a0f1a36545a210781a7adff432daeca5f67d9348
[mesa.git] / src / freedreno / ir3 / ir3_compiler_nir.c
1 /*
2 * Copyright (C) 2015 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include <stdarg.h>
28
29 #include "util/u_string.h"
30 #include "util/u_memory.h"
31 #include "util/u_math.h"
32
33 #include "ir3_compiler.h"
34 #include "ir3_image.h"
35 #include "ir3_shader.h"
36 #include "ir3_nir.h"
37
38 #include "instr-a3xx.h"
39 #include "ir3.h"
40 #include "ir3_context.h"
41
42 void
43 ir3_handle_bindless_cat6(struct ir3_instruction *instr, nir_src rsrc)
44 {
45 nir_intrinsic_instr *intrin = ir3_bindless_resource(rsrc);
46 if (!intrin)
47 return;
48
49 instr->flags |= IR3_INSTR_B;
50 instr->cat6.base = nir_intrinsic_desc_set(intrin);
51 }
52
53 static struct ir3_instruction *
54 create_indirect_load(struct ir3_context *ctx, unsigned arrsz, int n,
55 struct ir3_instruction *address, struct ir3_instruction *collect)
56 {
57 struct ir3_block *block = ctx->block;
58 struct ir3_instruction *mov;
59 struct ir3_register *src;
60
61 mov = ir3_instr_create(block, OPC_MOV);
62 mov->cat1.src_type = TYPE_U32;
63 mov->cat1.dst_type = TYPE_U32;
64 __ssa_dst(mov);
65 src = __ssa_src(mov, collect, IR3_REG_RELATIV);
66 src->size = arrsz;
67 src->array.offset = n;
68
69 ir3_instr_set_address(mov, address);
70
71 return mov;
72 }
73
74 static struct ir3_instruction *
75 create_input(struct ir3_context *ctx, unsigned compmask)
76 {
77 struct ir3_instruction *in;
78
79 in = ir3_instr_create(ctx->in_block, OPC_META_INPUT);
80 in->input.sysval = ~0;
81 __ssa_dst(in)->wrmask = compmask;
82
83 array_insert(ctx->ir, ctx->ir->inputs, in);
84
85 return in;
86 }
87
88 static struct ir3_instruction *
89 create_frag_input(struct ir3_context *ctx, bool use_ldlv, unsigned n)
90 {
91 struct ir3_block *block = ctx->block;
92 struct ir3_instruction *instr;
93 /* packed inloc is fixed up later: */
94 struct ir3_instruction *inloc = create_immed(block, n);
95
96 if (use_ldlv) {
97 instr = ir3_LDLV(block, inloc, 0, create_immed(block, 1), 0);
98 instr->cat6.type = TYPE_U32;
99 instr->cat6.iim_val = 1;
100 } else {
101 instr = ir3_BARY_F(block, inloc, 0, ctx->ij[IJ_PERSP_PIXEL], 0);
102 instr->regs[2]->wrmask = 0x3;
103 }
104
105 return instr;
106 }
107
108 static struct ir3_instruction *
109 create_driver_param(struct ir3_context *ctx, enum ir3_driver_param dp)
110 {
111 /* first four vec4 sysval's reserved for UBOs: */
112 /* NOTE: dp is in scalar, but there can be >4 dp components: */
113 struct ir3_const_state *const_state = ir3_const_state(ctx->so);
114 unsigned n = const_state->offsets.driver_param;
115 unsigned r = regid(n + dp / 4, dp % 4);
116 return create_uniform(ctx->block, r);
117 }
118
119 /*
120 * Adreno's comparisons produce a 1 for true and 0 for false, in either 16 or
121 * 32-bit registers. We use NIR's 1-bit integers to represent bools, and
122 * trust that we will only see and/or/xor on those 1-bit values, so we can
123 * safely store NIR i1s in a 32-bit reg while always containing either a 1 or
124 * 0.
125 */
126
127 /*
128 * alu/sfu instructions:
129 */
130
131 static struct ir3_instruction *
132 create_cov(struct ir3_context *ctx, struct ir3_instruction *src,
133 unsigned src_bitsize, nir_op op)
134 {
135 type_t src_type, dst_type;
136
137 switch (op) {
138 case nir_op_f2f32:
139 case nir_op_f2f16_rtne:
140 case nir_op_f2f16_rtz:
141 case nir_op_f2f16:
142 case nir_op_f2i32:
143 case nir_op_f2i16:
144 case nir_op_f2i8:
145 case nir_op_f2u32:
146 case nir_op_f2u16:
147 case nir_op_f2u8:
148 switch (src_bitsize) {
149 case 32:
150 src_type = TYPE_F32;
151 break;
152 case 16:
153 src_type = TYPE_F16;
154 break;
155 default:
156 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
157 }
158 break;
159
160 case nir_op_i2f32:
161 case nir_op_i2f16:
162 case nir_op_i2i32:
163 case nir_op_i2i16:
164 case nir_op_i2i8:
165 switch (src_bitsize) {
166 case 32:
167 src_type = TYPE_S32;
168 break;
169 case 16:
170 src_type = TYPE_S16;
171 break;
172 case 8:
173 src_type = TYPE_S8;
174 break;
175 default:
176 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
177 }
178 break;
179
180 case nir_op_u2f32:
181 case nir_op_u2f16:
182 case nir_op_u2u32:
183 case nir_op_u2u16:
184 case nir_op_u2u8:
185 switch (src_bitsize) {
186 case 32:
187 src_type = TYPE_U32;
188 break;
189 case 16:
190 src_type = TYPE_U16;
191 break;
192 case 8:
193 src_type = TYPE_U8;
194 break;
195 default:
196 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
197 }
198 break;
199
200 case nir_op_b2f16:
201 case nir_op_b2f32:
202 case nir_op_b2i8:
203 case nir_op_b2i16:
204 case nir_op_b2i32:
205 src_type = TYPE_U32;
206 break;
207
208 default:
209 ir3_context_error(ctx, "invalid conversion op: %u", op);
210 }
211
212 switch (op) {
213 case nir_op_f2f32:
214 case nir_op_i2f32:
215 case nir_op_u2f32:
216 case nir_op_b2f32:
217 dst_type = TYPE_F32;
218 break;
219
220 case nir_op_f2f16_rtne:
221 case nir_op_f2f16_rtz:
222 case nir_op_f2f16:
223 case nir_op_i2f16:
224 case nir_op_u2f16:
225 case nir_op_b2f16:
226 dst_type = TYPE_F16;
227 break;
228
229 case nir_op_f2i32:
230 case nir_op_i2i32:
231 case nir_op_b2i32:
232 dst_type = TYPE_S32;
233 break;
234
235 case nir_op_f2i16:
236 case nir_op_i2i16:
237 case nir_op_b2i16:
238 dst_type = TYPE_S16;
239 break;
240
241 case nir_op_f2i8:
242 case nir_op_i2i8:
243 case nir_op_b2i8:
244 dst_type = TYPE_S8;
245 break;
246
247 case nir_op_f2u32:
248 case nir_op_u2u32:
249 dst_type = TYPE_U32;
250 break;
251
252 case nir_op_f2u16:
253 case nir_op_u2u16:
254 dst_type = TYPE_U16;
255 break;
256
257 case nir_op_f2u8:
258 case nir_op_u2u8:
259 dst_type = TYPE_U8;
260 break;
261
262 default:
263 ir3_context_error(ctx, "invalid conversion op: %u", op);
264 }
265
266 if (src_type == dst_type)
267 return src;
268
269 struct ir3_instruction *cov =
270 ir3_COV(ctx->block, src, src_type, dst_type);
271
272 if (op == nir_op_f2f16_rtne)
273 cov->regs[0]->flags |= IR3_REG_EVEN;
274
275 return cov;
276 }
277
278 static void
279 emit_alu(struct ir3_context *ctx, nir_alu_instr *alu)
280 {
281 const nir_op_info *info = &nir_op_infos[alu->op];
282 struct ir3_instruction **dst, *src[info->num_inputs];
283 unsigned bs[info->num_inputs]; /* bit size */
284 struct ir3_block *b = ctx->block;
285 unsigned dst_sz, wrmask;
286 type_t dst_type = nir_dest_bit_size(alu->dest.dest) == 16 ?
287 TYPE_U16 : TYPE_U32;
288
289 if (alu->dest.dest.is_ssa) {
290 dst_sz = alu->dest.dest.ssa.num_components;
291 wrmask = (1 << dst_sz) - 1;
292 } else {
293 dst_sz = alu->dest.dest.reg.reg->num_components;
294 wrmask = alu->dest.write_mask;
295 }
296
297 dst = ir3_get_dst(ctx, &alu->dest.dest, dst_sz);
298
299 /* Vectors are special in that they have non-scalarized writemasks,
300 * and just take the first swizzle channel for each argument in
301 * order into each writemask channel.
302 */
303 if ((alu->op == nir_op_vec2) ||
304 (alu->op == nir_op_vec3) ||
305 (alu->op == nir_op_vec4)) {
306
307 for (int i = 0; i < info->num_inputs; i++) {
308 nir_alu_src *asrc = &alu->src[i];
309
310 compile_assert(ctx, !asrc->abs);
311 compile_assert(ctx, !asrc->negate);
312
313 src[i] = ir3_get_src(ctx, &asrc->src)[asrc->swizzle[0]];
314 if (!src[i])
315 src[i] = create_immed_typed(ctx->block, 0, dst_type);
316 dst[i] = ir3_MOV(b, src[i], dst_type);
317 }
318
319 ir3_put_dst(ctx, &alu->dest.dest);
320 return;
321 }
322
323 /* We also get mov's with more than one component for mov's so
324 * handle those specially:
325 */
326 if (alu->op == nir_op_mov) {
327 nir_alu_src *asrc = &alu->src[0];
328 struct ir3_instruction *const *src0 = ir3_get_src(ctx, &asrc->src);
329
330 for (unsigned i = 0; i < dst_sz; i++) {
331 if (wrmask & (1 << i)) {
332 dst[i] = ir3_MOV(b, src0[asrc->swizzle[i]], dst_type);
333 } else {
334 dst[i] = NULL;
335 }
336 }
337
338 ir3_put_dst(ctx, &alu->dest.dest);
339 return;
340 }
341
342 /* General case: We can just grab the one used channel per src. */
343 for (int i = 0; i < info->num_inputs; i++) {
344 unsigned chan = ffs(alu->dest.write_mask) - 1;
345 nir_alu_src *asrc = &alu->src[i];
346
347 compile_assert(ctx, !asrc->abs);
348 compile_assert(ctx, !asrc->negate);
349
350 src[i] = ir3_get_src(ctx, &asrc->src)[asrc->swizzle[chan]];
351 bs[i] = nir_src_bit_size(asrc->src);
352
353 compile_assert(ctx, src[i]);
354 }
355
356 switch (alu->op) {
357 case nir_op_f2f32:
358 case nir_op_f2f16_rtne:
359 case nir_op_f2f16_rtz:
360 case nir_op_f2f16:
361 case nir_op_f2i32:
362 case nir_op_f2i16:
363 case nir_op_f2i8:
364 case nir_op_f2u32:
365 case nir_op_f2u16:
366 case nir_op_f2u8:
367 case nir_op_i2f32:
368 case nir_op_i2f16:
369 case nir_op_i2i32:
370 case nir_op_i2i16:
371 case nir_op_i2i8:
372 case nir_op_u2f32:
373 case nir_op_u2f16:
374 case nir_op_u2u32:
375 case nir_op_u2u16:
376 case nir_op_u2u8:
377 case nir_op_b2f16:
378 case nir_op_b2f32:
379 case nir_op_b2i8:
380 case nir_op_b2i16:
381 case nir_op_b2i32:
382 dst[0] = create_cov(ctx, src[0], bs[0], alu->op);
383 break;
384
385 case nir_op_fquantize2f16:
386 dst[0] = create_cov(ctx,
387 create_cov(ctx, src[0], 32, nir_op_f2f16),
388 16, nir_op_f2f32);
389 break;
390 case nir_op_f2b1:
391 dst[0] = ir3_CMPS_F(b,
392 src[0], 0,
393 create_immed_typed(b, 0, bs[0] == 16 ? TYPE_F16 : TYPE_F32), 0);
394 dst[0]->cat2.condition = IR3_COND_NE;
395 break;
396
397 case nir_op_i2b1:
398 /* i2b1 will appear when translating from nir_load_ubo or
399 * nir_intrinsic_load_ssbo, where any non-zero value is true.
400 */
401 dst[0] = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
402 dst[0]->cat2.condition = IR3_COND_NE;
403 break;
404
405 case nir_op_b2b1:
406 /* b2b1 will appear when translating from
407 *
408 * - nir_intrinsic_load_shared of a 32-bit 0/~0 value.
409 * - nir_intrinsic_load_constant of a 32-bit 0/~0 value
410 *
411 * A negate can turn those into a 1 or 0 for us.
412 */
413 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
414 break;
415
416 case nir_op_b2b32:
417 /* b2b32 will appear when converting our 1-bit bools to a store_shared
418 * argument.
419 *
420 * A negate can turn those into a ~0 for us.
421 */
422 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
423 break;
424
425 case nir_op_fneg:
426 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FNEG);
427 break;
428 case nir_op_fabs:
429 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FABS);
430 break;
431 case nir_op_fmax:
432 dst[0] = ir3_MAX_F(b, src[0], 0, src[1], 0);
433 break;
434 case nir_op_fmin:
435 dst[0] = ir3_MIN_F(b, src[0], 0, src[1], 0);
436 break;
437 case nir_op_fsat:
438 /* if there is just a single use of the src, and it supports
439 * (sat) bit, we can just fold the (sat) flag back to the
440 * src instruction and create a mov. This is easier for cp
441 * to eliminate.
442 *
443 * NOTE: a3xx definitely seen not working with flat bary.f. Same test
444 * uses ldlv on a4xx+, so not definitive. Seems rare enough to apply
445 * everywhere.
446 *
447 * TODO probably opc_cat==4 is ok too
448 */
449 if (alu->src[0].src.is_ssa &&
450 src[0]->opc != OPC_BARY_F &&
451 (list_length(&alu->src[0].src.ssa->uses) == 1) &&
452 ((opc_cat(src[0]->opc) == 2) || (opc_cat(src[0]->opc) == 3))) {
453 src[0]->flags |= IR3_INSTR_SAT;
454 dst[0] = ir3_MOV(b, src[0], dst_type);
455 } else {
456 /* otherwise generate a max.f that saturates.. blob does
457 * similar (generating a cat2 mov using max.f)
458 */
459 dst[0] = ir3_MAX_F(b, src[0], 0, src[0], 0);
460 dst[0]->flags |= IR3_INSTR_SAT;
461 }
462 break;
463 case nir_op_fmul:
464 dst[0] = ir3_MUL_F(b, src[0], 0, src[1], 0);
465 break;
466 case nir_op_fadd:
467 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], 0);
468 break;
469 case nir_op_fsub:
470 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], IR3_REG_FNEG);
471 break;
472 case nir_op_ffma:
473 dst[0] = ir3_MAD_F32(b, src[0], 0, src[1], 0, src[2], 0);
474 break;
475 case nir_op_fddx:
476 case nir_op_fddx_coarse:
477 dst[0] = ir3_DSX(b, src[0], 0);
478 dst[0]->cat5.type = TYPE_F32;
479 break;
480 case nir_op_fddx_fine:
481 dst[0] = ir3_DSXPP_MACRO(b, src[0], 0);
482 dst[0]->cat5.type = TYPE_F32;
483 break;
484 case nir_op_fddy:
485 case nir_op_fddy_coarse:
486 dst[0] = ir3_DSY(b, src[0], 0);
487 dst[0]->cat5.type = TYPE_F32;
488 break;
489 break;
490 case nir_op_fddy_fine:
491 dst[0] = ir3_DSYPP_MACRO(b, src[0], 0);
492 dst[0]->cat5.type = TYPE_F32;
493 break;
494 case nir_op_flt:
495 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
496 dst[0]->cat2.condition = IR3_COND_LT;
497 break;
498 case nir_op_fge:
499 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
500 dst[0]->cat2.condition = IR3_COND_GE;
501 break;
502 case nir_op_feq:
503 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
504 dst[0]->cat2.condition = IR3_COND_EQ;
505 break;
506 case nir_op_fne:
507 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
508 dst[0]->cat2.condition = IR3_COND_NE;
509 break;
510 case nir_op_fceil:
511 dst[0] = ir3_CEIL_F(b, src[0], 0);
512 break;
513 case nir_op_ffloor:
514 dst[0] = ir3_FLOOR_F(b, src[0], 0);
515 break;
516 case nir_op_ftrunc:
517 dst[0] = ir3_TRUNC_F(b, src[0], 0);
518 break;
519 case nir_op_fround_even:
520 dst[0] = ir3_RNDNE_F(b, src[0], 0);
521 break;
522 case nir_op_fsign:
523 dst[0] = ir3_SIGN_F(b, src[0], 0);
524 break;
525
526 case nir_op_fsin:
527 dst[0] = ir3_SIN(b, src[0], 0);
528 break;
529 case nir_op_fcos:
530 dst[0] = ir3_COS(b, src[0], 0);
531 break;
532 case nir_op_frsq:
533 dst[0] = ir3_RSQ(b, src[0], 0);
534 break;
535 case nir_op_frcp:
536 dst[0] = ir3_RCP(b, src[0], 0);
537 break;
538 case nir_op_flog2:
539 dst[0] = ir3_LOG2(b, src[0], 0);
540 break;
541 case nir_op_fexp2:
542 dst[0] = ir3_EXP2(b, src[0], 0);
543 break;
544 case nir_op_fsqrt:
545 dst[0] = ir3_SQRT(b, src[0], 0);
546 break;
547
548 case nir_op_iabs:
549 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SABS);
550 break;
551 case nir_op_iadd:
552 dst[0] = ir3_ADD_U(b, src[0], 0, src[1], 0);
553 break;
554 case nir_op_iand:
555 dst[0] = ir3_AND_B(b, src[0], 0, src[1], 0);
556 break;
557 case nir_op_imax:
558 dst[0] = ir3_MAX_S(b, src[0], 0, src[1], 0);
559 break;
560 case nir_op_umax:
561 dst[0] = ir3_MAX_U(b, src[0], 0, src[1], 0);
562 break;
563 case nir_op_imin:
564 dst[0] = ir3_MIN_S(b, src[0], 0, src[1], 0);
565 break;
566 case nir_op_umin:
567 dst[0] = ir3_MIN_U(b, src[0], 0, src[1], 0);
568 break;
569 case nir_op_umul_low:
570 dst[0] = ir3_MULL_U(b, src[0], 0, src[1], 0);
571 break;
572 case nir_op_imadsh_mix16:
573 dst[0] = ir3_MADSH_M16(b, src[0], 0, src[1], 0, src[2], 0);
574 break;
575 case nir_op_imad24_ir3:
576 dst[0] = ir3_MAD_S24(b, src[0], 0, src[1], 0, src[2], 0);
577 break;
578 case nir_op_imul24:
579 dst[0] = ir3_MUL_S24(b, src[0], 0, src[1], 0);
580 break;
581 case nir_op_ineg:
582 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
583 break;
584 case nir_op_inot:
585 if (bs[0] == 1) {
586 dst[0] = ir3_SUB_U(b, create_immed(ctx->block, 1), 0, src[0], 0);
587 } else {
588 dst[0] = ir3_NOT_B(b, src[0], 0);
589 }
590 break;
591 case nir_op_ior:
592 dst[0] = ir3_OR_B(b, src[0], 0, src[1], 0);
593 break;
594 case nir_op_ishl:
595 dst[0] = ir3_SHL_B(b, src[0], 0, src[1], 0);
596 break;
597 case nir_op_ishr:
598 dst[0] = ir3_ASHR_B(b, src[0], 0, src[1], 0);
599 break;
600 case nir_op_isub:
601 dst[0] = ir3_SUB_U(b, src[0], 0, src[1], 0);
602 break;
603 case nir_op_ixor:
604 dst[0] = ir3_XOR_B(b, src[0], 0, src[1], 0);
605 break;
606 case nir_op_ushr:
607 dst[0] = ir3_SHR_B(b, src[0], 0, src[1], 0);
608 break;
609 case nir_op_ilt:
610 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
611 dst[0]->cat2.condition = IR3_COND_LT;
612 break;
613 case nir_op_ige:
614 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
615 dst[0]->cat2.condition = IR3_COND_GE;
616 break;
617 case nir_op_ieq:
618 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
619 dst[0]->cat2.condition = IR3_COND_EQ;
620 break;
621 case nir_op_ine:
622 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
623 dst[0]->cat2.condition = IR3_COND_NE;
624 break;
625 case nir_op_ult:
626 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
627 dst[0]->cat2.condition = IR3_COND_LT;
628 break;
629 case nir_op_uge:
630 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
631 dst[0]->cat2.condition = IR3_COND_GE;
632 break;
633
634 case nir_op_bcsel: {
635 struct ir3_instruction *cond = src[0];
636
637 /* If src[0] is a negation (likely as a result of an ir3_b2n(cond)),
638 * we can ignore that and use original cond, since the nonzero-ness of
639 * cond stays the same.
