freedreno/ir3/postsched: report progress
[mesa.git] / src / freedreno / ir3 / ir3.h
1 /*
2 * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #ifndef IR3_H_
25 #define IR3_H_
26
27 #include <stdint.h>
28 #include <stdbool.h>
29
30 #include "compiler/shader_enums.h"
31
32 #include "util/bitscan.h"
33 #include "util/list.h"
34 #include "util/set.h"
35 #include "util/u_debug.h"
36
37 #include "instr-a3xx.h"
38
39 /* low level intermediate representation of an adreno shader program */
40
41 struct ir3_compiler;
42 struct ir3;
43 struct ir3_instruction;
44 struct ir3_block;
45
46 struct ir3_info {
47 uint32_t gpu_id;
48 uint16_t sizedwords;
49 uint16_t instrs_count; /* expanded to account for rpt's */
50 uint16_t nops_count; /* # of nop instructions, including nopN */
51 uint16_t mov_count;
52 uint16_t cov_count;
53 /* NOTE: max_reg, etc, does not include registers not touched
54 * by the shader (ie. vertex fetched via VFD_DECODE but not
55 * touched by shader)
56 */
57 int8_t max_reg; /* highest GPR # used by shader */
58 int8_t max_half_reg;
59 int16_t max_const;
60
61 /* number of sync bits: */
62 uint16_t ss, sy;
63
64 /* estimate of number of cycles stalled on (ss) */
65 uint16_t sstall;
66
67 uint16_t last_baryf; /* instruction # of last varying fetch */
68 };
69
70 struct ir3_register {
71 enum {
72 IR3_REG_CONST = 0x001,
73 IR3_REG_IMMED = 0x002,
74 IR3_REG_HALF = 0x004,
75 /* high registers are used for some things in compute shaders,
76 * for example. Seems to be for things that are global to all
77 * threads in a wave, so possibly these are global/shared by
78 * all the threads in the wave?
79 */
80 IR3_REG_HIGH = 0x008,
81 IR3_REG_RELATIV= 0x010,
82 IR3_REG_R = 0x020,
83 /* Most instructions, it seems, can do float abs/neg but not
84 * integer. The CP pass needs to know what is intended (int or
85 * float) in order to do the right thing. For this reason the
86 * abs/neg flags are split out into float and int variants. In
87 * addition, .b (bitwise) operations, the negate is actually a
88 * bitwise not, so split that out into a new flag to make it
89 * more clear.
90 */
91 IR3_REG_FNEG = 0x040,
92 IR3_REG_FABS = 0x080,
93 IR3_REG_SNEG = 0x100,
94 IR3_REG_SABS = 0x200,
95 IR3_REG_BNOT = 0x400,
96 IR3_REG_EVEN = 0x800,
97 IR3_REG_POS_INF= 0x1000,
98 /* (ei) flag, end-input? Set on last bary, presumably to signal
99 * that the shader needs no more input:
100 */
101 IR3_REG_EI = 0x2000,
102 /* meta-flags, for intermediate stages of IR, ie.
103 * before register assignment is done:
104 */
105 IR3_REG_SSA = 0x4000, /* 'instr' is ptr to assigning instr */
106 IR3_REG_ARRAY = 0x8000,
107
108 } flags;
109
110 /* used for cat5 instructions, but also for internal/IR level
111 * tracking of what registers are read/written by an instruction.
112 * wrmask may be a bad name since it is used to represent both
113 * src and dst that touch multiple adjacent registers.
114 */
115 unsigned wrmask : 16; /* up to vec16 */
116
117 /* for relative addressing, 32bits for array size is too small,
118 * but otoh we don't need to deal with disjoint sets, so instead
119 * use a simple size field (number of scalar components).
120 *
121 * Note the size field isn't important for relative const (since
122 * we don't have to do register allocation for constants).
123 */
124 unsigned size : 15;
125
126 bool merged : 1; /* half-regs conflict with full regs (ie >= a6xx) */
127
128 /* normal registers:
129 * the component is in the low two bits of the reg #, so
130 * rN.x becomes: (N << 2) | x
131 */
132 uint16_t num;
133 union {
134 /* immediate: */
135 int32_t iim_val;
136 uint32_t uim_val;
137 float fim_val;
138 /* relative: */
139 struct {
140 uint16_t id;
141 int16_t offset;
142 } array;
143 };
144
145 /* For IR3_REG_SSA, src registers contain ptr back to assigning
146 * instruction.
147 *
148 * For IR3_REG_ARRAY, the pointer is back to the last dependent
149 * array access (although the net effect is the same, it points
150 * back to a previous instruction that we depend on).
151 */
152 struct ir3_instruction *instr;
153 };
154
155 /*
156 * Stupid/simple growable array implementation:
157 */
158 #define DECLARE_ARRAY(type, name) \
159 unsigned name ## _count, name ## _sz; \
160 type * name;
161
162 #define array_insert(ctx, arr, val) do { \
163 if (arr ## _count == arr ## _sz) { \
164 arr ## _sz = MAX2(2 * arr ## _sz, 16); \
165 arr = reralloc_size(ctx, arr, arr ## _sz * sizeof(arr[0])); \
166 } \
167 arr[arr ##_count++] = val; \
168 } while (0)
169
170 struct ir3_instruction {
171 struct ir3_block *block;
172 opc_t opc;
173 enum {
174 /* (sy) flag is set on first instruction, and after sample
175 * instructions (probably just on RAW hazard).
176 */
177 IR3_INSTR_SY = 0x001,
178 /* (ss) flag is set on first instruction, and first instruction
179 * to depend on the result of "long" instructions (RAW hazard):
180 *
181 * rcp, rsq, log2, exp2, sin, cos, sqrt
182 *
183 * It seems to synchronize until all in-flight instructions are
184 * completed, for example:
185 *
186 * rsq hr1.w, hr1.w
187 * add.f hr2.z, (neg)hr2.z, hc0.y
188 * mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
189 * rsq hr2.x, hr2.x
190 * (rpt1)nop
191 * mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
192 * nop
193 * mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
194 * (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
195 * (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
196 *
197 * The last mul.f does not have (ss) set, presumably because the
198 * (ss) on the previous instruction does the job.
199 *
200 * The blob driver also seems to set it on WAR hazards, although
201 * not really clear if this is needed or just blob compiler being
202 * sloppy. So far I haven't found a case where removing the (ss)
203 * causes problems for WAR hazard, but I could just be getting
204 * lucky:
205 *
206 * rcp r1.y, r3.y
207 * (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
208 *
209 */
210 IR3_INSTR_SS = 0x002,
211 /* (jp) flag is set on jump targets:
212 */
213 IR3_INSTR_JP = 0x004,
214 IR3_INSTR_UL = 0x008,
215 IR3_INSTR_3D = 0x010,
216 IR3_INSTR_A = 0x020,
217 IR3_INSTR_O = 0x040,
218 IR3_INSTR_P = 0x080,
219 IR3_INSTR_S = 0x100,
220 IR3_INSTR_S2EN = 0x200,
221 IR3_INSTR_G = 0x400,
222 IR3_INSTR_SAT = 0x800,
223 /* (cat5/cat6) Bindless */
224 IR3_INSTR_B = 0x1000,
225 /* (cat5-only) Get some parts of the encoding from a1.x */
226 IR3_INSTR_A1EN = 0x2000,
227 /* meta-flags, for intermediate stages of IR, ie.
