freedreno/ir3: add post-scheduler cp pass
[mesa.git] / src / freedreno / ir3 / ir3_compiler_nir.c
1 /*
2 * Copyright (C) 2015 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include <stdarg.h>
28
29 #include "util/u_string.h"
30 #include "util/u_memory.h"
31 #include "util/u_math.h"
32
33 #include "ir3_compiler.h"
34 #include "ir3_image.h"
35 #include "ir3_shader.h"
36 #include "ir3_nir.h"
37
38 #include "instr-a3xx.h"
39 #include "ir3.h"
40 #include "ir3_context.h"
41
42 void
43 ir3_handle_bindless_cat6(struct ir3_instruction *instr, nir_src rsrc)
44 {
45 nir_intrinsic_instr *intrin = ir3_bindless_resource(rsrc);
46 if (!intrin)
47 return;
48
49 instr->flags |= IR3_INSTR_B;
50 instr->cat6.base = nir_intrinsic_desc_set(intrin);
51 }
52
53 static struct ir3_instruction *
54 create_indirect_load(struct ir3_context *ctx, unsigned arrsz, int n,
55 struct ir3_instruction *address, struct ir3_instruction *collect)
56 {
57 struct ir3_block *block = ctx->block;
58 struct ir3_instruction *mov;
59 struct ir3_register *src;
60
61 mov = ir3_instr_create(block, OPC_MOV);
62 mov->cat1.src_type = TYPE_U32;
63 mov->cat1.dst_type = TYPE_U32;
64 __ssa_dst(mov);
65 src = __ssa_src(mov, collect, IR3_REG_RELATIV);
66 src->size = arrsz;
67 src->array.offset = n;
68
69 ir3_instr_set_address(mov, address);
70
71 return mov;
72 }
73
74 static struct ir3_instruction *
75 create_input(struct ir3_context *ctx, unsigned compmask)
76 {
77 struct ir3_instruction *in;
78
79 in = ir3_instr_create(ctx->in_block, OPC_META_INPUT);
80 in->input.sysval = ~0;
81 __ssa_dst(in)->wrmask = compmask;
82
83 array_insert(ctx->ir, ctx->ir->inputs, in);
84
85 return in;
86 }
87
88 static struct ir3_instruction *
89 create_frag_input(struct ir3_context *ctx, bool use_ldlv, unsigned n)
90 {
91 struct ir3_block *block = ctx->block;
92 struct ir3_instruction *instr;
93 /* packed inloc is fixed up later: */
94 struct ir3_instruction *inloc = create_immed(block, n);
95
96 if (use_ldlv) {
97 instr = ir3_LDLV(block, inloc, 0, create_immed(block, 1), 0);
98 instr->cat6.type = TYPE_U32;
99 instr->cat6.iim_val = 1;
100 } else {
101 instr = ir3_BARY_F(block, inloc, 0, ctx->ij_pixel, 0);
102 instr->regs[2]->wrmask = 0x3;
103 }
104
105 return instr;
106 }
107
108 static struct ir3_instruction *
109 create_driver_param(struct ir3_context *ctx, enum ir3_driver_param dp)
110 {
111 /* first four vec4 sysval's reserved for UBOs: */
112 /* NOTE: dp is in scalar, but there can be >4 dp components: */
113 struct ir3_const_state *const_state = &ctx->so->shader->const_state;
114 unsigned n = const_state->offsets.driver_param;
115 unsigned r = regid(n + dp / 4, dp % 4);
116 return create_uniform(ctx->block, r);
117 }
118
119 /*
120 * Adreno's comparisons produce a 1 for true and 0 for false, in either 16 or
121 * 32-bit registers. We use NIR's 1-bit integers to represent bools, and
122 * trust that we will only see and/or/xor on those 1-bit values, so we can
123 * safely store NIR i1s in a 32-bit reg while always containing either a 1 or
124 * 0.
