freedreno/ir3: add last-baryf shaderdb stat
[mesa.git] / src / freedreno / ir3 / ir3.h
1 /*
2 * Copyright (c) 2013 Rob Clark <robdclark@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #ifndef IR3_H_
25 #define IR3_H_
26
27 #include <stdint.h>
28 #include <stdbool.h>
29
30 #include "compiler/shader_enums.h"
31
32 #include "util/bitscan.h"
33 #include "util/list.h"
34 #include "util/set.h"
35 #include "util/u_debug.h"
36
37 #include "instr-a3xx.h"
38
39 /* low level intermediate representation of an adreno shader program */
40
41 struct ir3_compiler;
42 struct ir3;
43 struct ir3_instruction;
44 struct ir3_block;
45
46 struct ir3_info {
47 uint32_t gpu_id;
48 uint16_t sizedwords;
49 uint16_t instrs_count; /* expanded to account for rpt's */
50 uint16_t nops_count; /* # of nop instructions, including nopN */
51 /* NOTE: max_reg, etc, does not include registers not touched
52 * by the shader (ie. vertex fetched via VFD_DECODE but not
53 * touched by shader)
54 */
55 int8_t max_reg; /* highest GPR # used by shader */
56 int8_t max_half_reg;
57 int16_t max_const;
58
59 /* number of sync bits: */
60 uint16_t ss, sy;
61
62 uint16_t last_baryf; /* instruction # of last varying fetch */
63 };
64
65 struct ir3_register {
66 enum {
67 IR3_REG_CONST = 0x001,
68 IR3_REG_IMMED = 0x002,
69 IR3_REG_HALF = 0x004,
70 /* high registers are used for some things in compute shaders,
71 * for example. Seems to be for things that are global to all
72 * threads in a wave, so possibly these are global/shared by
73 * all the threads in the wave?
74 */
75 IR3_REG_HIGH = 0x008,
76 IR3_REG_RELATIV= 0x010,
77 IR3_REG_R = 0x020,
78 /* Most instructions, it seems, can do float abs/neg but not
79 * integer. The CP pass needs to know what is intended (int or
80 * float) in order to do the right thing. For this reason the
81 * abs/neg flags are split out into float and int variants. In
82 * addition, .b (bitwise) operations, the negate is actually a
83 * bitwise not, so split that out into a new flag to make it
84 * more clear.
85 */
86 IR3_REG_FNEG = 0x040,
87 IR3_REG_FABS = 0x080,
88 IR3_REG_SNEG = 0x100,
89 IR3_REG_SABS = 0x200,
90 IR3_REG_BNOT = 0x400,
91 IR3_REG_EVEN = 0x800,
92 IR3_REG_POS_INF= 0x1000,
93 /* (ei) flag, end-input? Set on last bary, presumably to signal
94 * that the shader needs no more input:
95 */
96 IR3_REG_EI = 0x2000,
97 /* meta-flags, for intermediate stages of IR, ie.
98 * before register assignment is done:
99 */
100 IR3_REG_SSA = 0x4000, /* 'instr' is ptr to assigning instr */
101 IR3_REG_ARRAY = 0x8000,
102
103 } flags;
104
105 bool merged : 1; /* half-regs conflict with full regs (ie >= a6xx) */
106
107 /* normal registers:
108 * the component is in the low two bits of the reg #, so
109 * rN.x becomes: (N << 2) | x
110 */
111 uint16_t num;
112 union {
113 /* immediate: */
114 int32_t iim_val;
115 uint32_t uim_val;
116 float fim_val;
117 /* relative: */
118 struct {
119 uint16_t id;
120 int16_t offset;
121 } array;
122 };
123
124 /* For IR3_REG_SSA, src registers contain ptr back to assigning
125 * instruction.
126 *
127 * For IR3_REG_ARRAY, the pointer is back to the last dependent
128 * array access (although the net effect is the same, it points
129 * back to a previous instruction that we depend on).
130 */
131 struct ir3_instruction *instr;
132
133 union {
134 /* used for cat5 instructions, but also for internal/IR level
135 * tracking of what registers are read/written by an instruction.
136 * wrmask may be a bad name since it is used to represent both
137 * src and dst that touch multiple adjacent registers.
138 */
139 unsigned wrmask;
140 /* for relative addressing, 32bits for array size is too small,
141 * but otoh we don't need to deal with disjoint sets, so instead
142 * use a simple size field (number of scalar components).
143 */
144 unsigned size;
145 };
146 };
147
148 /*
149 * Stupid/simple growable array implementation:
150 */
151 #define DECLARE_ARRAY(type, name) \
152 unsigned name ## _count, name ## _sz; \
153 type * name;
154
155 #define array_insert(ctx, arr, val) do { \
156 if (arr ## _count == arr ## _sz) { \
157 arr ## _sz = MAX2(2 * arr ## _sz, 16); \
158 arr = reralloc_size(ctx, arr, arr ## _sz * sizeof(arr[0])); \
159 } \
160 arr[arr ##_count++] = val; \
161 } while (0)
162
163 struct ir3_instruction {
164 struct ir3_block *block;
165 opc_t opc;
166 enum {
167 /* (sy) flag is set on first instruction, and after sample
168 * instructions (probably just on RAW hazard).
169 */
170 IR3_INSTR_SY = 0x001,
171 /* (ss) flag is set on first instruction, and first instruction
172 * to depend on the result of "long" instructions (RAW hazard):
173 *
174 * rcp, rsq, log2, exp2, sin, cos, sqrt
175 *
176 * It seems to synchronize until all in-flight instructions are
177 * completed, for example:
178 *
179 * rsq hr1.w, hr1.w
180 * add.f hr2.z, (neg)hr2.z, hc0.y
181 * mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
182 * rsq hr2.x, hr2.x
183 * (rpt1)nop
184 * mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
185 * nop
186 * mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
187 * (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
188 * (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
189 *
190 * The last mul.f does not have (ss) set, presumably because the
191 * (ss) on the previous instruction does the job.
192 *
193 * The blob driver also seems to set it on WAR hazards, although
194 * not really clear if this is needed or just blob compiler being
195 * sloppy. So far I haven't found a case where removing the (ss)
196 * causes problems for WAR hazard, but I could just be getting
197 * lucky:
198 *
199 * rcp r1.y, r3.y
200 * (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
201 *
202 */
203 IR3_INSTR_SS = 0x002,
204 /* (jp) flag is set on jump targets:
205 */
206 IR3_INSTR_JP = 0x004,
207 IR3_INSTR_UL = 0x008,
208 IR3_INSTR_3D = 0x010,
209 IR3_INSTR_A = 0x020,
210 IR3_INSTR_O = 0x040,
211 IR3_INSTR_P = 0x080,
212 IR3_INSTR_S = 0x100,
213 IR3_INSTR_S2EN = 0x200,
214 IR3_INSTR_G = 0x400,
215 IR3_INSTR_SAT = 0x800,
216 /* meta-flags, for intermediate stages of IR, ie.