228 * before register assignment is done:
229 */
230 IR3_INSTR_MARK = 0x4000,
231 IR3_INSTR_UNUSED= 0x8000,
232 } flags;
233 uint8_t repeat;
234 uint8_t nop;
235 #ifdef DEBUG
236 unsigned regs_max;
237 #endif
238 unsigned regs_count;
239 struct ir3_register **regs;
240 union {
241 struct {
242 char inv;
243 char comp;
244 int immed;
245 struct ir3_block *target;
246 } cat0;
247 struct {
248 type_t src_type, dst_type;
249 } cat1;
250 struct {
251 enum {
252 IR3_COND_LT = 0,
253 IR3_COND_LE = 1,
254 IR3_COND_GT = 2,
255 IR3_COND_GE = 3,
256 IR3_COND_EQ = 4,
257 IR3_COND_NE = 5,
258 } condition;
259 } cat2;
260 struct {
261 unsigned samp, tex;
262 unsigned tex_base : 3;
263 type_t type;
264 } cat5;
265 struct {
266 type_t type;
267 int src_offset;
268 int dst_offset;
269 int iim_val : 3; /* for ldgb/stgb, # of components */
270 unsigned d : 3; /* for ldc, component offset */
271 bool typed : 1;
272 unsigned base : 3;
273 } cat6;
274 struct {
275 unsigned w : 1; /* write */
276 unsigned r : 1; /* read */
277 unsigned l : 1; /* local */
278 unsigned g : 1; /* global */
279 } cat7;
280 /* for meta-instructions, just used to hold extra data
281 * before instruction scheduling, etc
282 */
283 struct {
284 int off; /* component/offset */
285 } split;
286 struct {
287 /* for output collects, this maps back to the entry in the
288 * ir3_shader_variant::outputs table.
289 */
290 int outidx;
291 } collect;
292 struct {
293 unsigned samp, tex;
294 unsigned input_offset;
295 unsigned samp_base : 3;
296 unsigned tex_base : 3;
297 } prefetch;
298 struct {
299 /* maps back to entry in ir3_shader_variant::inputs table: */
300 int inidx;
301 /* for sysvals, identifies the sysval type. Mostly so we can
302 * identify the special cases where a sysval should not be DCE'd
303 * (currently, just pre-fs texture fetch)
304 */
305 gl_system_value sysval;
306 } input;
307 };
308
309 /* When we get to the RA stage, we need instruction's position/name: */
310 uint16_t ip;
311 uint16_t name;
312
313 /* used for per-pass extra instruction data.
314 *
315 * TODO we should remove the per-pass data like this and 'use_count'
316 * and do something similar to what RA does w/ ir3_ra_instr_data..
317 * ie. use the ir3_count_instructions pass, and then use instr->ip
318 * to index into a table of pass-private data.
319 */
320 void *data;
321
322 /**
323 * Valid if pass calls ir3_find_ssa_uses().. see foreach_ssa_use()
324 */
325 struct set *uses;
326
327 int use_count; /* currently just updated/used by cp */
328
329 /* Used during CP and RA stages. For collect and shader inputs/
330 * outputs where we need a sequence of consecutive registers,
331 * keep track of each src instructions left (ie 'n-1') and right
332 * (ie 'n+1') neighbor. The front-end must insert enough mov's
333 * to ensure that each instruction has at most one left and at
334 * most one right neighbor. During the copy-propagation pass,
335 * we only remove mov's when we can preserve this constraint.
336 * And during the RA stage, we use the neighbor information to
337 * allocate a block of registers in one shot.
338 *
339 * TODO: maybe just add something like:
340 * struct ir3_instruction_ref {
341 * struct ir3_instruction *instr;
342 * unsigned cnt;
343 * }
344 *
345 * Or can we get away without the refcnt stuff? It seems like
346 * it should be overkill.. the problem is if, potentially after
347 * already eliminating some mov's, if you have a single mov that
348 * needs to be grouped with it's neighbors in two different
349 * places (ex. shader output and a collect).
350 */
351 struct {
352 struct ir3_instruction *left, *right;
353 uint16_t left_cnt, right_cnt;
354 } cp;
355
356 /* an instruction can reference at most one address register amongst
357 * it's src/dst registers. Beyond that, you need to insert mov's.
358 *
359 * NOTE: do not write this directly, use ir3_instr_set_address()
360 */
361 struct ir3_instruction *address;
362
363 /* Tracking for additional dependent instructions. Used to handle
364 * barriers, WAR hazards for arrays/SSBOs/etc.
365 */
366 DECLARE_ARRAY(struct ir3_instruction *, deps);
367
368 /*
369 * From PoV of instruction scheduling, not execution (ie. ignores global/
370 * local distinction):
371 * shared image atomic SSBO everything
372 * barrier()/ - R/W R/W R/W R/W X
373 * groupMemoryBarrier()
374 * memoryBarrier() - R/W R/W
375 * (but only images declared coherent?)
376 * memoryBarrierAtomic() - R/W
377 * memoryBarrierBuffer() - R/W
378 * memoryBarrierImage() - R/W
379 * memoryBarrierShared() - R/W
380 *
381 * TODO I think for SSBO/image/shared, in cases where we can determine
382 * which variable is accessed, we don't need to care about accesses to
383 * different variables (unless declared coherent??)
384 */
385 enum {
386 IR3_BARRIER_EVERYTHING = 1 << 0,
387 IR3_BARRIER_SHARED_R = 1 << 1,
388 IR3_BARRIER_SHARED_W = 1 << 2,
389 IR3_BARRIER_IMAGE_R = 1 << 3,
390 IR3_BARRIER_IMAGE_W = 1 << 4,
391 IR3_BARRIER_BUFFER_R = 1 << 5,
392 IR3_BARRIER_BUFFER_W = 1 << 6,
393 IR3_BARRIER_ARRAY_R = 1 << 7,
394 IR3_BARRIER_ARRAY_W = 1 << 8,
395 } barrier_class, barrier_conflict;
396
397 /* Entry in ir3_block's instruction list: */
398 struct list_head node;
399
400 #ifdef DEBUG
401 uint32_t serialno;
402 #endif
403
404 // TODO only computerator/assembler:
405 int line;
406 };
407
408 static inline struct ir3_instruction *
409 ir3_neighbor_first(struct ir3_instruction *instr)
410 {
411 int cnt = 0;
412 while (instr->cp.left) {
413 instr = instr->cp.left;
414 if (++cnt > 0xffff) {
415 debug_assert(0);
416 break;
417 }
418 }
419 return instr;
420 }
421
422 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
423 {
424 int num = 1;
425
426 debug_assert(!instr->cp.left);
427
428 while (instr->cp.right) {
429 num++;
430 instr = instr->cp.right;
431 if (num > 0xffff) {
432 debug_assert(0);
433 break;
434 }
435 }
436
437 return num;
438 }
439
440 struct ir3 {
441 struct ir3_compiler *compiler;
442 gl_shader_stage type;
443
444 DECLARE_ARRAY(struct ir3_instruction *, inputs);
445 DECLARE_ARRAY(struct ir3_instruction *, outputs);
446
447 /* Track bary.f (and ldlv) instructions.. this is needed in
448 * scheduling to ensure that all varying fetches happen before
449 * any potential kill instructions. The hw gets grumpy if all
450 * threads in a group are killed before the last bary.f gets
451 * a chance to signal end of input (ei).
452 */
453 DECLARE_ARRAY(struct ir3_instruction *, baryfs);
454
455 /* Track all indirect instructions (read and write). To avoid
456 * deadlock scenario where an address register gets scheduled,
457 * but other dependent src instructions cannot be scheduled due
458 * to dependency on a *different* address register value, the
459 * scheduler needs to ensure that all dependencies other than
460 * the instruction other than the address register are scheduled
461 * before the one that writes the address register. Having a
462 * convenient list of instructions that reference some address
463 * register simplifies this.