125 */
126
127 /*
128 * alu/sfu instructions:
129 */
130
131 static struct ir3_instruction *
132 create_cov(struct ir3_context *ctx, struct ir3_instruction *src,
133 unsigned src_bitsize, nir_op op)
134 {
135 type_t src_type, dst_type;
136
137 switch (op) {
138 case nir_op_f2f32:
139 case nir_op_f2f16_rtne:
140 case nir_op_f2f16_rtz:
141 case nir_op_f2f16:
142 case nir_op_f2i32:
143 case nir_op_f2i16:
144 case nir_op_f2i8:
145 case nir_op_f2u32:
146 case nir_op_f2u16:
147 case nir_op_f2u8:
148 switch (src_bitsize) {
149 case 32:
150 src_type = TYPE_F32;
151 break;
152 case 16:
153 src_type = TYPE_F16;
154 break;
155 default:
156 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
157 }
158 break;
159
160 case nir_op_i2f32:
161 case nir_op_i2f16:
162 case nir_op_i2i32:
163 case nir_op_i2i16:
164 case nir_op_i2i8:
165 switch (src_bitsize) {
166 case 32:
167 src_type = TYPE_S32;
168 break;
169 case 16:
170 src_type = TYPE_S16;
171 break;
172 case 8:
173 src_type = TYPE_S8;
174 break;
175 default:
176 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
177 }
178 break;
179
180 case nir_op_u2f32:
181 case nir_op_u2f16:
182 case nir_op_u2u32:
183 case nir_op_u2u16:
184 case nir_op_u2u8:
185 switch (src_bitsize) {
186 case 32:
187 src_type = TYPE_U32;
188 break;
189 case 16:
190 src_type = TYPE_U16;
191 break;
192 case 8:
193 src_type = TYPE_U8;
194 break;
195 default:
196 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
197 }
198 break;
199
200 case nir_op_b2f16:
201 case nir_op_b2f32:
202 case nir_op_b2i8:
203 case nir_op_b2i16:
204 case nir_op_b2i32:
205 src_type = TYPE_U32;
206 break;
207
208 default:
209 ir3_context_error(ctx, "invalid conversion op: %u", op);
210 }
211
212 switch (op) {
213 case nir_op_f2f32:
214 case nir_op_i2f32:
215 case nir_op_u2f32:
216 case nir_op_b2f32:
217 dst_type = TYPE_F32;
218 break;
219
220 case nir_op_f2f16_rtne:
221 case nir_op_f2f16_rtz:
222 case nir_op_f2f16:
223 case nir_op_i2f16:
224 case nir_op_u2f16:
225 case nir_op_b2f16:
226 dst_type = TYPE_F16;
227 break;
228
229 case nir_op_f2i32:
230 case nir_op_i2i32:
231 case nir_op_b2i32:
232 dst_type = TYPE_S32;
233 break;
234
235 case nir_op_f2i16:
236 case nir_op_i2i16:
237 case nir_op_b2i16:
238 dst_type = TYPE_S16;
239 break;
240
241 case nir_op_f2i8:
242 case nir_op_i2i8:
243 case nir_op_b2i8:
244 dst_type = TYPE_S8;
245 break;
246
247 case nir_op_f2u32:
248 case nir_op_u2u32:
249 dst_type = TYPE_U32;
250 break;
251
252 case nir_op_f2u16:
253 case nir_op_u2u16:
254 dst_type = TYPE_U16;
255 break;
256
257 case nir_op_f2u8:
258 case nir_op_u2u8:
259 dst_type = TYPE_U8;
260 break;
261
262 default:
263 ir3_context_error(ctx, "invalid conversion op: %u", op);
264 }
265
266 if (src_type == dst_type)
267 return src;
268
269 struct ir3_instruction *cov =
270 ir3_COV(ctx->block, src, src_type, dst_type);
271
272 if (op == nir_op_f2f16_rtne)
273 cov->regs[0]->flags |= IR3_REG_EVEN;
274
275 return cov;
276 }
277
278 static void
279 emit_alu(struct ir3_context *ctx, nir_alu_instr *alu)
280 {
281 const nir_op_info *info = &nir_op_infos[alu->op];
282 struct ir3_instruction **dst, *src[info->num_inputs];
283 unsigned bs[info->num_inputs]; /* bit size */
284 struct ir3_block *b = ctx->block;
285 unsigned dst_sz, wrmask;
286 type_t dst_type = nir_dest_bit_size(alu->dest.dest) == 16 ?