217 * before register assignment is done:
218 */
219 IR3_INSTR_MARK = 0x1000,
220 IR3_INSTR_UNUSED= 0x2000,
221 } flags;
222 uint8_t repeat;
223 uint8_t nop;
224 #ifdef DEBUG
225 unsigned regs_max;
226 #endif
227 unsigned regs_count;
228 struct ir3_register **regs;
229 union {
230 struct {
231 char inv;
232 char comp;
233 int immed;
234 struct ir3_block *target;
235 } cat0;
236 struct {
237 type_t src_type, dst_type;
238 } cat1;
239 struct {
240 enum {
241 IR3_COND_LT = 0,
242 IR3_COND_LE = 1,
243 IR3_COND_GT = 2,
244 IR3_COND_GE = 3,
245 IR3_COND_EQ = 4,
246 IR3_COND_NE = 5,
247 } condition;
248 } cat2;
249 struct {
250 unsigned samp, tex;
251 type_t type;
252 } cat5;
253 struct {
254 type_t type;
255 int src_offset;
256 int dst_offset;
257 int iim_val : 3; /* for ldgb/stgb, # of components */
258 unsigned d : 3;
259 bool typed : 1;
260 } cat6;
261 struct {
262 unsigned w : 1; /* write */
263 unsigned r : 1; /* read */
264 unsigned l : 1; /* local */
265 unsigned g : 1; /* global */
266 } cat7;
267 /* for meta-instructions, just used to hold extra data
268 * before instruction scheduling, etc
269 */
270 struct {
271 int off; /* component/offset */
272 } split;
273 struct {
274 /* for output collects, this maps back to the entry in the
275 * ir3_shader_variant::outputs table.
276 */
277 int outidx;
278 } collect;
279 struct {
280 unsigned samp, tex;
281 unsigned input_offset;
282 } prefetch;
283 struct {
284 /* maps back to entry in ir3_shader_variant::inputs table: */
285 int inidx;
286 /* for sysvals, identifies the sysval type. Mostly so we can
287 * identify the special cases where a sysval should not be DCE'd
288 * (currently, just pre-fs texture fetch)
289 */
290 gl_system_value sysval;
291 } input;
292 };
293
294 /* transient values used during various algorithms: */
295 union {
296 /* The instruction depth is the max dependency distance to output.
297 *
298 * You can also think of it as the "cost", if we did any sort of
299 * optimization for register footprint. Ie. a value that is just
300 * result of moving a const to a reg would have a low cost, so to
301 * it could make sense to duplicate the instruction at various
302 * points where the result is needed to reduce register footprint.
303 */
304 int depth;
305 /* When we get to the RA stage, we no longer need depth, but
306 * we do need instruction's position/name:
307 */
308 struct {
309 uint16_t ip;
310 uint16_t name;
311 };
312 };
313
314 /* used for per-pass extra instruction data.
315 *
316 * TODO we should remove the per-pass data like this and 'use_count'
317 * and do something similar to what RA does w/ ir3_ra_instr_data..
318 * ie. use the ir3_count_instructions pass, and then use instr->ip
319 * to index into a table of pass-private data.
320 */
321 void *data;
322
323 int sun; /* Sethi–Ullman number, used by sched */
324 int use_count; /* currently just updated/used by cp */
325
326 /* Used during CP and RA stages. For collect and shader inputs/
327 * outputs where we need a sequence of consecutive registers,
328 * keep track of each src instructions left (ie 'n-1') and right
329 * (ie 'n+1') neighbor. The front-end must insert enough mov's
330 * to ensure that each instruction has at most one left and at
331 * most one right neighbor. During the copy-propagation pass,
332 * we only remove mov's when we can preserve this constraint.
333 * And during the RA stage, we use the neighbor information to
334 * allocate a block of registers in one shot.
335 *
336 * TODO: maybe just add something like:
337 * struct ir3_instruction_ref {
338 * struct ir3_instruction *instr;
339 * unsigned cnt;
340 * }
341 *
342 * Or can we get away without the refcnt stuff? It seems like
343 * it should be overkill.. the problem is if, potentially after
344 * already eliminating some mov's, if you have a single mov that
345 * needs to be grouped with it's neighbors in two different
346 * places (ex. shader output and a collect).
347 */
348 struct {
349 struct ir3_instruction *left, *right;
350 uint16_t left_cnt, right_cnt;
351 } cp;
352
353 /* an instruction can reference at most one address register amongst
354 * it's src/dst registers. Beyond that, you need to insert mov's.
355 *
356 * NOTE: do not write this directly, use ir3_instr_set_address()
357 */
358 struct ir3_instruction *address;
359
360 /* Tracking for additional dependent instructions. Used to handle
361 * barriers, WAR hazards for arrays/SSBOs/etc.
362 */
363 DECLARE_ARRAY(struct ir3_instruction *, deps);
364
365 /*
366 * From PoV of instruction scheduling, not execution (ie. ignores global/
367 * local distinction):
368 * shared image atomic SSBO everything
369 * barrier()/ - R/W R/W R/W R/W X
370 * groupMemoryBarrier()
371 * memoryBarrier() - R/W R/W
372 * (but only images declared coherent?)
373 * memoryBarrierAtomic() - R/W
374 * memoryBarrierBuffer() - R/W
375 * memoryBarrierImage() - R/W
376 * memoryBarrierShared() - R/W
377 *
378 * TODO I think for SSBO/image/shared, in cases where we can determine
379 * which variable is accessed, we don't need to care about accesses to
380 * different variables (unless declared coherent??)
381 */
382 enum {
383 IR3_BARRIER_EVERYTHING = 1 << 0,
384 IR3_BARRIER_SHARED_R = 1 << 1,
385 IR3_BARRIER_SHARED_W = 1 << 2,
386 IR3_BARRIER_IMAGE_R = 1 << 3,
387 IR3_BARRIER_IMAGE_W = 1 << 4,
388 IR3_BARRIER_BUFFER_R = 1 << 5,
389 IR3_BARRIER_BUFFER_W = 1 << 6,
390 IR3_BARRIER_ARRAY_R = 1 << 7,
391 IR3_BARRIER_ARRAY_W = 1 << 8,
392 } barrier_class, barrier_conflict;
393
394 /* Entry in ir3_block's instruction list: */
395 struct list_head node;
396
397 #ifdef DEBUG
398 uint32_t serialno;
399 #endif
400 };
401
402 static inline struct ir3_instruction *
403 ir3_neighbor_first(struct ir3_instruction *instr)
404 {
405 int cnt = 0;
406 while (instr->cp.left) {
407 instr = instr->cp.left;
408 if (++cnt > 0xffff) {
409 debug_assert(0);
410 break;
411 }
412 }
413 return instr;
414 }
415
416 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
417 {
418 int num = 1;
419
420 debug_assert(!instr->cp.left);
421
422 while (instr->cp.right) {
423 num++;
424 instr = instr->cp.right;
425 if (num > 0xffff) {
426 debug_assert(0);
427 break;
428 }
429 }
430
431 return num;
432 }
433
434 struct ir3 {
435 struct ir3_compiler *compiler;
436 gl_shader_stage type;
437
438 DECLARE_ARRAY(struct ir3_instruction *, inputs);
439 DECLARE_ARRAY(struct ir3_instruction *, outputs);
440
441 /* Track bary.f (and ldlv) instructions.. this is needed in
442 * scheduling to ensure that all varying fetches happen before
443 * any potential kill instructions. The hw gets grumpy if all
444 * threads in a group are killed before the last bary.f gets
445 * a chance to signal end of input (ei).
