, name, OPC_##name)
1457
1458 /* cat0 instructions: */
1459 INSTR1(BR)
1460 INSTR0(JUMP)
1461 INSTR1(KILL)
1462 INSTR0(END)
1463 INSTR0(CHSH)
1464 INSTR0(CHMASK)
1465 INSTR1(IF)
1466 INSTR0(ELSE)
1467 INSTR0(ENDIF)
1468
1469 /* cat2 instructions, most 2 src but some 1 src: */
1470 INSTR2(ADD_F)
1471 INSTR2(MIN_F)
1472 INSTR2(MAX_F)
1473 INSTR2(MUL_F)
1474 INSTR1(SIGN_F)
1475 INSTR2(CMPS_F)
1476 INSTR1(ABSNEG_F)
1477 INSTR2(CMPV_F)
1478 INSTR1(FLOOR_F)
1479 INSTR1(CEIL_F)
1480 INSTR1(RNDNE_F)
1481 INSTR1(RNDAZ_F)
1482 INSTR1(TRUNC_F)
1483 INSTR2(ADD_U)
1484 INSTR2(ADD_S)
1485 INSTR2(SUB_U)
1486 INSTR2(SUB_S)
1487 INSTR2(CMPS_U)
1488 INSTR2(CMPS_S)
1489 INSTR2(MIN_U)
1490 INSTR2(MIN_S)
1491 INSTR2(MAX_U)
1492 INSTR2(MAX_S)
1493 INSTR1(ABSNEG_S)
1494 INSTR2(AND_B)
1495 INSTR2(OR_B)
1496 INSTR1(NOT_B)
1497 INSTR2(XOR_B)
1498 INSTR2(CMPV_U)
1499 INSTR2(CMPV_S)
1500 INSTR2(MUL_U24)
1501 INSTR2(MUL_S24)
1502 INSTR2(MULL_U)
1503 INSTR1(BFREV_B)
1504 INSTR1(CLZ_S)
1505 INSTR1(CLZ_B)
1506 INSTR2(SHL_B)
1507 INSTR2(SHR_B)
1508 INSTR2(ASHR_B)
1509 INSTR2(BARY_F)
1510 INSTR2(MGEN_B)
1511 INSTR2(GETBIT_B)
1512 INSTR1(SETRM)
1513 INSTR1(CBITS_B)
1514 INSTR2(SHB)
1515 INSTR2(MSAD)
1516
1517 /* cat3 instructions: */
1518 INSTR3(MAD_U16)
1519 INSTR3(MADSH_U16)
1520 INSTR3(MAD_S16)
1521 INSTR3(MADSH_M16)
1522 INSTR3(MAD_U24)
1523 INSTR3(MAD_S24)
1524 INSTR3(MAD_F16)
1525 INSTR3(MAD_F32)
1526 /* NOTE: SEL_B32 checks for zero vs nonzero */
1527 INSTR3(SEL_B16)
1528 INSTR3(SEL_B32)
1529 INSTR3(SEL_S16)
1530 INSTR3(SEL_S32)
1531 INSTR3(SEL_F16)
1532 INSTR3(SEL_F32)
1533 INSTR3(SAD_S16)
1534 INSTR3(SAD_S32)
1535
1536 /* cat4 instructions: */
1537 INSTR1(RCP)
1538 INSTR1(RSQ)
1539 INSTR1(HRSQ)
1540 INSTR1(LOG2)
1541 INSTR1(HLOG2)
1542 INSTR1(EXP2)
1543 INSTR1(HEXP2)
1544 INSTR1(SIN)
1545 INSTR1(COS)
1546 INSTR1(SQRT)
1547
1548 /* cat5 instructions: */
1549 INSTR1(DSX)
1550 INSTR1(DSXPP_1)
1551 INSTR1(DSY)
1552 INSTR1(DSYPP_1)
1553 INSTR1F(3D, DSX)
1554 INSTR1F(3D, DSY)
1555 INSTR1(RGETPOS)
1556
1557 static inline struct ir3_instruction *
1558 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
1559 unsigned wrmask, unsigned flags, struct ir3_instruction *samp_tex,
1560 struct ir3_instruction *src0, struct ir3_instruction *src1)
1561 {
1562 struct ir3_instruction *sam;
1563
1564 sam = ir3_instr_create(block, opc);
1565 sam->flags |= flags;
1566 __ssa_dst(sam)->wrmask = wrmask;
1567 if (flags & IR3_INSTR_S2EN) {
1568 __ssa_src(sam, samp_tex, IR3_REG_HALF);
1569 }
1570 if (src0) {
1571 __ssa_src(sam, src0, 0);
1572 }
1573 if (src1) {
1574 __ssa_src(sam, src1, 0);
1575 }
1576 sam->cat5.type = type;
1577
1578 return sam;
1579 }
1580
1581 /* cat6 instructions: */
1582 INSTR2(LDLV)
1583 INSTR3(LDG)
1584 INSTR3(LDL)
1585 INSTR3(LDLW)
1586 INSTR3(STG)
1587 INSTR3(STL)
1588 INSTR3(STLW)
1589 INSTR1(RESINFO)
1590 INSTR1(RESFMT)
1591 INSTR2(ATOMIC_ADD)
1592 INSTR2(ATOMIC_SUB)
1593 INSTR2(ATOMIC_XCHG)
1594 INSTR2(ATOMIC_INC)
1595 INSTR2(ATOMIC_DEC)
1596 INSTR2(ATOMIC_CMPXCHG)
1597 INSTR2(ATOMIC_MIN)
1598 INSTR2(ATOMIC_MAX)
1599 INSTR2(ATOMIC_AND)
1600 INSTR2(ATOMIC_OR)
1601 INSTR2(ATOMIC_XOR)
1602 INSTR2(LDC)
1603 #if GPU >= 600
1604 INSTR3(STIB);
1605 INSTR2(LDIB);
1606 INSTR3F(G, ATOMIC_ADD)
1607 INSTR3F(G, ATOMIC_SUB)
1608 INSTR3F(G, ATOMIC_XCHG)
1609 INSTR3F(G, ATOMIC_INC)
1610 INSTR3F(G, ATOMIC_DEC)
1611 INSTR3F(G, ATOMIC_CMPXCHG)
1612 INSTR3F(G, ATOMIC_MIN)
1613 INSTR3F(G, ATOMIC_MAX)
1614 INSTR3F(G, ATOMIC_AND)
1615 INSTR3F(G, ATOMIC_OR)
1616 INSTR3F(G, ATOMIC_XOR)
1617 #elif GPU >= 400