287 TYPE_U16 : TYPE_U32;
288
289 if (alu->dest.dest.is_ssa) {
290 dst_sz = alu->dest.dest.ssa.num_components;
291 wrmask = (1 << dst_sz) - 1;
292 } else {
293 dst_sz = alu->dest.dest.reg.reg->num_components;
294 wrmask = alu->dest.write_mask;
295 }
296
297 dst = ir3_get_dst(ctx, &alu->dest.dest, dst_sz);
298
299 /* Vectors are special in that they have non-scalarized writemasks,
300 * and just take the first swizzle channel for each argument in
301 * order into each writemask channel.
302 */
303 if ((alu->op == nir_op_vec2) ||
304 (alu->op == nir_op_vec3) ||
305 (alu->op == nir_op_vec4)) {
306
307 for (int i = 0; i < info->num_inputs; i++) {
308 nir_alu_src *asrc = &alu->src[i];
309
310 compile_assert(ctx, !asrc->abs);
311 compile_assert(ctx, !asrc->negate);
312
313 src[i] = ir3_get_src(ctx, &asrc->src)[asrc->swizzle[0]];
314 if (!src[i])
315 src[i] = create_immed_typed(ctx->block, 0, dst_type);
316 dst[i] = ir3_MOV(b, src[i], dst_type);
317 }
318
319 ir3_put_dst(ctx, &alu->dest.dest);
320 return;
321 }
322
323 /* We also get mov's with more than one component for mov's so
324 * handle those specially:
325 */
326 if (alu->op == nir_op_mov) {
327 nir_alu_src *asrc = &alu->src[0];
328 struct ir3_instruction *const *src0 = ir3_get_src(ctx, &asrc->src);
329
330 for (unsigned i = 0; i < dst_sz; i++) {
331 if (wrmask & (1 << i)) {
332 dst[i] = ir3_MOV(b, src0[asrc->swizzle[i]], dst_type);
333 } else {
334 dst[i] = NULL;
335 }
336 }
337
338 ir3_put_dst(ctx, &alu->dest.dest);
339 return;
340 }
341
342 /* General case: We can just grab the one used channel per src. */
343 for (int i = 0; i < info->num_inputs; i++) {
344 unsigned chan = ffs(alu->dest.write_mask) - 1;
345 nir_alu_src *asrc = &alu->src[i];
346
347 compile_assert(ctx, !asrc->abs);
348 compile_assert(ctx, !asrc->negate);
349
350 src[i] = ir3_get_src(ctx, &asrc->src)[asrc->swizzle[chan]];
351 bs[i] = nir_src_bit_size(asrc->src);
352
353 compile_assert(ctx, src[i]);
354 }
355
356 switch (alu->op) {
357 case nir_op_f2f32:
358 case nir_op_f2f16_rtne:
359 case nir_op_f2f16_rtz:
360 case nir_op_f2f16:
361 case nir_op_f2i32:
362 case nir_op_f2i16:
363 case nir_op_f2i8:
364 case nir_op_f2u32:
365 case nir_op_f2u16:
366 case nir_op_f2u8:
367 case nir_op_i2f32:
368 case nir_op_i2f16:
369 case nir_op_i2i32:
370 case nir_op_i2i16:
371 case nir_op_i2i8:
372 case nir_op_u2f32:
373 case nir_op_u2f16:
374 case nir_op_u2u32:
375 case nir_op_u2u16:
376 case nir_op_u2u8:
377 case nir_op_b2f16:
378 case nir_op_b2f32:
379 case nir_op_b2i8:
380 case nir_op_b2i16:
381 case nir_op_b2i32:
382 dst[0] = create_cov(ctx, src[0], bs[0], alu->op);
383 break;
384
385 case nir_op_fquantize2f16:
386 dst[0] = create_cov(ctx,
387 create_cov(ctx, src[0], 32, nir_op_f2f16),
388 16, nir_op_f2f32);
389 break;
390 case nir_op_f2b1:
391 dst[0] = ir3_CMPS_F(b,
392 src[0], 0,
393 create_immed_typed(b, 0, bs[0] == 16 ? TYPE_F16 : TYPE_F32), 0);
394 dst[0]->cat2.condition = IR3_COND_NE;
395 break;
396
397 case nir_op_i2b1:
398 /* i2b1 will appear when translating from nir_load_ubo or
399 * nir_intrinsic_load_ssbo, where any non-zero value is true.