446 */
447 DECLARE_ARRAY(struct ir3_instruction *, baryfs);
448
449 /* Track all indirect instructions (read and write). To avoid
450 * deadlock scenario where an address register gets scheduled,
451 * but other dependent src instructions cannot be scheduled due
452 * to dependency on a *different* address register value, the
453 * scheduler needs to ensure that all dependencies other than
454 * the instruction other than the address register are scheduled
455 * before the one that writes the address register. Having a
456 * convenient list of instructions that reference some address
457 * register simplifies this.
458 */
459 DECLARE_ARRAY(struct ir3_instruction *, indirects);
460
461 /* and same for instructions that consume predicate register: */
462 DECLARE_ARRAY(struct ir3_instruction *, predicates);
463
464 /* Track texture sample instructions which need texture state
465 * patched in (for astc-srgb workaround):
466 */
467 DECLARE_ARRAY(struct ir3_instruction *, astc_srgb);
468
469 /* List of blocks: */
470 struct list_head block_list;
471
472 /* List of ir3_array's: */
473 struct list_head array_list;
474
475 unsigned max_sun; /* max Sethi–Ullman number */
476
477 #ifdef DEBUG
478 unsigned block_count, instr_count;
479 #endif
480 };
481
482 struct ir3_array {
483 struct list_head node;
484 unsigned length;
485 unsigned id;
486
487 struct nir_register *r;
488
489 /* To avoid array write's from getting DCE'd, keep track of the
490 * most recent write. Any array access depends on the most
491 * recent write. This way, nothing depends on writes after the
492 * last read. But all the writes that happen before that have
493 * something depending on them
494 */
495 struct ir3_instruction *last_write;
496
497 /* extra stuff used in RA pass: */
498 unsigned base; /* base vreg name */
499 unsigned reg; /* base physical reg */
500 uint16_t start_ip, end_ip;
501 };
502
503 struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
504
505 struct ir3_block {
506 struct list_head node;
507 struct ir3 *shader;
508
509 const struct nir_block *nblock;
510
511 struct list_head instr_list; /* list of ir3_instruction */
512
513 /* each block has either one or two successors.. in case of
514 * two successors, 'condition' decides which one to follow.
515 * A block preceding an if/else has two successors.
516 */
517 struct ir3_instruction *condition;
518 struct ir3_block *successors[2];
519
520 struct set *predecessors; /* set of ir3_block */
521
522 uint16_t start_ip, end_ip;
523
524 /* Track instructions which do not write a register but other-
525 * wise must not be discarded (such as kill, stg, etc)
526 */
527 DECLARE_ARRAY(struct ir3_instruction *, keeps);
528
529 /* used for per-pass extra block data. Mainly used right
530 * now in RA step to track livein/liveout.
531 */
532 void *data;
533
534 #ifdef DEBUG
535 uint32_t serialno;
536 #endif
537 };
538
539 static inline uint32_t
540 block_id(struct ir3_block *block)
541 {
542 #ifdef DEBUG
543 return block->serialno;
544 #else
545 return (uint32_t)(unsigned long)block;
546 #endif
547 }
548
549 struct ir3 * ir3_create(struct ir3_compiler *compiler, gl_shader_stage type);
550 void ir3_destroy(struct ir3 *shader);
551 void * ir3_assemble(struct ir3 *shader,
552 struct ir3_info *info, uint32_t gpu_id);
553 void * ir3_alloc(struct ir3 *shader, int sz);
554
555 struct ir3_block * ir3_block_create(struct ir3 *shader);
556
557 struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
558 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
559 opc_t opc, int nreg);
560 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
561 void ir3_instr_add_dep(struct ir3_instruction *instr, struct ir3_instruction *dep);
562 const char *ir3_instr_name(struct ir3_instruction *instr);
563
564 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
565 int num, int flags);
566 struct ir3_register * ir3_reg_clone(struct ir3 *shader,
567 struct ir3_register *reg);
568
569 void ir3_instr_set_address(struct ir3_instruction *instr,
570 struct ir3_instruction *addr);
571
572 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
573 {
574 if (instr->flags & IR3_INSTR_MARK)
575 return true; /* already visited */
576 instr->flags |= IR3_INSTR_MARK;
577 return false;
578 }
579
580 void ir3_block_clear_mark(struct ir3_block *block);
581 void ir3_clear_mark(struct ir3 *shader);
582
583 unsigned ir3_count_instructions(struct ir3 *ir);
584
585 static inline int ir3_instr_regno(struct ir3_instruction *instr,
586 struct ir3_register *reg)
587 {
588 unsigned i;
589 for (i = 0; i < instr->regs_count; i++)
590 if (reg == instr->regs[i])
591 return i;
592 return -1;
593 }
594
595
596 #define MAX_ARRAYS 16
597
598 /* comp:
599 * 0 - x
600 * 1 - y
601 * 2 - z
602 * 3 - w
603 */
604 static inline uint32_t regid(int num, int comp)
605 {
606 return (num << 2) | (comp & 0x3);
607 }
608
609 static inline uint32_t reg_num(struct ir3_register *reg)
610 {
611 return reg->num >> 2;
612 }
613
614 static inline uint32_t reg_comp(struct ir3_register *reg)
615 {
616 return reg->num & 0x3;
617 }
618
619 #define INVALID_REG regid(63, 0)
620 #define VALIDREG(r) ((r) != INVALID_REG)
621 #define CONDREG(r, val) COND(VALIDREG(r), (val))
622
623 static inline bool is_flow(struct ir3_instruction *instr)
624 {
625 return (opc_cat(instr->opc) == 0);
626 }
627
628 static inline bool is_kill(struct ir3_instruction *instr)
629 {
630 return instr->opc == OPC_KILL || instr->opc == OPC_CONDEND;
631 }
632
633 static inline bool is_nop(struct ir3_instruction *instr)
634 {
635 return instr->opc == OPC_NOP;
636 }
637
638 static inline bool is_same_type_reg(struct ir3_register *reg1,
639 struct ir3_register *reg2)
640 {
641 unsigned type_reg1 = (reg1->flags & (IR3_REG_HIGH | IR3_REG_HALF));
642 unsigned type_reg2 = (reg2->flags & (IR3_REG_HIGH | IR3_REG_HALF));
643
644 if (type_reg1 ^ type_reg2)
645 return false;
646 else
647 return true;
648 }
649
650 /* Is it a non-transformative (ie. not type changing) mov? This can
651 * also include absneg.s/absneg.f, which for the most part can be
652 * treated as a mov (single src argument).