640 */
641 if (cond->opc == OPC_ABSNEG_S &&
642 cond->flags == 0 &&
643 (cond->regs[1]->flags & (IR3_REG_SNEG | IR3_REG_SABS)) == IR3_REG_SNEG) {
644 cond = cond->regs[1]->instr;
645 }
646
647 compile_assert(ctx, bs[1] == bs[2]);
648 /* The condition's size has to match the other two arguments' size, so
649 * convert down if necessary.
650 */
651 if (bs[1] == 16) {
652 struct hash_entry *prev_entry =
653 _mesa_hash_table_search(ctx->sel_cond_conversions, src[0]);
654 if (prev_entry) {
655 cond = prev_entry->data;
656 } else {
657 cond = ir3_COV(b, cond, TYPE_U32, TYPE_U16);
658 _mesa_hash_table_insert(ctx->sel_cond_conversions, src[0], cond);
659 }
660 }
661
662 if (bs[1] != 16)
663 dst[0] = ir3_SEL_B32(b, src[1], 0, cond, 0, src[2], 0);
664 else
665 dst[0] = ir3_SEL_B16(b, src[1], 0, cond, 0, src[2], 0);
666 break;
667 }
668 case nir_op_bit_count: {
669 // TODO, we need to do this 16b at a time on a5xx+a6xx.. need to
670 // double check on earlier gen's. Once half-precision support is
671 // in place, this should probably move to a NIR lowering pass:
672 struct ir3_instruction *hi, *lo;
673
674 hi = ir3_COV(b, ir3_SHR_B(b, src[0], 0, create_immed(b, 16), 0),
675 TYPE_U32, TYPE_U16);
676 lo = ir3_COV(b, src[0], TYPE_U32, TYPE_U16);
677
678 hi = ir3_CBITS_B(b, hi, 0);
679 lo = ir3_CBITS_B(b, lo, 0);
680
681 // TODO maybe the builders should default to making dst half-precision
682 // if the src's were half precision, to make this less awkward.. otoh
683 // we should probably just do this lowering in NIR.
684 hi->regs[0]->flags |= IR3_REG_HALF;
685 lo->regs[0]->flags |= IR3_REG_HALF;
686
687 dst[0] = ir3_ADD_S(b, hi, 0, lo, 0);
688 dst[0]->regs[0]->flags |= IR3_REG_HALF;
689 dst[0] = ir3_COV(b, dst[0], TYPE_U16, TYPE_U32);
690 break;
691 }
692 case nir_op_ifind_msb: {
693 struct ir3_instruction *cmp;
694 dst[0] = ir3_CLZ_S(b, src[0], 0);
695 cmp = ir3_CMPS_S(b, dst[0], 0, create_immed(b, 0), 0);
696 cmp->cat2.condition = IR3_COND_GE;
697 dst[0] = ir3_SEL_B32(b,
698 ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
699 cmp, 0, dst[0], 0);
700 break;
701 }
702 case nir_op_ufind_msb:
703 dst[0] = ir3_CLZ_B(b, src[0], 0);
704 dst[0] = ir3_SEL_B32(b,
705 ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
706 src[0], 0, dst[0], 0);
707 break;
708 case nir_op_find_lsb:
709 dst[0] = ir3_BFREV_B(b, src[0], 0);
710 dst[0] = ir3_CLZ_B(b, dst[0], 0);
711 break;
712 case nir_op_bitfield_reverse:
713 dst[0] = ir3_BFREV_B(b, src[0], 0);
714 break;
715
716 default:
717 ir3_context_error(ctx, "Unhandled ALU op: %s\n",
718 nir_op_infos[alu->op].name);
719 break;
720 }
721
722 if (nir_alu_type_get_base_type(info->output_type) == nir_type_bool) {
723 assert(nir_dest_bit_size(alu->dest.dest) == 1 ||
724 alu->op == nir_op_b2b32);
725 assert(dst_sz == 1);
726 } else {
727 /* 1-bit values stored in 32-bit registers are only valid for certain
728 * ALU ops.
729 */
730 switch (alu->op) {
731 case nir_op_iand:
732 case nir_op_ior:
733 case nir_op_ixor:
734 case nir_op_inot:
735 case nir_op_bcsel:
736 break;
737 default:
738 compile_assert(ctx, nir_dest_bit_size(alu->dest.dest) != 1);
739 }
740 }
741
742 ir3_put_dst(ctx, &alu->dest.dest);
743 }
744
745 static void
746 emit_intrinsic_load_ubo_ldc(struct ir3_context *ctx, nir_intrinsic_instr *intr,
747 struct ir3_instruction **dst)
748 {
749 struct ir3_block *b = ctx->block;
750
751 unsigned ncomp = intr->num_components;
752 struct ir3_instruction *offset = ir3_get_src(ctx, &intr->src[1])[0];
753 struct ir3_instruction *idx = ir3_get_src(ctx, &intr->src[0])[0];
754 struct ir3_instruction *ldc = ir3_LDC(b, idx, 0, offset, 0);
755 ldc->regs[0]->wrmask = MASK(ncomp);
756 ldc->cat6.iim_val = ncomp;
757 ldc->cat6.d = nir_intrinsic_base(intr);
758 ldc->cat6.type = TYPE_U32;
759
760 ir3_handle_bindless_cat6(ldc, intr->src[0]);
761 if (ldc->flags & IR3_INSTR_B)
762 ctx->so->bindless_ubo = true;
763
764 ir3_split_dest(b, dst, ldc, 0, ncomp);
765 }
766
767
768 /* handles direct/indirect UBO reads: */
769 static void
770 emit_intrinsic_load_ubo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
771 struct ir3_instruction **dst)
772 {
773 struct ir3_block *b = ctx->block;
774 struct ir3_instruction *base_lo, *base_hi, *addr, *src0, *src1;
775 const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
776 unsigned ubo = regid(const_state->offsets.ubo, 0);
777 const unsigned ptrsz = ir3_pointer_size(ctx->compiler);
778
779 int off = 0;
780
781 /* First src is ubo index, which could either be an immed or not: */
782 src0 = ir3_get_src(ctx, &intr->src[0])[0];
783 if (is_same_type_mov(src0) &&
784 (src0->regs[1]->flags & IR3_REG_IMMED)) {
785 base_lo = create_uniform(b, ubo + (src0->regs[1]->iim_val * ptrsz));
786 base_hi = create_uniform(b, ubo + (src0->regs[1]->iim_val * ptrsz) + 1);
787 } else {
788 base_lo = create_uniform_indirect(b, ubo, TYPE_U32, ir3_get_addr0(ctx, src0, ptrsz));
789 base_hi = create_uniform_indirect(b, ubo + 1, TYPE_U32, ir3_get_addr0(ctx, src0, ptrsz));
790
791 /* NOTE: since relative addressing is used, make sure constlen is
792 * at least big enough to cover all the UBO addresses, since the
793 * assembler won't know what the max address reg is.
794 */
795 ctx->so->constlen = MAX2(ctx->so->constlen,
796 const_state->offsets.ubo + (ctx->s->info.num_ubos * ptrsz));
797 }
798
799 /* note: on 32bit gpu's base_hi is ignored and DCE'd */
800 addr = base_lo;
801
802 if (nir_src_is_const(intr->src[1])) {
803 off += nir_src_as_uint(intr->src[1]);
804 } else {
805 /* For load_ubo_indirect, second src is indirect offset: */
806 src1 = ir3_get_src(ctx, &intr->src[1])[0];
807
808 /* and add offset to addr: */
809 addr = ir3_ADD_S(b, addr, 0, src1, 0);
810 }
811
812 /* if offset is to large to encode in the ldg, split it out: */
813 if ((off + (intr->num_components * 4)) > 1024) {
814 /* split out the minimal amount to improve the odds that
815 * cp can fit the immediate in the add.s instruction:
816 */
817 unsigned off2 = off + (intr->num_components * 4) - 1024;
818 addr = ir3_ADD_S(b, addr, 0, create_immed(b, off2), 0);
819 off -= off2;
820 }
821
822 if (ptrsz == 2) {
823 struct ir3_instruction *carry;
824
825 /* handle 32b rollover, ie:
826 * if (addr < base_lo)
827 * base_hi++
828 */
829 carry = ir3_CMPS_U(b, addr, 0, base_lo, 0);
830 carry->cat2.condition = IR3_COND_LT;
831 base_hi = ir3_ADD_S(b, base_hi, 0, carry, 0);
832
833 addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){ addr, base_hi }, 2);
834 }
835
836 for (int i = 0; i < intr->num_components; i++) {
837 struct ir3_instruction *load =
838 ir3_LDG(b, addr, 0, create_immed(b, 1), 0, /* num components */
839 create_immed(b, off + i * 4), 0);
840 load->cat6.type = TYPE_U32;
841 dst[i] = load;
842 }
843 }
844
845 /* src[] = { block_index } */
846 static void
847 emit_intrinsic_ssbo_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
848 struct ir3_instruction **dst)
849 {
850 if (ir3_bindless_resource(intr->src[0])) {
851 struct ir3_block *b = ctx->block;
852 struct ir3_instruction *ibo = ir3_ssbo_to_ibo(ctx, intr->src[0]);
853 struct ir3_instruction *resinfo = ir3_RESINFO(b, ibo, 0);
854 resinfo->cat6.iim_val = 1;
855 resinfo->cat6.d = 1;
856 resinfo->cat6.type = TYPE_U32;
857 resinfo->cat6.typed = false;
858 /* resinfo has no writemask and always writes out 3 components */
859 resinfo->regs[0]->wrmask = MASK(3);
860 ir3_handle_bindless_cat6(resinfo, intr->src[0]);
861 struct ir3_instruction *resinfo_dst;
862 ir3_split_dest(b, &resinfo_dst, resinfo, 0, 1);
863 /* Unfortunately resinfo returns the array length, i.e. in dwords,
864 * while NIR expects us to return the size in bytes.
865 *
866 * TODO: fix this in NIR.
867 */
868 *dst = ir3_SHL_B(b, resinfo_dst, 0, create_immed(b, 2), 0);
869 return;
870 }
871
872 /* SSBO size stored as a const starting at ssbo_sizes: */
873 const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
874 unsigned blk_idx = nir_src_as_uint(intr->src[0]);
875 unsigned idx = regid(const_state->offsets.ssbo_sizes, 0) +
876 const_state->ssbo_size.off[blk_idx];
877
878 debug_assert(const_state->ssbo_size.mask & (1 << blk_idx));
879
880 dst[0] = create_uniform(ctx->block, idx);
881 }
882
883 /* src[] = { offset }. const_index[] = { base } */
884 static void
885 emit_intrinsic_load_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr,
886 struct ir3_instruction **dst)
887 {
888 struct ir3_block *b = ctx->block;
889 struct ir3_instruction *ldl, *offset;
890 unsigned base;
891
892 offset = ir3_get_src(ctx, &intr->src[0])[0];
893 base = nir_intrinsic_base(intr);
894
895 ldl = ir3_LDL(b, offset, 0,
896 create_immed(b, intr->num_components), 0,
897 create_immed(b, base), 0);
898
899 ldl->cat6.type = utype_dst(intr->dest);
900 ldl->regs[0]->wrmask = MASK(intr->num_components);
901
902 ldl->barrier_class = IR3_BARRIER_SHARED_R;
903 ldl->barrier_conflict = IR3_BARRIER_SHARED_W;
904
905 ir3_split_dest(b, dst, ldl, 0, intr->num_components);
906 }
907
908 /* src[] = { value, offset }. const_index[] = { base, write_mask } */
909 static void
910 emit_intrinsic_store_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
911 {
912 struct ir3_block *b = ctx->block;
913 struct ir3_instruction *stl, *offset;
914 struct ir3_instruction * const *value;
915 unsigned base, wrmask, ncomp;
916
917 value = ir3_get_src(ctx, &intr->src[0]);
918 offset = ir3_get_src(ctx, &intr->src[1])[0];
919
920 base = nir_intrinsic_base(intr);
921 wrmask = nir_intrinsic_write_mask(intr);
922 ncomp = ffs(~wrmask) - 1;
923
924 assert(wrmask == BITFIELD_MASK(intr->num_components));
925
926 stl = ir3_STL(b, offset, 0,
927 ir3_create_collect(ctx, value, ncomp), 0,
928 create_immed(b, ncomp), 0);
929 stl->cat6.dst_offset = base;
930 stl->cat6.type = utype_src(intr->src[0]);
931 stl->barrier_class = IR3_BARRIER_SHARED_W;
932 stl->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
933
934 array_insert(b, b->keeps, stl);
935 }
936
937 /* src[] = { offset }. const_index[] = { base } */
938 static void
939 emit_intrinsic_load_shared_ir3(struct ir3_context *ctx, nir_intrinsic_instr *intr,
940 struct ir3_instruction **dst)
941 {
942 struct ir3_block *b = ctx->block;
943 struct ir3_instruction *load, *offset;
944 unsigned base;
945
946 offset = ir3_get_src(ctx, &intr->src[0])[0];
947 base = nir_intrinsic_base(intr);
948
949 load = ir3_LDLW(b, offset, 0,
950 create_immed(b, intr->num_components), 0,
951 create_immed(b, base), 0);
952
953 /* for a650, use LDL for tess ctrl inputs: */
954 if (ctx->so->type == MESA_SHADER_TESS_CTRL && ctx->compiler->tess_use_shared)
955 load->opc = OPC_LDL;
956
957 load->cat6.type = utype_dst(intr->dest);
958 load->regs[0]->wrmask = MASK(intr->num_components);
959
960 load->barrier_class = IR3_BARRIER_SHARED_R;
961 load->barrier_conflict = IR3_BARRIER_SHARED_W;
962
963 ir3_split_dest(b, dst, load, 0, intr->num_components);
964 }
965
966 /* src[] = { value, offset }. const_index[] = { base } */
967 static void
968 emit_intrinsic_store_shared_ir3(struct ir3_context *ctx, nir_intrinsic_instr *intr)
969 {
970 struct ir3_block *b = ctx->block;
971 struct ir3_instruction *store, *offset;
972 struct ir3_instruction * const *value;
973
974 value = ir3_get_src(ctx, &intr->src[0]);
975 offset = ir3_get_src(ctx, &intr->src[1])[0];
976
977 store = ir3_STLW(b, offset, 0,
978 ir3_create_collect(ctx, value, intr->num_components), 0,
979 create_immed(b, intr->num_components), 0);
980
981 /* for a650, use STL for vertex outputs used by tess ctrl shader: */
982 if (ctx->so->type == MESA_SHADER_VERTEX && ctx->so->key.tessellation &&
983 ctx->compiler->tess_use_shared)
984 store->opc = OPC_STL;
985
986 store->cat6.dst_offset = nir_intrinsic_base(intr);
987 store->cat6.type = utype_src(intr->src[0]);
988 store->barrier_class = IR3_BARRIER_SHARED_W;
989 store->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
990
991 array_insert(b, b->keeps, store);
992 }
993
994 /*
995 * CS shared variable atomic intrinsics
996 *
997 * All of the shared variable atomic memory operations read a value from
998 * memory, compute a new value using one of the operations below, write the
999 * new value to memory, and return the original value read.
1000 *
1001 * All operations take 2 sources except CompSwap that takes 3. These
1002 * sources represent:
1003 *
1004 * 0: The offset into the shared variable storage region that the atomic
1005 * operation will operate on.
1006 * 1: The data parameter to the atomic function (i.e. the value to add
1007 * in shared_atomic_add, etc).
1008 * 2: For CompSwap only: the second data parameter.
1009 */
1010 static struct ir3_instruction *
1011 emit_intrinsic_atomic_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1012 {
1013 struct ir3_block *b = ctx->block;
1014 struct ir3_instruction *atomic, *src0, *src1;
1015 type_t type = TYPE_U32;
1016
1017 src0 = ir3_get_src(ctx, &intr->src[0])[0]; /* offset */
1018 src1 = ir3_get_src(ctx, &intr->src[1])[0]; /* value */
1019
1020 switch (intr->intrinsic) {
1021 case nir_intrinsic_shared_atomic_add:
1022 atomic = ir3_ATOMIC_ADD(b, src0, 0, src1, 0);
1023 break;
1024 case nir_intrinsic_shared_atomic_imin:
1025 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
1026 type = TYPE_S32;
1027 break;
1028 case nir_intrinsic_shared_atomic_umin:
1029 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
1030 break;
1031 case nir_intrinsic_shared_atomic_imax:
1032 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1033 type = TYPE_S32;
1034 break;
1035 case nir_intrinsic_shared_atomic_umax:
1036 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1037 break;
1038 case nir_intrinsic_shared_atomic_and:
1039 atomic = ir3_ATOMIC_AND(b, src0, 0, src1, 0);
1040 break;
1041 case nir_intrinsic_shared_atomic_or:
1042 atomic = ir3_ATOMIC_OR(b, src0, 0, src1, 0);
1043 break;
1044 case nir_intrinsic_shared_atomic_xor:
1045 atomic = ir3_ATOMIC_XOR(b, src0, 0, src1, 0);
1046 break;
1047 case nir_intrinsic_shared_atomic_exchange:
1048 atomic = ir3_ATOMIC_XCHG(b, src0, 0, src1, 0);
1049 break;
1050 case nir_intrinsic_shared_atomic_comp_swap:
1051 /* for cmpxchg, src1 is [ui]vec2(data, compare): */
1052 src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1053 ir3_get_src(ctx, &intr->src[2])[0],
1054 src1,
1055 }, 2);
1056 atomic = ir3_ATOMIC_CMPXCHG(b, src0, 0, src1, 0);
1057 break;
1058 default:
1059 unreachable("boo");
1060 }
1061
1062 atomic->cat6.iim_val = 1;
1063 atomic->cat6.d = 1;
1064 atomic->cat6.type = type;
1065 atomic->barrier_class = IR3_BARRIER_SHARED_W;
1066 atomic->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1067
1068 /* even if nothing consume the result, we can't DCE the instruction: */
1069 array_insert(b, b->keeps, atomic);
1070
1071 return atomic;
1072 }
1073
1074 struct tex_src_info {
1075 /* For prefetch */
1076 unsigned tex_base, samp_base, tex_idx, samp_idx;
1077 /* For normal tex instructions */
1078 unsigned base, combined_idx, a1_val, flags;
1079 struct ir3_instruction *samp_tex;
1080 };
1081
1082 /* TODO handle actual indirect/dynamic case.. which is going to be weird
1083 * to handle with the image_mapping table..
