freedreno/ir3: split out regmask
[mesa.git] / src / freedreno / ir3 / ir3.h
1 /*
2 * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #ifndef IR3_H_
25 #define IR3_H_
26
27 #include <stdint.h>
28 #include <stdbool.h>
29
30 #include "compiler/shader_enums.h"
31
32 #include "util/bitscan.h"
33 #include "util/list.h"
34 #include "util/set.h"
35 #include "util/u_debug.h"
36
37 #include "instr-a3xx.h"
38
39 /* low level intermediate representation of an adreno shader program */
40
41 struct ir3_compiler;
42 struct ir3;
43 struct ir3_instruction;
44 struct ir3_block;
45
46 struct ir3_info {
47 void *data; /* used internally in ir3 assembler */
48 uint16_t sizedwords;
49 uint16_t instrs_count; /* expanded to account for rpt's */
50 uint16_t nops_count; /* # of nop instructions, including nopN */
51 uint16_t mov_count;
52 uint16_t cov_count;
53 /* NOTE: max_reg, etc, does not include registers not touched
54 * by the shader (ie. vertex fetched via VFD_DECODE but not
55 * touched by shader)
56 */
57 int8_t max_reg; /* highest GPR # used by shader */
58 int8_t max_half_reg;
59 int16_t max_const;
60
61 /* number of sync bits: */
62 uint16_t ss, sy;
63
64 /* estimate of number of cycles stalled on (ss) */
65 uint16_t sstall;
66
67 uint16_t last_baryf; /* instruction # of last varying fetch */
68 };
69
70 struct ir3_register {
71 enum {
72 IR3_REG_CONST = 0x001,
73 IR3_REG_IMMED = 0x002,
74 IR3_REG_HALF = 0x004,
75 /* high registers are used for some things in compute shaders,
76 * for example. Seems to be for things that are global to all
77 * threads in a wave, so possibly these are global/shared by
78 * all the threads in the wave?
79 */
80 IR3_REG_HIGH = 0x008,
81 IR3_REG_RELATIV= 0x010,
82 IR3_REG_R = 0x020,
83 /* Most instructions, it seems, can do float abs/neg but not
84 * integer. The CP pass needs to know what is intended (int or
85 * float) in order to do the right thing. For this reason the
86 * abs/neg flags are split out into float and int variants. In
87 * addition, .b (bitwise) operations, the negate is actually a
88 * bitwise not, so split that out into a new flag to make it
89 * more clear.
90 */
91 IR3_REG_FNEG = 0x040,
92 IR3_REG_FABS = 0x080,
93 IR3_REG_SNEG = 0x100,
94 IR3_REG_SABS = 0x200,
95 IR3_REG_BNOT = 0x400,
96 IR3_REG_EVEN = 0x800,
97 IR3_REG_POS_INF= 0x1000,
98 /* (ei) flag, end-input? Set on last bary, presumably to signal
99 * that the shader needs no more input:
100 */
101 IR3_REG_EI = 0x2000,
102 /* meta-flags, for intermediate stages of IR, ie.
103 * before register assignment is done:
104 */
105 IR3_REG_SSA = 0x4000, /* 'instr' is ptr to assigning instr */
106 IR3_REG_ARRAY = 0x8000,
107
108 } flags;
109
110 /* used for cat5 instructions, but also for internal/IR level
111 * tracking of what registers are read/written by an instruction.
112 * wrmask may be a bad name since it is used to represent both
113 * src and dst that touch multiple adjacent registers.
114 */
115 unsigned wrmask : 16; /* up to vec16 */
116
117 /* for relative addressing, 32bits for array size is too small,
118 * but otoh we don't need to deal with disjoint sets, so instead
119 * use a simple size field (number of scalar components).
120 *
121 * Note the size field isn't important for relative const (since
122 * we don't have to do register allocation for constants).
123 */
124 unsigned size : 16;
125
126 /* normal registers:
127 * the component is in the low two bits of the reg #, so
128 * rN.x becomes: (N << 2) | x
129 */
130 uint16_t num;
131 union {
132 /* immediate: */
133 int32_t iim_val;
134 uint32_t uim_val;
135 float fim_val;
136 /* relative: */
137 struct {
138 uint16_t id;
139 int16_t offset;
140 } array;
141 };
142
143 /* For IR3_REG_SSA, src registers contain ptr back to assigning
144 * instruction.
145 *
146 * For IR3_REG_ARRAY, the pointer is back to the last dependent
147 * array access (although the net effect is the same, it points
148 * back to a previous instruction that we depend on).
149 */
150 struct ir3_instruction *instr;
151 };
152
153 /*
154 * Stupid/simple growable array implementation:
155 */
156 #define DECLARE_ARRAY(type, name) \
157 unsigned name ## _count, name ## _sz; \
158 type * name;
159
160 #define array_insert(ctx, arr, val) do { \
161 if (arr ## _count == arr ## _sz) { \
162 arr ## _sz = MAX2(2 * arr ## _sz, 16); \
163 arr = reralloc_size(ctx, arr, arr ## _sz * sizeof(arr[0])); \
164 } \
165 arr[arr ##_count++] = val; \
166 } while (0)
167
168 struct ir3_instruction {
169 struct ir3_block *block;
170 opc_t opc;
171 enum {
172 /* (sy) flag is set on first instruction, and after sample
173 * instructions (probably just on RAW hazard).
174 */
175 IR3_INSTR_SY = 0x001,
176 /* (ss) flag is set on first instruction, and first instruction
177 * to depend on the result of "long" instructions (RAW hazard):
178 *
179 * rcp, rsq, log2, exp2, sin, cos, sqrt
180 *
181 * It seems to synchronize until all in-flight instructions are
182 * completed, for example:
183 *
184 * rsq hr1.w, hr1.w
185 * add.f hr2.z, (neg)hr2.z, hc0.y
186 * mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
187 * rsq hr2.x, hr2.x
188 * (rpt1)nop
189 * mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
190 * nop
191 * mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
192 * (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
193 * (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
194 *
195 * The last mul.f does not have (ss) set, presumably because the
196 * (ss) on the previous instruction does the job.
197 *
198 * The blob driver also seems to set it on WAR hazards, although
199 * not really clear if this is needed or just blob compiler being
200 * sloppy. So far I haven't found a case where removing the (ss)
201 * causes problems for WAR hazard, but I could just be getting
202 * lucky:
203 *
204 * rcp r1.y, r3.y
205 * (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
206 *
207 */
208 IR3_INSTR_SS = 0x002,
209 /* (jp) flag is set on jump targets:
210 */
211 IR3_INSTR_JP = 0x004,
212 IR3_INSTR_UL = 0x008,
213 IR3_INSTR_3D = 0x010,
214 IR3_INSTR_A = 0x020,
215 IR3_INSTR_O = 0x040,
216 IR3_INSTR_P = 0x080,
217 IR3_INSTR_S = 0x100,
218 IR3_INSTR_S2EN = 0x200,
219 IR3_INSTR_G = 0x400,
220 IR3_INSTR_SAT = 0x800,
221 /* (cat5/cat6) Bindless */
222 IR3_INSTR_B = 0x1000,
223 /* (cat5-only) Get some parts of the encoding from a1.x */
224 IR3_INSTR_A1EN = 0x2000,
225 /* meta-flags, for intermediate stages of IR, ie.