653 */
654 static inline bool is_same_type_mov(struct ir3_instruction *instr)
655 {
656 struct ir3_register *dst;
657
658 switch (instr->opc) {
659 case OPC_MOV:
660 if (instr->cat1.src_type != instr->cat1.dst_type)
661 return false;
662 /* If the type of dest reg and src reg are different,
663 * it shouldn't be considered as same type mov
664 */
665 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
666 return false;
667 break;
668 case OPC_ABSNEG_F:
669 case OPC_ABSNEG_S:
670 if (instr->flags & IR3_INSTR_SAT)
671 return false;
672 /* If the type of dest reg and src reg are different,
673 * it shouldn't be considered as same type mov
674 */
675 if (!is_same_type_reg(instr->regs[0], instr->regs[1]))
676 return false;
677 break;
678 default:
679 return false;
680 }
681
682 dst = instr->regs[0];
683
684 /* mov's that write to a0.x or p0.x are special: */
685 if (dst->num == regid(REG_P0, 0))
686 return false;
687 if (dst->num == regid(REG_A0, 0))
688 return false;
689
690 if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
691 return false;
692
693 return true;
694 }
695
696 static inline bool is_alu(struct ir3_instruction *instr)
697 {
698 return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
699 }
700
701 static inline bool is_sfu(struct ir3_instruction *instr)
702 {
703 return (opc_cat(instr->opc) == 4);
704 }
705
706 static inline bool is_tex(struct ir3_instruction *instr)
707 {
708 return (opc_cat(instr->opc) == 5);
709 }
710
711 static inline bool is_mem(struct ir3_instruction *instr)
712 {
713 return (opc_cat(instr->opc) == 6);
714 }
715
716 static inline bool is_barrier(struct ir3_instruction *instr)
717 {
718 return (opc_cat(instr->opc) == 7);
719 }
720
721 static inline bool
722 is_store(struct ir3_instruction *instr)
723 {
724 /* these instructions, the "destination" register is
725 * actually a source, the address to store to.
726 */
727 switch (instr->opc) {
728 case OPC_STG:
729 case OPC_STGB:
730 case OPC_STIB:
731 case OPC_STP:
732 case OPC_STL:
733 case OPC_STLW:
734 case OPC_L2G:
735 case OPC_G2L:
736 return true;
737 default:
738 return false;
739 }
740 }
741
742 static inline bool is_load(struct ir3_instruction *instr)
743 {
744 switch (instr->opc) {
745 case OPC_LDG:
746 case OPC_LDGB:
747 case OPC_LDIB:
748 case OPC_LDL:
749 case OPC_LDP:
750 case OPC_L2G:
751 case OPC_LDLW:
752 case OPC_LDC:
753 case OPC_LDLV:
754 /* probably some others too.. */
755 return true;
756 default:
757 return false;
758 }
759 }
760
761 static inline bool is_input(struct ir3_instruction *instr)
762 {
763 /* in some cases, ldlv is used to fetch varying without
764 * interpolation.. fortunately inloc is the first src
765 * register in either case
766 */
767 switch (instr->opc) {
768 case OPC_LDLV:
769 case OPC_BARY_F:
770 return true;
771 default:
772 return false;
773 }
774 }
775
776 static inline bool is_bool(struct ir3_instruction *instr)
777 {
778 switch (instr->opc) {
779 case OPC_CMPS_F:
780 case OPC_CMPS_S:
781 case OPC_CMPS_U:
782 return true;
783 default:
784 return false;
785 }
786 }
787
788 static inline bool is_meta(struct ir3_instruction *instr)
789 {
790 return (opc_cat(instr->opc) == -1);
791 }
792
793 static inline unsigned dest_regs(struct ir3_instruction *instr)
794 {
795 if ((instr->regs_count == 0) || is_store(instr))
796 return 0;
797
798 return util_last_bit(instr->regs[0]->wrmask);
799 }
800
801 static inline bool writes_addr(struct ir3_instruction *instr)
802 {
803 if (instr->regs_count > 0) {
804 struct ir3_register *dst = instr->regs[0];
805 return reg_num(dst) == REG_A0;
806 }
807 return false;
808 }
809
810 static inline bool writes_pred(struct ir3_instruction *instr)
811 {
812 if (instr->regs_count > 0) {
813 struct ir3_register *dst = instr->regs[0];
814 return reg_num(dst) == REG_P0;
815 }
816 return false;
817 }
818
819 /* returns defining instruction for reg */
820 /* TODO better name */
821 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
822 {
823 if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
824 return reg->instr;
825 }
826 return NULL;
827 }
828
829 static inline bool conflicts(struct ir3_instruction *a,
830 struct ir3_instruction *b)
831 {
832 return (a && b) && (a != b);
833 }
834
835 static inline bool reg_gpr(struct ir3_register *r)
836 {
837 if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
838 return false;
839 if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
840 return false;
841 return true;
842 }
843
844 static inline type_t half_type(type_t type)
845 {
846 switch (type) {
847 case TYPE_F32: return TYPE_F16;
848 case TYPE_U32: return TYPE_U16;
849 case TYPE_S32: return TYPE_S16;
850 case TYPE_F16:
851 case TYPE_U16:
852 case TYPE_S16:
853 return type;
854 default:
855 assert(0);
856 return ~0;
857 }
858 }
859
860 /* some cat2 instructions (ie. those which are not float) can embed an
861 * immediate:
862 */
863 static inline bool ir3_cat2_int(opc_t opc)
864 {
865 switch (opc) {
866 case OPC_ADD_U:
867 case OPC_ADD_S:
868 case OPC_SUB_U:
869 case OPC_SUB_S:
870 case OPC_CMPS_U:
871 case OPC_CMPS_S:
872 case OPC_MIN_U:
873 case OPC_MIN_S:
874 case OPC_MAX_U:
875 case OPC_MAX_S:
876 case OPC_CMPV_U:
877 case OPC_CMPV_S:
878 case OPC_MUL_U24:
879 case OPC_MUL_S24:
880 case OPC_MULL_U:
881 case OPC_CLZ_S:
882 case OPC_ABSNEG_S:
883 case OPC_AND_B:
884 case OPC_OR_B:
885 case OPC_NOT_B:
886 case OPC_XOR_B:
887 case OPC_BFREV_B:
888 case OPC_CLZ_B:
889 case OPC_SHL_B:
890 case OPC_SHR_B:
891 case OPC_ASHR_B:
892 case OPC_MGEN_B:
893 case OPC_GETBIT_B:
894 case OPC_CBITS_B:
895 case OPC_BARY_F:
896 return true;
897
898 default:
899 return false;
900 }
901 }
902
903 static inline bool ir3_cat2_float(opc_t opc)
904 {
905 switch (opc) {
906 case OPC_ADD_F:
907 case OPC_MIN_F:
908 case OPC_MAX_F:
909 case OPC_MUL_F:
910 case OPC_SIGN_F:
911 case OPC_CMPS_F:
912 case OPC_ABSNEG_F:
913 case OPC_CMPV_F:
914 case OPC_FLOOR_F:
915 case OPC_CEIL_F:
916 case OPC_RNDNE_F:
917 case OPC_RNDAZ_F:
918 case OPC_TRUNC_F:
919 return true;
920
921 default:
922 return false;
923 }
924 }
925
926 static inline bool ir3_cat3_float(opc_t opc)
927 {
928 switch (opc) {
929 case OPC_MAD_F16:
930 case OPC_MAD_F32:
931 case OPC_SEL_F16:
932 case OPC_SEL_F32:
933 return true;
934 default:
935 return false;
936 }
937 }
938
939 /* map cat2 instruction to valid abs/neg flags: */
940 static inline unsigned ir3_cat2_absneg(opc_t opc)
941 {
942 switch (opc) {
943 case OPC_ADD_F:
944 case OPC_MIN_F:
945 case OPC_MAX_F:
946 case OPC_MUL_F:
947 case OPC_SIGN_F:
948 case OPC_CMPS_F:
949 case OPC_ABSNEG_F:
950 case OPC_CMPV_F:
951 case OPC_FLOOR_F:
952 case OPC_CEIL_F:
953 case OPC_RNDNE_F:
954 case OPC_RNDAZ_F:
955 case OPC_TRUNC_F:
956 case OPC_BARY_F:
957 return IR3_REG_FABS | IR3_REG_FNEG;
958
959 case OPC_ADD_U:
960 case OPC_ADD_S:
961 case OPC_SUB_U:
962 case OPC_SUB_S:
963 case OPC_CMPS_U:
964 case OPC_CMPS_S:
965 case OPC_MIN_U:
966 case OPC_MIN_S:
967 case OPC_MAX_U:
968 case OPC_MAX_S:
969 case OPC_CMPV_U:
970 case OPC_CMPV_S:
971 case OPC_MUL_U24:
972 case OPC_MUL_S24:
973 case OPC_MULL_U:
974 case OPC_CLZ_S:
975 return 0;
976
977 case OPC_ABSNEG_S:
978 return IR3_REG_SABS | IR3_REG_SNEG;
979
980 case OPC_AND_B:
981 case OPC_OR_B:
982 case OPC_NOT_B:
983 case OPC_XOR_B:
984 case OPC_BFREV_B:
985 case OPC_CLZ_B:
986 case OPC_SHL_B:
987 case OPC_SHR_B:
988 case OPC_ASHR_B:
989 case OPC_MGEN_B:
990 case OPC_GETBIT_B:
991 case OPC_CBITS_B:
992 return IR3_REG_BNOT;
993
994 default:
995 return 0;
996 }
997 }
998
999 /* map cat3 instructions to valid abs/neg flags: */
1000 static inline unsigned ir3_cat3_absneg(opc_t opc)
1001 {
1002 switch (opc) {
1003 case OPC_MAD_F16:
1004 case OPC_MAD_F32:
1005 case OPC_SEL_F16:
1006 case OPC_SEL_F32:
1007 return IR3_REG_FNEG;
1008
1009 case OPC_MAD_U16:
1010 case OPC_MADSH_U16:
1011 case OPC_MAD_S16:
1012 case OPC_MADSH_M16:
1013 case OPC_MAD_U24:
1014 case OPC_MAD_S24:
1015 case OPC_SEL_S16:
1016 case OPC_SEL_S32:
1017 case OPC_SAD_S16:
1018 case OPC_SAD_S32:
1019 /* neg *may* work on 3rd src.. */
1020
1021 case OPC_SEL_B16:
1022 case OPC_SEL_B32:
1023
1024 default:
1025 return 0;
1026 }
1027 }
1028
1029 #define MASK(n) ((1 << (n)) - 1)
1030
1031 /* iterator for an instructions's sources (reg), also returns src #: */
1032 #define foreach_src_n(__srcreg, __n, __instr) \
1033 if ((__instr)->regs_count) \
1034 for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
1035 if ((__srcreg = (__instr)->regs[__n + 1]))
1036
1037 /* iterator for an instructions's sources (reg): */
1038 #define foreach_src(__srcreg, __instr) \
1039 foreach_src_n(__srcreg, __i, __instr)
1040
1041 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
1042 {
1043 unsigned cnt = instr->regs_count + instr->deps_count;
1044 if (instr->address)
1045 cnt++;
1046 return cnt;
1047 }
1048
1049 static inline struct ir3_instruction * __ssa_src_n(struct ir3_instruction *instr, unsigned n)
1050 {
1051 if (n == (instr->regs_count + instr->deps_count))
1052 return instr->address;
1053 if (n >= instr->regs_count)
1054 return instr->deps[n - instr->regs_count];
1055 return ssa(instr->regs[n]);
1056 }
1057
1058 static inline bool __is_false_dep(struct ir3_instruction *instr, unsigned n)
1059 {
1060 if (n == (instr->regs_count + instr->deps_count))
1061 return false;
1062 if (n >= instr->regs_count)
1063 return true;
1064 return false;
1065 }
1066
1067 #define __src_cnt(__instr) ((__instr)->address ? (__instr)->regs_count : (__instr)->regs_count - 1)
1068
1069 /* iterator for an instruction's SSA sources (instr), also returns src #: */
1070 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
1071 for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
1072 if ((__srcinst = __ssa_src_n(__instr, __n)))
1073
1074 /* iterator for an instruction's SSA sources (instr): */
1075 #define foreach_ssa_src(__srcinst, __instr) \
1076 foreach_ssa_src_n(__srcinst, __i, __instr)
1077
1078 /* iterators for shader inputs: */
1079 #define foreach_input_n(__ininstr, __cnt, __ir) \
1080 for (unsigned __cnt = 0; __cnt < (__ir)->inputs_count; __cnt++) \
1081 if ((__ininstr = (__ir)->inputs[__cnt]))
1082 #define foreach_input(__ininstr, __ir) \