400 */
401 dst[0] = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
402 dst[0]->cat2.condition = IR3_COND_NE;
403 break;
404
405 case nir_op_b2b1:
406 /* b2b1 will appear when translating from
407 *
408 * - nir_intrinsic_load_shared of a 32-bit 0/~0 value.
409 * - nir_intrinsic_load_constant of a 32-bit 0/~0 value
410 *
411 * A negate can turn those into a 1 or 0 for us.
412 */
413 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
414 break;
415
416 case nir_op_b2b32:
417 /* b2b32 will appear when converting our 1-bit bools to a store_shared
418 * argument.
419 *
420 * A negate can turn those into a ~0 for us.
421 */
422 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
423 break;
424
425 case nir_op_fneg:
426 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FNEG);
427 break;
428 case nir_op_fabs:
429 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FABS);
430 break;
431 case nir_op_fmax:
432 dst[0] = ir3_MAX_F(b, src[0], 0, src[1], 0);
433 break;
434 case nir_op_fmin:
435 dst[0] = ir3_MIN_F(b, src[0], 0, src[1], 0);
436 break;
437 case nir_op_fsat:
438 /* if there is just a single use of the src, and it supports
439 * (sat) bit, we can just fold the (sat) flag back to the
440 * src instruction and create a mov. This is easier for cp
441 * to eliminate.
442 *
443 * NOTE: a3xx definitely seen not working with flat bary.f. Same test
444 * uses ldlv on a4xx+, so not definitive. Seems rare enough to apply
445 * everywhere.
446 *
447 * TODO probably opc_cat==4 is ok too
448 */
449 if (alu->src[0].src.is_ssa &&
450 src[0]->opc != OPC_BARY_F &&
451 (list_length(&alu->src[0].src.ssa->uses) == 1) &&
452 ((opc_cat(src[0]->opc) == 2) || (opc_cat(src[0]->opc) == 3))) {
453 src[0]->flags |= IR3_INSTR_SAT;
454 dst[0] = ir3_MOV(b, src[0], dst_type);
455 } else {
456 /* otherwise generate a max.f that saturates.. blob does
457 * similar (generating a cat2 mov using max.f)
458 */
459 dst[0] = ir3_MAX_F(b, src[0], 0, src[0], 0);
460 dst[0]->flags |= IR3_INSTR_SAT;
461 }
462 break;
463 case nir_op_fmul:
464 dst[0] = ir3_MUL_F(b, src[0], 0, src[1], 0);
465 break;
466 case nir_op_fadd:
467 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], 0);
468 break;
469 case nir_op_fsub:
470 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], IR3_REG_FNEG);
471 break;
472 case nir_op_ffma:
473 dst[0] = ir3_MAD_F32(b, src[0], 0, src[1], 0, src[2], 0);
474 break;
475 case nir_op_fddx:
476 case nir_op_fddx_coarse:
477 dst[0] = ir3_DSX(b, src[0], 0);
478 dst[0]->cat5.type = TYPE_F32;
479 break;
480 case nir_op_fddx_fine:
481 dst[0] = ir3_DSXPP_1(b, src[0], 0);
482 dst[0]->cat5.type = TYPE_F32;
483 break;
484 case nir_op_fddy:
485 case nir_op_fddy_coarse:
486 dst[0] = ir3_DSY(b, src[0], 0);
487 dst[0]->cat5.type = TYPE_F32;
488 break;
489 break;
490 case nir_op_fddy_fine:
491 dst[0] = ir3_DSYPP_1(b, src[0], 0);
492 dst[0]->cat5.type = TYPE_F32;
493 break;
494 case nir_op_flt:
495 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
496 dst[0]->cat2.condition = IR3_COND_LT;
497 break;
498 case nir_op_fge:
499 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
500 dst[0]->cat2.condition = IR3_COND_GE;
501 break;
502 case nir_op_feq:
503 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
504 dst[0]->cat2.condition = IR3_COND_EQ;
505 break;
506 case nir_op_fne:
507 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
508 dst[0]->cat2.condition = IR3_COND_NE;
509 break;
510 case nir_op_fceil:
511 dst[0] = ir3_CEIL_F(b, src[0], 0);
512 break;
513 case nir_op_ffloor:
514 dst[0] = ir3_FLOOR_F(b, src[0], 0);
515 break;
516 case nir_op_ftrunc:
517 dst[0] = ir3_TRUNC_F(b, src[0], 0);
518 break;
519 case nir_op_fround_even:
520 dst[0] = ir3_RNDNE_F(b, src[0], 0);
521 break;
522 case nir_op_fsign:
523 dst[0] = ir3_SIGN_F(b, src[0], 0);
524 break;
525
526 case nir_op_fsin:
527 dst[0] = ir3_SIN(b, src[0], 0);
528 break;
529 case nir_op_fcos:
530 dst[0] = ir3_COS(b, src[0], 0);
531 break;
532 case nir_op_frsq:
533 dst[0] = ir3_RSQ(b, src[0], 0);
534 break;
535 case nir_op_frcp:
536 dst[0] = ir3_RCP(b, src[0], 0);
537 break;
538 case nir_op_flog2:
539 dst[0] = ir3_LOG2(b, src[0], 0);
540 break;
541 case nir_op_fexp2:
542 dst[0] = ir3_EXP2(b, src[0], 0);
543 break;
544 case nir_op_fsqrt:
545 dst[0] = ir3_SQRT(b, src[0], 0);
546 break;
547
548 case nir_op_iabs:
549 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SABS);
550 break;
551 case nir_op_iadd:
552 dst[0] = ir3_ADD_U(b, src[0], 0, src[1], 0);
553 break;
554 case nir_op_iand:
555 dst[0] = ir3_AND_B(b, src[0], 0, src[1], 0);
556 break;
557 case nir_op_imax:
558 dst[0] = ir3_MAX_S(b, src[0], 0, src[1], 0);
559 break;
560 case nir_op_umax:
561 dst[0] = ir3_MAX_U(b, src[0], 0, src[1], 0);
562 break;
563 case nir_op_imin:
564 dst[0] = ir3_MIN_S(b, src[0], 0, src[1], 0);
565 break;
566 case nir_op_umin:
567 dst[0] = ir3_MIN_U(b, src[0], 0, src[1], 0);
568 break;
569 case nir_op_umul_low:
570 dst[0] = ir3_MULL_U(b, src[0], 0, src[1], 0);
571 break;
572 case nir_op_imadsh_mix16:
573 dst[0] = ir3_MADSH_M16(b, src[0], 0, src[1], 0, src[2], 0);
574 break;
575 case nir_op_imad24_ir3:
576 dst[0] = ir3_MAD_S24(b, src[0], 0, src[1], 0, src[2], 0);
577 break;
578 case nir_op_imul24:
579 dst[0] = ir3_MUL_S24(b, src[0], 0, src[1], 0);
580 break;
581 case nir_op_ineg:
582 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
583 break;
584 case nir_op_inot:
585 if (bs[0] == 1) {
586 dst[0] = ir3_SUB_U(b, create_immed(ctx->block, 1), 0, src[0], 0);
587 } else {
588 dst[0] = ir3_NOT_B(b, src[0], 0);
589 }
590 break;
591 case nir_op_ior:
592 dst[0] = ir3_OR_B(b, src[0], 0, src[1], 0);
593 break;
594 case nir_op_ishl:
595 dst[0] = ir3_SHL_B(b, src[0], 0, src[1], 0);
596 break;
597 case nir_op_ishr:
598 dst[0] = ir3_ASHR_B(b, src[0], 0, src[1], 0);
599 break;
600 case nir_op_isub:
601 dst[0] = ir3_SUB_U(b, src[0], 0, src[1], 0);
602 break;
603 case nir_op_ixor:
604 dst[0] = ir3_XOR_B(b, src[0], 0, src[1], 0);
605 break;
606 case nir_op_ushr:
607 dst[0] = ir3_SHR_B(b, src[0], 0, src[1], 0);
608 break;
609 case nir_op_ilt:
610 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
611 dst[0]->cat2.condition = IR3_COND_LT;
612 break;
613 case nir_op_ige:
614 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
615 dst[0]->cat2.condition = IR3_COND_GE;
616 break;
617 case nir_op_ieq:
618 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
619 dst[0]->cat2.condition = IR3_COND_EQ;
620 break;
621 case nir_op_ine:
622 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
623 dst[0]->cat2.condition = IR3_COND_NE;
624 break;
625 case nir_op_ult:
626 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
627 dst[0]->cat2.condition = IR3_COND_LT;
628 break;
629 case nir_op_uge:
630 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
631 dst[0]->cat2.condition = IR3_COND_GE;
632 break;
633
634 case nir_op_bcsel: {
635 struct ir3_instruction *cond = src[0];
636
637 /* If src[0] is a negation (likely as a result of an ir3_b2n(cond)),
638 * we can ignore that and use original cond, since the nonzero-ness of
639 * cond stays the same.