226 * before register assignment is done:
227 */
228 IR3_INSTR_MARK = 0x4000,
229 IR3_INSTR_UNUSED= 0x8000,
230 } flags;
231 uint8_t repeat;
232 uint8_t nop;
233 #ifdef DEBUG
234 unsigned regs_max;
235 #endif
236 unsigned regs_count;
237 struct ir3_register **regs;
238 union {
239 struct {
240 char inv;
241 char comp;
242 int immed;
243 struct ir3_block *target;
244 } cat0;
245 struct {
246 type_t src_type, dst_type;
247 } cat1;
248 struct {
249 enum {
250 IR3_COND_LT = 0,
251 IR3_COND_LE = 1,
252 IR3_COND_GT = 2,
253 IR3_COND_GE = 3,
254 IR3_COND_EQ = 4,
255 IR3_COND_NE = 5,
256 } condition;
257 } cat2;
258 struct {
259 unsigned samp, tex;
260 unsigned tex_base : 3;
261 type_t type;
262 } cat5;
263 struct {
264 type_t type;
265 int src_offset;
266 int dst_offset;
267 int iim_val : 3; /* for ldgb/stgb, # of components */
268 unsigned d : 3; /* for ldc, component offset */
269 bool typed : 1;
270 unsigned base : 3;
271 } cat6;
272 struct {
273 unsigned w : 1; /* write */
274 unsigned r : 1; /* read */
275 unsigned l : 1; /* local */
276 unsigned g : 1; /* global */
277 } cat7;
278 /* for meta-instructions, just used to hold extra data
279 * before instruction scheduling, etc
280 */
281 struct {
282 int off; /* component/offset */
283 } split;
284 struct {
285 /* for output collects, this maps back to the entry in the
286 * ir3_shader_variant::outputs table.
287 */
288 int outidx;
289 } collect;
290 struct {
291 unsigned samp, tex;
292 unsigned input_offset;
293 unsigned samp_base : 3;
294 unsigned tex_base : 3;
295 } prefetch;
296 struct {
297 /* maps back to entry in ir3_shader_variant::inputs table: */
298 int inidx;
299 /* for sysvals, identifies the sysval type. Mostly so we can
300 * identify the special cases where a sysval should not be DCE'd
301 * (currently, just pre-fs texture fetch)
302 */
303 gl_system_value sysval;
304 } input;
305 };
306
307 /* When we get to the RA stage, we need instruction's position/name: */
308 uint16_t ip;
309 uint16_t name;
310
311 /* used for per-pass extra instruction data.
312 *
313 * TODO we should remove the per-pass data like this and 'use_count'
314 * and do something similar to what RA does w/ ir3_ra_instr_data..
315 * ie. use the ir3_count_instructions pass, and then use instr->ip
316 * to index into a table of pass-private data.
317 */
318 void *data;
319
320 /**
321 * Valid if pass calls ir3_find_ssa_uses().. see foreach_ssa_use()
322 */
323 struct set *uses;
324
325 int use_count; /* currently just updated/used by cp */
326
327 /* Used during CP and RA stages. For collect and shader inputs/
328 * outputs where we need a sequence of consecutive registers,
329 * keep track of each src instructions left (ie 'n-1') and right
330 * (ie 'n+1') neighbor. The front-end must insert enough mov's
331 * to ensure that each instruction has at most one left and at
332 * most one right neighbor. During the copy-propagation pass,
333 * we only remove mov's when we can preserve this constraint.
334 * And during the RA stage, we use the neighbor information to
335 * allocate a block of registers in one shot.
336 *
337 * TODO: maybe just add something like:
338 * struct ir3_instruction_ref {
339 * struct ir3_instruction *instr;
340 * unsigned cnt;
341 * }
342 *
343 * Or can we get away without the refcnt stuff? It seems like
344 * it should be overkill.. the problem is if, potentially after
345 * already eliminating some mov's, if you have a single mov that
346 * needs to be grouped with it's neighbors in two different
347 * places (ex. shader output and a collect).
348 */
349 struct {
350 struct ir3_instruction *left, *right;
351 uint16_t left_cnt, right_cnt;
352 } cp;
353
354 /* an instruction can reference at most one address register amongst
355 * it's src/dst registers. Beyond that, you need to insert mov's.
356 *
357 * NOTE: do not write this directly, use ir3_instr_set_address()
358 */
359 struct ir3_instruction *address;
360
361 /* Tracking for additional dependent instructions. Used to handle
362 * barriers, WAR hazards for arrays/SSBOs/etc.
363 */
364 DECLARE_ARRAY(struct ir3_instruction *, deps);
365
366 /*
367 * From PoV of instruction scheduling, not execution (ie. ignores global/
368 * local distinction):
369 * shared image atomic SSBO everything
370 * barrier()/ - R/W R/W R/W R/W X
371 * groupMemoryBarrier()
372 * memoryBarrier() - R/W R/W
373 * (but only images declared coherent?)
374 * memoryBarrierAtomic() - R/W
375 * memoryBarrierBuffer() - R/W
376 * memoryBarrierImage() - R/W
377 * memoryBarrierShared() - R/W
378 *
379 * TODO I think for SSBO/image/shared, in cases where we can determine
380 * which variable is accessed, we don't need to care about accesses to
381 * different variables (unless declared coherent??)
382 */
383 enum {
384 IR3_BARRIER_EVERYTHING = 1 << 0,
385 IR3_BARRIER_SHARED_R = 1 << 1,
386 IR3_BARRIER_SHARED_W = 1 << 2,
387 IR3_BARRIER_IMAGE_R = 1 << 3,
388 IR3_BARRIER_IMAGE_W = 1 << 4,
389 IR3_BARRIER_BUFFER_R = 1 << 5,
390 IR3_BARRIER_BUFFER_W = 1 << 6,
391 IR3_BARRIER_ARRAY_R = 1 << 7,
392 IR3_BARRIER_ARRAY_W = 1 << 8,
393 } barrier_class, barrier_conflict;
394
395 /* Entry in ir3_block's instruction list: */
396 struct list_head node;
397
398 #ifdef DEBUG
399 uint32_t serialno;
400 #endif
401
402 // TODO only computerator/assembler:
403 int line;
404 };
405
406 static inline struct ir3_instruction *
407 ir3_neighbor_first(struct ir3_instruction *instr)
408 {
409 int cnt = 0;
410 while (instr->cp.left) {
411 instr = instr->cp.left;
412 if (++cnt > 0xffff) {
413 debug_assert(0);
414 break;
415 }
416 }
417 return instr;
418 }
419
420 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
421 {
422 int num = 1;
423
424 debug_assert(!instr->cp.left);
425
426 while (instr->cp.right) {
427 num++;
428 instr = instr->cp.right;
429 if (num > 0xffff) {
430 debug_assert(0);
431 break;
432 }
433 }
434
435 return num;
436 }
437
438 struct ir3 {
439 struct ir3_compiler *compiler;
440 gl_shader_stage type;
441
442 DECLARE_ARRAY(struct ir3_instruction *, inputs);
443 DECLARE_ARRAY(struct ir3_instruction *, outputs);
444
445 /* Track bary.f (and ldlv) instructions.. this is needed in
446 * scheduling to ensure that all varying fetches happen before
447 * any potential kill instructions. The hw gets grumpy if all
448 * threads in a group are killed before the last bary.f gets
449 * a chance to signal end of input (ei).
450 */
451 DECLARE_ARRAY(struct ir3_instruction *, baryfs);
452
453 /* Track all indirect instructions (read and write). To avoid
454 * deadlock scenario where an address register gets scheduled,
455 * but other dependent src instructions cannot be scheduled due
456 * to dependency on a *different* address register value, the
457 * scheduler needs to ensure that all dependencies other than
458 * the instruction other than the address register are scheduled
459 * before the one that writes the address register. Having a
460 * convenient list of instructions that reference some address
461 * register simplifies this.