464 */
465 DECLARE_ARRAY(struct ir3_instruction *, a0_users);
466
467 /* same for a1.x: */
468 DECLARE_ARRAY(struct ir3_instruction *, a1_users);
469
470 /* and same for instructions that consume predicate register: */
471 DECLARE_ARRAY(struct ir3_instruction *, predicates);
472
473 /* Track texture sample instructions which need texture state
474 * patched in (for astc-srgb workaround):
475 */
476 DECLARE_ARRAY(struct ir3_instruction *, astc_srgb);
477
478 /* List of blocks: */
479 struct list_head block_list;
480
481 /* List of ir3_array's: */
482 struct list_head array_list;
483
484 #ifdef DEBUG
485 unsigned block_count, instr_count;
486 #endif
487 };
488
489 struct ir3_array {
490 struct list_head node;
491 unsigned length;
492 unsigned id;
493
494 struct nir_register *r;
495
496 /* To avoid array write's from getting DCE'd, keep track of the
497 * most recent write. Any array access depends on the most
498 * recent write. This way, nothing depends on writes after the
499 * last read. But all the writes that happen before that have
500 * something depending on them
501 */
502 struct ir3_instruction *last_write;
503
504 /* extra stuff used in RA pass: */
505 unsigned base; /* base vreg name */
506 unsigned reg; /* base physical reg */
507 uint16_t start_ip, end_ip;
508
509 /* Indicates if half-precision */
510 bool half;
511 };
512
513 struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
514
515 struct ir3_block {
516 struct list_head node;
517 struct ir3 *shader;
518
519 const struct nir_block *nblock;
520
521 struct list_head instr_list; /* list of ir3_instruction */
522
523 /* each block has either one or two successors.. in case of
524 * two successors, 'condition' decides which one to follow.
525 * A block preceding an if/else has two successors.
526 */
527 struct ir3_instruction *condition;
528 struct ir3_block *successors[2];
529
530 struct set *predecessors; /* set of ir3_block */
531
532 uint16_t start_ip, end_ip;
533
534 /* Track instructions which do not write a register but other-
535 * wise must not be discarded (such as kill, stg, etc)
536 */
537 DECLARE_ARRAY(struct ir3_instruction *, keeps);
538
539 /* used for per-pass extra block data. Mainly used right
540 * now in RA step to track livein/liveout.
541 */
542 void *data;
543
544 #ifdef DEBUG
545 uint32_t serialno;
546 #endif
547 };
548
549 static inline uint32_t
550 block_id(struct ir3_block *block)
551 {
552 #ifdef DEBUG
553 return block->serialno;
554 #else
555 return (uint32_t)(unsigned long)block;
556 #endif
557 }
558
559 struct ir3 * ir3_create(struct ir3_compiler *compiler, gl_shader_stage type);
560 void ir3_destroy(struct ir3 *shader);
561 void * ir3_assemble(struct ir3 *shader,
562 struct ir3_info *info, uint32_t gpu_id);
563 void * ir3_alloc(struct ir3 *shader, int sz);
564
565 struct ir3_block * ir3_block_create(struct ir3 *shader);
566
567 struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
568 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
569 opc_t opc, int nreg);
570 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
571 void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep);
572 const char *ir3_instr_name(struct ir3_instruction *instr);
573
574 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
575 int num, int flags);
576 struct ir3_register * ir3_reg_clone(struct ir3 *shader,
577 struct ir3_register *reg);
578
579 void ir3_instr_set_address(struct ir3_instruction *instr,
580 struct ir3_instruction *addr);
581
582 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
583 {
584 if (instr->flags & IR3_INSTR_MARK)
585 return true; /* already visited */
586 instr->flags |= IR3_INSTR_MARK;
587 return false;
588 }
589
590 void ir3_block_clear_mark(struct ir3_block *block);
591 void ir3_clear_mark(struct ir3 *shader);
592
593 unsigned ir3_count_instructions(struct ir3 *ir);
594 unsigned ir3_count_instructions_ra(struct ir3 *ir);
595
596 void ir3_find_ssa_uses(struct ir3 *ir, void *mem_ctx, bool falsedeps);
597
598 #include "util/set.h"
599 #define foreach_ssa_use(__use, __instr) \
600 for (struct ir3_instruction *__use = (void *)~0; \
601 __use && (__instr)->uses; __use = NULL) \
602 set_foreach ((__instr)->uses, __entry) \
603 if ((__use = (void *)__entry->key))
604
605 #define MAX_ARRAYS 16
606
607 /* comp:
608 * 0 - x
609 * 1 - y
610 * 2 - z
611 * 3 - w
612 */
613 static inline uint32_t regid(int num, int comp)
614 {
615 return (num << 2) | (comp & 0x3);
616 }
617
618 static inline uint32_t reg_num(struct ir3_register *reg)
619 {
620 return reg->num >> 2;
621 }
622
623 static inline uint32_t reg_comp(struct ir3_register *reg)
624 {
625 return reg->num & 0x3;
626 }
627
628 #define INVALID_REG regid(63, 0)
629 #define VALIDREG(r) ((r) != INVALID_REG)
630 #define CONDREG(r, val) COND(VALIDREG(r), (val))
631
632 static inline bool is_flow(struct ir3_instruction *instr)
633 {
634 return (opc_cat(instr->opc) == 0);
635 }
636
637 static inline bool is_kill(struct ir3_instruction *instr)
638 {
639 return instr->opc == OPC_KILL;
640 }
641
642 static inline bool is_nop(struct ir3_instruction *instr)
643 {
644 return instr->opc == OPC_NOP;
645 }
646
647 static inline bool is_same_type_reg(struct ir3_register *reg1,
648 struct ir3_register *reg2)
649 {
650 unsigned type_reg1 = (reg1->flags & (IR3_REG_HIGH | IR3_REG_HALF));
651 unsigned type_reg2 = (reg2->flags & (IR3_REG_HIGH | IR3_REG_HALF));
652
653 if (type_reg1 ^ type_reg2)
654 return false;
655 else
656 return true;
657 }
658
659 /* Is it a non-transformative (ie. not type changing) mov? This can
660 * also include absneg.s/absneg.f, which for the most part can be
661 * treated as a mov (single src argument).
662 */
663 static inline bool is_same_type_mov(struct ir3_instruction *instr)
664 {
665 struct ir3_register *dst;
666
667 switch (instr->opc) {
668 case OPC_MOV:
669 if (instr->cat1.src_type != instr->cat1.dst_type)
670 return false;
671 /* If the type of dest reg and src reg are different,
672 * it shouldn't be considered as same type mov
673 */
674 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
675 return false;
676 break;
677 case OPC_ABSNEG_F:
678 case OPC_ABSNEG_S:
679 if (instr->flags & IR3_INSTR_SAT)
680 return false;
681 /* If the type of dest reg and src reg are different,
682 * it shouldn't be considered as same type mov
683 */
684 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
685 return false;
686 break;
687 default:
688 return false;
689 }
690
691 dst = instr->regs[0];
692
693 /* mov's that write to a0 or p0.x are special: */
694 if (dst->num == regid(REG_P0, 0))
695 return false;
696 if (reg_num(dst) == REG_A0)
697 return false;
698
699 if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
700 return false;
701
702 return true;
703 }
704
705 /* A move from const, which changes size but not type, can also be
706 * folded into dest instruction in some cases.