640 */
641 if (cond->opc == OPC_ABSNEG_S &&
642 cond->flags == 0 &&
643 (cond->regs[1]->flags & (IR3_REG_SNEG | IR3_REG_SABS)) == IR3_REG_SNEG) {
644 cond = cond->regs[1]->instr;
645 }
646
647 compile_assert(ctx, bs[1] == bs[2]);
648 /* The condition's size has to match the other two arguments' size, so
649 * convert down if necessary.
650 */
651 if (bs[1] == 16) {
652 struct hash_entry *prev_entry =
653 _mesa_hash_table_search(ctx->sel_cond_conversions, src[0]);
654 if (prev_entry) {
655 cond = prev_entry->data;
656 } else {
657 cond = ir3_COV(b, cond, TYPE_U32, TYPE_U16);
658 _mesa_hash_table_insert(ctx->sel_cond_conversions, src[0], cond);
659 }
660 }
661
662 if (bs[1] != 16)
663 dst[0] = ir3_SEL_B32(b, src[1], 0, cond, 0, src[2], 0);
664 else
665 dst[0] = ir3_SEL_B16(b, src[1], 0, cond, 0, src[2], 0);
666 break;
667 }
668 case nir_op_bit_count: {
669 // TODO, we need to do this 16b at a time on a5xx+a6xx.. need to
670 // double check on earlier gen's. Once half-precision support is
671 // in place, this should probably move to a NIR lowering pass:
672 struct ir3_instruction *hi, *lo;
673
674 hi = ir3_COV(b, ir3_SHR_B(b, src[0], 0, create_immed(b, 16), 0),
675 TYPE_U32, TYPE_U16);
676 lo = ir3_COV(b, src[0], TYPE_U32, TYPE_U16);
677
678 hi = ir3_CBITS_B(b, hi, 0);
679 lo = ir3_CBITS_B(b, lo, 0);
680
681 // TODO maybe the builders should default to making dst half-precision
682 // if the src's were half precision, to make this less awkward.. otoh
683 // we should probably just do this lowering in NIR.
684 hi->regs[0]->flags |= IR3_REG_HALF;
685 lo->regs[0]->flags |= IR3_REG_HALF;
686
687 dst[0] = ir3_ADD_S(b, hi, 0, lo, 0);
688 dst[0]->regs[0]->flags |= IR3_REG_HALF;
689 dst[0] = ir3_COV(b, dst[0], TYPE_U16, TYPE_U32);
690 break;
691 }
692 case nir_op_ifind_msb: {
693 struct ir3_instruction *cmp;
694 dst[0] = ir3_CLZ_S(b, src[0], 0);
695 cmp = ir3_CMPS_S(b, dst[0], 0, create_immed(b, 0), 0);
696 cmp->cat2.condition = IR3_COND_GE;
697 dst[0] = ir3_SEL_B32(b,
698 ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
699 cmp, 0, dst[0], 0);
700 break;
701 }
702 case nir_op_ufind_msb:
703 dst[0] = ir3_CLZ_B(b, src[0], 0);
704 dst[0] = ir3_SEL_B32(b,
705 ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
706 src[0], 0, dst[0], 0);
707 break;
708 case nir_op_find_lsb:
709 dst[0] = ir3_BFREV_B(b, src[0], 0);
710 dst[0] = ir3_CLZ_B(b, dst[0], 0);
711 break;
712 case nir_op_bitfield_reverse:
713 dst[0] = ir3_BFREV_B(b, src[0], 0);
714 break;
715
716 default:
717 ir3_context_error(ctx, "Unhandled ALU op: %s\n",
718 nir_op_infos[alu->op].name);
719 break;
720 }
721
722 if (nir_alu_type_get_base_type(info->output_type) == nir_type_bool) {
723 assert(nir_dest_bit_size(alu->dest.dest) == 1 ||
724 alu->op == nir_op_b2b32);
725 assert(dst_sz == 1);
726 } else {
727 /* 1-bit values stored in 32-bit registers are only valid for certain
728 * ALU ops.