462 */
463 DECLARE_ARRAY(struct ir3_instruction *, a0_users);
464
465 /* same for a1.x: */
466 DECLARE_ARRAY(struct ir3_instruction *, a1_users);
467
468 /* and same for instructions that consume predicate register: */
469 DECLARE_ARRAY(struct ir3_instruction *, predicates);
470
471 /* Track texture sample instructions which need texture state
472 * patched in (for astc-srgb workaround):
473 */
474 DECLARE_ARRAY(struct ir3_instruction *, astc_srgb);
475
476 /* List of blocks: */
477 struct list_head block_list;
478
479 /* List of ir3_array's: */
480 struct list_head array_list;
481
482 #ifdef DEBUG
483 unsigned block_count, instr_count;
484 #endif
485 };
486
487 struct ir3_array {
488 struct list_head node;
489 unsigned length;
490 unsigned id;
491
492 struct nir_register *r;
493
494 /* To avoid array write's from getting DCE'd, keep track of the
495 * most recent write. Any array access depends on the most
496 * recent write. This way, nothing depends on writes after the
497 * last read. But all the writes that happen before that have
498 * something depending on them
499 */
500 struct ir3_instruction *last_write;
501
502 /* extra stuff used in RA pass: */
503 unsigned base; /* base vreg name */
504 unsigned reg; /* base physical reg */
505 uint16_t start_ip, end_ip;
506
507 /* Indicates if half-precision */
508 bool half;
509
510 bool unused;
511 };
512
513 struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
514
515 struct ir3_block {
516 struct list_head node;
517 struct ir3 *shader;
518
519 const struct nir_block *nblock;
520
521 struct list_head instr_list; /* list of ir3_instruction */
522
523 /* each block has either one or two successors.. in case of
524 * two successors, 'condition' decides which one to follow.
525 * A block preceding an if/else has two successors.
526 */
527 struct ir3_instruction *condition;
528 struct ir3_block *successors[2];
529
530 struct set *predecessors; /* set of ir3_block */
531
532 uint16_t start_ip, end_ip;
533
534 /* Track instructions which do not write a register but other-
535 * wise must not be discarded (such as kill, stg, etc)
536 */
537 DECLARE_ARRAY(struct ir3_instruction *, keeps);
538
539 /* used for per-pass extra block data. Mainly used right
540 * now in RA step to track livein/liveout.
541 */
542 void *data;
543
544 #ifdef DEBUG
545 uint32_t serialno;
546 #endif
547 };
548
549 static inline uint32_t
550 block_id(struct ir3_block *block)
551 {
552 #ifdef DEBUG
553 return block->serialno;
554 #else
555 return (uint32_t)(unsigned long)block;
556 #endif
557 }
558
559 struct ir3_shader_variant;
560
561 struct ir3 * ir3_create(struct ir3_compiler *compiler, struct ir3_shader_variant *v);
562 void ir3_destroy(struct ir3 *shader);
563
564 void * ir3_assemble(struct ir3_shader_variant *v);
565 void * ir3_alloc(struct ir3 *shader, int sz);
566
567 struct ir3_block * ir3_block_create(struct ir3 *shader);
568
569 struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
570 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
571 opc_t opc, int nreg);
572 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
573 void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep);
574 const char *ir3_instr_name(struct ir3_instruction *instr);
575
576 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
577 int num, int flags);
578 struct ir3_register * ir3_reg_clone(struct ir3 *shader,
579 struct ir3_register *reg);
580
581 void ir3_instr_set_address(struct ir3_instruction *instr,
582 struct ir3_instruction *addr);
583
584 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
585 {
586 if (instr->flags & IR3_INSTR_MARK)
587 return true; /* already visited */
588 instr->flags |= IR3_INSTR_MARK;
589 return false;
590 }
591
592 void ir3_block_clear_mark(struct ir3_block *block);
593 void ir3_clear_mark(struct ir3 *shader);
594
595 unsigned ir3_count_instructions(struct ir3 *ir);
596 unsigned ir3_count_instructions_ra(struct ir3 *ir);
597
598 /**
599 * Move 'instr' to just before 'after'
600 */
601 static inline void
602 ir3_instr_move_before(struct ir3_instruction *instr,
603 struct ir3_instruction *after)
604 {
605 list_delinit(&instr->node);
606 list_addtail(&instr->node, &after->node);
607 }
608
609 /**
610 * Move 'instr' to just after 'before':
611 */
612 static inline void
613 ir3_instr_move_after(struct ir3_instruction *instr,
614 struct ir3_instruction *before)
615 {
616 list_delinit(&instr->node);
617 list_add(&instr->node, &before->node);
618 }
619
620 void ir3_find_ssa_uses(struct ir3 *ir, void *mem_ctx, bool falsedeps);
621
622 void ir3_set_dst_type(struct ir3_instruction *instr, bool half);
623 void ir3_fixup_src_type(struct ir3_instruction *instr);
624
625 bool ir3_valid_flags(struct ir3_instruction *instr, unsigned n, unsigned flags);
626
627 #include "util/set.h"
628 #define foreach_ssa_use(__use, __instr) \
629 for (struct ir3_instruction *__use = (void *)~0; \
630 __use && (__instr)->uses; __use = NULL) \
631 set_foreach ((__instr)->uses, __entry) \
632 if ((__use = (void *)__entry->key))
633
634 #define MAX_ARRAYS 16
635
636 /* comp:
637 * 0 - x
638 * 1 - y
639 * 2 - z
640 * 3 - w
641 */
642 static inline uint32_t regid(int num, int comp)
643 {
644 return (num << 2) | (comp & 0x3);
645 }
646
647 static inline uint32_t reg_num(struct ir3_register *reg)
648 {
649 return reg->num >> 2;
650 }
651
652 static inline uint32_t reg_comp(struct ir3_register *reg)
653 {
654 return reg->num & 0x3;
655 }
656
657 #define INVALID_REG regid(63, 0)
658 #define VALIDREG(r) ((r) != INVALID_REG)
659 #define CONDREG(r, val) COND(VALIDREG(r), (val))
660
661 static inline bool is_flow(struct ir3_instruction *instr)
662 {
663 return (opc_cat(instr->opc) == 0);
664 }
665
666 static inline bool is_kill(struct ir3_instruction *instr)
667 {
668 return instr->opc == OPC_KILL;
669 }
670
671 static inline bool is_nop(struct ir3_instruction *instr)
672 {
673 return instr->opc == OPC_NOP;
674 }
675
676 static inline bool is_same_type_reg(struct ir3_register *reg1,
677 struct ir3_register *reg2)
678 {
679 unsigned type_reg1 = (reg1->flags & (IR3_REG_HIGH | IR3_REG_HALF));
680 unsigned type_reg2 = (reg2->flags & (IR3_REG_HIGH | IR3_REG_HALF));
681
682 if (type_reg1 ^ type_reg2)
683 return false;
684 else
685 return true;
686 }
687
688 /* Is it a non-transformative (ie. not type changing) mov? This can
689 * also include absneg.s/absneg.f, which for the most part can be
690 * treated as a mov (single src argument).
691 */
692 static inline bool is_same_type_mov(struct ir3_instruction *instr)
693 {
694 struct ir3_register *dst;
695
696 switch (instr->opc) {
697 case OPC_MOV:
698 if (instr->cat1.src_type != instr->cat1.dst_type)
699 return false;
700 /* If the type of dest reg and src reg are different,
701 * it shouldn't be considered as same type mov
702 */
703 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
704 return false;
705 break;
706 case OPC_ABSNEG_F:
707 case OPC_ABSNEG_S:
708 if (instr->flags & IR3_INSTR_SAT)
709 return false;
710 /* If the type of dest reg and src reg are different,
711 * it shouldn't be considered as same type mov
712 */
713 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
714 return false;
715 break;
716 default:
717 return false;
718 }
719
720 dst = instr->regs[0];
721
722 /* mov's that write to a0 or p0.x are special: */
723 if (dst->num == regid(REG_P0, 0))
724 return false;
725 if (reg_num(dst) == REG_A0)
726 return false;
727
728 if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
729 return false;
730
731 return true;
732 }
733
734 /* A move from const, which changes size but not type, can also be
735 * folded into dest instruction in some cases.