707 */
708 static inline bool is_const_mov(struct ir3_instruction *instr)
709 {
710 if (instr->opc != OPC_MOV)
711 return false;
712
713 if (!(instr->regs[1]->flags & IR3_REG_CONST))
714 return false;
715
716 type_t src_type = instr->cat1.src_type;
717 type_t dst_type = instr->cat1.dst_type;
718
719 return (type_float(src_type) && type_float(dst_type)) ||
720 (type_uint(src_type) && type_uint(dst_type)) ||
721 (type_sint(src_type) && type_sint(dst_type));
722 }
723
724 static inline bool is_alu(struct ir3_instruction *instr)
725 {
726 return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
727 }
728
729 static inline bool is_sfu(struct ir3_instruction *instr)
730 {
731 return (opc_cat(instr->opc) == 4);
732 }
733
734 static inline bool is_tex(struct ir3_instruction *instr)
735 {
736 return (opc_cat(instr->opc) == 5);
737 }
738
739 static inline bool is_tex_or_prefetch(struct ir3_instruction *instr)
740 {
741 return is_tex(instr) || (instr->opc == OPC_META_TEX_PREFETCH);
742 }
743
744 static inline bool is_mem(struct ir3_instruction *instr)
745 {
746 return (opc_cat(instr->opc) == 6);
747 }
748
749 static inline bool is_barrier(struct ir3_instruction *instr)
750 {
751 return (opc_cat(instr->opc) == 7);
752 }
753
754 static inline bool
755 is_half(struct ir3_instruction *instr)
756 {
757 return !!(instr->regs[0]->flags & IR3_REG_HALF);
758 }
759
760 static inline bool
761 is_high(struct ir3_instruction *instr)
762 {
763 return !!(instr->regs[0]->flags & IR3_REG_HIGH);
764 }
765
766 static inline bool
767 is_store(struct ir3_instruction *instr)
768 {
769 /* these instructions, the "destination" register is
770 * actually a source, the address to store to.
771 */
772 switch (instr->opc) {
773 case OPC_STG:
774 case OPC_STGB:
775 case OPC_STIB:
776 case OPC_STP:
777 case OPC_STL:
778 case OPC_STLW:
779 case OPC_L2G:
780 case OPC_G2L:
781 return true;
782 default:
783 return false;
784 }
785 }
786
787 static inline bool is_load(struct ir3_instruction *instr)
788 {
789 switch (instr->opc) {
790 case OPC_LDG:
791 case OPC_LDGB:
792 case OPC_LDIB:
793 case OPC_LDL:
794 case OPC_LDP:
795 case OPC_L2G:
796 case OPC_LDLW:
797 case OPC_LDC:
798 case OPC_LDLV:
799 /* probably some others too.. */
800 return true;
801 default:
802 return false;
803 }
804 }
805
806 static inline bool is_input(struct ir3_instruction *instr)
807 {
808 /* in some cases, ldlv is used to fetch varying without
809 * interpolation.. fortunately inloc is the first src
810 * register in either case
811 */
812 switch (instr->opc) {
813 case OPC_LDLV:
814 case OPC_BARY_F:
815 return true;
816 default:
817 return false;
818 }
819 }
820
821 static inline bool is_bool(struct ir3_instruction *instr)
822 {
823 switch (instr->opc) {
824 case OPC_CMPS_F:
825 case OPC_CMPS_S:
826 case OPC_CMPS_U:
827 return true;
828 default:
829 return false;
830 }
831 }
832
833 static inline bool is_meta(struct ir3_instruction *instr)
834 {
835 return (opc_cat(instr->opc) == -1);
836 }
837
838 static inline unsigned dest_regs(struct ir3_instruction *instr)
839 {
840 if ((instr->regs_count == 0) || is_store(instr) || is_flow(instr))
841 return 0;
842
843 return util_last_bit(instr->regs[0]->wrmask);
844 }
845
846 static inline bool
847 writes_gpr(struct ir3_instruction *instr)
848 {
849 if (dest_regs(instr) == 0)
850 return false;
851 /* is dest a normal temp register: */
852 struct ir3_register *reg = instr->regs[0];
853 debug_assert(!(reg->flags & (IR3_REG_CONST | IR3_REG_IMMED)));
854 if ((reg_num(reg) == REG_A0) ||
855 (reg->num == regid(REG_P0, 0)))
856 return false;
857 return true;
858 }
859
860 static inline bool writes_addr0(struct ir3_instruction *instr)
861 {
862 if (instr->regs_count > 0) {
863 struct ir3_register *dst = instr->regs[0];
864 return dst->num == regid(REG_A0, 0);
865 }
866 return false;
867 }
868
869 static inline bool writes_addr1(struct ir3_instruction *instr)
870 {
871 if (instr->regs_count > 0) {
872 struct ir3_register *dst = instr->regs[0];
873 return dst->num == regid(REG_A0, 1);
874 }
875 return false;
876 }
877
878 static inline bool writes_pred(struct ir3_instruction *instr)
879 {
880 if (instr->regs_count > 0) {
881 struct ir3_register *dst = instr->regs[0];
882 return reg_num(dst) == REG_P0;
883 }
884 return false;
885 }
886
887 /* returns defining instruction for reg */
888 /* TODO better name */
889 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
890 {
891 if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
892 return reg->instr;
893 }
894 return NULL;
895 }
896
897 static inline bool conflicts(struct ir3_instruction *a,
898 struct ir3_instruction *b)
899 {
900 return (a && b) && (a != b);
901 }
902
903 static inline bool reg_gpr(struct ir3_register *r)
904 {
905 if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
906 return false;
907 if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
908 return false;
909 return true;
910 }
911
912 static inline type_t half_type(type_t type)
913 {
914 switch (type) {
915 case TYPE_F32: return TYPE_F16;
916 case TYPE_U32: return TYPE_U16;
917 case TYPE_S32: return TYPE_S16;
918 case TYPE_F16:
919 case TYPE_U16:
920 case TYPE_S16:
921 return type;
922 default:
923 assert(0);
924 return ~0;
925 }
926 }
927
928 /* some cat2 instructions (ie. those which are not float) can embed an
929 * immediate:
930 */
931 static inline bool ir3_cat2_int(opc_t opc)
932 {
933 switch (opc) {
934 case OPC_ADD_U:
935 case OPC_ADD_S:
936 case OPC_SUB_U:
937 case OPC_SUB_S:
938 case OPC_CMPS_U:
939 case OPC_CMPS_S:
940 case OPC_MIN_U:
941 case OPC_MIN_S:
942 case OPC_MAX_U:
943 case OPC_MAX_S:
944 case OPC_CMPV_U:
945 case OPC_CMPV_S:
946 case OPC_MUL_U24:
947 case OPC_MUL_S24:
948 case OPC_MULL_U:
949 case OPC_CLZ_S:
950 case OPC_ABSNEG_S:
951 case OPC_AND_B:
952 case OPC_OR_B:
953 case OPC_NOT_B:
954 case OPC_XOR_B:
955 case OPC_BFREV_B:
956 case OPC_CLZ_B:
957 case OPC_SHL_B:
958 case OPC_SHR_B:
959 case OPC_ASHR_B:
960 case OPC_MGEN_B:
961 case OPC_GETBIT_B:
962 case OPC_CBITS_B:
963 case OPC_BARY_F:
964 return true;
965
966 default:
967 return false;
968 }
969 }
970
971 /* map cat2 instruction to valid abs/neg flags: */
972 static inline unsigned ir3_cat2_absneg(opc_t opc)
973 {
974 switch (opc) {
975 case OPC_ADD_F:
976 case OPC_MIN_F:
977 case OPC_MAX_F:
978 case OPC_MUL_F:
979 case OPC_SIGN_F:
980 case OPC_CMPS_F:
981 case OPC_ABSNEG_F:
982 case OPC_CMPV_F:
983 case OPC_FLOOR_F:
984 case OPC_CEIL_F:
985 case OPC_RNDNE_F:
986 case OPC_RNDAZ_F:
987 case OPC_TRUNC_F:
988 case OPC_BARY_F:
989 return IR3_REG_FABS | IR3_REG_FNEG;
990
991 case OPC_ADD_U:
992 case OPC_ADD_S:
993 case OPC_SUB_U:
994 case OPC_SUB_S:
995 case OPC_CMPS_U:
996 case OPC_CMPS_S:
997 case OPC_MIN_U:
998 case OPC_MIN_S:
999 case OPC_MAX_U:
1000 case OPC_MAX_S:
1001 case OPC_CMPV_U:
1002 case OPC_CMPV_S:
1003 case OPC_MUL_U24:
1004 case OPC_MUL_S24:
1005 case OPC_MULL_U:
1006 case OPC_CLZ_S:
1007 return 0;
1008
1009 case OPC_ABSNEG_S:
1010 return IR3_REG_SABS | IR3_REG_SNEG;
1011
1012 case OPC_AND_B:
1013 case OPC_OR_B:
1014 case OPC_NOT_B:
1015 case OPC_XOR_B:
1016 case OPC_BFREV_B:
1017 case OPC_CLZ_B:
1018 case OPC_SHL_B:
1019 case OPC_SHR_B:
1020 case OPC_ASHR_B:
1021 case OPC_MGEN_B:
1022 case OPC_GETBIT_B:
1023 case OPC_CBITS_B:
1024 return IR3_REG_BNOT;
1025
1026 default:
1027 return 0;
1028 }
1029 }
1030
1031 /* map cat3 instructions to valid abs/neg flags: */
1032 static inline unsigned ir3_cat3_absneg(opc_t opc)
1033 {
1034 switch (opc) {
1035 case OPC_MAD_F16:
1036 case OPC_MAD_F32:
1037 case OPC_SEL_F16:
1038 case OPC_SEL_F32:
1039 return IR3_REG_FNEG;
1040
1041 case OPC_MAD_U16:
1042 case OPC_MADSH_U16:
1043 case OPC_MAD_S16:
1044 case OPC_MADSH_M16:
1045 case OPC_MAD_U24:
1046 case OPC_MAD_S24:
1047 case OPC_SEL_S16:
1048 case OPC_SEL_S32:
1049 case OPC_SAD_S16:
1050 case OPC_SAD_S32:
1051 /* neg *may* work on 3rd src.. */
1052
1053 case OPC_SEL_B16:
1054 case OPC_SEL_B32:
1055
1056 default:
1057 return 0;
1058 }
1059 }
1060
1061 #define MASK(n) ((1 << (n)) - 1)
1062
1063 /* iterator for an instructions's sources (reg), also returns src #: */
1064 #define foreach_src_n(__srcreg, __n, __instr) \
1065 if ((__instr)->regs_count) \
1066 for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
1067 if ((__srcreg = (__instr)->regs[__n + 1]))
1068
1069 /* iterator for an instructions's sources (reg): */
1070 #define foreach_src(__srcreg, __instr) \
1071 foreach_src_n(__srcreg, __i, __instr)
1072
1073 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
1074 {
1075 unsigned cnt = instr->regs_count + instr->deps_count;
1076 if (instr->address)
1077 cnt++;
1078 return cnt;
1079 }
1080
1081 static inline struct ir3_instruction **
1082 __ssa_srcp_n(struct ir3_instruction *instr, unsigned n)
1083 {
1084 if (n == (instr->regs_count + instr->deps_count))
1085 return &instr->address;
1086 if (n >= instr->regs_count)
1087 return &instr->deps[n - instr->regs_count];
1088 if (ssa(instr->regs[n]))
1089 return &instr->regs[n]->instr;
1090 return NULL;
1091 }
1092
1093 static inline bool __is_false_dep(struct ir3_instruction *instr, unsigned n)
1094 {
1095 if (n == (instr->regs_count + instr->deps_count))
1096 return false;
1097 if (n >= instr->regs_count)
1098 return true;
1099 return false;
1100 }
1101
1102 #define foreach_ssa_srcp_n(__srcp, __n, __instr) \
1103 for (struct ir3_instruction **__srcp = (void *)~0; __srcp; __srcp = NULL) \
1104 for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
1105 if ((__srcp = __ssa_srcp_n(__instr, __n)))
1106
1107 #define foreach_ssa_srcp(__srcp, __instr) \
1108 foreach_ssa_srcp_n(__srcp, __i, __instr)
1109
1110 /* iterator for an instruction's SSA sources (instr), also returns src #: */
1111 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
1112 foreach_ssa_srcp_n(__srcp, __n, __instr) \
1113 if ((__srcinst = *__srcp))
1114
1115 /* iterator for an instruction's SSA sources (instr): */
1116 #define foreach_ssa_src(__srcinst, __instr) \
1117 foreach_ssa_src_n(__srcinst, __i, __instr)
1118
1119 /* iterators for shader inputs: */
1120 #define foreach_input_n(__ininstr, __cnt, __ir) \
1121 for (unsigned __cnt = 0; __cnt < (__ir)->inputs_count; __cnt++) \
1122 if ((__ininstr = (__ir)->inputs[__cnt]))
1123 #define foreach_input(__ininstr, __ir) \
1124 foreach_input_n(__ininstr, __i, __ir)
1125
1126 /* iterators for shader outputs: */
1127 #define foreach_output_n(__outinstr, __cnt, __ir) \
1128 for (unsigned __cnt = 0; __cnt < (__ir)->outputs_count; __cnt++) \
1129 if ((__outinstr = (__ir)->outputs[__cnt]))
1130 #define foreach_output(__outinstr, __ir) \
1131 foreach_output_n(__outinstr, __i, __ir)
1132
1133 /* iterators for instructions: */
1134 #define foreach_instr(__instr, __list) \
1135 list_for_each_entry(struct ir3_instruction, __instr, __list, node)
1136 #define foreach_instr_rev(__instr, __list) \
1137 list_for_each_entry_rev(struct ir3_instruction, __instr, __list, node)
1138 #define foreach_instr_safe(__instr, __list) \
1139 list_for_each_entry_safe(struct ir3_instruction, __instr, __list, node)
1140
1141 /* iterators for blocks: */
1142 #define foreach_block(__block, __list) \
1143 list_for_each_entry(struct ir3_block, __block, __list, node)
1144 #define foreach_block_safe(__block, __list) \
1145 list_for_each_entry_safe(struct ir3_block, __block, __list, node)
1146 #define foreach_block_rev(__block, __list) \
1147 list_for_each_entry_rev(struct ir3_block, __block, __list, node)
1148
1149 /* iterators for arrays: */
1150 #define foreach_array(__array, __list) \
1151 list_for_each_entry(struct ir3_array, __array, __list, node)
1152
1153 /* Check if condition is true for any src instruction.