729 */
730 switch (alu->op) {
731 case nir_op_iand:
732 case nir_op_ior:
733 case nir_op_ixor:
734 case nir_op_inot:
735 case nir_op_bcsel:
736 break;
737 default:
738 compile_assert(ctx, nir_dest_bit_size(alu->dest.dest) != 1);
739 }
740 }
741
742 ir3_put_dst(ctx, &alu->dest.dest);
743 }
744
745 static void
746 emit_intrinsic_load_ubo_ldc(struct ir3_context *ctx, nir_intrinsic_instr *intr,
747 struct ir3_instruction **dst)
748 {
749 struct ir3_block *b = ctx->block;
750
751 unsigned ncomp = intr->num_components;
752 struct ir3_instruction *offset = ir3_get_src(ctx, &intr->src[1])[0];
753 struct ir3_instruction *idx = ir3_get_src(ctx, &intr->src[0])[0];
754 struct ir3_instruction *ldc = ir3_LDC(b, idx, 0, offset, 0);
755 ldc->regs[0]->wrmask = MASK(ncomp);
756 ldc->cat6.iim_val = ncomp;
757 ldc->cat6.d = nir_intrinsic_base(intr);
758 ldc->cat6.type = TYPE_U32;
759
760 ir3_handle_bindless_cat6(ldc, intr->src[0]);
761 if (ldc->flags & IR3_INSTR_B)
762 ctx->so->bindless_ubo = true;
763
764 ir3_split_dest(b, dst, ldc, 0, ncomp);
765 }
766
767
768 /* handles direct/indirect UBO reads: */
769 static void
770 emit_intrinsic_load_ubo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
771 struct ir3_instruction **dst)
772 {
773 struct ir3_block *b = ctx->block;
774 struct ir3_instruction *base_lo, *base_hi, *addr, *src0, *src1;
775 struct ir3_const_state *const_state = &ctx->so->shader->const_state;
776 unsigned ubo = regid(const_state->offsets.ubo, 0);
777 const unsigned ptrsz = ir3_pointer_size(ctx->compiler);
778
779 int off = 0;
780
781 /* First src is ubo index, which could either be an immed or not: */
782 src0 = ir3_get_src(ctx, &intr->src[0])[0];
783 if (is_same_type_mov(src0) &&
784 (src0->regs[1]->flags & IR3_REG_IMMED)) {
785 base_lo = create_uniform(b, ubo + (src0->regs[1]->iim_val * ptrsz));
786 base_hi = create_uniform(b, ubo + (src0->regs[1]->iim_val * ptrsz) + 1);
787 } else {
788 base_lo = create_uniform_indirect(b, ubo, ir3_get_addr0(ctx, src0, ptrsz));
789 base_hi = create_uniform_indirect(b, ubo + 1, ir3_get_addr0(ctx, src0, ptrsz));
790
791 /* NOTE: since relative addressing is used, make sure constlen is
792 * at least big enough to cover all the UBO addresses, since the
793 * assembler won't know what the max address reg is.