736 */
737 static inline bool is_const_mov(struct ir3_instruction *instr)
738 {
739 if (instr->opc != OPC_MOV)
740 return false;
741
742 if (!(instr->regs[1]->flags & IR3_REG_CONST))
743 return false;
744
745 type_t src_type = instr->cat1.src_type;
746 type_t dst_type = instr->cat1.dst_type;
747
748 return (type_float(src_type) && type_float(dst_type)) ||
749 (type_uint(src_type) && type_uint(dst_type)) ||
750 (type_sint(src_type) && type_sint(dst_type));
751 }
752
753 static inline bool is_alu(struct ir3_instruction *instr)
754 {
755 return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
756 }
757
758 static inline bool is_sfu(struct ir3_instruction *instr)
759 {
760 return (opc_cat(instr->opc) == 4);
761 }
762
763 static inline bool is_tex(struct ir3_instruction *instr)
764 {
765 return (opc_cat(instr->opc) == 5);
766 }
767
768 static inline bool is_tex_or_prefetch(struct ir3_instruction *instr)
769 {
770 return is_tex(instr) || (instr->opc == OPC_META_TEX_PREFETCH);
771 }
772
773 static inline bool is_mem(struct ir3_instruction *instr)
774 {
775 return (opc_cat(instr->opc) == 6);
776 }
777
778 static inline bool is_barrier(struct ir3_instruction *instr)
779 {
780 return (opc_cat(instr->opc) == 7);
781 }
782
783 static inline bool
784 is_half(struct ir3_instruction *instr)
785 {
786 return !!(instr->regs[0]->flags & IR3_REG_HALF);
787 }
788
789 static inline bool
790 is_high(struct ir3_instruction *instr)
791 {
792 return !!(instr->regs[0]->flags & IR3_REG_HIGH);
793 }
794
795 static inline bool
796 is_store(struct ir3_instruction *instr)
797 {
798 /* these instructions, the "destination" register is
799 * actually a source, the address to store to.
800 */
801 switch (instr->opc) {
802 case OPC_STG:
803 case OPC_STGB:
804 case OPC_STIB:
805 case OPC_STP:
806 case OPC_STL:
807 case OPC_STLW:
808 case OPC_L2G:
809 case OPC_G2L:
810 return true;
811 default:
812 return false;
813 }
814 }
815
816 static inline bool is_load(struct ir3_instruction *instr)
817 {
818 switch (instr->opc) {
819 case OPC_LDG:
820 case OPC_LDGB:
821 case OPC_LDIB:
822 case OPC_LDL:
823 case OPC_LDP:
824 case OPC_L2G:
825 case OPC_LDLW:
826 case OPC_LDC:
827 case OPC_LDLV:
828 /* probably some others too.. */
829 return true;
830 default:
831 return false;
832 }
833 }
834
835 static inline bool is_input(struct ir3_instruction *instr)
836 {
837 /* in some cases, ldlv is used to fetch varying without
838 * interpolation.. fortunately inloc is the first src
839 * register in either case
840 */
841 switch (instr->opc) {
842 case OPC_LDLV:
843 case OPC_BARY_F:
844 return true;
845 default:
846 return false;
847 }
848 }
849
850 static inline bool is_bool(struct ir3_instruction *instr)
851 {
852 switch (instr->opc) {
853 case OPC_CMPS_F:
854 case OPC_CMPS_S:
855 case OPC_CMPS_U:
856 return true;
857 default:
858 return false;
859 }
860 }
861
862 static inline opc_t
863 cat3_half_opc(opc_t opc)
864 {
865 switch (opc) {
866 case OPC_MAD_F32: return OPC_MAD_F16;
867 case OPC_SEL_B32: return OPC_SEL_B16;
868 case OPC_SEL_S32: return OPC_SEL_S16;
869 case OPC_SEL_F32: return OPC_SEL_F16;
870 case OPC_SAD_S32: return OPC_SAD_S16;
871 default: return opc;
872 }
873 }
874
875 static inline opc_t
876 cat3_full_opc(opc_t opc)
877 {
878 switch (opc) {
879 case OPC_MAD_F16: return OPC_MAD_F32;
880 case OPC_SEL_B16: return OPC_SEL_B32;
881 case OPC_SEL_S16: return OPC_SEL_S32;
882 case OPC_SEL_F16: return OPC_SEL_F32;
883 case OPC_SAD_S16: return OPC_SAD_S32;
884 default: return opc;
885 }
886 }
887
888 static inline opc_t
889 cat4_half_opc(opc_t opc)
890 {
891 switch (opc) {
892 case OPC_RSQ: return OPC_HRSQ;
893 case OPC_LOG2: return OPC_HLOG2;
894 case OPC_EXP2: return OPC_HEXP2;
895 default: return opc;
896 }
897 }
898
899 static inline opc_t
900 cat4_full_opc(opc_t opc)
901 {
902 switch (opc) {
903 case OPC_HRSQ: return OPC_RSQ;
904 case OPC_HLOG2: return OPC_LOG2;
905 case OPC_HEXP2: return OPC_EXP2;
906 default: return opc;
907 }
908 }
909
910 static inline bool is_meta(struct ir3_instruction *instr)
911 {
912 return (opc_cat(instr->opc) == -1);
913 }
914
915 static inline unsigned dest_regs(struct ir3_instruction *instr)
916 {
917 if ((instr->regs_count == 0) || is_store(instr) || is_flow(instr))
918 return 0;
919
920 return util_last_bit(instr->regs[0]->wrmask);
921 }
922
923 static inline bool
924 writes_gpr(struct ir3_instruction *instr)
925 {
926 if (dest_regs(instr) == 0)
927 return false;
928 /* is dest a normal temp register: */
929 struct ir3_register *reg = instr->regs[0];
930 debug_assert(!(reg->flags & (IR3_REG_CONST | IR3_REG_IMMED)));
931 if ((reg_num(reg) == REG_A0) ||
932 (reg->num == regid(REG_P0, 0)))
933 return false;
934 return true;
935 }
936
937 static inline bool writes_addr0(struct ir3_instruction *instr)
938 {
939 if (instr->regs_count > 0) {
940 struct ir3_register *dst = instr->regs[0];
941 return dst->num == regid(REG_A0, 0);
942 }
943 return false;
944 }
945
946 static inline bool writes_addr1(struct ir3_instruction *instr)
947 {
948 if (instr->regs_count > 0) {
949 struct ir3_register *dst = instr->regs[0];
950 return dst->num == regid(REG_A0, 1);
951 }
952 return false;
953 }
954
955 static inline bool writes_pred(struct ir3_instruction *instr)
956 {
957 if (instr->regs_count > 0) {
958 struct ir3_register *dst = instr->regs[0];
959 return reg_num(dst) == REG_P0;
960 }
961 return false;
962 }
963
964 /* returns defining instruction for reg */
965 /* TODO better name */
966 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
967 {
968 if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
969 return reg->instr;
970 }
971 return NULL;
972 }
973
974 static inline bool conflicts(struct ir3_instruction *a,
975 struct ir3_instruction *b)
976 {
977 return (a && b) && (a != b);
978 }
979
980 static inline bool reg_gpr(struct ir3_register *r)
981 {
982 if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
983 return false;
984 if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
985 return false;
986 return true;
987 }
988
989 static inline type_t half_type(type_t type)
990 {
991 switch (type) {
992 case TYPE_F32: return TYPE_F16;
993 case TYPE_U32: return TYPE_U16;
994 case TYPE_S32: return TYPE_S16;
995 case TYPE_F16:
996 case TYPE_U16:
997 case TYPE_S16:
998 return type;
999 default:
1000 assert(0);
1001 return ~0;
1002 }
1003 }
1004
1005 static inline type_t full_type(type_t type)
1006 {
1007 switch (type) {
1008 case TYPE_F16: return TYPE_F32;
1009 case TYPE_U16: return TYPE_U32;
1010 case TYPE_S16: return TYPE_S32;
1011 case TYPE_F32:
1012 case TYPE_U32:
1013 case TYPE_S32:
1014 return type;
1015 default:
1016 assert(0);
1017 return ~0;
1018 }
1019 }
1020
1021 /* some cat2 instructions (ie. those which are not float) can embed an
1022 * immediate:
1023 */
1024 static inline bool ir3_cat2_int(opc_t opc)