1084 */
1085 static struct tex_src_info
1086 get_image_samp_tex_src(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1087 {
1088 struct ir3_block *b = ctx->block;
1089 struct tex_src_info info = { 0 };
1090 nir_intrinsic_instr *bindless_tex = ir3_bindless_resource(intr->src[0]);
1091 ctx->so->bindless_tex = true;
1092
1093 if (bindless_tex) {
1094 /* Bindless case */
1095 info.flags |= IR3_INSTR_B;
1096
1097 /* Gather information required to determine which encoding to
1098 * choose as well as for prefetch.
1099 */
1100 info.tex_base = nir_intrinsic_desc_set(bindless_tex);
1101 bool tex_const = nir_src_is_const(bindless_tex->src[0]);
1102 if (tex_const)
1103 info.tex_idx = nir_src_as_uint(bindless_tex->src[0]);
1104 info.samp_idx = 0;
1105
1106 /* Choose encoding. */
1107 if (tex_const && info.tex_idx < 256) {
1108 if (info.tex_idx < 16) {
1109 /* Everything fits within the instruction */
1110 info.base = info.tex_base;
1111 info.combined_idx = info.samp_idx | (info.tex_idx << 4);
1112 } else {
1113 info.base = info.tex_base;
1114 info.a1_val = info.tex_idx << 3;
1115 info.combined_idx = 0;
1116 info.flags |= IR3_INSTR_A1EN;
1117 }
1118 info.samp_tex = NULL;
1119 } else {
1120 info.flags |= IR3_INSTR_S2EN;
1121 info.base = info.tex_base;
1122
1123 /* Note: the indirect source is now a vec2 instead of hvec2 */
1124 struct ir3_instruction *texture, *sampler;
1125
1126 texture = ir3_get_src(ctx, &intr->src[0])[0];
1127 sampler = create_immed(b, 0);
1128 info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1129 texture,
1130 sampler,
1131 }, 2);
1132 }
1133 } else {
1134 info.flags |= IR3_INSTR_S2EN;
1135 unsigned slot = nir_src_as_uint(intr->src[0]);
1136 unsigned tex_idx = ir3_image_to_tex(&ctx->so->image_mapping, slot);
1137 struct ir3_instruction *texture, *sampler;
1138
1139 texture = create_immed_typed(ctx->block, tex_idx, TYPE_U16);
1140 sampler = create_immed_typed(ctx->block, tex_idx, TYPE_U16);
1141
1142 info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1143 sampler,
1144 texture,
1145 }, 2);
1146 }
1147
1148 return info;
1149 }
1150
1151 static struct ir3_instruction *
1152 emit_sam(struct ir3_context *ctx, opc_t opc, struct tex_src_info info,
1153 type_t type, unsigned wrmask, struct ir3_instruction *src0,
1154 struct ir3_instruction *src1)
1155 {
1156 struct ir3_instruction *sam, *addr;
1157 if (info.flags & IR3_INSTR_A1EN) {
1158 addr = ir3_get_addr1(ctx, info.a1_val);
1159 }
1160 sam = ir3_SAM(ctx->block, opc, type, 0b1111, info.flags,
1161 info.samp_tex, src0, src1);
1162 if (info.flags & IR3_INSTR_A1EN) {
1163 ir3_instr_set_address(sam, addr);
1164 }
1165 if (info.flags & IR3_INSTR_B) {
1166 sam->cat5.tex_base = info.base;
1167 sam->cat5.samp = info.combined_idx;
1168 }
1169 return sam;
1170 }
1171
1172 /* src[] = { deref, coord, sample_index }. const_index[] = {} */
1173 static void
1174 emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1175 struct ir3_instruction **dst)
1176 {
1177 struct ir3_block *b = ctx->block;
1178 struct tex_src_info info = get_image_samp_tex_src(ctx, intr);
1179 struct ir3_instruction *sam;
1180 struct ir3_instruction * const *src0 = ir3_get_src(ctx, &intr->src[1]);
1181 struct ir3_instruction *coords[4];
1182 unsigned flags, ncoords = ir3_get_image_coords(intr, &flags);
1183 type_t type = ir3_get_type_for_image_intrinsic(intr);
1184
1185 /* hmm, this seems a bit odd, but it is what blob does and (at least
1186 * a5xx) just faults on bogus addresses otherwise:
1187 */
1188 if (flags & IR3_INSTR_3D) {
1189 flags &= ~IR3_INSTR_3D;
1190 flags |= IR3_INSTR_A;
1191 }
1192 info.flags |= flags;
1193
1194 for (unsigned i = 0; i < ncoords; i++)
1195 coords[i] = src0[i];
1196
1197 if (ncoords == 1)
1198 coords[ncoords++] = create_immed(b, 0);
1199
1200 sam = emit_sam(ctx, OPC_ISAM, info, type, 0b1111,
1201 ir3_create_collect(ctx, coords, ncoords), NULL);
1202
1203 sam->barrier_class = IR3_BARRIER_IMAGE_R;
1204 sam->barrier_conflict = IR3_BARRIER_IMAGE_W;
1205
1206 ir3_split_dest(b, dst, sam, 0, 4);
1207 }
1208
1209 /* A4xx version of image_size, see ir3_a6xx.c for newer resinfo version. */
1210 void
1211 emit_intrinsic_image_size_tex(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1212 struct ir3_instruction **dst)
1213 {
1214 struct ir3_block *b = ctx->block;
1215 struct tex_src_info info = get_image_samp_tex_src(ctx, intr);
1216 struct ir3_instruction *sam, *lod;
1217 unsigned flags, ncoords = ir3_get_image_coords(intr, &flags);
1218 type_t dst_type = nir_dest_bit_size(intr->dest) == 16 ?
1219 TYPE_U16 : TYPE_U32;
1220
1221 info.flags |= flags;
1222 assert(nir_src_as_uint(intr->src[1]) == 0);
1223 lod = create_immed(b, 0);
1224 sam = emit_sam(ctx, OPC_GETSIZE, info, dst_type, 0b1111, lod, NULL);
1225
1226 /* Array size actually ends up in .w rather than .z. This doesn't
1227 * matter for miplevel 0, but for higher mips the value in z is
1228 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
1229 * returned, which means that we have to add 1 to it for arrays for
1230 * a3xx.
1231 *
1232 * Note use a temporary dst and then copy, since the size of the dst
1233 * array that is passed in is based on nir's understanding of the
1234 * result size, not the hardware's
1235 */
1236 struct ir3_instruction *tmp[4];
1237
1238 ir3_split_dest(b, tmp, sam, 0, 4);
1239
1240 /* get_size instruction returns size in bytes instead of texels
1241 * for imageBuffer, so we need to divide it by the pixel size
1242 * of the image format.
1243 *
1244 * TODO: This is at least true on a5xx. Check other gens.
1245 */
1246 if (nir_intrinsic_image_dim(intr) == GLSL_SAMPLER_DIM_BUF) {
1247 /* Since all the possible values the divisor can take are
1248 * power-of-two (4, 8, or 16), the division is implemented
1249 * as a shift-right.
1250 * During shader setup, the log2 of the image format's
1251 * bytes-per-pixel should have been emitted in 2nd slot of
1252 * image_dims. See ir3_shader::emit_image_dims().
1253 */
1254 const struct ir3_const_state *const_state =
1255 ir3_const_state(ctx->so);
1256 unsigned cb = regid(const_state->offsets.image_dims, 0) +
1257 const_state->image_dims.off[nir_src_as_uint(intr->src[0])];
1258 struct ir3_instruction *aux = create_uniform(b, cb + 1);
1259
1260 tmp[0] = ir3_SHR_B(b, tmp[0], 0, aux, 0);
1261 }
1262
1263 for (unsigned i = 0; i < ncoords; i++)
1264 dst[i] = tmp[i];
1265
1266 if (flags & IR3_INSTR_A) {
1267 if (ctx->compiler->levels_add_one) {
1268 dst[ncoords-1] = ir3_ADD_U(b, tmp[3], 0, create_immed(b, 1), 0);
1269 } else {
1270 dst[ncoords-1] = ir3_MOV(b, tmp[3], TYPE_U32);
1271 }
1272 }
1273 }
1274
1275 static void
1276 emit_intrinsic_barrier(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1277 {
1278 struct ir3_block *b = ctx->block;
1279 struct ir3_instruction *barrier;
1280
1281 switch (intr->intrinsic) {
1282 case nir_intrinsic_control_barrier:
1283 barrier = ir3_BAR(b);
1284 barrier->cat7.g = true;
1285 barrier->cat7.l = true;
1286 barrier->flags = IR3_INSTR_SS | IR3_INSTR_SY;
1287 barrier->barrier_class = IR3_BARRIER_EVERYTHING;
1288 break;
1289 case nir_intrinsic_memory_barrier:
1290 barrier = ir3_FENCE(b);
1291 barrier->cat7.g = true;
1292 barrier->cat7.r = true;
1293 barrier->cat7.w = true;
1294 barrier->cat7.l = true;
1295 barrier->barrier_class = IR3_BARRIER_IMAGE_W |
1296 IR3_BARRIER_BUFFER_W;
1297 barrier->barrier_conflict =
1298 IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
1299 IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1300 break;
1301 case nir_intrinsic_memory_barrier_buffer:
1302 barrier = ir3_FENCE(b);
1303 barrier->cat7.g = true;
1304 barrier->cat7.r = true;
1305 barrier->cat7.w = true;
1306 barrier->barrier_class = IR3_BARRIER_BUFFER_W;
1307 barrier->barrier_conflict = IR3_BARRIER_BUFFER_R |
1308 IR3_BARRIER_BUFFER_W;
1309 break;
1310 case nir_intrinsic_memory_barrier_image:
1311 // TODO double check if this should have .g set
1312 barrier = ir3_FENCE(b);
1313 barrier->cat7.g = true;
1314 barrier->cat7.r = true;
1315 barrier->cat7.w = true;
1316 barrier->barrier_class = IR3_BARRIER_IMAGE_W;
1317 barrier->barrier_conflict = IR3_BARRIER_IMAGE_R |
1318 IR3_BARRIER_IMAGE_W;
1319 break;
1320 case nir_intrinsic_memory_barrier_shared:
1321 barrier = ir3_FENCE(b);
1322 barrier->cat7.g = true;
1323 barrier->cat7.l = true;
1324 barrier->cat7.r = true;
1325 barrier->cat7.w = true;
1326 barrier->barrier_class = IR3_BARRIER_SHARED_W;
1327 barrier->barrier_conflict = IR3_BARRIER_SHARED_R |
1328 IR3_BARRIER_SHARED_W;
1329 break;
1330 case nir_intrinsic_group_memory_barrier:
1331 barrier = ir3_FENCE(b);
1332 barrier->cat7.g = true;
1333 barrier->cat7.l = true;
1334 barrier->cat7.r = true;
1335 barrier->cat7.w = true;
1336 barrier->barrier_class = IR3_BARRIER_SHARED_W |
1337 IR3_BARRIER_IMAGE_W |
1338 IR3_BARRIER_BUFFER_W;
1339 barrier->barrier_conflict =
1340 IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W |
1341 IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
1342 IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1343 break;
1344 default:
1345 unreachable("boo");
1346 }
1347
1348 /* make sure barrier doesn't get DCE'd */
1349 array_insert(b, b->keeps, barrier);
1350 }
1351
1352 static void add_sysval_input_compmask(struct ir3_context *ctx,
1353 gl_system_value slot, unsigned compmask,
1354 struct ir3_instruction *instr)
1355 {
1356 struct ir3_shader_variant *so = ctx->so;
1357 unsigned n = so->inputs_count++;
1358
1359 assert(instr->opc == OPC_META_INPUT);
1360 instr->input.inidx = n;
1361 instr->input.sysval = slot;
1362
1363 so->inputs[n].sysval = true;
1364 so->inputs[n].slot = slot;
1365 so->inputs[n].compmask = compmask;
1366 so->inputs[n].interpolate = INTERP_MODE_FLAT;
1367 so->total_in++;
1368 }
1369
1370 static struct ir3_instruction *
1371 create_sysval_input(struct ir3_context *ctx, gl_system_value slot,
1372 unsigned compmask)
1373 {
1374 assert(compmask);
1375 struct ir3_instruction *sysval = create_input(ctx, compmask);
1376 add_sysval_input_compmask(ctx, slot, compmask, sysval);
1377 return sysval;
1378 }
1379
1380 static struct ir3_instruction *
1381 get_barycentric(struct ir3_context *ctx, enum ir3_bary bary)
1382 {
1383 static const gl_system_value sysval_base = SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
1384
1385 STATIC_ASSERT(sysval_base + IJ_PERSP_PIXEL == SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL);
1386 STATIC_ASSERT(sysval_base + IJ_PERSP_SAMPLE == SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE);
1387 STATIC_ASSERT(sysval_base + IJ_PERSP_CENTROID == SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID);
1388 STATIC_ASSERT(sysval_base + IJ_PERSP_SIZE == SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE);
1389 STATIC_ASSERT(sysval_base + IJ_LINEAR_PIXEL == SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL);
1390 STATIC_ASSERT(sysval_base + IJ_LINEAR_CENTROID == SYSTEM_VALUE_BARYCENTRIC_LINEAR_CENTROID);
1391 STATIC_ASSERT(sysval_base + IJ_LINEAR_SAMPLE == SYSTEM_VALUE_BARYCENTRIC_LINEAR_SAMPLE);
1392
1393 if (!ctx->ij[bary]) {
1394 struct ir3_instruction *xy[2];
1395 struct ir3_instruction *ij;
1396
1397 ij = create_sysval_input(ctx, sysval_base + bary, 0x3);
1398 ir3_split_dest(ctx->block, xy, ij, 0, 2);
1399
1400 ctx->ij[bary] = ir3_create_collect(ctx, xy, 2);
1401 }
1402
1403 return ctx->ij[bary];
1404 }
1405
1406 /* TODO: make this a common NIR helper?