1083 foreach_input_n(__ininstr, __i, __ir)
1084
1085 /* iterators for shader outputs: */
1086 #define foreach_output_n(__outinstr, __cnt, __ir) \
1087 for (unsigned __cnt = 0; __cnt < (__ir)->outputs_count; __cnt++) \
1088 if ((__outinstr = (__ir)->outputs[__cnt]))
1089 #define foreach_output(__outinstr, __ir) \
1090 foreach_output_n(__outinstr, __i, __ir)
1091
1092 /* dump: */
1093 void ir3_print(struct ir3 *ir);
1094 void ir3_print_instr(struct ir3_instruction *instr);
1095
1096 /* depth calculation: */
1097 struct ir3_shader_variant;
1098 int ir3_delayslots(struct ir3_instruction *assigner,
1099 struct ir3_instruction *consumer, unsigned n);
1100 void ir3_insert_by_depth(struct ir3_instruction *instr, struct list_head *list);
1101 void ir3_depth(struct ir3 *ir, struct ir3_shader_variant *so);
1102
1103 /* copy-propagate: */
1104 void ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so);
1105
1106 /* group neighbors and insert mov's to resolve conflicts: */
1107 void ir3_group(struct ir3 *ir);
1108
1109 /* Sethi–Ullman numbering: */
1110 void ir3_sun(struct ir3 *ir);
1111
1112 /* scheduling: */
1113 void ir3_sched_add_deps(struct ir3 *ir);
1114 int ir3_sched(struct ir3 *ir);
1115
1116 void ir3_a6xx_fixup_atomic_dests(struct ir3 *ir, struct ir3_shader_variant *so);
1117
1118 /* register assignment: */
1119 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(struct ir3_compiler *compiler);
1120 int ir3_ra(struct ir3_shader_variant *v, struct ir3_instruction **precolor, unsigned nprecolor);
1121
1122 /* legalize: */
1123 void ir3_legalize(struct ir3 *ir, bool *has_ssbo, bool *need_pixlod, int *max_bary);
1124
1125 /* ************************************************************************* */
1126 /* instruction helpers */
1127
1128 /* creates SSA src of correct type (ie. half vs full precision) */
1129 static inline struct ir3_register * __ssa_src(struct ir3_instruction *instr,
1130 struct ir3_instruction *src, unsigned flags)
1131 {
1132 struct ir3_register *reg;
1133 if (src->regs[0]->flags & IR3_REG_HALF)
1134 flags |= IR3_REG_HALF;
1135 reg = ir3_reg_create(instr, 0, IR3_REG_SSA | flags);
1136 reg->instr = src;
1137 reg->wrmask = src->regs[0]->wrmask;
1138 return reg;
1139 }
1140
1141 static inline struct ir3_register * __ssa_dst(struct ir3_instruction *instr)
1142 {
1143 struct ir3_register *reg = ir3_reg_create(instr, 0, 0);
1144 reg->flags |= IR3_REG_SSA;
1145 return reg;
1146 }
1147
1148 static inline struct ir3_instruction *
1149 create_immed_typed(struct ir3_block *block, uint32_t val, type_t type)
1150 {
1151 struct ir3_instruction *mov;
1152 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1153
1154 mov = ir3_instr_create(block, OPC_MOV);
1155 mov->cat1.src_type = type;
1156 mov->cat1.dst_type = type;
1157 __ssa_dst(mov)->flags |= flags;
1158 ir3_reg_create(mov, 0, IR3_REG_IMMED)->uim_val = val;
1159
1160 return mov;
1161 }
1162
1163 static inline struct ir3_instruction *
1164 create_immed(struct ir3_block *block, uint32_t val)
1165 {
1166 return create_immed_typed(block, val, TYPE_U32);
1167 }
1168
1169 static inline struct ir3_instruction *
1170 create_uniform_typed(struct ir3_block *block, unsigned n, type_t type)
1171 {
1172 struct ir3_instruction *mov;
1173 unsigned flags = (type_size(type) < 32) ? IR3_REG_HALF : 0;
1174
1175 mov = ir3_instr_create(block, OPC_MOV);
1176 mov->cat1.src_type = type;
1177 mov->cat1.dst_type = type;
1178 __ssa_dst(mov)->flags |= flags;
1179 ir3_reg_create(mov, n, IR3_REG_CONST | flags);
1180
1181 return mov;
1182 }
1183
1184 static inline struct ir3_instruction *
1185 create_uniform(struct ir3_block *block, unsigned n)
1186 {
1187 return create_uniform_typed(block, n, TYPE_F32);
1188 }
1189
1190 static inline struct ir3_instruction *
1191 create_uniform_indirect(struct ir3_block *block, int n,
1192 struct ir3_instruction *address)
1193 {
1194 struct ir3_instruction *mov;
1195
1196 mov = ir3_instr_create(block, OPC_MOV);
1197 mov->cat1.src_type = TYPE_U32;
1198 mov->cat1.dst_type = TYPE_U32;
1199 __ssa_dst(mov);
1200 ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
1201
1202 ir3_instr_set_address(mov, address);
1203
1204 return mov;
1205 }
1206
1207 static inline struct ir3_instruction *
1208 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
1209 {
1210 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1211 __ssa_dst(instr);
1212 if (src->regs[0]->flags & IR3_REG_ARRAY) {
1213 struct ir3_register *src_reg = __ssa_src(instr, src, IR3_REG_ARRAY);
1214 src_reg->array = src->regs[0]->array;
1215 } else {
1216 __ssa_src(instr, src, src->regs[0]->flags & IR3_REG_HIGH);
1217 }
1218 debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
1219 instr->cat1.src_type = type;
1220 instr->cat1.dst_type = type;
1221 return instr;
1222 }
1223
1224 static inline struct ir3_instruction *
1225 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
1226 type_t src_type, type_t dst_type)
1227 {
1228 struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
1229 unsigned dst_flags = (type_size(dst_type) < 32) ? IR3_REG_HALF : 0;