1025 {
1026 switch (opc) {
1027 case OPC_ADD_U:
1028 case OPC_ADD_S:
1029 case OPC_SUB_U:
1030 case OPC_SUB_S:
1031 case OPC_CMPS_U:
1032 case OPC_CMPS_S:
1033 case OPC_MIN_U:
1034 case OPC_MIN_S:
1035 case OPC_MAX_U:
1036 case OPC_MAX_S:
1037 case OPC_CMPV_U:
1038 case OPC_CMPV_S:
1039 case OPC_MUL_U24:
1040 case OPC_MUL_S24:
1041 case OPC_MULL_U:
1042 case OPC_CLZ_S:
1043 case OPC_ABSNEG_S:
1044 case OPC_AND_B:
1045 case OPC_OR_B:
1046 case OPC_NOT_B:
1047 case OPC_XOR_B:
1048 case OPC_BFREV_B:
1049 case OPC_CLZ_B:
1050 case OPC_SHL_B:
1051 case OPC_SHR_B:
1052 case OPC_ASHR_B:
1053 case OPC_MGEN_B:
1054 case OPC_GETBIT_B:
1055 case OPC_CBITS_B:
1056 case OPC_BARY_F:
1057 return true;
1058
1059 default:
1060 return false;
1061 }
1062 }
1063
1064 /* map cat2 instruction to valid abs/neg flags: */
1065 static inline unsigned ir3_cat2_absneg(opc_t opc)
1066 {
1067 switch (opc) {
1068 case OPC_ADD_F:
1069 case OPC_MIN_F:
1070 case OPC_MAX_F:
1071 case OPC_MUL_F:
1072 case OPC_SIGN_F:
1073 case OPC_CMPS_F:
1074 case OPC_ABSNEG_F:
1075 case OPC_CMPV_F:
1076 case OPC_FLOOR_F:
1077 case OPC_CEIL_F:
1078 case OPC_RNDNE_F:
1079 case OPC_RNDAZ_F:
1080 case OPC_TRUNC_F:
1081 case OPC_BARY_F:
1082 return IR3_REG_FABS | IR3_REG_FNEG;
1083
1084 case OPC_ADD_U:
1085 case OPC_ADD_S:
1086 case OPC_SUB_U:
1087 case OPC_SUB_S:
1088 case OPC_CMPS_U:
1089 case OPC_CMPS_S:
1090 case OPC_MIN_U:
1091 case OPC_MIN_S:
1092 case OPC_MAX_U:
1093 case OPC_MAX_S:
1094 case OPC_CMPV_U:
1095 case OPC_CMPV_S:
1096 case OPC_MUL_U24:
1097 case OPC_MUL_S24:
1098 case OPC_MULL_U:
1099 case OPC_CLZ_S:
1100 return 0;
1101
1102 case OPC_ABSNEG_S:
1103 return IR3_REG_SABS | IR3_REG_SNEG;
1104
1105 case OPC_AND_B:
1106 case OPC_OR_B:
1107 case OPC_NOT_B:
1108 case OPC_XOR_B:
1109 case OPC_BFREV_B:
1110 case OPC_CLZ_B:
1111 case OPC_SHL_B:
1112 case OPC_SHR_B:
1113 case OPC_ASHR_B:
1114 case OPC_MGEN_B:
1115 case OPC_GETBIT_B:
1116 case OPC_CBITS_B:
1117 return IR3_REG_BNOT;
1118
1119 default:
1120 return 0;
1121 }
1122 }
1123
1124 /* map cat3 instructions to valid abs/neg flags: */
1125 static inline unsigned ir3_cat3_absneg(opc_t opc)
1126 {
1127 switch (opc) {
1128 case OPC_MAD_F16:
1129 case OPC_MAD_F32:
1130 case OPC_SEL_F16:
1131 case OPC_SEL_F32:
1132 return IR3_REG_FNEG;
1133
1134 case OPC_MAD_U16:
1135 case OPC_MADSH_U16:
1136 case OPC_MAD_S16:
1137 case OPC_MADSH_M16:
1138 case OPC_MAD_U24:
1139 case OPC_MAD_S24:
1140 case OPC_SEL_S16:
1141 case OPC_SEL_S32:
1142 case OPC_SAD_S16:
1143 case OPC_SAD_S32:
1144 /* neg *may* work on 3rd src.. */
1145
1146 case OPC_SEL_B16:
1147 case OPC_SEL_B32:
1148
1149 default:
1150 return 0;
1151 }
1152 }
1153
1154 #define MASK(n) ((1 << (n)) - 1)
1155
1156 /* iterator for an instructions's sources (reg), also returns src #: */
1157 #define foreach_src_n(__srcreg, __n, __instr) \
1158 if ((__instr)->regs_count) \
1159 for (struct ir3_register *__srcreg = (void *)~0; __srcreg; __srcreg = NULL) \
1160 for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
1161 if ((__srcreg = (__instr)->regs[__n + 1]))
1162
1163 /* iterator for an instructions's sources (reg): */
1164 #define foreach_src(__srcreg, __instr) \
1165 foreach_src_n(__srcreg, __i, __instr)
1166
1167 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
1168 {
1169 unsigned cnt = instr->regs_count + instr->deps_count;
1170 if (instr->address)
1171 cnt++;
1172 return cnt;
1173 }
1174
1175 static inline struct ir3_instruction **
1176 __ssa_srcp_n(struct ir3_instruction *instr, unsigned n)
1177 {
1178 if (n == (instr->regs_count + instr->deps_count))
1179 return &instr->address;
1180 if (n >= instr->regs_count)
1181 return &instr->deps[n - instr->regs_count];
1182 if (ssa(instr->regs[n]))
1183 return &instr->regs[n]->instr;
1184 return NULL;
1185 }
1186
1187 static inline bool __is_false_dep(struct ir3_instruction *instr, unsigned n)
1188 {
1189 if (n == (instr->regs_count + instr->deps_count))
1190 return false;
1191 if (n >= instr->regs_count)
1192 return true;
1193 return false;
1194 }
1195
1196 #define foreach_ssa_srcp_n(__srcp, __n, __instr) \
1197 for (struct ir3_instruction **__srcp = (void *)~0; __srcp; __srcp = NULL) \
1198 for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
1199 if ((__srcp = __ssa_srcp_n(__instr, __n)))
1200
1201 #define foreach_ssa_srcp(__srcp, __instr) \
1202 foreach_ssa_srcp_n(__srcp, __i, __instr)
1203
1204 /* iterator for an instruction's SSA sources (instr), also returns src #: */
1205 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
1206 for (struct ir3_instruction *__srcinst = (void *)~0; __srcinst; __srcinst = NULL) \
1207 foreach_ssa_srcp_n(__srcp, __n, __instr) \
1208 if ((__srcinst = *__srcp))
1209
1210 /* iterator for an instruction's SSA sources (instr): */
1211 #define foreach_ssa_src(__srcinst, __instr) \
1212 foreach_ssa_src_n(__srcinst, __i, __instr)
1213
1214 /* iterators for shader inputs: */
1215 #define foreach_input_n(__ininstr, __cnt, __ir) \
1216 for (struct ir3_instruction *__ininstr = (void *)~0; __ininstr; __ininstr = NULL) \
1217 for (unsigned __cnt = 0; __cnt < (__ir)->inputs_count; __cnt++) \
1218 if ((__ininstr = (__ir)->inputs[__cnt]))
1219 #define foreach_input(__ininstr, __ir) \
1220 foreach_input_n(__ininstr, __i, __ir)
1221
1222 /* iterators for shader outputs: */
1223 #define foreach_output_n(__outinstr, __cnt, __ir) \
1224 for (struct ir3_instruction *__outinstr = (void *)~0; __outinstr; __outinstr = NULL) \
1225 for (unsigned __cnt = 0; __cnt < (__ir)->outputs_count; __cnt++) \
1226 if ((__outinstr = (__ir)->outputs[__cnt]))
1227 #define foreach_output(__outinstr, __ir) \
1228 foreach_output_n(__outinstr, __i, __ir)
1229
1230 /* iterators for instructions: */
1231 #define foreach_instr(__instr, __list) \
1232 list_for_each_entry(struct ir3_instruction, __instr, __list, node)
1233 #define foreach_instr_rev(__instr, __list) \
1234 list_for_each_entry_rev(struct ir3_instruction, __instr, __list, node)
1235 #define foreach_instr_safe(__instr, __list) \
1236 list_for_each_entry_safe(struct ir3_instruction, __instr, __list, node)
1237
1238 /* iterators for blocks: */
1239 #define foreach_block(__block, __list) \
1240 list_for_each_entry(struct ir3_block, __block, __list, node)
1241 #define foreach_block_safe(__block, __list) \
1242 list_for_each_entry_safe(struct ir3_block, __block, __list, node)
1243 #define foreach_block_rev(__block, __list) \
1244 list_for_each_entry_rev(struct ir3_block, __block, __list, node)
1245
1246 /* iterators for arrays: */
1247 #define foreach_array(__array, __list) \
1248 list_for_each_entry(struct ir3_array, __array, __list, node)
1249 #define foreach_array_safe(__array, __list) \
1250 list_for_each_entry_safe(struct ir3_array, __array, __list, node)
1251
1252 /* Check if condition is true for any src instruction.