1154 */
1155 static inline bool
1156 check_src_cond(struct ir3_instruction *instr, bool (*cond)(struct ir3_instruction *))
1157 {
1158 struct ir3_register *reg;
1159
1160 /* Note that this is also used post-RA so skip the ssa iterator: */
1161 foreach_src (reg, instr) {
1162 struct ir3_instruction *src = reg->instr;
1163
1164 if (!src)
1165 continue;
1166
1167 /* meta:split/collect aren't real instructions, the thing that
1168 * we actually care about is *their* srcs
1169 */
1170 if ((src->opc == OPC_META_SPLIT) || (src->opc == OPC_META_COLLECT)) {
1171 if (check_src_cond(src, cond))
1172 return true;
1173 } else {
1174 if (cond(src))
1175 return true;
1176 }
1177 }
1178
1179 return false;
1180 }
1181
1182 /* dump: */
1183 void ir3_print(struct ir3 *ir);
1184 void ir3_print_instr(struct ir3_instruction *instr);
1185
1186 /* delay calculation: */
1187 int ir3_delayslots(struct ir3_instruction *assigner,
1188 struct ir3_instruction *consumer, unsigned n, bool soft);
1189 unsigned ir3_delay_calc(struct ir3_block *block, struct ir3_instruction *instr,
1190 bool soft, bool pred);
1191 void ir3_remove_nops(struct ir3 *ir);
1192
1193 /* dead code elimination: */
1194 struct ir3_shader_variant;
1195 bool ir3_dce(struct ir3 *ir, struct ir3_shader_variant *so);
1196
1197 /* fp16 conversion folding */
1198 bool ir3_cf(struct ir3 *ir);
1199
1200 /* copy-propagate: */
1201 bool ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so);
1202
1203 /* group neighbors and insert mov's to resolve conflicts: */
1204 bool ir3_group(struct ir3 *ir);
1205
1206 /* scheduling: */
1207 bool ir3_sched_add_deps(struct ir3 *ir);
1208 int ir3_sched(struct ir3 *ir);
1209
1210 struct ir3_context;
1211 bool ir3_postsched(struct ir3 *ir);
1212
1213 bool ir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so);
1214
1215 /* register assignment: */
1216 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(struct ir3_compiler *compiler);
1217 int ir3_ra(struct ir3_shader_variant *v, struct ir3_instruction **precolor, unsigned nprecolor);
1218
1219 /* legalize: */
1220 bool ir3_legalize(struct ir3 *ir, struct ir3_shader_variant *so, int *max_bary);
1221
1222 static inline bool
1223 ir3_has_latency_to_hide(struct ir3 *ir)
1224 {
1225 /* VS/GS/TCS/TESS co-exist with frag shader invocations, but we don't
1226 * know the nature of the fragment shader. Just assume it will have
1227 * latency to hide:
1228 */
1229 if (ir->type != MESA_SHADER_FRAGMENT)
1230 return true;
1231
1232 foreach_block (block, &ir->block_list) {
1233 foreach_instr (instr, &block->instr_list) {
1234 if (is_tex_or_prefetch(instr))
1235 return true;
1236
1237 if (is_load(instr)) {
1238 switch (instr->opc) {
1239 case OPC_LDLV:
1240 case OPC_LDL:
1241 case OPC_LDLW:
1242 break;
1243 default:
1244 return true;
1245 }
1246 }
1247 }
1248 }
1249
1250 return false;
1251 }
1252
1253 /* ************************************************************************* */
1254 /* instruction helpers */
1255
1256 /* creates SSA src of correct type (ie. half vs full precision) */
1257 static inline struct ir3_register * __ssa_src(struct ir3_instruction *instr,
1258 struct ir3_instruction *src, unsigned flags)
1259 {
1260 struct ir3_register *reg;
1261 if (src->regs[0]->flags & IR3_REG_HALF)
1262 flags |= IR3_REG_HALF;
1263 reg = ir3_reg_create(instr, 0, IR3_REG_SSA | flags);
1264 reg->instr = src;
1265 reg->wrmask = src->regs[0]->wrmask;
1266 return reg;
1267 }
1268
1269 static inline struct ir3_register * __ssa_dst(struct ir3_instruction *instr)
1270 {
1271 struct ir3_register *reg = ir3_reg_create(instr, 0, 0);
1272 reg->flags |= IR3_REG_SSA;
1273 return reg;
1274 }
1275
1276 static inline struct ir3_instruction *
1277 create_immed_typed(struct ir3_block *block, uint32_t val, type_t type)
1278 {
1279 struct ir3_instruction *mov;
1280 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1281
1282 mov = ir3_instr_create(block, OPC_MOV);
1283 mov->cat1.src_type = type;
1284 mov->cat1.dst_type = type;
1285 __ssa_dst(mov)->flags |= flags;
1286 ir3_reg_create(mov, 0, IR3_REG_IMMED | flags)->uim_val = val;
1287
1288 return mov;
1289 }
1290
1291 static inline struct ir3_instruction *
1292 create_immed(struct ir3_block *block, uint32_t val)
1293 {
1294 return create_immed_typed(block, val, TYPE_U32);
1295 }
1296
1297 static inline struct ir3_instruction *
1298 create_uniform_typed(struct ir3_block *block, unsigned n, type_t type)
1299 {
1300 struct ir3_instruction *mov;
1301 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1302
1303 mov = ir3_instr_create(block, OPC_MOV);
1304 mov->cat1.src_type = type;
1305 mov->cat1.dst_type = type;
1306 __ssa_dst(mov)->flags |= flags;
1307 ir3_reg_create(mov, n, IR3_REG_CONST | flags);
1308
1309 return mov;
1310 }
1311
1312 static inline struct ir3_instruction *
1313 create_uniform(struct ir3_block *block, unsigned n)
1314 {
1315 return create_uniform_typed(block, n, TYPE_F32);
1316 }
1317
1318 static inline struct ir3_instruction *
1319 create_uniform_indirect(struct ir3_block *block, int n,
1320 struct ir3_instruction *address)
1321 {
1322 struct ir3_instruction *mov;
1323
1324 mov = ir3_instr_create(block, OPC_MOV);
1325 mov->cat1.src_type = TYPE_U32;
1326 mov->cat1.dst_type = TYPE_U32;
1327 __ssa_dst(mov);
1328 ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
1329
1330 ir3_instr_set_address(mov, address);
1331
1332 return mov;
1333 }
1334
1335 static inline struct ir3_instruction *
1336 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
1337 {
1338 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1339 __ssa_dst(instr);
1340 if (src->regs[0]->flags & IR3_REG_ARRAY) {