1407 * there is a nir_system_value_from_intrinsic but it takes nir_intrinsic_op so it
1408 * can't be extended to work with this
1409 */
1410 static gl_system_value
1411 nir_intrinsic_barycentric_sysval(nir_intrinsic_instr *intr)
1412 {
1413 enum glsl_interp_mode interp_mode = nir_intrinsic_interp_mode(intr);
1414 gl_system_value sysval;
1415
1416 switch (intr->intrinsic) {
1417 case nir_intrinsic_load_barycentric_pixel:
1418 if (interp_mode == INTERP_MODE_NOPERSPECTIVE)
1419 sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL;
1420 else
1421 sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
1422 break;
1423 case nir_intrinsic_load_barycentric_centroid:
1424 if (interp_mode == INTERP_MODE_NOPERSPECTIVE)
1425 sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_CENTROID;
1426 else
1427 sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID;
1428 break;
1429 case nir_intrinsic_load_barycentric_sample:
1430 if (interp_mode == INTERP_MODE_NOPERSPECTIVE)
1431 sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_SAMPLE;
1432 else
1433 sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE;
1434 break;
1435 default:
1436 unreachable("invalid barycentric intrinsic");
1437 }
1438
1439 return sysval;
1440 }
1441
1442 static void
1443 emit_intrinsic_barycentric(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1444 struct ir3_instruction **dst)
1445 {
1446 gl_system_value sysval = nir_intrinsic_barycentric_sysval(intr);
1447
1448 if (!ctx->so->key.msaa) {
1449 if (sysval == SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE)
1450 sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
1451 if (sysval == SYSTEM_VALUE_BARYCENTRIC_LINEAR_SAMPLE)
1452 sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL;
1453 }
1454
1455 enum ir3_bary bary = sysval - SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
1456
1457 struct ir3_instruction *ij = get_barycentric(ctx, bary);
1458 ir3_split_dest(ctx->block, dst, ij, 0, 2);
1459 }
1460
1461 static struct ir3_instruction *
1462 get_frag_coord(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1463 {
1464 if (!ctx->frag_coord) {
1465 struct ir3_block *b = ctx->in_block;
1466 struct ir3_instruction *xyzw[4];
1467 struct ir3_instruction *hw_frag_coord;
1468
1469 hw_frag_coord = create_sysval_input(ctx, SYSTEM_VALUE_FRAG_COORD, 0xf);
1470 ir3_split_dest(b, xyzw, hw_frag_coord, 0, 4);
1471
1472 /* for frag_coord.xy, we get unsigned values.. we need
1473 * to subtract (integer) 8 and divide by 16 (right-
1474 * shift by 4) then convert to float:
1475 *
1476 * sub.s tmp, src, 8
1477 * shr.b tmp, tmp, 4
1478 * mov.u32f32 dst, tmp
1479 *
1480 */
1481 for (int i = 0; i < 2; i++) {
1482 xyzw[i] = ir3_COV(b, xyzw[i], TYPE_U32, TYPE_F32);
1483 xyzw[i] = ir3_MUL_F(b, xyzw[i], 0, create_immed(b, fui(1.0 / 16.0)), 0);
1484 }
1485
1486 ctx->frag_coord = ir3_create_collect(ctx, xyzw, 4);
1487 }
1488
1489 ctx->so->fragcoord_compmask |=
1490 nir_ssa_def_components_read(&intr->dest.ssa);
1491
1492 return ctx->frag_coord;
1493 }
1494
1495 static void
1496 emit_intrinsic(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1497 {
1498 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1499 struct ir3_instruction **dst;
1500 struct ir3_instruction * const *src;
1501 struct ir3_block *b = ctx->block;
1502 unsigned dest_components = nir_intrinsic_dest_components(intr);
1503 int idx, comp;
1504
1505 if (info->has_dest) {
1506 dst = ir3_get_dst(ctx, &intr->dest, dest_components);
1507 } else {
1508 dst = NULL;
1509 }
1510
1511 const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
1512 const unsigned primitive_param = const_state->offsets.primitive_param * 4;
1513 const unsigned primitive_map = const_state->offsets.primitive_map * 4;
1514
1515 switch (intr->intrinsic) {
1516 case nir_intrinsic_load_uniform:
1517 idx = nir_intrinsic_base(intr);
1518 if (nir_src_is_const(intr->src[0])) {
1519 idx += nir_src_as_uint(intr->src[0]);
1520 for (int i = 0; i < dest_components; i++) {
1521 dst[i] = create_uniform_typed(b, idx + i,
1522 nir_dest_bit_size(intr->dest) == 16 ? TYPE_F16 : TYPE_F32);
1523 }
1524 } else {
1525 src = ir3_get_src(ctx, &intr->src[0]);
1526 for (int i = 0; i < dest_components; i++) {
1527 dst[i] = create_uniform_indirect(b, idx + i,
1528 nir_dest_bit_size(intr->dest) == 16 ? TYPE_F16 : TYPE_F32,
1529 ir3_get_addr0(ctx, src[0], 1));
1530 }
1531 /* NOTE: if relative addressing is used, we set
1532 * constlen in the compiler (to worst-case value)
1533 * since we don't know in the assembler what the max
1534 * addr reg value can be:
1535 */
1536 ctx->so->constlen = MAX2(ctx->so->constlen,
1537 const_state->ubo_state.size / 16);
1538 }
1539 break;
1540
1541 case nir_intrinsic_load_vs_primitive_stride_ir3:
1542 dst[0] = create_uniform(b, primitive_param + 0);
1543 break;
1544 case nir_intrinsic_load_vs_vertex_stride_ir3:
1545 dst[0] = create_uniform(b, primitive_param + 1);
1546 break;
1547 case nir_intrinsic_load_hs_patch_stride_ir3:
1548 dst[0] = create_uniform(b, primitive_param + 2);
1549 break;
1550 case nir_intrinsic_load_patch_vertices_in:
1551 dst[0] = create_uniform(b, primitive_param + 3);
1552 break;
1553 case nir_intrinsic_load_tess_param_base_ir3:
1554 dst[0] = create_uniform(b, primitive_param + 4);
1555 dst[1] = create_uniform(b, primitive_param + 5);
1556 break;
1557 case nir_intrinsic_load_tess_factor_base_ir3:
1558 dst[0] = create_uniform(b, primitive_param + 6);
1559 dst[1] = create_uniform(b, primitive_param + 7);
1560 break;
1561
1562 case nir_intrinsic_load_primitive_location_ir3:
1563 idx = nir_intrinsic_driver_location(intr);
1564 dst[0] = create_uniform(b, primitive_map + idx);
1565 break;
1566
1567 case nir_intrinsic_load_gs_header_ir3:
1568 dst[0] = ctx->gs_header;
1569 break;
1570 case nir_intrinsic_load_tcs_header_ir3:
1571 dst[0] = ctx->tcs_header;
1572 break;
1573
1574 case nir_intrinsic_load_primitive_id:
1575 dst[0] = ctx->primitive_id;
1576 break;
1577
1578 case nir_intrinsic_load_tess_coord:
1579 if (!ctx->tess_coord) {
1580 ctx->tess_coord =
1581 create_sysval_input(ctx, SYSTEM_VALUE_TESS_COORD, 0x3);
1582 }
1583 ir3_split_dest(b, dst, ctx->tess_coord, 0, 2);
1584
1585 /* Unused, but ir3_put_dst() below wants to free something */
1586 dst[2] = create_immed(b, 0);
1587 break;
1588
1589 case nir_intrinsic_end_patch_ir3:
1590 assert(ctx->so->type == MESA_SHADER_TESS_CTRL);
1591 struct ir3_instruction *end = ir3_PREDE(b);
1592 array_insert(b, b->keeps, end);
1593
1594 end->barrier_class = IR3_BARRIER_EVERYTHING;
1595 end->barrier_conflict = IR3_BARRIER_EVERYTHING;
1596 break;
1597
1598 case nir_intrinsic_store_global_ir3: {
1599 struct ir3_instruction *value, *addr, *offset;
1600 unsigned ncomp = nir_intrinsic_src_components(intr, 0);
1601
1602 addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1603 ir3_get_src(ctx, &intr->src[1])[0],
1604 ir3_get_src(ctx, &intr->src[1])[1]
1605 }, 2);
1606
1607 offset = ir3_get_src(ctx, &intr->src[2])[0];
1608
1609 value = ir3_create_collect(ctx, ir3_get_src(ctx, &intr->src[0]), ncomp);
1610
1611 struct ir3_instruction *stg =
1612 ir3_STG_G(ctx->block, addr, 0, value, 0,
1613 create_immed(ctx->block, ncomp), 0, offset, 0);
1614 stg->cat6.type = TYPE_U32;
1615 stg->cat6.iim_val = 1;
1616
1617 array_insert(b, b->keeps, stg);
1618
1619 stg->barrier_class = IR3_BARRIER_BUFFER_W;
1620 stg->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1621 break;
1622 }
1623
1624 case nir_intrinsic_load_global_ir3: {
1625 struct ir3_instruction *addr, *offset;
1626
1627 addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1628 ir3_get_src(ctx, &intr->src[0])[0],
1629 ir3_get_src(ctx, &intr->src[0])[1]
1630 }, 2);
1631
1632 offset = ir3_get_src(ctx, &intr->src[1])[0];
1633
1634 struct ir3_instruction *load =
1635 ir3_LDG(b, addr, 0, create_immed(ctx->block, dest_components),
1636 0, offset, 0);
1637 load->cat6.type = TYPE_U32;
1638 load->regs[0]->wrmask = MASK(dest_components);
1639
1640 load->barrier_class = IR3_BARRIER_BUFFER_R;
1641 load->barrier_conflict = IR3_BARRIER_BUFFER_W;
1642
1643 ir3_split_dest(b, dst, load, 0, dest_components);
1644 break;
1645 }
1646
1647 case nir_intrinsic_load_ubo:
1648 emit_intrinsic_load_ubo(ctx, intr, dst);
1649 break;
1650 case nir_intrinsic_load_ubo_ir3:
1651 emit_intrinsic_load_ubo_ldc(ctx, intr, dst);
1652 break;
1653 case nir_intrinsic_load_frag_coord:
1654 ir3_split_dest(b, dst, get_frag_coord(ctx, intr), 0, 4);
1655 break;
1656 case nir_intrinsic_load_sample_pos_from_id: {
1657 /* NOTE: blob seems to always use TYPE_F16 and then cov.f16f32,
1658 * but that doesn't seem necessary.
1659 */
1660 struct ir3_instruction *offset =
1661 ir3_RGETPOS(b, ir3_get_src(ctx, &intr->src[0])[0], 0);
1662 offset->regs[0]->wrmask = 0x3;
1663 offset->cat5.type = TYPE_F32;
1664
1665 ir3_split_dest(b, dst, offset, 0, 2);
1666
1667 break;
1668 }
1669 case nir_intrinsic_load_size_ir3:
1670 if (!ctx->ij[IJ_PERSP_SIZE]) {
1671 ctx->ij[IJ_PERSP_SIZE] =
1672 create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE, 0x1);
1673 }
1674 dst[0] = ctx->ij[IJ_PERSP_SIZE];
1675 break;
1676 case nir_intrinsic_load_barycentric_centroid:
1677 case nir_intrinsic_load_barycentric_sample:
1678 case nir_intrinsic_load_barycentric_pixel:
1679 emit_intrinsic_barycentric(ctx, intr, dst);
1680 break;
1681 case nir_intrinsic_load_interpolated_input:
1682 idx = nir_intrinsic_base(intr);
1683 comp = nir_intrinsic_component(intr);
1684 src = ir3_get_src(ctx, &intr->src[0]);
1685 if (nir_src_is_const(intr->src[1])) {
1686 struct ir3_instruction *coord = ir3_create_collect(ctx, src, 2);
1687 idx += nir_src_as_uint(intr->src[1]);
1688 for (int i = 0; i < dest_components; i++) {
1689 unsigned inloc = idx * 4 + i + comp;
1690 if (ctx->so->inputs[idx].bary &&
1691 !ctx->so->inputs[idx].use_ldlv) {
1692 dst[i] = ir3_BARY_F(b, create_immed(b, inloc), 0, coord, 0);
1693 } else {
1694 /* for non-varyings use the pre-setup input, since
1695 * that is easier than mapping things back to a
1696 * nir_variable to figure out what it is.
1697 */
1698 dst[i] = ctx->inputs[inloc];
1699 compile_assert(ctx, dst[i]);
1700 }
1701 }
1702 } else {
1703 ir3_context_error(ctx, "unhandled");
1704 }
1705 break;
1706 case nir_intrinsic_load_input:
1707 idx = nir_intrinsic_base(intr);
1708 comp = nir_intrinsic_component(intr);
1709 if (nir_src_is_const(intr->src[0])) {
1710 idx += nir_src_as_uint(intr->src[0]);
1711 for (int i = 0; i < dest_components; i++) {
1712 unsigned n = idx * 4 + i + comp;
1713 dst[i] = ctx->inputs[n];
1714 compile_assert(ctx, ctx->inputs[n]);
1715 }
1716 } else {
1717 src = ir3_get_src(ctx, &intr->src[0]);
1718 struct ir3_instruction *collect =
1719 ir3_create_collect(ctx, ctx->ir->inputs, ctx->ninputs);
1720 struct ir3_instruction *addr = ir3_get_addr0(ctx, src[0], 4);
1721 for (int i = 0; i < dest_components; i++) {
1722 unsigned n = idx * 4 + i + comp;
1723 dst[i] = create_indirect_load(ctx, ctx->ninputs,
1724 n, addr, collect);
1725 }
1726 }
1727 break;
1728 /* All SSBO intrinsics should have been lowered by 'lower_io_offsets'
1729 * pass and replaced by an ir3-specifc version that adds the
1730 * dword-offset in the last source.
1731 */
1732 case nir_intrinsic_load_ssbo_ir3:
1733 ctx->funcs->emit_intrinsic_load_ssbo(ctx, intr, dst);
1734 break;
1735 case nir_intrinsic_store_ssbo_ir3:
1736 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1737 !ctx->s->info.fs.early_fragment_tests)
1738 ctx->so->no_earlyz = true;
1739 ctx->funcs->emit_intrinsic_store_ssbo(ctx, intr);
1740 break;
1741 case nir_intrinsic_get_buffer_size:
1742 emit_intrinsic_ssbo_size(ctx, intr, dst);
1743 break;
1744 case nir_intrinsic_ssbo_atomic_add_ir3:
1745 case nir_intrinsic_ssbo_atomic_imin_ir3:
1746 case nir_intrinsic_ssbo_atomic_umin_ir3:
1747 case nir_intrinsic_ssbo_atomic_imax_ir3:
1748 case nir_intrinsic_ssbo_atomic_umax_ir3:
1749 case nir_intrinsic_ssbo_atomic_and_ir3:
1750 case nir_intrinsic_ssbo_atomic_or_ir3:
1751 case nir_intrinsic_ssbo_atomic_xor_ir3:
1752 case nir_intrinsic_ssbo_atomic_exchange_ir3:
1753 case nir_intrinsic_ssbo_atomic_comp_swap_ir3:
1754 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1755 !ctx->s->info.fs.early_fragment_tests)
1756 ctx->so->no_earlyz = true;
1757 dst[0] = ctx->funcs->emit_intrinsic_atomic_ssbo(ctx, intr);
1758 break;
1759 case nir_intrinsic_load_shared:
1760 emit_intrinsic_load_shared(ctx, intr, dst);
1761 break;
1762 case nir_intrinsic_store_shared:
1763 emit_intrinsic_store_shared(ctx, intr);
1764 break;
1765 case nir_intrinsic_shared_atomic_add:
1766 case nir_intrinsic_shared_atomic_imin:
1767 case nir_intrinsic_shared_atomic_umin:
1768 case nir_intrinsic_shared_atomic_imax:
1769 case nir_intrinsic_shared_atomic_umax:
1770 case nir_intrinsic_shared_atomic_and:
1771 case nir_intrinsic_shared_atomic_or:
1772 case nir_intrinsic_shared_atomic_xor:
1773 case nir_intrinsic_shared_atomic_exchange:
1774 case nir_intrinsic_shared_atomic_comp_swap:
1775 dst[0] = emit_intrinsic_atomic_shared(ctx, intr);
1776 break;
1777 case nir_intrinsic_image_load:
1778 emit_intrinsic_load_image(ctx, intr, dst);
1779 break;
1780 case nir_intrinsic_bindless_image_load:
1781 /* Bindless uses the IBO state, which doesn't have swizzle filled out,
1782 * so using isam doesn't work.
1783 *
1784 * TODO: can we use isam if we fill out more fields?
1785 */
1786 ctx->funcs->emit_intrinsic_load_image(ctx, intr, dst);
1787 break;
1788 case nir_intrinsic_image_store:
1789 case nir_intrinsic_bindless_image_store:
1790 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1791 !ctx->s->info.fs.early_fragment_tests)
1792 ctx->so->no_earlyz = true;
1793 ctx->funcs->emit_intrinsic_store_image(ctx, intr);
1794 break;
1795 case nir_intrinsic_image_size:
1796 case nir_intrinsic_bindless_image_size:
1797 ctx->funcs->emit_intrinsic_image_size(ctx, intr, dst);
1798 break;
1799 case nir_intrinsic_image_atomic_add:
1800 case nir_intrinsic_bindless_image_atomic_add:
1801 case nir_intrinsic_image_atomic_imin:
1802 case nir_intrinsic_bindless_image_atomic_imin:
1803 case nir_intrinsic_image_atomic_umin:
1804 case nir_intrinsic_bindless_image_atomic_umin:
1805 case nir_intrinsic_image_atomic_imax:
1806 case nir_intrinsic_bindless_image_atomic_imax:
1807 case nir_intrinsic_image_atomic_umax:
1808 case nir_intrinsic_bindless_image_atomic_umax:
1809 case nir_intrinsic_image_atomic_and:
1810 case nir_intrinsic_bindless_image_atomic_and:
1811 case nir_intrinsic_image_atomic_or:
1812 case nir_intrinsic_bindless_image_atomic_or:
1813 case nir_intrinsic_image_atomic_xor:
1814 case nir_intrinsic_bindless_image_atomic_xor:
1815 case nir_intrinsic_image_atomic_exchange:
1816 case nir_intrinsic_bindless_image_atomic_exchange:
1817 case nir_intrinsic_image_atomic_comp_swap:
1818 case nir_intrinsic_bindless_image_atomic_comp_swap:
1819 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1820 !ctx->s->info.fs.early_fragment_tests)
1821 ctx->so->no_earlyz = true;
1822 dst[0] = ctx->funcs->emit_intrinsic_atomic_image(ctx, intr);
1823 break;
1824 case nir_intrinsic_control_barrier:
1825 case nir_intrinsic_memory_barrier:
1826 case nir_intrinsic_group_memory_barrier:
1827 case nir_intrinsic_memory_barrier_buffer:
1828 case nir_intrinsic_memory_barrier_image:
1829 case nir_intrinsic_memory_barrier_shared:
1830 emit_intrinsic_barrier(ctx, intr);
1831 /* note that blk ptr no longer valid, make that obvious: */
1832 b = NULL;
1833 break;
1834 case nir_intrinsic_store_output:
1835 idx = nir_intrinsic_base(intr);
1836 comp = nir_intrinsic_component(intr);
1837 compile_assert(ctx, nir_src_is_const(intr->src[1]));
1838 idx += nir_src_as_uint(intr->src[1]);
1839
1840 src = ir3_get_src(ctx, &intr->src[0]);
1841 for (int i = 0; i < nir_intrinsic_src_components(intr, 0); i++) {
1842 unsigned n = idx * 4 + i + comp;
1843 ctx->outputs[n] = src[i];
1844 }
1845 break;
1846 case nir_intrinsic_load_base_vertex:
1847 case nir_intrinsic_load_first_vertex:
1848 if (!ctx->basevertex) {
1849 ctx->basevertex = create_driver_param(ctx, IR3_DP_VTXID_BASE);
1850 }
1851 dst[0] = ctx->basevertex;
1852 break;
1853 case nir_intrinsic_load_draw_id:
1854 if (!ctx->draw_id) {
1855 ctx->draw_id = create_driver_param(ctx, IR3_DP_DRAWID);
1856 }
1857 dst[0] = ctx->draw_id;
1858 break;
1859 case nir_intrinsic_load_base_instance:
1860 if (!ctx->base_instance) {
1861 ctx->base_instance = create_driver_param(ctx, IR3_DP_INSTID_BASE);
1862 }
1863 dst[0] = ctx->base_instance;
1864 break;
1865 case nir_intrinsic_load_view_index:
1866 if (!ctx->view_index) {
1867 ctx->view_index = create_sysval_input(ctx, SYSTEM_VALUE_VIEW_INDEX, 0x1);
1868 }
1869 dst[0] = ctx->view_index;
1870 break;
1871 case nir_intrinsic_load_vertex_id_zero_base:
1872 case nir_intrinsic_load_vertex_id:
1873 if (!ctx->vertex_id) {
1874 gl_system_value sv = (intr->intrinsic == nir_intrinsic_load_vertex_id) ?
1875 SYSTEM_VALUE_VERTEX_ID : SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
1876 ctx->vertex_id = create_sysval_input(ctx, sv, 0x1);
1877 }
1878 dst[0] = ctx->vertex_id;
1879 break;
1880 case nir_intrinsic_load_instance_id:
1881 if (!ctx->instance_id) {
1882 ctx->instance_id = create_sysval_input(ctx, SYSTEM_VALUE_INSTANCE_ID, 0x1);
1883 }
1884 dst[0] = ctx->instance_id;
1885 break;
1886 case nir_intrinsic_load_sample_id:
1887 ctx->so->per_samp = true;
1888 /* fall-thru */
1889 case nir_intrinsic_load_sample_id_no_per_sample:
1890 if (!ctx->samp_id) {
1891 ctx->samp_id = create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_ID, 0x1);
1892 ctx->samp_id->regs[0]->flags |= IR3_REG_HALF;
1893 }
1894 dst[0] = ir3_COV(b, ctx->samp_id, TYPE_U16, TYPE_U32);
1895 break;
1896 case nir_intrinsic_load_sample_mask_in:
1897 if (!ctx->samp_mask_in) {
1898 ctx->samp_mask_in = create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_MASK_IN, 0x1);
1899 }
1900 dst[0] = ctx->samp_mask_in;
1901 break;
1902 case nir_intrinsic_load_user_clip_plane:
1903 idx = nir_intrinsic_ucp_id(intr);
1904 for (int i = 0; i < dest_components; i++) {
1905 unsigned n = idx * 4 + i;
1906 dst[i] = create_driver_param(ctx, IR3_DP_UCP0_X + n);
1907 }
1908 break;
1909 case nir_intrinsic_load_front_face:
1910 if (!ctx->frag_face) {
1911 ctx->so->frag_face = true;
1912 ctx->frag_face = create_sysval_input(ctx, SYSTEM_VALUE_FRONT_FACE, 0x1);
1913 ctx->frag_face->regs[0]->flags |= IR3_REG_HALF;
1914 }
1915 /* for fragface, we get -1 for back and 0 for front. However this is
1916 * the inverse of what nir expects (where ~0 is true).