1253 */
1254 static inline bool
1255 check_src_cond(struct ir3_instruction *instr, bool (*cond)(struct ir3_instruction *))
1256 {
1257 /* Note that this is also used post-RA so skip the ssa iterator: */
1258 foreach_src (reg, instr) {
1259 struct ir3_instruction *src = reg->instr;
1260
1261 if (!src)
1262 continue;
1263
1264 /* meta:split/collect aren't real instructions, the thing that
1265 * we actually care about is *their* srcs
1266 */
1267 if ((src->opc == OPC_META_SPLIT) || (src->opc == OPC_META_COLLECT)) {
1268 if (check_src_cond(src, cond))
1269 return true;
1270 } else {
1271 if (cond(src))
1272 return true;
1273 }
1274 }
1275
1276 return false;
1277 }
1278
1279 #define IR3_PASS(ir, pass, ...) ({ \
1280 bool progress = pass(ir, ##__VA_ARGS__); \
1281 if (progress) { \
1282 ir3_debug_print(ir, "AFTER: " #pass); \
1283 ir3_validate(ir); \
1284 } \
1285 progress; \
1286 })
1287
1288 /* validate: */
1289 void ir3_validate(struct ir3 *ir);
1290
1291 /* dump: */
1292 void ir3_print(struct ir3 *ir);
1293 void ir3_print_instr(struct ir3_instruction *instr);
1294
1295 /* delay calculation: */
1296 int ir3_delayslots(struct ir3_instruction *assigner,
1297 struct ir3_instruction *consumer, unsigned n, bool soft);
1298 unsigned ir3_delay_calc(struct ir3_block *block, struct ir3_instruction *instr,
1299 bool soft, bool pred);
1300 void ir3_remove_nops(struct ir3 *ir);
1301
1302 /* dead code elimination: */
1303 struct ir3_shader_variant;
1304 bool ir3_dce(struct ir3 *ir, struct ir3_shader_variant *so);
1305
1306 /* fp16 conversion folding */
1307 bool ir3_cf(struct ir3 *ir);
1308
1309 /* copy-propagate: */
1310 bool ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so);
1311 bool ir3_cp_postsched(struct ir3 *ir);
1312
1313 /* group neighbors and insert mov's to resolve conflicts: */
1314 bool ir3_group(struct ir3 *ir);
1315
1316 /* scheduling: */
1317 bool ir3_sched_add_deps(struct ir3 *ir);
1318 int ir3_sched(struct ir3 *ir);
1319
1320 struct ir3_context;
1321 bool ir3_postsched(struct ir3 *ir, struct ir3_shader_variant *v);
1322
1323 bool ir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so);
1324
1325 /* register assignment: */
1326 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(struct ir3_compiler *compiler, bool mergedregs);
1327 int ir3_ra(struct ir3_shader_variant *v, struct ir3_instruction **precolor, unsigned nprecolor);
1328
1329 /* legalize: */
1330 bool ir3_legalize(struct ir3 *ir, struct ir3_shader_variant *so, int *max_bary);
1331
1332 static inline bool
1333 ir3_has_latency_to_hide(struct ir3 *ir)
1334 {
1335 /* VS/GS/TCS/TESS co-exist with frag shader invocations, but we don't
1336 * know the nature of the fragment shader. Just assume it will have
1337 * latency to hide:
1338 */
1339 if (ir->type != MESA_SHADER_FRAGMENT)
1340 return true;
1341
1342 foreach_block (block, &ir->block_list) {
1343 foreach_instr (instr, &block->instr_list) {
1344 if (is_tex_or_prefetch(instr))
1345 return true;
1346
1347 if (is_load(instr)) {
1348 switch (instr->opc) {
1349 case OPC_LDLV:
1350 case OPC_LDL:
1351 case OPC_LDLW:
1352 break;
1353 default:
1354 return true;
1355 }
1356 }
1357 }
1358 }
1359
1360 return false;
1361 }
1362
1363 /* ************************************************************************* */
1364 /* instruction helpers */
1365
1366 /* creates SSA src of correct type (ie. half vs full precision) */
1367 static inline struct ir3_register * __ssa_src(struct ir3_instruction *instr,
1368 struct ir3_instruction *src, unsigned flags)
1369 {
1370 struct ir3_register *reg;
1371 if (src->regs[0]->flags & IR3_REG_HALF)
1372 flags |= IR3_REG_HALF;
1373 reg = ir3_reg_create(instr, 0, IR3_REG_SSA | flags);
1374 reg->instr = src;
1375 reg->wrmask = src->regs[0]->wrmask;
1376 return reg;
1377 }
1378
1379 static inline struct ir3_register * __ssa_dst(struct ir3_instruction *instr)
1380 {
1381 struct ir3_register *reg = ir3_reg_create(instr, 0, 0);
1382 reg->flags |= IR3_REG_SSA;
1383 return reg;
1384 }
1385
1386 static inline struct ir3_instruction *
1387 create_immed_typed(struct ir3_block *block, uint32_t val, type_t type)
1388 {
1389 struct ir3_instruction *mov;
1390 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1391
1392 mov = ir3_instr_create(block, OPC_MOV);
1393 mov->cat1.src_type = type;
1394 mov->cat1.dst_type = type;
1395 __ssa_dst(mov)->flags |= flags;
1396 ir3_reg_create(mov, 0, IR3_REG_IMMED | flags)->uim_val = val;
1397
1398 return mov;
1399 }
1400
1401 static inline struct ir3_instruction *
1402 create_immed(struct ir3_block *block, uint32_t val)
1403 {
1404 return create_immed_typed(block, val, TYPE_U32);
1405 }
1406
1407 static inline struct ir3_instruction *
1408 create_uniform_typed(struct ir3_block *block, unsigned n, type_t type)
1409 {
1410 struct ir3_instruction *mov;
1411 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1412
1413 mov = ir3_instr_create(block, OPC_MOV);
1414 mov->cat1.src_type = type;
1415 mov->cat1.dst_type = type;
1416 __ssa_dst(mov)->flags |= flags;
1417 ir3_reg_create(mov, n, IR3_REG_CONST | flags);
1418
1419 return mov;
1420 }
1421
1422 static inline struct ir3_instruction *
1423 create_uniform(struct ir3_block *block, unsigned n)