1341 struct ir3_register *src_reg = __ssa_src(instr, src, IR3_REG_ARRAY);
1342 src_reg->array = src->regs[0]->array;
1343 } else {
1344 __ssa_src(instr, src, src->regs[0]->flags & IR3_REG_HIGH);
1345 }
1346 debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
1347 instr->cat1.src_type = type;
1348 instr->cat1.dst_type = type;
1349 return instr;
1350 }
1351
1352 static inline struct ir3_instruction *
1353 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
1354 type_t src_type, type_t dst_type)
1355 {
1356 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1357 unsigned dst_flags = (type_size(dst_type) < 32) ? IR3_REG_HALF : 0;
1358 unsigned src_flags = (type_size(src_type) < 32) ? IR3_REG_HALF : 0;
1359
1360 debug_assert((src->regs[0]->flags & IR3_REG_HALF) == src_flags);
1361
1362 __ssa_dst(instr)->flags |= dst_flags;
1363 __ssa_src(instr, src, 0);
1364 instr->cat1.src_type = src_type;
1365 instr->cat1.dst_type = dst_type;
1366 debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
1367 return instr;
1368 }
1369
1370 static inline struct ir3_instruction *
1371 ir3_NOP(struct ir3_block *block)
1372 {
1373 return ir3_instr_create(block, OPC_NOP);
1374 }
1375
1376 #define IR3_INSTR_0 0
1377
1378 #define __INSTR0(flag, name, opc) \
1379 static inline struct ir3_instruction * \
1380 ir3_##name(struct ir3_block *block) \
1381 { \
1382 struct ir3_instruction *instr = \
1383 ir3_instr_create(block, opc); \
1384 instr->flags |= flag; \
1385 return instr; \
1386 }
1387 #define INSTR0F(f, name) __INSTR0(IR3_INSTR_##f, name##_##f, OPC_##name)
1388 #define INSTR0(name) __INSTR0(0, name, OPC_##name)
1389
1390 #define __INSTR1(flag, name, opc) \
1391 static inline struct ir3_instruction * \
1392 ir3_##name(struct ir3_block *block, \
1393 struct ir3_instruction *a, unsigned aflags) \
1394 { \
1395 struct ir3_instruction *instr = \
1396 ir3_instr_create(block, opc); \
1397 __ssa_dst(instr); \
1398 __ssa_src(instr, a, aflags); \
1399 instr->flags |= flag; \
1400 return instr; \
1401 }
1402 #define INSTR1F(f, name) __INSTR1(IR3_INSTR_##f, name##_##f, OPC_##name)
1403 #define INSTR1(name) __INSTR1(0, name, OPC_##name)
1404
1405 #define __INSTR2(flag, name, opc) \
1406 static inline struct ir3_instruction * \
1407 ir3_##name(struct ir3_block *block, \
1408 struct ir3_instruction *a, unsigned aflags, \
1409 struct ir3_instruction *b, unsigned bflags) \
1410 { \
1411 struct ir3_instruction *instr = \
1412 ir3_instr_create(block, opc); \
1413 __ssa_dst(instr); \
1414 __ssa_src(instr, a, aflags); \
1415 __ssa_src(instr, b, bflags); \
1416 instr->flags |= flag; \
1417 return instr; \
1418 }
1419 #define INSTR2F(f, name) __INSTR2(IR3_INSTR_##f, name##_##f, OPC_##name)
1420 #define INSTR2(name) __INSTR2(0, name, OPC_##name)
1421
1422 #define __INSTR3(flag, name, opc) \
1423 static inline struct ir3_instruction * \
1424 ir3_##name(struct ir3_block *block, \
1425 struct ir3_instruction *a, unsigned aflags, \
1426 struct ir3_instruction *b, unsigned bflags, \
1427 struct ir3_instruction *c, unsigned cflags) \
1428 { \
1429 struct ir3_instruction *instr = \
1430 ir3_instr_create2(block, opc, 4); \
1431 __ssa_dst(instr); \
1432 __ssa_src(instr, a, aflags); \
1433 __ssa_src(instr, b, bflags); \
1434 __ssa_src(instr, c, cflags); \
1435 instr->flags |= flag; \
1436 return instr; \
1437 }
1438 #define INSTR3F(f, name) __INSTR3(IR3_INSTR_##f, name##_##f, OPC_##name)
1439 #define INSTR3(name) __INSTR3(0, name, OPC_##name)
1440
1441 #define __INSTR4(flag, name, opc) \
1442 static inline struct ir3_instruction * \
1443 ir3_##name(struct ir3_block *block, \
1444 struct ir3_instruction *a, unsigned aflags, \
1445 struct ir3_instruction *b, unsigned bflags, \
1446 struct ir3_instruction *c, unsigned cflags, \
1447 struct ir3_instruction *d, unsigned dflags) \
1448 { \
1449 struct ir3_instruction *instr = \
1450 ir3_instr_create2(block, opc, 5); \
1451 __ssa_dst(instr); \
1452 __ssa_src(instr, a, aflags); \
1453 __ssa_src(instr, b, bflags); \
1454 __ssa_src(instr, c, cflags); \
1455 __ssa_src(instr, d, dflags); \
1456 instr->flags |= flag; \
1457 return instr; \
1458 }
1459 #define INSTR4F(f, name) __INSTR4(IR3_INSTR_##f, name##_##f, OPC_##name)
1460 #define INSTR4(name) __INSTR4(0, name, OPC_##name)
1461
1462 /* cat0 instructions: */
1463 INSTR1(B)
1464 INSTR0(JUMP)
1465 INSTR1(KILL)
1466 INSTR0(END)
1467 INSTR0(CHSH)
1468 INSTR0(CHMASK)
1469 INSTR1(PREDT)
1470 INSTR0(PREDF)
1471 INSTR0(PREDE)
1472
1473 /* cat2 instructions, most 2 src but some 1 src: */
1474 INSTR2(ADD_F)
1475 INSTR2(MIN_F)
1476 INSTR2(MAX_F)
1477 INSTR2(MUL_F)
1478 INSTR1(SIGN_F)
1479 INSTR2(CMPS_F)
1480 INSTR1(ABSNEG_F)
1481 INSTR2(CMPV_F)
1482 INSTR1(FLOOR_F)
1483 INSTR1(CEIL_F)
1484 INSTR1(RNDNE_F)
1485 INSTR1(RNDAZ_F)
1486 INSTR1(TRUNC_F)
1487 INSTR2(ADD_U)
1488 INSTR2(ADD_S)
1489 INSTR2(SUB_U)
1490 INSTR2(SUB_S)
1491 INSTR2(CMPS_U)
1492 INSTR2(CMPS_S)
1493 INSTR2(MIN_U)
1494 INSTR2(MIN_S)
1495 INSTR2(MAX_U)
1496 INSTR2(MAX_S)
1497 INSTR1(ABSNEG_S)
1498 INSTR2(AND_B)
1499 INSTR2(OR_B)
1500 INSTR1(NOT_B)
1501 INSTR2(XOR_B)
1502 INSTR2(CMPV_U)
1503 INSTR2(CMPV_S)
1504 INSTR2(MUL_U24)
1505 INSTR2(MUL_S24)
1506 INSTR2(MULL_U)
1507 INSTR1(BFREV_B)
1508 INSTR1(CLZ_S)
1509 INSTR1(CLZ_B)
1510 INSTR2(SHL_B)
1511 INSTR2(SHR_B)
1512 INSTR2(ASHR_B)
1513 INSTR2(BARY_F)
1514 INSTR2(MGEN_B)
1515 INSTR2(GETBIT_B)
1516 INSTR1(SETRM)
1517 INSTR1(CBITS_B)
1518 INSTR2(SHB)
1519 INSTR2(MSAD)
1520
1521 /* cat3 instructions: */
1522 INSTR3(MAD_U16)
1523 INSTR3(MADSH_U16)
1524 INSTR3(MAD_S16)
1525 INSTR3(MADSH_M16)
1526 INSTR3(MAD_U24)
1527 INSTR3(MAD_S24)
1528 INSTR3(MAD_F16)
1529 INSTR3(MAD_F32)