1917 */
1918 dst[0] = ir3_CMPS_S(b,
1919 ctx->frag_face, 0,
1920 create_immed_typed(b, 0, TYPE_U16), 0);
1921 dst[0]->cat2.condition = IR3_COND_EQ;
1922 break;
1923 case nir_intrinsic_load_local_invocation_id:
1924 if (!ctx->local_invocation_id) {
1925 ctx->local_invocation_id =
1926 create_sysval_input(ctx, SYSTEM_VALUE_LOCAL_INVOCATION_ID, 0x7);
1927 }
1928 ir3_split_dest(b, dst, ctx->local_invocation_id, 0, 3);
1929 break;
1930 case nir_intrinsic_load_work_group_id:
1931 if (!ctx->work_group_id) {
1932 ctx->work_group_id =
1933 create_sysval_input(ctx, SYSTEM_VALUE_WORK_GROUP_ID, 0x7);
1934 ctx->work_group_id->regs[0]->flags |= IR3_REG_HIGH;
1935 }
1936 ir3_split_dest(b, dst, ctx->work_group_id, 0, 3);
1937 break;
1938 case nir_intrinsic_load_num_work_groups:
1939 for (int i = 0; i < dest_components; i++) {
1940 dst[i] = create_driver_param(ctx, IR3_DP_NUM_WORK_GROUPS_X + i);
1941 }
1942 break;
1943 case nir_intrinsic_load_local_group_size:
1944 for (int i = 0; i < dest_components; i++) {
1945 dst[i] = create_driver_param(ctx, IR3_DP_LOCAL_GROUP_SIZE_X + i);
1946 }
1947 break;
1948 case nir_intrinsic_discard_if:
1949 case nir_intrinsic_discard: {
1950 struct ir3_instruction *cond, *kill;
1951
1952 if (intr->intrinsic == nir_intrinsic_discard_if) {
1953 /* conditional discard: */
1954 src = ir3_get_src(ctx, &intr->src[0]);
1955 cond = src[0];
1956 } else {
1957 /* unconditional discard: */
1958 cond = create_immed(b, 1);
1959 }
1960
1961 /* NOTE: only cmps.*.* can write p0.x: */
1962 cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
1963 cond->cat2.condition = IR3_COND_NE;
1964
1965 /* condition always goes in predicate register: */
1966 cond->regs[0]->num = regid(REG_P0, 0);
1967 cond->regs[0]->flags &= ~IR3_REG_SSA;
1968
1969 kill = ir3_KILL(b, cond, 0);
1970 kill->regs[1]->num = regid(REG_P0, 0);
1971 array_insert(ctx->ir, ctx->ir->predicates, kill);
1972
1973 array_insert(b, b->keeps, kill);
1974 ctx->so->has_kill = true;
1975
1976 break;
1977 }
1978
1979 case nir_intrinsic_cond_end_ir3: {
1980 struct ir3_instruction *cond, *kill;
1981
1982 src = ir3_get_src(ctx, &intr->src[0]);
1983 cond = src[0];
1984
1985 /* NOTE: only cmps.*.* can write p0.x: */
1986 cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
1987 cond->cat2.condition = IR3_COND_NE;
1988
1989 /* condition always goes in predicate register: */
1990 cond->regs[0]->num = regid(REG_P0, 0);
1991
1992 kill = ir3_PREDT(b, cond, 0);
1993
1994 kill->barrier_class = IR3_BARRIER_EVERYTHING;
1995 kill->barrier_conflict = IR3_BARRIER_EVERYTHING;
1996
1997 array_insert(ctx->ir, ctx->ir->predicates, kill);
1998 array_insert(b, b->keeps, kill);
1999 break;
2000 }
2001
2002 case nir_intrinsic_load_shared_ir3:
2003 emit_intrinsic_load_shared_ir3(ctx, intr, dst);
2004 break;
2005 case nir_intrinsic_store_shared_ir3:
2006 emit_intrinsic_store_shared_ir3(ctx, intr);
2007 break;
2008 case nir_intrinsic_bindless_resource_ir3:
2009 dst[0] = ir3_get_src(ctx, &intr->src[0])[0];
2010 break;
2011 default:
2012 ir3_context_error(ctx, "Unhandled intrinsic type: %s\n",
2013 nir_intrinsic_infos[intr->intrinsic].name);
2014 break;
2015 }
2016
2017 if (info->has_dest)
2018 ir3_put_dst(ctx, &intr->dest);
2019 }
2020
2021 static void
2022 emit_load_const(struct ir3_context *ctx, nir_load_const_instr *instr)
2023 {
2024 struct ir3_instruction **dst = ir3_get_dst_ssa(ctx, &instr->def,
2025 instr->def.num_components);
2026
2027 if (instr->def.bit_size == 16) {
2028 for (int i = 0; i < instr->def.num_components; i++)
2029 dst[i] = create_immed_typed(ctx->block,
2030 instr->value[i].u16,
2031 TYPE_U16);
2032 } else {
2033 for (int i = 0; i < instr->def.num_components; i++)
2034 dst[i] = create_immed_typed(ctx->block,
2035 instr->value[i].u32,
2036 TYPE_U32);
2037 }
2038
2039 }
2040
2041 static void
2042 emit_undef(struct ir3_context *ctx, nir_ssa_undef_instr *undef)
2043 {
2044 struct ir3_instruction **dst = ir3_get_dst_ssa(ctx, &undef->def,
2045 undef->def.num_components);
2046 type_t type = (undef->def.bit_size == 16) ? TYPE_U16 : TYPE_U32;
2047
2048 /* backend doesn't want undefined instructions, so just plug
2049 * in 0.0..
2050 */
2051 for (int i = 0; i < undef->def.num_components; i++)
2052 dst[i] = create_immed_typed(ctx->block, fui(0.0), type);
2053 }
2054
2055 /*
2056 * texture fetch/sample instructions:
2057 */
2058
2059 static type_t
2060 get_tex_dest_type(nir_tex_instr *tex)
2061 {
2062 type_t type;
2063
2064 switch (nir_alu_type_get_base_type(tex->dest_type)) {
2065 case nir_type_invalid:
2066 case nir_type_float:
2067 type = nir_dest_bit_size(tex->dest) == 16 ? TYPE_F16 : TYPE_F32;
2068 break;
2069 case nir_type_int:
2070 type = nir_dest_bit_size(tex->dest) == 16 ? TYPE_S16 : TYPE_S32;
2071 break;
2072 case nir_type_uint:
2073 case nir_type_bool:
2074 type = nir_dest_bit_size(tex->dest) == 16 ? TYPE_U16 : TYPE_U32;
2075 break;
2076 default:
2077 unreachable("bad dest_type");
2078 }
2079
2080 return type;
2081 }
2082
2083 static void
2084 tex_info(nir_tex_instr *tex, unsigned *flagsp, unsigned *coordsp)
2085 {
2086 unsigned coords = glsl_get_sampler_dim_coordinate_components(tex->sampler_dim);
2087 unsigned flags = 0;
2088
2089 /* note: would use tex->coord_components.. except txs.. also,
2090 * since array index goes after shadow ref, we don't want to
2091 * count it:
2092 */
2093 if (coords == 3)
2094 flags |= IR3_INSTR_3D;
2095
2096 if (tex->is_shadow && tex->op != nir_texop_lod)
2097 flags |= IR3_INSTR_S;
2098
2099 if (tex->is_array && tex->op != nir_texop_lod)
2100 flags |= IR3_INSTR_A;
2101
2102 *flagsp = flags;
2103 *coordsp = coords;
2104 }
2105
2106 /* Gets the sampler/texture idx as a hvec2. Which could either be dynamic
2107 * or immediate (in which case it will get lowered later to a non .s2en
2108 * version of the tex instruction which encode tex/samp as immediates:
2109 */
2110 static struct tex_src_info
2111 get_tex_samp_tex_src(struct ir3_context *ctx, nir_tex_instr *tex)
2112 {
2113 struct ir3_block *b = ctx->block;
2114 struct tex_src_info info = { 0 };
2115 int texture_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_handle);
2116 int sampler_idx = nir_tex_instr_src_index(tex, nir_tex_src_sampler_handle);
2117 struct ir3_instruction *texture, *sampler;
2118
2119 if (texture_idx >= 0 || sampler_idx >= 0) {
2120 /* Bindless case */
2121 info.flags |= IR3_INSTR_B;
2122
2123 /* Gather information required to determine which encoding to
2124 * choose as well as for prefetch.
2125 */
2126 nir_intrinsic_instr *bindless_tex = NULL;
2127 bool tex_const;
2128 if (texture_idx >= 0) {
2129 ctx->so->bindless_tex = true;
2130 bindless_tex = ir3_bindless_resource(tex->src[texture_idx].src);
2131 assert(bindless_tex);
2132 info.tex_base = nir_intrinsic_desc_set(bindless_tex);
2133 tex_const = nir_src_is_const(bindless_tex->src[0]);
2134 if (tex_const)
2135 info.tex_idx = nir_src_as_uint(bindless_tex->src[0]);
2136 } else {
2137 /* To simplify some of the logic below, assume the index is
2138 * constant 0 when it's not enabled.
2139 */
2140 tex_const = true;
2141 info.tex_idx = 0;
2142 }
2143 nir_intrinsic_instr *bindless_samp = NULL;
2144 bool samp_const;
2145 if (sampler_idx >= 0) {
2146 ctx->so->bindless_samp = true;
2147 bindless_samp = ir3_bindless_resource(tex->src[sampler_idx].src);
2148 assert(bindless_samp);
2149 info.samp_base = nir_intrinsic_desc_set(bindless_samp);
2150 samp_const = nir_src_is_const(bindless_samp->src[0]);
2151 if (samp_const)
2152 info.samp_idx = nir_src_as_uint(bindless_samp->src[0]);
2153 } else {
2154 samp_const = true;
2155 info.samp_idx = 0;
2156 }
2157
2158 /* Choose encoding. */
2159 if (tex_const && samp_const && info.tex_idx < 256 && info.samp_idx < 256) {
2160 if (info.tex_idx < 16 && info.samp_idx < 16 &&
2161 (!bindless_tex || !bindless_samp || info.tex_base == info.samp_base)) {
2162 /* Everything fits within the instruction */
2163 info.base = info.tex_base;
2164 info.combined_idx = info.samp_idx | (info.tex_idx << 4);
2165 } else {
2166 info.base = info.tex_base;
2167 info.a1_val = info.tex_idx << 3 | info.samp_base;
2168 info.combined_idx = info.samp_idx;
2169 info.flags |= IR3_INSTR_A1EN;
2170 }
2171 info.samp_tex = NULL;
2172 } else {
2173 info.flags |= IR3_INSTR_S2EN;
2174 /* In the indirect case, we only use a1.x to store the sampler
2175 * base if it differs from the texture base.
2176 */
2177 if (!bindless_tex || !bindless_samp || info.tex_base == info.samp_base) {
2178 info.base = info.tex_base;
2179 } else {
2180 info.base = info.tex_base;
2181 info.a1_val = info.samp_base;
2182 info.flags |= IR3_INSTR_A1EN;
2183 }
2184
2185 /* Note: the indirect source is now a vec2 instead of hvec2, and
2186 * for some reason the texture and sampler are swapped.
2187 */
2188 struct ir3_instruction *texture, *sampler;
2189
2190 if (bindless_tex) {
2191 texture = ir3_get_src(ctx, &tex->src[texture_idx].src)[0];
2192 } else {
2193 texture = create_immed(b, 0);
2194 }
2195
2196 if (bindless_samp) {
2197 sampler = ir3_get_src(ctx, &tex->src[sampler_idx].src)[0];
2198 } else {
2199 sampler = create_immed(b, 0);
2200 }
2201 info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
2202 texture,
2203 sampler,
2204 }, 2);
2205 }
2206 } else {
2207 info.flags |= IR3_INSTR_S2EN;
2208 texture_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_offset);
2209 sampler_idx = nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset);
2210 if (texture_idx >= 0) {
2211 texture = ir3_get_src(ctx, &tex->src[texture_idx].src)[0];
2212 texture = ir3_COV(ctx->block, texture, TYPE_U32, TYPE_U16);
2213 } else {
2214 /* TODO what to do for dynamic case? I guess we only need the
2215 * max index for astc srgb workaround so maybe not a problem
2216 * to worry about if we don't enable indirect samplers for
2217 * a4xx?
2218 */
2219 ctx->max_texture_index = MAX2(ctx->max_texture_index, tex->texture_index);
2220 texture = create_immed_typed(ctx->block, tex->texture_index, TYPE_U16);
2221 info.tex_idx = tex->texture_index;
2222 }
2223
2224 if (sampler_idx >= 0) {
2225 sampler = ir3_get_src(ctx, &tex->src[sampler_idx].src)[0];
2226 sampler = ir3_COV(ctx->block, sampler, TYPE_U32, TYPE_U16);
2227 } else {
2228 sampler = create_immed_typed(ctx->block, tex->sampler_index, TYPE_U16);
2229 info.samp_idx = tex->texture_index;
2230 }
2231
2232 info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
2233 sampler,
2234 texture,
2235 }, 2);
2236 }
2237
2238 return info;
2239 }
2240
2241 static void
2242 emit_tex(struct ir3_context *ctx, nir_tex_instr *tex)
2243 {
2244 struct ir3_block *b = ctx->block;
2245 struct ir3_instruction **dst, *sam, *src0[12], *src1[4];
2246 struct ir3_instruction * const *coord, * const *off, * const *ddx, * const *ddy;
2247 struct ir3_instruction *lod, *compare, *proj, *sample_index;
2248 struct tex_src_info info = { 0 };
2249 bool has_bias = false, has_lod = false, has_proj = false, has_off = false;
2250 unsigned i, coords, flags, ncomp;
2251 unsigned nsrc0 = 0, nsrc1 = 0;
2252 type_t type;
2253 opc_t opc = 0;
2254
2255 ncomp = nir_dest_num_components(tex->dest);
2256
2257 coord = off = ddx = ddy = NULL;
2258 lod = proj = compare = sample_index = NULL;
2259
2260 dst = ir3_get_dst(ctx, &tex->dest, ncomp);
2261
2262 for (unsigned i = 0; i < tex->num_srcs; i++) {
2263 switch (tex->src[i].src_type) {
2264 case nir_tex_src_coord:
2265 coord = ir3_get_src(ctx, &tex->src[i].src);
2266 break;
2267 case nir_tex_src_bias:
2268 lod = ir3_get_src(ctx, &tex->src[i].src)[0];
2269 has_bias = true;
2270 break;
2271 case nir_tex_src_lod:
2272 lod = ir3_get_src(ctx, &tex->src[i].src)[0];
2273 has_lod = true;
2274 break;
2275 case nir_tex_src_comparator: /* shadow comparator */
2276 compare = ir3_get_src(ctx, &tex->src[i].src)[0];
2277 break;
2278 case nir_tex_src_projector:
2279 proj = ir3_get_src(ctx, &tex->src[i].src)[0];
2280 has_proj = true;
2281 break;
2282 case nir_tex_src_offset:
2283 off = ir3_get_src(ctx, &tex->src[i].src);
2284 has_off = true;
2285 break;
2286 case nir_tex_src_ddx:
2287 ddx = ir3_get_src(ctx, &tex->src[i].src);
2288 break;
2289 case nir_tex_src_ddy:
2290 ddy = ir3_get_src(ctx, &tex->src[i].src);
2291 break;
2292 case nir_tex_src_ms_index:
2293 sample_index = ir3_get_src(ctx, &tex->src[i].src)[0];
2294 break;
2295 case nir_tex_src_texture_offset:
2296 case nir_tex_src_sampler_offset:
2297 case nir_tex_src_texture_handle:
2298 case nir_tex_src_sampler_handle:
2299 /* handled in get_tex_samp_src() */
2300 break;
2301 default:
2302 ir3_context_error(ctx, "Unhandled NIR tex src type: %d\n",
2303 tex->src[i].src_type);
2304 return;
2305 }
2306 }
2307
2308 switch (tex->op) {
2309 case nir_texop_tex_prefetch:
2310 compile_assert(ctx, !has_bias);
2311 compile_assert(ctx, !has_lod);
2312 compile_assert(ctx, !compare);
2313 compile_assert(ctx, !has_proj);
2314 compile_assert(ctx, !has_off);
2315 compile_assert(ctx, !ddx);
2316 compile_assert(ctx, !ddy);
2317 compile_assert(ctx, !sample_index);
2318 compile_assert(ctx, nir_tex_instr_src_index(tex, nir_tex_src_texture_offset) < 0);
2319 compile_assert(ctx, nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset) < 0);
2320
2321 if (ctx->so->num_sampler_prefetch < ctx->prefetch_limit) {
2322 opc = OPC_META_TEX_PREFETCH;
2323 ctx->so->num_sampler_prefetch++;
2324 break;
2325 }
2326 /* fallthru */
2327 case nir_texop_tex: opc = has_lod ? OPC_SAML : OPC_SAM; break;
2328 case nir_texop_txb: opc = OPC_SAMB; break;
2329 case nir_texop_txl: opc = OPC_SAML; break;
2330 case nir_texop_txd: opc = OPC_SAMGQ; break;
2331 case nir_texop_txf: opc = OPC_ISAML; break;
2332 case nir_texop_lod: opc = OPC_GETLOD; break;
2333 case nir_texop_tg4:
2334 /* NOTE: a4xx might need to emulate gather w/ txf (this is
2335 * what blob does, seems gather is broken?), and a3xx did
2336 * not support it (but probably could also emulate).
2337 */
2338 switch (tex->component) {
2339 case 0: opc = OPC_GATHER4R; break;
2340 case 1: opc = OPC_GATHER4G; break;
2341 case 2: opc = OPC_GATHER4B; break;
2342 case 3: opc = OPC_GATHER4A; break;
2343 }
2344 break;
2345 case nir_texop_txf_ms_fb:
2346 case nir_texop_txf_ms: opc = OPC_ISAMM; break;
2347 default:
2348 ir3_context_error(ctx, "Unhandled NIR tex type: %d\n", tex->op);
2349 return;
2350 }
2351
2352 tex_info(tex, &flags, &coords);
2353
2354 /*
2355 * lay out the first argument in the proper order:
2356 * - actual coordinates first
2357 * - shadow reference
2358 * - array index
2359 * - projection w
2360 * - starting at offset 4, dpdx.xy, dpdy.xy
2361 *
2362 * bias/lod go into the second arg
2363 */
2364
2365 /* insert tex coords: */
2366 for (i = 0; i < coords; i++)
2367 src0[i] = coord[i];
2368
2369 nsrc0 = i;
2370
2371 /* scale up integer coords for TXF based on the LOD */
2372 if (ctx->compiler->unminify_coords && (opc == OPC_ISAML)) {
2373 assert(has_lod);
2374 for (i = 0; i < coords; i++)
2375 src0[i] = ir3_SHL_B(b, src0[i], 0, lod, 0);
2376 }
2377
2378 if (coords == 1) {
2379 /* hw doesn't do 1d, so we treat it as 2d with
2380 * height of 1, and patch up the y coord.