1230 unsigned src_flags = (type_size(src_type) < 32) ? IR3_REG_HALF : 0;
1231
1232 debug_assert((src->regs[0]->flags & IR3_REG_HALF) == src_flags);
1233
1234 __ssa_dst(instr)->flags |= dst_flags;
1235 __ssa_src(instr, src, 0);
1236 instr->cat1.src_type = src_type;
1237 instr->cat1.dst_type = dst_type;
1238 debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
1239 return instr;
1240 }
1241
1242 static inline struct ir3_instruction *
1243 ir3_NOP(struct ir3_block *block)
1244 {
1245 return ir3_instr_create(block, OPC_NOP);
1246 }
1247
1248 #define IR3_INSTR_0 0
1249
1250 #define __INSTR0(flag, name, opc) \
1251 static inline struct ir3_instruction * \
1252 ir3_##name(struct ir3_block *block) \
1253 { \
1254 struct ir3_instruction *instr = \
1255 ir3_instr_create(block, opc); \
1256 instr->flags |= flag; \
1257 return instr; \
1258 }
1259 #define INSTR0F(f, name) __INSTR0(IR3_INSTR_##f, name##_##f, OPC_##name)
1260 #define INSTR0(name) __INSTR0(0, name, OPC_##name)
1261
1262 #define __INSTR1(flag, name, opc) \
1263 static inline struct ir3_instruction * \
1264 ir3_##name(struct ir3_block *block, \
1265 struct ir3_instruction *a, unsigned aflags) \
1266 { \
1267 struct ir3_instruction *instr = \
1268 ir3_instr_create(block, opc); \
1269 __ssa_dst(instr); \
1270 __ssa_src(instr, a, aflags); \
1271 instr->flags |= flag; \
1272 return instr; \
1273 }
1274 #define INSTR1F(f, name) __INSTR1(IR3_INSTR_##f, name##_##f, OPC_##name)
1275 #define INSTR1(name) __INSTR1(0, name, OPC_##name)
1276
1277 #define __INSTR2(flag, name, opc) \
1278 static inline struct ir3_instruction * \
1279 ir3_##name(struct ir3_block *block, \
1280 struct ir3_instruction *a, unsigned aflags, \
1281 struct ir3_instruction *b, unsigned bflags) \
1282 { \
1283 struct ir3_instruction *instr = \
1284 ir3_instr_create(block, opc); \
1285 __ssa_dst(instr); \
1286 __ssa_src(instr, a, aflags); \
1287 __ssa_src(instr, b, bflags); \
1288 instr->flags |= flag; \
1289 return instr; \
1290 }
1291 #define INSTR2F(f, name) __INSTR2(IR3_INSTR_##f, name##_##f, OPC_##name)
1292 #define INSTR2(name) __INSTR2(0, name, OPC_##name)
1293
1294 #define __INSTR3(flag, name, opc) \
1295 static inline struct ir3_instruction * \
1296 ir3_##name(struct ir3_block *block, \
1297 struct ir3_instruction *a, unsigned aflags, \
1298 struct ir3_instruction *b, unsigned bflags, \
1299 struct ir3_instruction *c, unsigned cflags) \
1300 { \
1301 struct ir3_instruction *instr = \
1302 ir3_instr_create2(block, opc, 4); \
1303 __ssa_dst(instr); \
1304 __ssa_src(instr, a, aflags); \
1305 __ssa_src(instr, b, bflags); \
1306 __ssa_src(instr, c, cflags); \
1307 instr->flags |= flag; \
1308 return instr; \
1309 }
1310 #define INSTR3F(f, name) __INSTR3(IR3_INSTR_##f, name##_##f, OPC_##name)
1311 #define INSTR3(name) __INSTR3(0, name, OPC_##name)
1312
1313 #define __INSTR4(flag, name, opc) \
1314 static inline struct ir3_instruction * \
1315 ir3_##name(struct ir3_block *block, \
1316 struct ir3_instruction *a, unsigned aflags, \
1317 struct ir3_instruction *b, unsigned bflags, \
1318 struct ir3_instruction *c, unsigned cflags, \
1319 struct ir3_instruction *d, unsigned dflags) \
1320 { \
1321 struct ir3_instruction *instr = \
1322 ir3_instr_create2(block, opc, 5); \
1323 __ssa_dst(instr); \
1324 __ssa_src(instr, a, aflags); \
1325 __ssa_src(instr, b, bflags); \
1326 __ssa_src(instr, c, cflags); \
1327 __ssa_src(instr, d, dflags); \
1328 instr->flags |= flag; \
1329 return instr; \
1330 }
1331 #define INSTR4F(f, name) __INSTR4(IR3_INSTR_##f, name##_##f, OPC_##name)
1332 #define INSTR4(name) __INSTR4(0, name, OPC_##name)
1333
1334 /* cat0 instructions: */
1335 INSTR0(BR)
1336 INSTR0(JUMP)
1337 INSTR1(KILL)
1338 INSTR0(END)
1339 INSTR0(CHSH)
1340 INSTR0(CHMASK)
1341 INSTR1(CONDEND)
1342 INSTR0(ENDPATCH)
1343
1344 /* cat2 instructions, most 2 src but some 1 src: */
1345 INSTR2(ADD_F)
1346 INSTR2(MIN_F)
1347 INSTR2(MAX_F)
1348 INSTR2(MUL_F)
1349 INSTR1(SIGN_F)
1350 INSTR2(CMPS_F)
1351 INSTR1(ABSNEG_F)
1352 INSTR2(CMPV_F)
1353 INSTR1(FLOOR_F)
1354 INSTR1(CEIL_F)
1355 INSTR1(RNDNE_F)
1356 INSTR1(RNDAZ_F)
1357 INSTR1(TRUNC_F)
1358 INSTR2(ADD_U)
1359 INSTR2(ADD_S)
1360 INSTR2(SUB_U)
1361 INSTR2(SUB_S)
1362 INSTR2(CMPS_U)
1363 INSTR2(CMPS_S)
1364 INSTR2(MIN_U)
1365 INSTR2(MIN_S)
1366 INSTR2(MAX_U)
1367 INSTR2(MAX_S)
1368 INSTR1(ABSNEG_S)
1369 INSTR2(AND_B)
1370 INSTR2(OR_B)
1371 INSTR1(NOT_B)
1372 INSTR2(XOR_B)
1373 INSTR2(CMPV_U)
1374 INSTR2(CMPV_S)
1375 INSTR2(MUL_U24)
1376 INSTR2(MUL_S24)
1377 INSTR2(MULL_U)
1378 INSTR1(BFREV_B)
1379 INSTR1(CLZ_S)
1380 INSTR1(CLZ_B)
1381 INSTR2(SHL_B)
1382 INSTR2(SHR_B)
1383 INSTR2(ASHR_B)
1384 INSTR2(BARY_F)
1385 INSTR2(MGEN_B)
1386 INSTR2(GETBIT_B)
1387 INSTR1(SETRM)
1388 INSTR1(CBITS_B)
1389 INSTR2(SHB)
1390 INSTR2(MSAD)
1391
1392 /* cat3 instructions: */
1393 INSTR3(MAD_U16)
1394 INSTR3(MADSH_U16)
1395 INSTR3(MAD_S16)
1396 INSTR3(MADSH_M16)
1397 INSTR3(MAD_U24)
1398 INSTR3(MAD_S24)
1399 INSTR3(MAD_F16)
1400 INSTR3(MAD_F32)
1401 INSTR3(SEL_B16)
1402 INSTR3(SEL_B32)
1403 INSTR3(SEL_S16)
1404 INSTR3(SEL_S32)
1405 INSTR3(SEL_F16)
1406 INSTR3(SEL_F32)