1424 {
1425 return create_uniform_typed(block, n, TYPE_F32);
1426 }
1427
1428 static inline struct ir3_instruction *
1429 create_uniform_indirect(struct ir3_block *block, int n,
1430 struct ir3_instruction *address)
1431 {
1432 struct ir3_instruction *mov;
1433
1434 mov = ir3_instr_create(block, OPC_MOV);
1435 mov->cat1.src_type = TYPE_U32;
1436 mov->cat1.dst_type = TYPE_U32;
1437 __ssa_dst(mov);
1438 ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
1439
1440 ir3_instr_set_address(mov, address);
1441
1442 return mov;
1443 }
1444
1445 static inline struct ir3_instruction *
1446 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
1447 {
1448 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1449 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1450
1451 __ssa_dst(instr)->flags |= flags;
1452 if (src->regs[0]->flags & IR3_REG_ARRAY) {
1453 struct ir3_register *src_reg = __ssa_src(instr, src, IR3_REG_ARRAY);
1454 src_reg->array = src->regs[0]->array;
1455 } else {
1456 __ssa_src(instr, src, src->regs[0]->flags & IR3_REG_HIGH);
1457 }
1458 debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
1459 instr->cat1.src_type = type;
1460 instr->cat1.dst_type = type;
1461 return instr;
1462 }
1463
1464 static inline struct ir3_instruction *
1465 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
1466 type_t src_type, type_t dst_type)
1467 {
1468 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1469 unsigned dst_flags = (type_size(dst_type) < 32) ? IR3_REG_HALF : 0;
1470 unsigned src_flags = (type_size(src_type) < 32) ? IR3_REG_HALF : 0;
1471
1472 debug_assert((src->regs[0]->flags & IR3_REG_HALF) == src_flags);
1473
1474 __ssa_dst(instr)->flags |= dst_flags;
1475 __ssa_src(instr, src, 0);
1476 instr->cat1.src_type = src_type;
1477 instr->cat1.dst_type = dst_type;
1478 debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
1479 return instr;
1480 }
1481
1482 static inline struct ir3_instruction *
1483 ir3_NOP(struct ir3_block *block)
1484 {
1485 return ir3_instr_create(block, OPC_NOP);
1486 }
1487
1488 #define IR3_INSTR_0 0
1489
1490 #define __INSTR0(flag, name, opc) \
1491 static inline struct ir3_instruction * \
1492 ir3_##name(struct ir3_block *block) \
1493 { \
1494 struct ir3_instruction *instr = \
1495 ir3_instr_create(block, opc); \
1496 instr->flags |= flag; \
1497 return instr; \
1498 }
1499 #define INSTR0F(f, name) __INSTR0(IR3_INSTR_##f, name##_##f, OPC_##name)
1500 #define INSTR0(name) __INSTR0(0, name, OPC_##name)
1501
1502 #define __INSTR1(flag, name, opc) \
1503 static inline struct ir3_instruction * \
1504 ir3_##name(struct ir3_block *block, \
1505 struct ir3_instruction *a, unsigned aflags) \
1506 { \
1507 struct ir3_instruction *instr = \
1508 ir3_instr_create(block, opc); \
1509 __ssa_dst(instr); \
1510 __ssa_src(instr, a, aflags); \
1511 instr->flags |= flag; \
1512 return instr; \
1513 }
1514 #define INSTR1F(f, name) __INSTR1(IR3_INSTR_##f, name##_##f, OPC_##name)
1515 #define INSTR1(name) __INSTR1(0, name, OPC_##name)
1516
1517 #define __INSTR2(flag, name, opc) \
1518 static inline struct ir3_instruction * \
1519 ir3_##name(struct ir3_block *block, \
1520 struct ir3_instruction *a, unsigned aflags, \
1521 struct ir3_instruction *b, unsigned bflags) \
1522 { \
1523 struct ir3_instruction *instr = \
1524 ir3_instr_create(block, opc); \
1525 __ssa_dst(instr); \
1526 __ssa_src(instr, a, aflags); \
1527 __ssa_src(instr, b, bflags); \
1528 instr->flags |= flag; \
1529 return instr; \
1530 }
1531 #define INSTR2F(f, name) __INSTR2(IR3_INSTR_##f, name##_##f, OPC_##name)
1532 #define INSTR2(name) __INSTR2(0, name, OPC_##name)
1533
1534 #define __INSTR3(flag, name, opc) \
1535 static inline struct ir3_instruction * \
1536 ir3_##name(struct ir3_block *block, \
1537 struct ir3_instruction *a, unsigned aflags, \
1538 struct ir3_instruction *b, unsigned bflags, \
1539 struct ir3_instruction *c, unsigned cflags) \
1540 { \
1541 struct ir3_instruction *instr = \
1542 ir3_instr_create2(block, opc, 4); \
1543 __ssa_dst(instr); \
1544 __ssa_src(instr, a, aflags); \
1545 __ssa_src(instr, b, bflags); \
1546 __ssa_src(instr, c, cflags); \
1547 instr->flags |= flag; \
1548 return instr; \
1549 }
1550 #define INSTR3F(f, name) __INSTR3(IR3_INSTR_##f, name##_##f, OPC_##name)
1551 #define INSTR3(name) __INSTR3(0, name, OPC_##name)
1552
1553 #define __INSTR4(flag, name, opc) \
1554 static inline struct ir3_instruction * \
1555 ir3_##name(struct ir3_block *block, \
1556 struct ir3_instruction *a, unsigned aflags, \
1557 struct ir3_instruction *b, unsigned bflags, \
1558 struct ir3_instruction *c, unsigned cflags, \
1559 struct ir3_instruction *d, unsigned dflags) \
1560 { \
1561 struct ir3_instruction *instr = \
1562 ir3_instr_create2(block, opc, 5); \
1563 __ssa_dst(instr); \
1564 __ssa_src(instr, a, aflags); \
1565 __ssa_src(instr, b, bflags); \
1566 __ssa_src(instr, c, cflags); \
1567 __ssa_src(instr, d, dflags); \
1568 instr->flags |= flag; \
1569 return instr; \
1570 }
1571 #define INSTR4F(f, name) __INSTR4(IR3_INSTR_##f, name##_##f, OPC_##name)
1572 #define INSTR4(name) __INSTR4(0, name, OPC_##name)
1573
1574 /* cat0 instructions: */
1575 INSTR1(B)