1530 /* NOTE: SEL_B32 checks for zero vs nonzero */
1531 INSTR3(SEL_B16)
1532 INSTR3(SEL_B32)
1533 INSTR3(SEL_S16)
1534 INSTR3(SEL_S32)
1535 INSTR3(SEL_F16)
1536 INSTR3(SEL_F32)
1537 INSTR3(SAD_S16)
1538 INSTR3(SAD_S32)
1539
1540 /* cat4 instructions: */
1541 INSTR1(RCP)
1542 INSTR1(RSQ)
1543 INSTR1(HRSQ)
1544 INSTR1(LOG2)
1545 INSTR1(HLOG2)
1546 INSTR1(EXP2)
1547 INSTR1(HEXP2)
1548 INSTR1(SIN)
1549 INSTR1(COS)
1550 INSTR1(SQRT)
1551
1552 /* cat5 instructions: */
1553 INSTR1(DSX)
1554 INSTR1(DSXPP_1)
1555 INSTR1(DSY)
1556 INSTR1(DSYPP_1)
1557 INSTR1F(3D, DSX)
1558 INSTR1F(3D, DSY)
1559 INSTR1(RGETPOS)
1560
1561 static inline struct ir3_instruction *
1562 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
1563 unsigned wrmask, unsigned flags, struct ir3_instruction *samp_tex,
1564 struct ir3_instruction *src0, struct ir3_instruction *src1)
1565 {
1566 struct ir3_instruction *sam;
1567
1568 sam = ir3_instr_create(block, opc);
1569 sam->flags |= flags;
1570 __ssa_dst(sam)->wrmask = wrmask;
1571 if (flags & IR3_INSTR_S2EN) {
1572 __ssa_src(sam, samp_tex, IR3_REG_HALF);
1573 }
1574 if (src0) {
1575 __ssa_src(sam, src0, 0);
1576 }
1577 if (src1) {
1578 __ssa_src(sam, src1, 0);
1579 }
1580 sam->cat5.type = type;
1581
1582 return sam;
1583 }
1584
1585 /* cat6 instructions: */
1586 INSTR2(LDLV)
1587 INSTR3(LDG)
1588 INSTR3(LDL)
1589 INSTR3(LDLW)
1590 INSTR3(STG)
1591 INSTR3(STL)
1592 INSTR3(STLW)
1593 INSTR1(RESINFO)
1594 INSTR1(RESFMT)
1595 INSTR2(ATOMIC_ADD)
1596 INSTR2(ATOMIC_SUB)
1597 INSTR2(ATOMIC_XCHG)
1598 INSTR2(ATOMIC_INC)
1599 INSTR2(ATOMIC_DEC)
1600 INSTR2(ATOMIC_CMPXCHG)
1601 INSTR2(ATOMIC_MIN)
1602 INSTR2(ATOMIC_MAX)
1603 INSTR2(ATOMIC_AND)
1604 INSTR2(ATOMIC_OR)
1605 INSTR2(ATOMIC_XOR)
1606 INSTR2(LDC)
1607 #if GPU >= 600
1608 INSTR3(STIB);
1609 INSTR2(LDIB);
1610 INSTR3F(G, ATOMIC_ADD)
1611 INSTR3F(G, ATOMIC_SUB)
1612 INSTR3F(G, ATOMIC_XCHG)
1613 INSTR3F(G, ATOMIC_INC)
1614 INSTR3F(G, ATOMIC_DEC)
1615 INSTR3F(G, ATOMIC_CMPXCHG)
1616 INSTR3F(G, ATOMIC_MIN)
1617 INSTR3F(G, ATOMIC_MAX)
1618 INSTR3F(G, ATOMIC_AND)
1619 INSTR3F(G, ATOMIC_OR)
1620 INSTR3F(G, ATOMIC_XOR)
1621 #elif GPU >= 400
1622 INSTR3(LDGB)
1623 INSTR4(STGB)
1624 INSTR4(STIB)
1625 INSTR4F(G, ATOMIC_ADD)
1626 INSTR4F(G, ATOMIC_SUB)
1627 INSTR4F(G, ATOMIC_XCHG)
1628 INSTR4F(G, ATOMIC_INC)
1629 INSTR4F(G, ATOMIC_DEC)
1630 INSTR4F(G, ATOMIC_CMPXCHG)
1631 INSTR4F(G, ATOMIC_MIN)
1632 INSTR4F(G, ATOMIC_MAX)
1633 INSTR4F(G, ATOMIC_AND)
1634 INSTR4F(G, ATOMIC_OR)
1635 INSTR4F(G, ATOMIC_XOR)
1636 #endif
1637
1638 INSTR4F(G, STG)
1639
1640 /* cat7 instructions: */
1641 INSTR0(BAR)
1642 INSTR0(FENCE)
1643
1644 /* meta instructions: */
1645 INSTR0(META_TEX_PREFETCH);
1646
1647 /* ************************************************************************* */
1648 /* split this out or find some helper to use.. like main/bitset.h.. */
1649
1650 #include <string.h>
1651 #include "util/bitset.h"
1652
1653 #define MAX_REG 256
1654
1655 typedef BITSET_DECLARE(regmask_t, 2 * MAX_REG);
1656
1657 static inline bool
1658 __regmask_get(regmask_t *regmask, struct ir3_register *reg, unsigned n)
1659 {
1660 if (reg->merged) {
1661 /* a6xx+ case, with merged register file, we track things in terms
1662 * of half-precision registers, with a full precisions register
1663 * using two half-precision slots:
1664 */
1665 if (reg->flags & IR3_REG_HALF) {
1666 return BITSET_TEST(*regmask, n);
1667 } else {
1668 n *= 2;
1669 return BITSET_TEST(*regmask, n) || BITSET_TEST(*regmask, n+1);
1670 }
1671 } else {
1672 /* pre a6xx case, with separate register file for half and full
1673 * precision:
1674 */
1675 if (reg->flags & IR3_REG_HALF)
1676 n += MAX_REG;
1677 return BITSET_TEST(*regmask, n);
1678 }
1679 }
1680
1681 static inline void
1682 __regmask_set(regmask_t *regmask, struct ir3_register *reg, unsigned n)
1683 {
1684 if (reg->merged) {
1685 /* a6xx+ case, with merged register file, we track things in terms
1686 * of half-precision registers, with a full precisions register
1687 * using two half-precision slots:
1688 */
1689 if (reg->flags & IR3_REG_HALF) {
1690 BITSET_SET(*regmask, n);
1691 } else {
1692 n *= 2;
1693 BITSET_SET(*regmask, n);
1694 BITSET_SET(*regmask, n+1);
1695 }
1696 } else {
1697 /* pre a6xx case, with separate register file for half and full
1698 * precision:
1699 */
1700 if (reg->flags & IR3_REG_HALF)
1701 n += MAX_REG;
1702 BITSET_SET(*regmask, n);
1703 }
1704 }
1705
1706 static inline void regmask_init(regmask_t *regmask)
1707 {
1708 memset(regmask, 0, sizeof(*regmask));
1709 }
1710
1711 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1712 {
1713 if (reg->flags & IR3_REG_RELATIV) {
1714 for (unsigned i = 0; i < reg->size; i++)
1715 __regmask_set(regmask, reg, reg->array.offset + i);
1716 } else {
1717 for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++)
1718 if (mask & 1)
1719 __regmask_set(regmask, reg, n);
1720 }
1721 }
1722
1723 static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
1724 {
1725 unsigned i;
1726 for (i = 0; i < ARRAY_SIZE(*dst); i++)
1727 (*dst)[i] = (*a)[i] | (*b)[i];
1728 }
1729
1730 static inline bool regmask_get(regmask_t *regmask,
1731 struct ir3_register *reg)
1732 {
1733 if (reg->flags & IR3_REG_RELATIV) {
1734 for (unsigned i = 0; i < reg->size; i++)
1735 if (__regmask_get(regmask, reg, reg->array.offset + i))
1736 return true;
1737 } else {
1738 for (unsigned mask = reg->wrmask, n = reg->num; mask; mask >>= 1, n++)
1739 if (mask & 1)
1740 if (__regmask_get(regmask, reg, n))
1741 return true;
1742 }
1743 return false;
1744 }
1745
1746 /* ************************************************************************* */
1747
1748 #endif /* IR3_H_ */