2381 */
2382 if (is_isam(opc)) {
2383 src0[nsrc0++] = create_immed(b, 0);
2384 } else {
2385 src0[nsrc0++] = create_immed(b, fui(0.5));
2386 }
2387 }
2388
2389 if (tex->is_shadow && tex->op != nir_texop_lod)
2390 src0[nsrc0++] = compare;
2391
2392 if (tex->is_array && tex->op != nir_texop_lod) {
2393 struct ir3_instruction *idx = coord[coords];
2394
2395 /* the array coord for cube arrays needs 0.5 added to it */
2396 if (ctx->compiler->array_index_add_half && !is_isam(opc))
2397 idx = ir3_ADD_F(b, idx, 0, create_immed(b, fui(0.5)), 0);
2398
2399 src0[nsrc0++] = idx;
2400 }
2401
2402 if (has_proj) {
2403 src0[nsrc0++] = proj;
2404 flags |= IR3_INSTR_P;
2405 }
2406
2407 /* pad to 4, then ddx/ddy: */
2408 if (tex->op == nir_texop_txd) {
2409 while (nsrc0 < 4)
2410 src0[nsrc0++] = create_immed(b, fui(0.0));
2411 for (i = 0; i < coords; i++)
2412 src0[nsrc0++] = ddx[i];
2413 if (coords < 2)
2414 src0[nsrc0++] = create_immed(b, fui(0.0));
2415 for (i = 0; i < coords; i++)
2416 src0[nsrc0++] = ddy[i];
2417 if (coords < 2)
2418 src0[nsrc0++] = create_immed(b, fui(0.0));
2419 }
2420
2421 /* NOTE a3xx (and possibly a4xx?) might be different, using isaml
2422 * with scaled x coord according to requested sample:
2423 */
2424 if (opc == OPC_ISAMM) {
2425 if (ctx->compiler->txf_ms_with_isaml) {
2426 /* the samples are laid out in x dimension as
2427 * 0 1 2 3
2428 * x_ms = (x << ms) + sample_index;
2429 */
2430 struct ir3_instruction *ms;
2431 ms = create_immed(b, (ctx->samples >> (2 * tex->texture_index)) & 3);
2432
2433 src0[0] = ir3_SHL_B(b, src0[0], 0, ms, 0);
2434 src0[0] = ir3_ADD_U(b, src0[0], 0, sample_index, 0);
2435
2436 opc = OPC_ISAML;
2437 } else {
2438 src0[nsrc0++] = sample_index;
2439 }
2440 }
2441
2442 /*
2443 * second argument (if applicable):
2444 * - offsets
2445 * - lod
2446 * - bias
2447 */
2448 if (has_off | has_lod | has_bias) {
2449 if (has_off) {
2450 unsigned off_coords = coords;
2451 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2452 off_coords--;
2453 for (i = 0; i < off_coords; i++)
2454 src1[nsrc1++] = off[i];
2455 if (off_coords < 2)
2456 src1[nsrc1++] = create_immed(b, fui(0.0));
2457 flags |= IR3_INSTR_O;
2458 }
2459
2460 if (has_lod | has_bias)
2461 src1[nsrc1++] = lod;
2462 }
2463
2464 type = get_tex_dest_type(tex);
2465
2466 if (opc == OPC_GETLOD)
2467 type = TYPE_S32;
2468
2469
2470 if (tex->op == nir_texop_txf_ms_fb) {
2471 /* only expect a single txf_ms_fb per shader: */
2472 compile_assert(ctx, !ctx->so->fb_read);
2473 compile_assert(ctx, ctx->so->type == MESA_SHADER_FRAGMENT);
2474
2475 ctx->so->fb_read = true;
2476 info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
2477 create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16),
2478 create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16),
2479 }, 2);
2480 info.flags = IR3_INSTR_S2EN;
2481
2482 ctx->so->num_samp++;
2483 } else {
2484 info = get_tex_samp_tex_src(ctx, tex);
2485 }
2486
2487 struct ir3_instruction *col0 = ir3_create_collect(ctx, src0, nsrc0);
2488 struct ir3_instruction *col1 = ir3_create_collect(ctx, src1, nsrc1);
2489
2490 if (opc == OPC_META_TEX_PREFETCH) {
2491 int idx = nir_tex_instr_src_index(tex, nir_tex_src_coord);
2492
2493 compile_assert(ctx, tex->src[idx].src.is_ssa);
2494
2495 sam = ir3_META_TEX_PREFETCH(b);
2496 __ssa_dst(sam)->wrmask = MASK(ncomp); /* dst */
2497 __ssa_src(sam, get_barycentric(ctx, IJ_PERSP_PIXEL), 0);
2498 sam->prefetch.input_offset =
2499 ir3_nir_coord_offset(tex->src[idx].src.ssa);
2500 /* make sure not to add irrelevant flags like S2EN */
2501 sam->flags = flags | (info.flags & IR3_INSTR_B);
2502 sam->prefetch.tex = info.tex_idx;
2503 sam->prefetch.samp = info.samp_idx;
2504 sam->prefetch.tex_base = info.tex_base;
2505 sam->prefetch.samp_base = info.samp_base;
2506 } else {
2507 info.flags |= flags;
2508 sam = emit_sam(ctx, opc, info, type, MASK(ncomp), col0, col1);
2509 }
2510
2511 if ((ctx->astc_srgb & (1 << tex->texture_index)) && !nir_tex_instr_is_query(tex)) {
2512 assert(opc != OPC_META_TEX_PREFETCH);
2513
2514 /* only need first 3 components: */
2515 sam->regs[0]->wrmask = 0x7;
2516 ir3_split_dest(b, dst, sam, 0, 3);
2517
2518 /* we need to sample the alpha separately with a non-ASTC
2519 * texture state:
2520 */
2521 sam = ir3_SAM(b, opc, type, 0b1000, flags | info.flags,
2522 info.samp_tex, col0, col1);
2523
2524 array_insert(ctx->ir, ctx->ir->astc_srgb, sam);
2525
2526 /* fixup .w component: */
2527 ir3_split_dest(b, &dst[3], sam, 3, 1);
2528 } else {
2529 /* normal (non-workaround) case: */
2530 ir3_split_dest(b, dst, sam, 0, ncomp);
2531 }
2532
2533 /* GETLOD returns results in 4.8 fixed point */
2534 if (opc == OPC_GETLOD) {
2535 struct ir3_instruction *factor = create_immed(b, fui(1.0 / 256));
2536
2537 compile_assert(ctx, tex->dest_type == nir_type_float);
2538 for (i = 0; i < 2; i++) {
2539 dst[i] = ir3_MUL_F(b, ir3_COV(b, dst[i], TYPE_S32, TYPE_F32), 0,
2540 factor, 0);
2541 }
2542 }
2543
2544 ir3_put_dst(ctx, &tex->dest);
2545 }
2546
2547 static void
2548 emit_tex_info(struct ir3_context *ctx, nir_tex_instr *tex, unsigned idx)
2549 {
2550 struct ir3_block *b = ctx->block;
2551 struct ir3_instruction **dst, *sam;
2552 type_t dst_type = get_tex_dest_type(tex);
2553 struct tex_src_info info = get_tex_samp_tex_src(ctx, tex);
2554
2555 dst = ir3_get_dst(ctx, &tex->dest, 1);
2556
2557 sam = emit_sam(ctx, OPC_GETINFO, info, dst_type, 1 << idx, NULL, NULL);
2558
2559 /* even though there is only one component, since it ends
2560 * up in .y/.z/.w rather than .x, we need a split_dest()
2561 */
2562 ir3_split_dest(b, dst, sam, idx, 1);
2563
2564 /* The # of levels comes from getinfo.z. We need to add 1 to it, since
2565 * the value in TEX_CONST_0 is zero-based.
2566 */
2567 if (ctx->compiler->levels_add_one)
2568 dst[0] = ir3_ADD_U(b, dst[0], 0, create_immed(b, 1), 0);
2569
2570 ir3_put_dst(ctx, &tex->dest);
2571 }
2572
2573 static void
2574 emit_tex_txs(struct ir3_context *ctx, nir_tex_instr *tex)
2575 {
2576 struct ir3_block *b = ctx->block;
2577 struct ir3_instruction **dst, *sam;
2578 struct ir3_instruction *lod;
2579 unsigned flags, coords;
2580 type_t dst_type = get_tex_dest_type(tex);
2581 struct tex_src_info info = get_tex_samp_tex_src(ctx, tex);
2582
2583 tex_info(tex, &flags, &coords);
2584 info.flags |= flags;
2585
2586 /* Actually we want the number of dimensions, not coordinates. This
2587 * distinction only matters for cubes.
2588 */
2589 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2590 coords = 2;
2591
2592 dst = ir3_get_dst(ctx, &tex->dest, 4);
2593
2594 int lod_idx = nir_tex_instr_src_index(tex, nir_tex_src_lod);
2595 compile_assert(ctx, lod_idx >= 0);
2596
2597 lod = ir3_get_src(ctx, &tex->src[lod_idx].src)[0];
2598
2599 sam = emit_sam(ctx, OPC_GETSIZE, info, dst_type, 0b1111, lod, NULL);
2600 ir3_split_dest(b, dst, sam, 0, 4);
2601
2602 /* Array size actually ends up in .w rather than .z. This doesn't
2603 * matter for miplevel 0, but for higher mips the value in z is
2604 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
2605 * returned, which means that we have to add 1 to it for arrays.
2606 */
2607 if (tex->is_array) {
2608 if (ctx->compiler->levels_add_one) {
2609 dst[coords] = ir3_ADD_U(b, dst[3], 0, create_immed(b, 1), 0);
2610 } else {
2611 dst[coords] = ir3_MOV(b, dst[3], TYPE_U32);
2612 }
2613 }
2614
2615 ir3_put_dst(ctx, &tex->dest);
2616 }
2617
2618 static void
2619 emit_jump(struct ir3_context *ctx, nir_jump_instr *jump)
2620 {
2621 switch (jump->type) {
2622 case nir_jump_break:
2623 case nir_jump_continue:
2624 case nir_jump_return:
2625 /* I *think* we can simply just ignore this, and use the
2626 * successor block link to figure out where we need to
2627 * jump to for break/continue
2628 */
2629 break;
2630 default:
2631 ir3_context_error(ctx, "Unhandled NIR jump type: %d\n", jump->type);
2632 break;
2633 }
2634 }
2635
2636 static void
2637 emit_instr(struct ir3_context *ctx, nir_instr *instr)
2638 {
2639 switch (instr->type) {
2640 case nir_instr_type_alu:
2641 emit_alu(ctx, nir_instr_as_alu(instr));
2642 break;
2643 case nir_instr_type_deref:
2644 /* ignored, handled as part of the intrinsic they are src to */
2645 break;
2646 case nir_instr_type_intrinsic:
2647 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
2648 break;
2649 case nir_instr_type_load_const:
2650 emit_load_const(ctx, nir_instr_as_load_const(instr));
2651 break;
2652 case nir_instr_type_ssa_undef:
2653 emit_undef(ctx, nir_instr_as_ssa_undef(instr));
2654 break;
2655 case nir_instr_type_tex: {
2656 nir_tex_instr *tex = nir_instr_as_tex(instr);
2657 /* couple tex instructions get special-cased:
2658 */
2659 switch (tex->op) {
2660 case nir_texop_txs:
2661 emit_tex_txs(ctx, tex);
2662 break;
2663 case nir_texop_query_levels:
2664 emit_tex_info(ctx, tex, 2);
2665 break;
2666 case nir_texop_texture_samples:
2667 emit_tex_info(ctx, tex, 3);
2668 break;
2669 default:
2670 emit_tex(ctx, tex);
2671 break;
2672 }
2673 break;
2674 }
2675 case nir_instr_type_jump:
2676 emit_jump(ctx, nir_instr_as_jump(instr));
2677 break;
2678 case nir_instr_type_phi:
2679 /* we have converted phi webs to regs in NIR by now */
2680 ir3_context_error(ctx, "Unexpected NIR instruction type: %d\n", instr->type);
2681 break;
2682 case nir_instr_type_call:
2683 case nir_instr_type_parallel_copy:
2684 ir3_context_error(ctx, "Unhandled NIR instruction type: %d\n", instr->type);
2685 break;
2686 }
2687 }
2688
2689 static struct ir3_block *
2690 get_block(struct ir3_context *ctx, const nir_block *nblock)
2691 {
2692 struct ir3_block *block;
2693 struct hash_entry *hentry;
2694
2695 hentry = _mesa_hash_table_search(ctx->block_ht, nblock);
2696 if (hentry)
2697 return hentry->data;
2698
2699 block = ir3_block_create(ctx->ir);
2700 block->nblock = nblock;
2701 _mesa_hash_table_insert(ctx->block_ht, nblock, block);
2702
2703 set_foreach(nblock->predecessors, sentry) {
2704 _mesa_set_add(block->predecessors, get_block(ctx, sentry->key));
2705 }
2706
2707 return block;
2708 }
2709
2710 static void
2711 emit_block(struct ir3_context *ctx, nir_block *nblock)
2712 {
2713 struct ir3_block *block = get_block(ctx, nblock);
2714
2715 for (int i = 0; i < ARRAY_SIZE(block->successors); i++) {
2716 if (nblock->successors[i]) {
2717 block->successors[i] =
2718 get_block(ctx, nblock->successors[i]);
2719 }
2720 }
2721
2722 ctx->block = block;
2723 list_addtail(&block->node, &ctx->ir->block_list);
2724
2725 /* re-emit addr register in each block if needed: */
2726 for (int i = 0; i < ARRAY_SIZE(ctx->addr0_ht); i++) {
2727 _mesa_hash_table_destroy(ctx->addr0_ht[i], NULL);
2728 ctx->addr0_ht[i] = NULL;
2729 }
2730
2731 _mesa_hash_table_u64_destroy(ctx->addr1_ht, NULL);
2732 ctx->addr1_ht = NULL;
2733
2734 nir_foreach_instr (instr, nblock) {
2735 ctx->cur_instr = instr;
2736 emit_instr(ctx, instr);
2737 ctx->cur_instr = NULL;
2738 if (ctx->error)
2739 return;
2740 }
2741
2742 _mesa_hash_table_clear(ctx->sel_cond_conversions, NULL);
2743 }
2744
2745 static void emit_cf_list(struct ir3_context *ctx, struct exec_list *list);
2746
2747 static void
2748 emit_if(struct ir3_context *ctx, nir_if *nif)
2749 {
2750 struct ir3_instruction *condition = ir3_get_src(ctx, &nif->condition)[0];
2751
2752 ctx->block->condition = ir3_get_predicate(ctx, condition);
2753
2754 emit_cf_list(ctx, &nif->then_list);
2755 emit_cf_list(ctx, &nif->else_list);
2756 }
2757
2758 static void
2759 emit_loop(struct ir3_context *ctx, nir_loop *nloop)
2760 {
2761 emit_cf_list(ctx, &nloop->body);
2762 ctx->so->loops++;
2763 }
2764
2765 static void
2766 stack_push(struct ir3_context *ctx)
2767 {
2768 ctx->stack++;
2769 ctx->max_stack = MAX2(ctx->max_stack, ctx->stack);
2770 }
2771
2772 static void
2773 stack_pop(struct ir3_context *ctx)
2774 {
2775 compile_assert(ctx, ctx->stack > 0);
2776 ctx->stack--;
2777 }
2778
2779 static void
2780 emit_cf_list(struct ir3_context *ctx, struct exec_list *list)
2781 {
2782 foreach_list_typed (nir_cf_node, node, node, list) {
2783 switch (node->type) {
2784 case nir_cf_node_block:
2785 emit_block(ctx, nir_cf_node_as_block(node));
2786 break;
2787 case nir_cf_node_if:
2788 stack_push(ctx);
2789 emit_if(ctx, nir_cf_node_as_if(node));
2790 stack_pop(ctx);
2791 break;
2792 case nir_cf_node_loop:
2793 stack_push(ctx);
2794 emit_loop(ctx, nir_cf_node_as_loop(node));
2795 stack_pop(ctx);
2796 break;
2797 case nir_cf_node_function:
2798 ir3_context_error(ctx, "TODO\n");
2799 break;
2800 }
2801 }
2802 }
2803
2804 /* emit stream-out code. At this point, the current block is the original
2805 * (nir) end block, and nir ensures that all flow control paths terminate
2806 * into the end block. We re-purpose the original end block to generate
2807 * the 'if (vtxcnt < maxvtxcnt)' condition, then append the conditional
2808 * block holding stream-out write instructions, followed by the new end
2809 * block:
2810 *
2811 * blockOrigEnd {
2812 * p0.x = (vtxcnt < maxvtxcnt)
2813 * // succs: blockStreamOut, blockNewEnd
2814 * }
2815 * blockStreamOut {
2816 * // preds: blockOrigEnd
2817 * ... stream-out instructions ...
2818 * // succs: blockNewEnd
2819 * }
2820 * blockNewEnd {
2821 * // preds: blockOrigEnd, blockStreamOut
2822 * }
2823 */
2824 static void
2825 emit_stream_out(struct ir3_context *ctx)
2826 {
2827 struct ir3 *ir = ctx->ir;
2828 struct ir3_stream_output_info *strmout =
2829 &ctx->so->shader->stream_output;
2830 struct ir3_block *orig_end_block, *stream_out_block, *new_end_block;
2831 struct ir3_instruction *vtxcnt, *maxvtxcnt, *cond;
2832 struct ir3_instruction *bases[IR3_MAX_SO_BUFFERS];
2833
2834 /* create vtxcnt input in input block at top of shader,
2835 * so that it is seen as live over the entire duration
2836 * of the shader:
2837 */
2838 vtxcnt = create_sysval_input(ctx, SYSTEM_VALUE_VERTEX_CNT, 0x1);
2839 maxvtxcnt = create_driver_param(ctx, IR3_DP_VTXCNT_MAX);
2840
2841 /* at this point, we are at the original 'end' block,
2842 * re-purpose this block to stream-out condition, then
2843 * append stream-out block and new-end block
2844 */
2845 orig_end_block = ctx->block;
2846
2847 // maybe w/ store_global intrinsic, we could do this
2848 // stuff in nir->nir pass
2849
2850 stream_out_block = ir3_block_create(ir);
2851 list_addtail(&stream_out_block->node, &ir->block_list);
2852
2853 new_end_block = ir3_block_create(ir);
2854 list_addtail(&new_end_block->node, &ir->block_list);
2855
2856 orig_end_block->successors[0] = stream_out_block;
2857 orig_end_block->successors[1] = new_end_block;
2858
2859 stream_out_block->successors[0] = new_end_block;
2860 _mesa_set_add(stream_out_block->predecessors, orig_end_block);
2861
2862 _mesa_set_add(new_end_block->predecessors, orig_end_block);
2863 _mesa_set_add(new_end_block->predecessors, stream_out_block);
2864
2865 /* setup 'if (vtxcnt < maxvtxcnt)' condition: */
2866 cond = ir3_CMPS_S(ctx->block, vtxcnt, 0, maxvtxcnt, 0);
2867 cond->regs[0]->num = regid(REG_P0, 0);
2868 cond->regs[0]->flags &= ~IR3_REG_SSA;
2869 cond->cat2.condition = IR3_COND_LT;
2870
2871 /* condition goes on previous block to the conditional,
2872 * since it is used to pick which of the two successor
2873 * paths to take:
2874 */
2875 orig_end_block->condition = cond;
2876
2877 /* switch to stream_out_block to generate the stream-out
2878 * instructions:
2879 */
2880 ctx->block = stream_out_block;
2881
2882 /* Calculate base addresses based on vtxcnt. Instructions
2883 * generated for bases not used in following loop will be
2884 * stripped out in the backend.