1576 INSTR0(JUMP)
1577 INSTR1(KILL)
1578 INSTR0(END)
1579 INSTR0(CHSH)
1580 INSTR0(CHMASK)
1581 INSTR1(PREDT)
1582 INSTR0(PREDF)
1583 INSTR0(PREDE)
1584
1585 /* cat2 instructions, most 2 src but some 1 src: */
1586 INSTR2(ADD_F)
1587 INSTR2(MIN_F)
1588 INSTR2(MAX_F)
1589 INSTR2(MUL_F)
1590 INSTR1(SIGN_F)
1591 INSTR2(CMPS_F)
1592 INSTR1(ABSNEG_F)
1593 INSTR2(CMPV_F)
1594 INSTR1(FLOOR_F)
1595 INSTR1(CEIL_F)
1596 INSTR1(RNDNE_F)
1597 INSTR1(RNDAZ_F)
1598 INSTR1(TRUNC_F)
1599 INSTR2(ADD_U)
1600 INSTR2(ADD_S)
1601 INSTR2(SUB_U)
1602 INSTR2(SUB_S)
1603 INSTR2(CMPS_U)
1604 INSTR2(CMPS_S)
1605 INSTR2(MIN_U)
1606 INSTR2(MIN_S)
1607 INSTR2(MAX_U)
1608 INSTR2(MAX_S)
1609 INSTR1(ABSNEG_S)
1610 INSTR2(AND_B)
1611 INSTR2(OR_B)
1612 INSTR1(NOT_B)
1613 INSTR2(XOR_B)
1614 INSTR2(CMPV_U)
1615 INSTR2(CMPV_S)
1616 INSTR2(MUL_U24)
1617 INSTR2(MUL_S24)
1618 INSTR2(MULL_U)
1619 INSTR1(BFREV_B)
1620 INSTR1(CLZ_S)
1621 INSTR1(CLZ_B)
1622 INSTR2(SHL_B)
1623 INSTR2(SHR_B)
1624 INSTR2(ASHR_B)
1625 INSTR2(BARY_F)
1626 INSTR2(MGEN_B)
1627 INSTR2(GETBIT_B)
1628 INSTR1(SETRM)
1629 INSTR1(CBITS_B)
1630 INSTR2(SHB)
1631 INSTR2(MSAD)
1632
1633 /* cat3 instructions: */
1634 INSTR3(MAD_U16)
1635 INSTR3(MADSH_U16)
1636 INSTR3(MAD_S16)
1637 INSTR3(MADSH_M16)
1638 INSTR3(MAD_U24)
1639 INSTR3(MAD_S24)
1640 INSTR3(MAD_F16)
1641 INSTR3(MAD_F32)
1642 /* NOTE: SEL_B32 checks for zero vs nonzero */
1643 INSTR3(SEL_B16)
1644 INSTR3(SEL_B32)
1645 INSTR3(SEL_S16)
1646 INSTR3(SEL_S32)
1647 INSTR3(SEL_F16)
1648 INSTR3(SEL_F32)
1649 INSTR3(SAD_S16)
1650 INSTR3(SAD_S32)
1651
1652 /* cat4 instructions: */
1653 INSTR1(RCP)
1654 INSTR1(RSQ)
1655 INSTR1(HRSQ)
1656 INSTR1(LOG2)
1657 INSTR1(HLOG2)
1658 INSTR1(EXP2)
1659 INSTR1(HEXP2)
1660 INSTR1(SIN)
1661 INSTR1(COS)
1662 INSTR1(SQRT)
1663
1664 /* cat5 instructions: */
1665 INSTR1(DSX)
1666 INSTR1(DSXPP_MACRO)
1667 INSTR1(DSY)
1668 INSTR1(DSYPP_MACRO)
1669 INSTR1F(3D, DSX)
1670 INSTR1F(3D, DSY)
1671 INSTR1(RGETPOS)
1672
1673 static inline struct ir3_instruction *
1674 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
1675 unsigned wrmask, unsigned flags, struct ir3_instruction *samp_tex,
1676 struct ir3_instruction *src0, struct ir3_instruction *src1)
1677 {
1678 struct ir3_instruction *sam;
1679
1680 sam = ir3_instr_create(block, opc);
1681 sam->flags |= flags;
1682 __ssa_dst(sam)->wrmask = wrmask;
1683 if (flags & IR3_INSTR_S2EN) {
1684 __ssa_src(sam, samp_tex, (flags & IR3_INSTR_B) ? 0 : IR3_REG_HALF);
1685 }
1686 if (src0) {
1687 __ssa_src(sam, src0, 0);
1688 }
1689 if (src1) {
1690 __ssa_src(sam, src1, 0);
1691 }
1692 sam->cat5.type = type;
1693
1694 return sam;
1695 }
1696
1697 /* cat6 instructions: */
1698 INSTR2(LDLV)
1699 INSTR3(LDG)
1700 INSTR3(LDL)
1701 INSTR3(LDLW)
1702 INSTR3(STG)
1703 INSTR3(STL)
1704 INSTR3(STLW)
1705 INSTR1(RESINFO)
1706 INSTR1(RESFMT)
1707 INSTR2(ATOMIC_ADD)
1708 INSTR2(ATOMIC_SUB)
1709 INSTR2(ATOMIC_XCHG)
1710 INSTR2(ATOMIC_INC)
1711 INSTR2(ATOMIC_DEC)
1712 INSTR2(ATOMIC_CMPXCHG)
1713 INSTR2(ATOMIC_MIN)
1714 INSTR2(ATOMIC_MAX)
1715 INSTR2(ATOMIC_AND)
1716 INSTR2(ATOMIC_OR)
1717 INSTR2(ATOMIC_XOR)
1718 INSTR2(LDC)
1719 #if GPU >= 600
1720 INSTR3(STIB);
1721 INSTR2(LDIB);
1722 INSTR3F(G, ATOMIC_ADD)
1723 INSTR3F(G, ATOMIC_SUB)
1724 INSTR3F(G, ATOMIC_XCHG)
1725 INSTR3F(G, ATOMIC_INC)
1726 INSTR3F(G, ATOMIC_DEC)
1727 INSTR3F(G, ATOMIC_CMPXCHG)
1728 INSTR3F(G, ATOMIC_MIN)
1729 INSTR3F(G, ATOMIC_MAX)
1730 INSTR3F(G, ATOMIC_AND)
1731 INSTR3F(G, ATOMIC_OR)
1732 INSTR3F(G, ATOMIC_XOR)
1733 #elif GPU >= 400
1734 INSTR3(LDGB)
1735 INSTR4(STGB)
1736 INSTR4(STIB)
1737 INSTR4F(G, ATOMIC_ADD)
1738 INSTR4F(G, ATOMIC_SUB)
1739 INSTR4F(G, ATOMIC_XCHG)
1740 INSTR4F(G, ATOMIC_INC)
1741 INSTR4F(G, ATOMIC_DEC)
1742 INSTR4F(G, ATOMIC_CMPXCHG)
1743 INSTR4F(G, ATOMIC_MIN)
1744 INSTR4F(G, ATOMIC_MAX)
1745 INSTR4F(G, ATOMIC_AND)
1746 INSTR4F(G, ATOMIC_OR)
1747 INSTR4F(G, ATOMIC_XOR)
1748 #endif
1749
1750 INSTR4F(G, STG)
1751
1752 /* cat7 instructions: */
1753 INSTR0(BAR)
1754 INSTR0(FENCE)
1755
1756 /* meta instructions: */
1757 INSTR0(META_TEX_PREFETCH);
1758
1759 /* ************************************************************************* */
1760 #include "regmask.h"
1761
1762 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1763 {
1764 bool half = reg->flags & IR3_REG_HALF;
1765 if (reg->flags & IR3_REG_RELATIV) {
1766 for (unsigned i = 0; i < reg->size; i++)
1767 __regmask_set(regmask, half, reg->array.offset + i);
1768 } else {
1769 for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++)
1770 if (mask & 1)
1771 __regmask_set(regmask, half, n);
1772 }
1773 }
1774
1775 static inline bool regmask_get(regmask_t *regmask,
1776 struct ir3_register *reg)
1777 {
1778 bool half = reg->flags & IR3_REG_HALF;
1779 if (reg->flags & IR3_REG_RELATIV) {
1780 for (unsigned i = 0; i < reg->size; i++)
1781 if (__regmask_get(regmask, half, reg->array.offset + i))
1782 return true;
1783 } else {
1784 for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++)
1785 if (mask & 1)
1786 if (__regmask_get(regmask, half, n))
1787 return true;
1788 }
1789 return false;
1790 }
1791 /* ************************************************************************* */
1792
1793 #endif /* IR3_H_ */