1407 INSTR3(SAD_S16)
1408 INSTR3(SAD_S32)
1409
1410 /* cat4 instructions: */
1411 INSTR1(RCP)
1412 INSTR1(RSQ)
1413 INSTR1(LOG2)
1414 INSTR1(EXP2)
1415 INSTR1(SIN)
1416 INSTR1(COS)
1417 INSTR1(SQRT)
1418
1419 /* cat5 instructions: */
1420 INSTR1(DSX)
1421 INSTR1(DSY)
1422 INSTR1F(3D, DSX)
1423 INSTR1F(3D, DSY)
1424 INSTR1(RGETPOS)
1425
1426 static inline struct ir3_instruction *
1427 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
1428 unsigned wrmask, unsigned flags, struct ir3_instruction *samp_tex,
1429 struct ir3_instruction *src0, struct ir3_instruction *src1)
1430 {
1431 struct ir3_instruction *sam;
1432
1433 sam = ir3_instr_create(block, opc);
1434 sam->flags |= flags | IR3_INSTR_S2EN;
1435 __ssa_dst(sam)->wrmask = wrmask;
1436 __ssa_src(sam, samp_tex, IR3_REG_HALF);
1437 if (src0) {
1438 __ssa_src(sam, src0, 0)->wrmask = (1 << (src0->regs_count - 1)) - 1;
1439 }
1440 if (src1) {
1441 __ssa_src(sam, src1, 0)->wrmask =(1 << (src1->regs_count - 1)) - 1;
1442 }
1443 sam->cat5.type = type;
1444
1445 return sam;
1446 }
1447
1448 /* cat6 instructions: */
1449 INSTR2(LDLV)
1450 INSTR3(LDG)
1451 INSTR3(LDL)
1452 INSTR3(LDLW)
1453 INSTR3(STG)
1454 INSTR3(STL)
1455 INSTR3(STLW)
1456 INSTR1(RESINFO)
1457 INSTR1(RESFMT)
1458 INSTR2(ATOMIC_ADD)
1459 INSTR2(ATOMIC_SUB)
1460 INSTR2(ATOMIC_XCHG)
1461 INSTR2(ATOMIC_INC)
1462 INSTR2(ATOMIC_DEC)
1463 INSTR2(ATOMIC_CMPXCHG)
1464 INSTR2(ATOMIC_MIN)
1465 INSTR2(ATOMIC_MAX)
1466 INSTR2(ATOMIC_AND)
1467 INSTR2(ATOMIC_OR)
1468 INSTR2(ATOMIC_XOR)
1469 #if GPU >= 600
1470 INSTR3(STIB);
1471 INSTR2(LDIB);
1472 INSTR3F(G, ATOMIC_ADD)
1473 INSTR3F(G, ATOMIC_SUB)
1474 INSTR3F(G, ATOMIC_XCHG)
1475 INSTR3F(G, ATOMIC_INC)
1476 INSTR3F(G, ATOMIC_DEC)
1477 INSTR3F(G, ATOMIC_CMPXCHG)
1478 INSTR3F(G, ATOMIC_MIN)
1479 INSTR3F(G, ATOMIC_MAX)
1480 INSTR3F(G, ATOMIC_AND)
1481 INSTR3F(G, ATOMIC_OR)
1482 INSTR3F(G, ATOMIC_XOR)
1483 #elif GPU >= 400
1484 INSTR3(LDGB)
1485 INSTR4(STGB)
1486 INSTR4(STIB)
1487 INSTR4F(G, ATOMIC_ADD)
1488 INSTR4F(G, ATOMIC_SUB)
1489 INSTR4F(G, ATOMIC_XCHG)
1490 INSTR4F(G, ATOMIC_INC)
1491 INSTR4F(G, ATOMIC_DEC)
1492 INSTR4F(G, ATOMIC_CMPXCHG)
1493 INSTR4F(G, ATOMIC_MIN)
1494 INSTR4F(G, ATOMIC_MAX)
1495 INSTR4F(G, ATOMIC_AND)
1496 INSTR4F(G, ATOMIC_OR)
1497 INSTR4F(G, ATOMIC_XOR)
1498 #endif
1499
1500 INSTR4F(G, STG)
1501
1502 /* cat7 instructions: */
1503 INSTR0(BAR)
1504 INSTR0(FENCE)
1505
1506 /* meta instructions: */
1507 INSTR0(META_TEX_PREFETCH);
1508
1509 /* ************************************************************************* */
1510 /* split this out or find some helper to use.. like main/bitset.h.. */
1511
1512 #include <string.h>
1513
1514 #define MAX_REG 256
1515
1516 typedef uint8_t regmask_t[2 * MAX_REG / 8];
1517
1518 static inline unsigned regmask_idx(struct ir3_register *reg)
1519 {
1520 unsigned num = (reg->flags & IR3_REG_RELATIV) ? reg->array.offset : reg->num;
1521 debug_assert(num < MAX_REG);
1522 if (reg->flags & IR3_REG_HALF) {
1523 if (reg->merged) {
1524 num /= 2;
1525 } else {
1526 num += MAX_REG;
1527 }
1528 }
1529 return num;
1530 }
1531
1532 static inline void regmask_init(regmask_t *regmask)
1533 {
1534 memset(regmask, 0, sizeof(*regmask));
1535 }
1536
1537 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
1538 {
1539 unsigned idx = regmask_idx(reg);
1540 if (reg->flags & IR3_REG_RELATIV) {
1541 unsigned i;
1542 for (i = 0; i < reg->size; i++, idx++)
1543 (*regmask)[idx / 8] |= 1 << (idx % 8);
1544 } else {
1545 unsigned mask;
1546 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1547 if (mask & 1)
1548 (*regmask)[idx / 8] |= 1 << (idx % 8);
1549 }
1550 }
1551
1552 static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
1553 {
1554 unsigned i;
1555 for (i = 0; i < ARRAY_SIZE(*dst); i++)
1556 (*dst)[i] = (*a)[i] | (*b)[i];
1557 }
1558
1559 /* set bits in a if not set in b, conceptually:
1560 * a |= (reg & ~b)
1561 */
1562 static inline void regmask_set_if_not(regmask_t *a,
1563 struct ir3_register *reg, regmask_t *b)
1564 {
1565 unsigned idx = regmask_idx(reg);
1566 if (reg->flags & IR3_REG_RELATIV) {
1567 unsigned i;
1568 for (i = 0; i < reg->size; i++, idx++)
1569 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1570 (*a)[idx / 8] |= 1 << (idx % 8);
1571 } else {
1572 unsigned mask;
1573 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1574 if (mask & 1)
1575 if (!((*b)[idx / 8] & (1 << (idx % 8))))
1576 (*a)[idx / 8] |= 1 << (idx % 8);
1577 }
1578 }
1579
1580 static inline bool regmask_get(regmask_t *regmask,
1581 struct ir3_register *reg)
1582 {
1583 unsigned idx = regmask_idx(reg);
1584 if (reg->flags & IR3_REG_RELATIV) {
1585 unsigned i;
1586 for (i = 0; i < reg->size; i++, idx++)
1587 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1588 return true;
1589 } else {
1590 unsigned mask;
1591 for (mask = reg->wrmask; mask; mask >>= 1, idx++)
1592 if (mask & 1)
1593 if ((*regmask)[idx / 8] & (1 << (idx % 8)))
1594 return true;
1595 }
1596 return false;
1597 }
1598
1599 /* ************************************************************************* */
1600
1601 #endif /* IR3_H_ */