2885 */
2886 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
2887 const struct ir3_const_state *const_state =
2888 ir3_const_state(ctx->so);
2889 unsigned stride = strmout->stride[i];
2890 struct ir3_instruction *base, *off;
2891
2892 base = create_uniform(ctx->block, regid(const_state->offsets.tfbo, i));
2893
2894 /* 24-bit should be enough: */
2895 off = ir3_MUL_U24(ctx->block, vtxcnt, 0,
2896 create_immed(ctx->block, stride * 4), 0);
2897
2898 bases[i] = ir3_ADD_S(ctx->block, off, 0, base, 0);
2899 }
2900
2901 /* Generate the per-output store instructions: */
2902 for (unsigned i = 0; i < strmout->num_outputs; i++) {
2903 for (unsigned j = 0; j < strmout->output[i].num_components; j++) {
2904 unsigned c = j + strmout->output[i].start_component;
2905 struct ir3_instruction *base, *out, *stg;
2906
2907 base = bases[strmout->output[i].output_buffer];
2908 out = ctx->outputs[regid(strmout->output[i].register_index, c)];
2909
2910 stg = ir3_STG(ctx->block, base, 0, out, 0,
2911 create_immed(ctx->block, 1), 0);
2912 stg->cat6.type = TYPE_U32;
2913 stg->cat6.dst_offset = (strmout->output[i].dst_offset + j) * 4;
2914
2915 array_insert(ctx->block, ctx->block->keeps, stg);
2916 }
2917 }
2918
2919 /* and finally switch to the new_end_block: */
2920 ctx->block = new_end_block;
2921 }
2922
2923 static void
2924 emit_function(struct ir3_context *ctx, nir_function_impl *impl)
2925 {
2926 nir_metadata_require(impl, nir_metadata_block_index);
2927
2928 compile_assert(ctx, ctx->stack == 0);
2929
2930 emit_cf_list(ctx, &impl->body);
2931 emit_block(ctx, impl->end_block);
2932
2933 compile_assert(ctx, ctx->stack == 0);
2934
2935 /* at this point, we should have a single empty block,
2936 * into which we emit the 'end' instruction.
2937 */
2938 compile_assert(ctx, list_is_empty(&ctx->block->instr_list));
2939
2940 /* If stream-out (aka transform-feedback) enabled, emit the
2941 * stream-out instructions, followed by a new empty block (into
2942 * which the 'end' instruction lands).
2943 *
2944 * NOTE: it is done in this order, rather than inserting before
2945 * we emit end_block, because NIR guarantees that all blocks
2946 * flow into end_block, and that end_block has no successors.
2947 * So by re-purposing end_block as the first block of stream-
2948 * out, we guarantee that all exit paths flow into the stream-
2949 * out instructions.
2950 */
2951 if ((ctx->compiler->gpu_id < 500) &&
2952 (ctx->so->shader->stream_output.num_outputs > 0) &&
2953 !ctx->so->binning_pass) {
2954 debug_assert(ctx->so->type == MESA_SHADER_VERTEX);
2955 emit_stream_out(ctx);
2956 }
2957
2958 /* Vertex shaders in a tessellation or geometry pipeline treat END as a
2959 * NOP and has an epilogue that writes the VS outputs to local storage, to
2960 * be read by the HS. Then it resets execution mask (chmask) and chains
2961 * to the next shader (chsh).
2962 */
2963 if ((ctx->so->type == MESA_SHADER_VERTEX &&
2964 (ctx->so->key.has_gs || ctx->so->key.tessellation)) ||
2965 (ctx->so->type == MESA_SHADER_TESS_EVAL && ctx->so->key.has_gs)) {
2966 struct ir3_instruction *chmask =
2967 ir3_CHMASK(ctx->block);
2968 chmask->barrier_class = IR3_BARRIER_EVERYTHING;
2969 chmask->barrier_conflict = IR3_BARRIER_EVERYTHING;
2970
2971 struct ir3_instruction *chsh =
2972 ir3_CHSH(ctx->block);
2973 chsh->barrier_class = IR3_BARRIER_EVERYTHING;
2974 chsh->barrier_conflict = IR3_BARRIER_EVERYTHING;
2975 } else {
2976 ir3_END(ctx->block);
2977 }
2978 }
2979
2980 static void
2981 setup_input(struct ir3_context *ctx, nir_variable *in)
2982 {
2983 struct ir3_shader_variant *so = ctx->so;
2984 unsigned ncomp = glsl_get_components(in->type);
2985 unsigned n = in->data.driver_location;
2986 unsigned frac = in->data.location_frac;
2987 unsigned slot = in->data.location;
2988
2989 /* Inputs are loaded using ldlw or ldg for these stages. */
2990 if (ctx->so->type == MESA_SHADER_TESS_CTRL ||
2991 ctx->so->type == MESA_SHADER_TESS_EVAL ||
2992 ctx->so->type == MESA_SHADER_GEOMETRY)
2993 return;
2994
2995 /* skip unread inputs, we could end up with (for example), unsplit
2996 * matrix/etc inputs in the case they are not read, so just silently
2997 * skip these.
2998 */
2999 if (ncomp > 4)
3000 return;
3001
3002 so->inputs[n].slot = slot;
3003 so->inputs[n].compmask |= (1 << (ncomp + frac)) - 1;
3004 so->inputs_count = MAX2(so->inputs_count, n + 1);
3005 so->inputs[n].interpolate = in->data.interpolation;
3006
3007 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
3008
3009 /* if any varyings have 'sample' qualifer, that triggers us
3010 * to run in per-sample mode:
3011 */
3012 so->per_samp |= in->data.sample;
3013
3014 for (int i = 0; i < ncomp; i++) {
3015 struct ir3_instruction *instr = NULL;
3016 unsigned idx = (n * 4) + i + frac;
3017
3018 if (slot == VARYING_SLOT_POS) {
3019 ir3_context_error(ctx, "fragcoord should be a sysval!\n");
3020 } else {
3021 /* detect the special case for front/back colors where
3022 * we need to do flat vs smooth shading depending on
3023 * rast state:
3024 */
3025 if (in->data.interpolation == INTERP_MODE_NONE) {
3026 switch (slot) {
3027 case VARYING_SLOT_COL0:
3028 case VARYING_SLOT_COL1:
3029 case VARYING_SLOT_BFC0:
3030 case VARYING_SLOT_BFC1:
3031 so->inputs[n].rasterflat = true;
3032 break;
3033 default:
3034 break;
3035 }
3036 }
3037
3038 if (ctx->compiler->flat_bypass) {
3039 if ((so->inputs[n].interpolate == INTERP_MODE_FLAT) ||
3040 (so->inputs[n].rasterflat && ctx->so->key.rasterflat))
3041 so->inputs[n].use_ldlv = true;
3042 }
3043
3044 so->inputs[n].bary = true;
3045
3046 instr = create_frag_input(ctx, so->inputs[n].use_ldlv, idx);
3047 }
3048
3049 compile_assert(ctx, idx < ctx->ninputs);
3050
3051 ctx->inputs[idx] = instr;
3052 }
3053 } else if (ctx->so->type == MESA_SHADER_VERTEX) {
3054 struct ir3_instruction *input = NULL;
3055 struct ir3_instruction *components[4];
3056 /* input as setup as frac=0 with "ncomp + frac" components,
3057 * this avoids getting a sparse writemask
3058 */
3059 unsigned mask = (1 << (ncomp + frac)) - 1;
3060
3061 foreach_input (in, ctx->ir) {
3062 if (in->input.inidx == n) {
3063 input = in;
3064 break;
3065 }
3066 }
3067
3068 if (!input) {
3069 input = create_input(ctx, mask);
3070 input->input.inidx = n;
3071 } else {
3072 /* For aliased inputs, just append to the wrmask.. ie. if we
3073 * first see a vec2 index at slot N, and then later a vec4,
3074 * the wrmask of the resulting overlapped vec2 and vec4 is 0xf
3075 *
3076 * If the new input that aliases a previously processed input
3077 * sets no new bits, then just bail as there is nothing to see
3078 * here.
3079 */
3080 if (!(mask & ~input->regs[0]->wrmask))
3081 return;
3082 input->regs[0]->wrmask |= mask;
3083 }
3084
3085 ir3_split_dest(ctx->block, components, input, 0, ncomp + frac);
3086
3087 for (int i = 0; i < ncomp + frac; i++) {
3088 unsigned idx = (n * 4) + i;
3089 compile_assert(ctx, idx < ctx->ninputs);
3090
3091 /* With aliased inputs, since we add to the wrmask above, we
3092 * can end up with stale meta:split instructions in the inputs
3093 * table. This is basically harmless, since eventually they
3094 * will get swept away by DCE, but the mismatch wrmask (since
3095 * they would be using the previous wrmask before we OR'd in
3096 * more bits) angers ir3_validate. So just preemptively clean
3097 * them up. See:
3098 *
3099 * dEQP-GLES2.functional.attribute_location.bind_aliasing.cond_vec2
3100 *
3101 * Note however that split_dest() will return the src if it is
3102 * scalar, so the previous ctx->inputs[idx] could be the input
3103 * itself (which we don't want to remove)
3104 */
3105 if (ctx->inputs[idx] && (ctx->inputs[idx] != input)) {
3106 list_del(&ctx->inputs[idx]->node);
3107 }
3108
3109 ctx->inputs[idx] = components[i];
3110 }
3111 } else {
3112 ir3_context_error(ctx, "unknown shader type: %d\n", ctx->so->type);
3113 }
3114
3115 /* note: this can be wrong for sparse vertex inputs, this happens with
3116 * vulkan, only a3xx/a4xx use this value for VS, so it shouldn't matter
3117 */
3118 if (so->inputs[n].bary || (ctx->so->type == MESA_SHADER_VERTEX)) {
3119 so->total_in += ncomp;
3120 }
3121 }
3122
3123 /* Initially we assign non-packed inloc's for varyings, as we don't really
3124 * know up-front which components will be unused. After all the compilation
3125 * stages we scan the shader to see which components are actually used, and
3126 * re-pack the inlocs to eliminate unneeded varyings.
3127 */
3128 static void
3129 pack_inlocs(struct ir3_context *ctx)
3130 {
3131 struct ir3_shader_variant *so = ctx->so;
3132 uint8_t used_components[so->inputs_count];
3133
3134 memset(used_components, 0, sizeof(used_components));
3135
3136 /*
3137 * First Step: scan shader to find which bary.f/ldlv remain:
3138 */
3139
3140 foreach_block (block, &ctx->ir->block_list) {
3141 foreach_instr (instr, &block->instr_list) {
3142 if (is_input(instr)) {
3143 unsigned inloc = instr->regs[1]->iim_val;
3144 unsigned i = inloc / 4;
3145 unsigned j = inloc % 4;
3146
3147 compile_assert(ctx, instr->regs[1]->flags & IR3_REG_IMMED);
3148 compile_assert(ctx, i < so->inputs_count);
3149
3150 used_components[i] |= 1 << j;
3151 } else if (instr->opc == OPC_META_TEX_PREFETCH) {
3152 for (int n = 0; n < 2; n++) {
3153 unsigned inloc = instr->prefetch.input_offset + n;
3154 unsigned i = inloc / 4;
3155 unsigned j = inloc % 4;
3156
3157 compile_assert(ctx, i < so->inputs_count);
3158
3159 used_components[i] |= 1 << j;
3160 }
3161 }
3162 }
3163 }
3164
3165 /*
3166 * Second Step: reassign varying inloc/slots:
3167 */
3168
3169 unsigned actual_in = 0;
3170 unsigned inloc = 0;
3171
3172 for (unsigned i = 0; i < so->inputs_count; i++) {
3173 unsigned compmask = 0, maxcomp = 0;
3174
3175 so->inputs[i].inloc = inloc;
3176 so->inputs[i].bary = false;
3177
3178 for (unsigned j = 0; j < 4; j++) {
3179 if (!(used_components[i] & (1 << j)))
3180 continue;
3181
3182 compmask |= (1 << j);
3183 actual_in++;
3184 maxcomp = j + 1;
3185
3186 /* at this point, since used_components[i] mask is only
3187 * considering varyings (ie. not sysvals) we know this
3188 * is a varying:
3189 */
3190 so->inputs[i].bary = true;
3191 }
3192
3193 if (so->inputs[i].bary) {
3194 so->varying_in++;
3195 so->inputs[i].compmask = (1 << maxcomp) - 1;
3196 inloc += maxcomp;
3197 }
3198 }
3199
3200 /*
3201 * Third Step: reassign packed inloc's:
3202 */
3203
3204 foreach_block (block, &ctx->ir->block_list) {
3205 foreach_instr (instr, &block->instr_list) {
3206 if (is_input(instr)) {
3207 unsigned inloc = instr->regs[1]->iim_val;
3208 unsigned i = inloc / 4;
3209 unsigned j = inloc % 4;
3210
3211 instr->regs[1]->iim_val = so->inputs[i].inloc + j;
3212 } else if (instr->opc == OPC_META_TEX_PREFETCH) {
3213 unsigned i = instr->prefetch.input_offset / 4;
3214 unsigned j = instr->prefetch.input_offset % 4;
3215 instr->prefetch.input_offset = so->inputs[i].inloc + j;
3216 }
3217 }
3218 }
3219 }
3220
3221 static void
3222 setup_output(struct ir3_context *ctx, nir_variable *out)
3223 {
3224 struct ir3_shader_variant *so = ctx->so;
3225 unsigned slots = glsl_count_vec4_slots(out->type, false, false);
3226 unsigned ncomp = glsl_get_components(glsl_without_array(out->type));
3227 unsigned n = out->data.driver_location;
3228 unsigned frac = out->data.location_frac;
3229 unsigned slot = out->data.location;
3230
3231 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
3232 switch (slot) {
3233 case FRAG_RESULT_DEPTH:
3234 so->writes_pos = true;
3235 break;
3236 case FRAG_RESULT_COLOR:
3237 so->color0_mrt = 1;
3238 break;
3239 case FRAG_RESULT_SAMPLE_MASK:
3240 so->writes_smask = true;
3241 break;
3242 case FRAG_RESULT_STENCIL:
3243 so->writes_stencilref = true;
3244 break;
3245 default:
3246 slot += out->data.index; /* For dual-src blend */
3247 if (slot >= FRAG_RESULT_DATA0)
3248 break;
3249 ir3_context_error(ctx, "unknown FS output name: %s\n",
3250 gl_frag_result_name(slot));
3251 }
3252 } else if (ctx->so->type == MESA_SHADER_VERTEX ||
3253 ctx->so->type == MESA_SHADER_TESS_EVAL ||
3254 ctx->so->type == MESA_SHADER_GEOMETRY) {
3255 switch (slot) {
3256 case VARYING_SLOT_POS:
3257 so->writes_pos = true;
3258 break;
3259 case VARYING_SLOT_PSIZ:
3260 so->writes_psize = true;
3261 break;
3262 case VARYING_SLOT_PRIMITIVE_ID:
3263 case VARYING_SLOT_LAYER:
3264 case VARYING_SLOT_GS_VERTEX_FLAGS_IR3:
3265 debug_assert(ctx->so->type == MESA_SHADER_GEOMETRY);
3266 /* fall through */
3267 case VARYING_SLOT_COL0:
3268 case VARYING_SLOT_COL1:
3269 case VARYING_SLOT_BFC0:
3270 case VARYING_SLOT_BFC1:
3271 case VARYING_SLOT_FOGC:
3272 case VARYING_SLOT_CLIP_DIST0:
3273 case VARYING_SLOT_CLIP_DIST1:
3274 case VARYING_SLOT_CLIP_VERTEX:
3275 break;
3276 default:
3277 if (slot >= VARYING_SLOT_VAR0)
3278 break;
3279 if ((VARYING_SLOT_TEX0 <= slot) && (slot <= VARYING_SLOT_TEX7))
3280 break;
3281 ir3_context_error(ctx, "unknown %s shader output name: %s\n",
3282 _mesa_shader_stage_to_string(ctx->so->type),
3283 gl_varying_slot_name(slot));
3284 }
3285 } else if (ctx->so->type == MESA_SHADER_TESS_CTRL) {
3286 /* output lowered to buffer writes. */
3287 return;
3288 } else {
3289 ir3_context_error(ctx, "unknown shader type: %d\n", ctx->so->type);
3290 }
3291
3292
3293 so->outputs_count = out->data.driver_location + slots;
3294 compile_assert(ctx, so->outputs_count < ARRAY_SIZE(so->outputs));
3295
3296 for (int i = 0; i < slots; i++) {
3297 int slot_base = n + i;
3298 so->outputs[slot_base].slot = slot + i;
3299
3300 for (int i = 0; i < ncomp; i++) {
3301 unsigned idx = (slot_base * 4) + i + frac;
3302 compile_assert(ctx, idx < ctx->noutputs);
3303 ctx->outputs[idx] = create_immed(ctx->block, fui(0.0));
3304 }
3305
3306 /* if varying packing doesn't happen, we could end up in a situation
3307 * with "holes" in the output, and since the per-generation code that
3308 * sets up varying linkage registers doesn't expect to have more than
3309 * one varying per vec4 slot, pad the holes.
3310 *
3311 * Note that this should probably generate a performance warning of
3312 * some sort.
3313 */
3314 for (int i = 0; i < frac; i++) {
3315 unsigned idx = (slot_base * 4) + i;
3316 if (!ctx->outputs[idx]) {
3317 ctx->outputs[idx] = create_immed(ctx->block, fui(0.0));
3318 }
3319 }
3320 }
3321 }
3322
3323 static void
3324 emit_instructions(struct ir3_context *ctx)
3325 {
3326 nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->s);
3327
3328 ctx->ninputs = ctx->s->num_inputs * 4;
3329 ctx->noutputs = ctx->s->num_outputs * 4;
3330 ctx->inputs = rzalloc_array(ctx, struct ir3_instruction *, ctx->ninputs);
3331 ctx->outputs = rzalloc_array(ctx, struct ir3_instruction *, ctx->noutputs);
3332
3333 ctx->ir = ir3_create(ctx->compiler, ctx->so);
3334
3335 /* Create inputs in first block: */
3336 ctx->block = get_block(ctx, nir_start_block(fxn));
3337 ctx->in_block = ctx->block;
3338
3339 /* for fragment shader, the vcoord input register is used as the
3340 * base for bary.f varying fetch instrs:
3341 *
3342 * TODO defer creating ctx->ij_pixel and corresponding sysvals
3343 * until emit_intrinsic when we know they are actually needed.
3344 * For now, we defer creating ctx->ij_centroid, etc, since we
3345 * only need ij_pixel for "old style" varying inputs (ie.
3346 * tgsi_to_nir)
3347 */
3348 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
3349 ctx->ij[IJ_PERSP_PIXEL] = create_input(ctx, 0x3);
3350 }
3351
3352 /* Setup inputs: */
3353 nir_foreach_shader_in_variable (var, ctx->s) {
3354 setup_input(ctx, var);
3355 }
3356
3357 /* Defer add_sysval_input() stuff until after setup_inputs(),
3358 * because sysvals need to be appended after varyings:
3359 */
3360 if (ctx->ij[IJ_PERSP_PIXEL]) {
3361 add_sysval_input_compmask(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL,
3362 0x3, ctx->ij[IJ_PERSP_PIXEL]);
3363 }
3364
3365
3366 /* Tesselation shaders always need primitive ID for indexing the
3367 * BO. Geometry shaders don't always need it but when they do it has be
3368 * delivered and unclobbered in the VS. To make things easy, we always
3369 * make room for it in VS/DS.