1618 INSTR3(LDGB)
1619 INSTR4(STGB)
1620 INSTR4(STIB)
1621 INSTR4F(G, ATOMIC_ADD)
1622 INSTR4F(G, ATOMIC_SUB)
1623 INSTR4F(G, ATOMIC_XCHG)
1624 INSTR4F(G, ATOMIC_INC)
1625 INSTR4F(G, ATOMIC_DEC)
1626 INSTR4F(G, ATOMIC_CMPXCHG)
1627 INSTR4F(G, ATOMIC_MIN)
1628 INSTR4F(G, ATOMIC_MAX)
1629 INSTR4F(G, ATOMIC_AND)
1630 INSTR4F(G, ATOMIC_OR)
1631 INSTR4F(G, ATOMIC_XOR)
1632 #endif
1633
1634 INSTR4F(G, STG)
1635
1636 /* cat7 instructions: */
1637 INSTR0(BAR)
1638 INSTR0(FENCE)
1639
1640 /* meta instructions: */
1641 INSTR0(META_TEX_PREFETCH);
1642
1643 /* ************************************************************************* */
1644 /* split this out or find some helper to use.. like main/bitset.h.. */
1645
1646 #include <string.h>
1647 #include "util/bitset.h"
1648
1649 #define MAX_REG 256
1650
1651 typedef BITSET_DECLARE(regmask_t, 2 * MAX_REG);
1652
1653 static inline bool
1654 __regmask_get(regmask_t *regmask, struct ir3_register *reg, unsigned n)
1655 {
1656 if (reg->merged) {
1657 /* a6xx+ case, with merged register file, we track things in terms
1658 * of half-precision registers, with a full precisions register
1659 * using two half-precision slots:
1660 */
1661 if (reg->flags & IR3_REG_HALF) {
1662 return BITSET_TEST(*regmask, n);
1663 } else {
1664 n *= 2;
1665 return BITSET_TEST(*regmask, n) || BITSET_TEST(*regmask, n+1);
1666 }
1667 } else {
1668 /* pre a6xx case, with separate register file for half and full
1669 * precision:
1670 */
1671 if (reg->flags & IR3_REG_HALF)
1672 n += MAX_REG;
1673 return BITSET_TEST(*regmask, n);
1674 }
1675 }
1676
1677 static inline void
1678 __regmask_set(regmask_t *regmask, struct ir3_register *reg, unsigned n)
1679 {
1680 if (reg->merged) {
1681 /* a6xx+ case, with merged register file, we track things in terms
1682 * of half-precision registers, with a full precisions register
1683 * using two half-precision slots:
1684 */
1685 if (reg->flags & IR3_REG_HALF) {
1686 BITSET_SET(*regmask, n);
1687 } else {
1688 n *= 2;
1689 BITSET_SET(*regmask, n);
1690 BITSET_SET(*regmask, n+1);
1691 }
1692 } else {
1693 /* pre a6xx case, with separate register file for half and full
1694 * precision:
1695 */
1696 if (reg->flags & IR3_REG_HALF)
1697 n += MAX_REG;
1698 BITSET_SET(*regmask, n);
1699 }
1700 }
1701
1702 static inline void regmask_init(regmask_t *regmask)
1703 {
1704 memset(regmask, 0, sizeof(*regmask));
1705 }
1706
1707 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1708 {
1709 if (reg->flags & IR3_REG_RELATIV) {
1710 for (unsigned i = 0; i < reg->size; i++)
1711 __regmask_set(regmask, reg, reg->array.offset + i);
1712 } else {
1713 for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++)
1714 if (mask & 1)
1715 __regmask_set(regmask, reg, n);
1716 }
1717 }
1718
1719 static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
1720 {
1721 unsigned i;
1722 for (i = 0; i < ARRAY_SIZE(*dst); i++)
1723 (*dst)[i] = (*a)[i] | (*b)[i];
1724 }
1725
1726 static inline bool regmask_get(regmask_t *regmask,
1727 struct ir3_register *reg)
1728 {
1729 if (reg->flags & IR3_REG_RELATIV) {
1730 for (unsigned i = 0; i < reg->size; i++)
1731 if (__regmask_get(regmask, reg, reg->array.offset + i))
1732 return true;
1733 } else {
1734 for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++)
1735 if (mask & 1)
1736 if (__regmask_get(regmask, reg, n))
1737 return true;
1738 }
1739 return false;
1740 }
1741
1742 /* ************************************************************************* */
1743
1744 #endif /* IR3_H_ */