3370 */
3371 bool has_tess = ctx->so->key.tessellation != IR3_TESS_NONE;
3372 bool has_gs = ctx->so->key.has_gs;
3373 switch (ctx->so->type) {
3374 case MESA_SHADER_VERTEX:
3375 if (has_tess) {
3376 ctx->tcs_header = create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1);
3377 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3378 } else if (has_gs) {
3379 ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
3380 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3381 }
3382 break;
3383 case MESA_SHADER_TESS_CTRL:
3384 ctx->tcs_header = create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1);
3385 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3386 break;
3387 case MESA_SHADER_TESS_EVAL:
3388 if (has_gs)
3389 ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
3390 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3391 break;
3392 case MESA_SHADER_GEOMETRY:
3393 ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
3394 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3395 break;
3396 default:
3397 break;
3398 }
3399
3400 /* Setup outputs: */
3401 nir_foreach_shader_out_variable (var, ctx->s) {
3402 setup_output(ctx, var);
3403 }
3404
3405 /* Find # of samplers. Just assume that we'll be reading from images.. if
3406 * it is write-only we don't have to count it, but after lowering derefs
3407 * is too late to compact indices for that.
3408 */
3409 ctx->so->num_samp = util_last_bit(ctx->s->info.textures_used) + ctx->s->info.num_images;
3410
3411 /* NOTE: need to do something more clever when we support >1 fxn */
3412 nir_foreach_register (reg, &fxn->registers) {
3413 ir3_declare_array(ctx, reg);
3414 }
3415 /* And emit the body: */
3416 ctx->impl = fxn;
3417 emit_function(ctx, fxn);
3418 }
3419
3420 /* Fixup tex sampler state for astc/srgb workaround instructions. We
3421 * need to assign the tex state indexes for these after we know the
3422 * max tex index.
3423 */
3424 static void
3425 fixup_astc_srgb(struct ir3_context *ctx)
3426 {
3427 struct ir3_shader_variant *so = ctx->so;
3428 /* indexed by original tex idx, value is newly assigned alpha sampler
3429 * state tex idx. Zero is invalid since there is at least one sampler
3430 * if we get here.
3431 */
3432 unsigned alt_tex_state[16] = {0};
3433 unsigned tex_idx = ctx->max_texture_index + 1;
3434 unsigned idx = 0;
3435
3436 so->astc_srgb.base = tex_idx;
3437
3438 for (unsigned i = 0; i < ctx->ir->astc_srgb_count; i++) {
3439 struct ir3_instruction *sam = ctx->ir->astc_srgb[i];
3440
3441 compile_assert(ctx, sam->cat5.tex < ARRAY_SIZE(alt_tex_state));
3442
3443 if (alt_tex_state[sam->cat5.tex] == 0) {
3444 /* assign new alternate/alpha tex state slot: */
3445 alt_tex_state[sam->cat5.tex] = tex_idx++;
3446 so->astc_srgb.orig_idx[idx++] = sam->cat5.tex;
3447 so->astc_srgb.count++;
3448 }
3449
3450 sam->cat5.tex = alt_tex_state[sam->cat5.tex];
3451 }
3452 }
3453
3454 static void
3455 fixup_binning_pass(struct ir3_context *ctx)
3456 {
3457 struct ir3_shader_variant *so = ctx->so;
3458 struct ir3 *ir = ctx->ir;
3459 unsigned i, j;
3460
3461 /* first pass, remove unused outputs from the IR level outputs: */
3462 for (i = 0, j = 0; i < ir->outputs_count; i++) {
3463 struct ir3_instruction *out = ir->outputs[i];
3464 assert(out->opc == OPC_META_COLLECT);
3465 unsigned outidx = out->collect.outidx;
3466 unsigned slot = so->outputs[outidx].slot;
3467
3468 /* throw away everything but first position/psize */
3469 if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) {
3470 ir->outputs[j] = ir->outputs[i];
3471 j++;
3472 }
3473 }
3474 ir->outputs_count = j;
3475
3476 /* second pass, cleanup the unused slots in ir3_shader_variant::outputs
3477 * table:
3478 */
3479 for (i = 0, j = 0; i < so->outputs_count; i++) {
3480 unsigned slot = so->outputs[i].slot;
3481
3482 /* throw away everything but first position/psize */
3483 if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) {
3484 so->outputs[j] = so->outputs[i];
3485
3486 /* fixup outidx to point to new output table entry: */
3487 foreach_output (out, ir) {
3488 if (out->collect.outidx == i) {
3489 out->collect.outidx = j;
3490 break;
3491 }
3492 }
3493
3494 j++;
3495 }
3496 }
3497 so->outputs_count = j;
3498 }
3499
3500 static void
3501 collect_tex_prefetches(struct ir3_context *ctx, struct ir3 *ir)
3502 {
3503 unsigned idx = 0;
3504
3505 /* Collect sampling instructions eligible for pre-dispatch. */
3506 foreach_block (block, &ir->block_list) {
3507 foreach_instr_safe (instr, &block->instr_list) {
3508 if (instr->opc == OPC_META_TEX_PREFETCH) {
3509 assert(idx < ARRAY_SIZE(ctx->so->sampler_prefetch));
3510 struct ir3_sampler_prefetch *fetch =
3511 &ctx->so->sampler_prefetch[idx];
3512 idx++;
3513
3514 if (instr->flags & IR3_INSTR_B) {
3515 fetch->cmd = IR3_SAMPLER_BINDLESS_PREFETCH_CMD;
3516 /* In bindless mode, the index is actually the base */
3517 fetch->tex_id = instr->prefetch.tex_base;
3518 fetch->samp_id = instr->prefetch.samp_base;
3519 fetch->tex_bindless_id = instr->prefetch.tex;
3520 fetch->samp_bindless_id = instr->prefetch.samp;
3521 } else {
3522 fetch->cmd = IR3_SAMPLER_PREFETCH_CMD;
3523 fetch->tex_id = instr->prefetch.tex;
3524 fetch->samp_id = instr->prefetch.samp;
3525 }
3526 fetch->wrmask = instr->regs[0]->wrmask;
3527 fetch->dst = instr->regs[0]->num;
3528 fetch->src = instr->prefetch.input_offset;
3529
3530 /* These are the limits on a5xx/a6xx, we might need to
3531 * revisit if SP_FS_PREFETCH[n] changes on later gens:
3532 */
3533 assert(fetch->dst <= 0x3f);
3534 assert(fetch->tex_id <= 0x1f);
3535 assert(fetch->samp_id < 0xf);
3536
3537 ctx->so->total_in =
3538 MAX2(ctx->so->total_in, instr->prefetch.input_offset + 2);
3539
3540 fetch->half_precision = !!(instr->regs[0]->flags & IR3_REG_HALF);
3541
3542 /* Remove the prefetch placeholder instruction: */
3543 list_delinit(&instr->node);
3544 }
3545 }
3546 }
3547 }
3548
3549 int
3550 ir3_compile_shader_nir(struct ir3_compiler *compiler,
3551 struct ir3_shader_variant *so)
3552 {
3553 struct ir3_context *ctx;
3554 struct ir3 *ir;
3555 int ret = 0, max_bary;
3556 bool progress;
3557
3558 assert(!so->ir);
3559
3560 ctx = ir3_context_init(compiler, so);
3561 if (!ctx) {
3562 DBG("INIT failed!");
3563 ret = -1;
3564 goto out;
3565 }
3566
3567 emit_instructions(ctx);
3568
3569 if (ctx->error) {
3570 DBG("EMIT failed!");
3571 ret = -1;
3572 goto out;
3573 }
3574
3575 ir = so->ir = ctx->ir;
3576
3577 assert((ctx->noutputs % 4) == 0);
3578
3579 /* Setup IR level outputs, which are "collects" that gather
3580 * the scalar components of outputs.
3581 */
3582 for (unsigned i = 0; i < ctx->noutputs; i += 4) {
3583 unsigned ncomp = 0;
3584 /* figure out the # of components written:
3585 *
3586 * TODO do we need to handle holes, ie. if .x and .z
3587 * components written, but .y component not written?
3588 */
3589 for (unsigned j = 0; j < 4; j++) {
3590 if (!ctx->outputs[i + j])
3591 break;
3592 ncomp++;
3593 }
3594
3595 /* Note that in some stages, like TCS, store_output is
3596 * lowered to memory writes, so no components of the
3597 * are "written" from the PoV of traditional store-
3598 * output instructions:
3599 */
3600 if (!ncomp)
3601 continue;
3602
3603 struct ir3_instruction *out =
3604 ir3_create_collect(ctx, &ctx->outputs[i], ncomp);
3605
3606 int outidx = i / 4;
3607 assert(outidx < so->outputs_count);
3608
3609 /* stash index into so->outputs[] so we can map the
3610 * output back to slot/etc later:
3611 */
3612 out->collect.outidx = outidx;
3613
3614 array_insert(ir, ir->outputs, out);
3615 }
3616
3617 /* Set up the gs header as an output for the vertex shader so it won't
3618 * clobber it for the tess ctrl shader.
3619 *
3620 * TODO this could probably be done more cleanly in a nir pass.
3621 */
3622 if (ctx->so->type == MESA_SHADER_VERTEX ||
3623 (ctx->so->key.has_gs && ctx->so->type == MESA_SHADER_TESS_EVAL)) {
3624 if (ctx->primitive_id) {
3625 unsigned n = so->outputs_count++;
3626 so->outputs[n].slot = VARYING_SLOT_PRIMITIVE_ID;
3627
3628 struct ir3_instruction *out =
3629 ir3_create_collect(ctx, &ctx->primitive_id, 1);
3630 out->collect.outidx = n;
3631 array_insert(ir, ir->outputs, out);
3632 }
3633
3634 if (ctx->gs_header) {
3635 unsigned n = so->outputs_count++;
3636 so->outputs[n].slot = VARYING_SLOT_GS_HEADER_IR3;
3637 struct ir3_instruction *out =
3638 ir3_create_collect(ctx, &ctx->gs_header, 1);
3639 out->collect.outidx = n;
3640 array_insert(ir, ir->outputs, out);
3641 }
3642
3643 if (ctx->tcs_header) {
3644 unsigned n = so->outputs_count++;
3645 so->outputs[n].slot = VARYING_SLOT_TCS_HEADER_IR3;
3646 struct ir3_instruction *out =
3647 ir3_create_collect(ctx, &ctx->tcs_header, 1);
3648 out->collect.outidx = n;
3649 array_insert(ir, ir->outputs, out);
3650 }
3651 }
3652
3653 /* for a6xx+, binning and draw pass VS use same VBO state, so we
3654 * need to make sure not to remove any inputs that are used by
3655 * the nonbinning VS.
3656 */
3657 if (ctx->compiler->gpu_id >= 600 && so->binning_pass &&
3658 so->type == MESA_SHADER_VERTEX) {
3659 for (int i = 0; i < ctx->ninputs; i++) {
3660 struct ir3_instruction *in = ctx->inputs[i];
3661
3662 if (!in)
3663 continue;
3664
3665 unsigned n = i / 4;
3666 unsigned c = i % 4;
3667
3668 debug_assert(n < so->nonbinning->inputs_count);
3669
3670 if (so->nonbinning->inputs[n].sysval)
3671 continue;
3672
3673 /* be sure to keep inputs, even if only used in VS */
3674 if (so->nonbinning->inputs[n].compmask & (1 << c))
3675 array_insert(in->block, in->block->keeps, in);
3676 }
3677 }
3678
3679 /* at this point, for binning pass, throw away unneeded outputs: */
3680 if (so->binning_pass && (ctx->compiler->gpu_id < 600))
3681 fixup_binning_pass(ctx);
3682
3683 ir3_debug_print(ir, "AFTER: nir->ir3");
3684 ir3_validate(ir);
3685
3686 do {
3687 progress = false;
3688
3689 progress |= IR3_PASS(ir, ir3_cf);
3690 progress |= IR3_PASS(ir, ir3_cp, so);
3691 progress |= IR3_PASS(ir, ir3_dce, so);
3692 } while (progress);
3693
3694 /* at this point, for binning pass, throw away unneeded outputs:
3695 * Note that for a6xx and later, we do this after ir3_cp to ensure
3696 * that the uniform/constant layout for BS and VS matches, so that
3697 * we can re-use same VS_CONST state group.
3698 */
3699 if (so->binning_pass && (ctx->compiler->gpu_id >= 600)) {
3700 fixup_binning_pass(ctx);
3701 /* cleanup the result of removing unneeded outputs: */
3702 while (IR3_PASS(ir, ir3_dce, so)) {}
3703 }
3704
3705 IR3_PASS(ir, ir3_sched_add_deps);
3706
3707 /* Group left/right neighbors, inserting mov's where needed to
3708 * solve conflicts:
3709 */
3710 IR3_PASS(ir, ir3_group);
3711
3712 /* At this point, all the dead code should be long gone: */
3713 assert(!IR3_PASS(ir, ir3_dce, so));
3714
3715 ret = ir3_sched(ir);
3716 if (ret) {
3717 DBG("SCHED failed!");
3718 goto out;
3719 }
3720
3721 ir3_debug_print(ir, "AFTER: ir3_sched");
3722
3723 if (IR3_PASS(ir, ir3_cp_postsched)) {
3724 /* cleanup the result of removing unneeded mov's: */
3725 while (IR3_PASS(ir, ir3_dce, so)) {}
3726 }
3727
3728 /* Pre-assign VS inputs on a6xx+ binning pass shader, to align
3729 * with draw pass VS, so binning and draw pass can both use the
3730 * same VBO state.
3731 *
3732 * Note that VS inputs are expected to be full precision.
3733 */
3734 bool pre_assign_inputs = (ir->compiler->gpu_id >= 600) &&
3735 (ir->type == MESA_SHADER_VERTEX) &&
3736 so->binning_pass;
3737
3738 if (pre_assign_inputs) {
3739 for (unsigned i = 0; i < ctx->ninputs; i++) {
3740 struct ir3_instruction *instr = ctx->inputs[i];
3741
3742 if (!instr)
3743 continue;
3744
3745 unsigned n = i / 4;
3746 unsigned c = i % 4;
3747 unsigned regid = so->nonbinning->inputs[n].regid + c;
3748
3749 instr->regs[0]->num = regid;
3750 }
3751
3752 ret = ir3_ra(so, ctx->inputs, ctx->ninputs);
3753 } else if (ctx->tcs_header) {
3754 /* We need to have these values in the same registers between VS and TCS
3755 * since the VS chains to TCS and doesn't get the sysvals redelivered.
3756 */
3757
3758 ctx->tcs_header->regs[0]->num = regid(0, 0);
3759 ctx->primitive_id->regs[0]->num = regid(0, 1);
3760 struct ir3_instruction *precolor[] = { ctx->tcs_header, ctx->primitive_id };
3761 ret = ir3_ra(so, precolor, ARRAY_SIZE(precolor));
3762 } else if (ctx->gs_header) {
3763 /* We need to have these values in the same registers between producer
3764 * (VS or DS) and GS since the producer chains to GS and doesn't get
3765 * the sysvals redelivered.
3766 */
3767
3768 ctx->gs_header->regs[0]->num = regid(0, 0);
3769 ctx->primitive_id->regs[0]->num = regid(0, 1);
3770 struct ir3_instruction *precolor[] = { ctx->gs_header, ctx->primitive_id };
3771 ret = ir3_ra(so, precolor, ARRAY_SIZE(precolor));
3772 } else if (so->num_sampler_prefetch) {
3773 assert(so->type == MESA_SHADER_FRAGMENT);
3774 struct ir3_instruction *precolor[2];
3775 int idx = 0;
3776
3777 foreach_input (instr, ir) {
3778 if (instr->input.sysval != SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL)
3779 continue;
3780
3781 assert(idx < ARRAY_SIZE(precolor));
3782
3783 precolor[idx] = instr;
3784 instr->regs[0]->num = idx;
3785
3786 idx++;
3787 }
3788 ret = ir3_ra(so, precolor, idx);
3789 } else {
3790 ret = ir3_ra(so, NULL, 0);
3791 }
3792
3793 if (ret) {
3794 DBG("RA failed!");
3795 goto out;
3796 }
3797
3798 IR3_PASS(ir, ir3_postsched, so);
3799
3800 if (compiler->gpu_id >= 600) {
3801 IR3_PASS(ir, ir3_a6xx_fixup_atomic_dests, so);
3802 }
3803
3804 if (so->type == MESA_SHADER_FRAGMENT)
3805 pack_inlocs(ctx);
3806
3807 /*
3808 * Fixup inputs/outputs to point to the actual registers assigned:
3809 *
3810 * 1) initialize to r63.x (invalid/unused)
3811 * 2) iterate IR level inputs/outputs and update the variants
3812 * inputs/outputs table based on the assigned registers for
3813 * the remaining inputs/outputs.
3814 */
3815
3816 for (unsigned i = 0; i < so->inputs_count; i++)
3817 so->inputs[i].regid = INVALID_REG;
3818 for (unsigned i = 0; i < so->outputs_count; i++)
3819 so->outputs[i].regid = INVALID_REG;
3820
3821 foreach_output (out, ir) {
3822 assert(out->opc == OPC_META_COLLECT);
3823 unsigned outidx = out->collect.outidx;
3824
3825 so->outputs[outidx].regid = out->regs[0]->num;
3826 so->outputs[outidx].half = !!(out->regs[0]->flags & IR3_REG_HALF);
3827 }
3828
3829 foreach_input (in, ir) {
3830 assert(in->opc == OPC_META_INPUT);
3831 unsigned inidx = in->input.inidx;
3832
3833 if (pre_assign_inputs && !so->inputs[inidx].sysval) {
3834 if (VALIDREG(so->nonbinning->inputs[inidx].regid)) {
3835 compile_assert(ctx, in->regs[0]->num ==
3836 so->nonbinning->inputs[inidx].regid);
3837 compile_assert(ctx, !!(in->regs[0]->flags & IR3_REG_HALF) ==
3838 so->nonbinning->inputs[inidx].half);
3839 }
3840 so->inputs[inidx].regid = so->nonbinning->inputs[inidx].regid;
3841 so->inputs[inidx].half = so->nonbinning->inputs[inidx].half;
3842 } else {
3843 so->inputs[inidx].regid = in->regs[0]->num;
3844 so->inputs[inidx].half = !!(in->regs[0]->flags & IR3_REG_HALF);
3845 }
3846 }
3847
3848 if (ctx->astc_srgb)
3849 fixup_astc_srgb(ctx);
3850
3851 /* We need to do legalize after (for frag shader's) the "bary.f"
3852 * offsets (inloc) have been assigned.
3853 */
3854 IR3_PASS(ir, ir3_legalize, so, &max_bary);
3855
3856 /* Set (ss)(sy) on first TCS and GEOMETRY instructions, since we don't
3857 * know what we might have to wait on when coming in from VS chsh.
3858 */
3859 if (so->type == MESA_SHADER_TESS_CTRL ||
3860 so->type == MESA_SHADER_GEOMETRY ) {
3861 foreach_block (block, &ir->block_list) {
3862 foreach_instr (instr, &block->instr_list) {
3863 instr->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
3864 break;
3865 }
3866 }
3867 }
3868
3869 so->branchstack = ctx->max_stack;
3870
3871 /* Note that actual_in counts inputs that are not bary.f'd for FS: */
3872 if (so->type == MESA_SHADER_FRAGMENT)
3873 so->total_in = max_bary + 1;
3874
3875 /* Collect sampling instructions eligible for pre-dispatch. */
3876 collect_tex_prefetches(ctx, ir);
3877
3878 if (so->type == MESA_SHADER_FRAGMENT &&
3879 ctx->s->info.fs.needs_helper_invocations)
3880 so->need_pixlod = true;
3881
3882 out:
3883 if (ret) {
3884 if (so->ir)
3885 ir3_destroy(so->ir);
3886 so->ir = NULL;
3887 }
3888 ir3_context_free(ctx);
3889
3890 return ret;
3891 }