794 */
795 ctx->so->constlen = MAX2(ctx->so->constlen,
796 const_state->offsets.ubo + (ctx->s->info.num_ubos * ptrsz));
797 }
798
799 /* note: on 32bit gpu's base_hi is ignored and DCE'd */
800 addr = base_lo;
801
802 if (nir_src_is_const(intr->src[1])) {
803 off += nir_src_as_uint(intr->src[1]);
804 } else {
805 /* For load_ubo_indirect, second src is indirect offset: */
806 src1 = ir3_get_src(ctx, &intr->src[1])[0];
807
808 /* and add offset to addr: */
809 addr = ir3_ADD_S(b, addr, 0, src1, 0);
810 }
811
812 /* if offset is to large to encode in the ldg, split it out: */
813 if ((off + (intr->num_components * 4)) > 1024) {
814 /* split out the minimal amount to improve the odds that
815 * cp can fit the immediate in the add.s instruction:
816 */
817 unsigned off2 = off + (intr->num_components * 4) - 1024;
818 addr = ir3_ADD_S(b, addr, 0, create_immed(b, off2), 0);
819 off -= off2;
820 }
821
822 if (ptrsz == 2) {
823 struct ir3_instruction *carry;
824
825 /* handle 32b rollover, ie:
826 * if (addr < base_lo)
827 * base_hi++
828 */
829 carry = ir3_CMPS_U(b, addr, 0, base_lo, 0);
830 carry->cat2.condition = IR3_COND_LT;
831 base_hi = ir3_ADD_S(b, base_hi, 0, carry, 0);
832
833 addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){ addr, base_hi }, 2);
834 }
835
836 for (int i = 0; i < intr->num_components; i++) {
837 struct ir3_instruction *load =
838 ir3_LDG(b, addr, 0, create_immed(b, 1), 0, /* num components */
839 create_immed(b, off + i * 4), 0);
840 load->cat6.type = TYPE_U32;
841 dst[i] = load;
842 }
843 }
844
845 /* src[] = { block_index } */
846 static void
847 emit_intrinsic_ssbo_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
848 struct ir3_instruction **dst)
849 {
850 /* SSBO size stored as a const starting at ssbo_sizes: */
851 struct ir3_const_state *const_state = &ctx->so->shader->const_state;
852 unsigned blk_idx = nir_src_as_uint(intr->src[0]);
853 unsigned idx = regid(const_state->offsets.ssbo_sizes, 0) +
854 const_state->ssbo_size.off[blk_idx];
855
856 debug_assert(const_state->ssbo_size.mask & (1 << blk_idx));
857
858 dst[0] = create_uniform(ctx->block, idx);
859 }
860
861 /* src[] = { offset }. const_index[] = { base } */
862 static void
863 emit_intrinsic_load_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr,
864 struct ir3_instruction **dst)
865 {
866 struct ir3_block *b = ctx->block;
867 struct ir3_instruction *ldl, *offset;
868 unsigned base;
869
870 offset = ir3_get_src(ctx, &intr->src[0])[0];
871 base = nir_intrinsic_base(intr);
872
873 ldl = ir3_LDL(b, offset, 0,
874 create_immed(b, intr->num_components), 0,
875 create_immed(b, base), 0);
876
877 ldl->cat6.type = utype_dst(intr->dest);
878 ldl->regs[0]->wrmask = MASK(intr->num_components);
879
880 ldl->barrier_class = IR3_BARRIER_SHARED_R;
881 ldl->barrier_conflict = IR3_BARRIER_SHARED_W;
882
883 ir3_split_dest(b, dst, ldl, 0, intr->num_components);
884 }
885
886 /* src[] = { value, offset }. const_index[] = { base, write_mask } */
887 static void
888 emit_intrinsic_store_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
889 {
890 struct ir3_block *b = ctx->block;
891 struct ir3_instruction *stl, *offset;
892 struct ir3_instruction * const *value;
893 unsigned base, wrmask, ncomp;
894
895 value = ir3_get_src(ctx, &intr->src[0]);
896 offset = ir3_get_src(ctx, &intr->src[1])[0];
897
898 base = nir_intrinsic_base(intr);
899 wrmask = nir_intrinsic_write_mask(intr);
900 ncomp = ffs(~wrmask) - 1;
901
902 assert(wrmask == BITFIELD_MASK(intr->num_components));
903
904 stl = ir3_STL(b, offset, 0,
905 ir3_create_collect(ctx, value, ncomp), 0,
906 create_immed(b, ncomp), 0);
907 stl->cat6.dst_offset = base;
908 stl->cat6.type = utype_src(intr->src[0]);
909 stl->barrier_class = IR3_BARRIER_SHARED_W;
910 stl->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
911
912 array_insert(b, b->keeps, stl);
913 }
914
915 /* src[] = { offset }. const_index[] = { base } */
916 static void
917 emit_intrinsic_load_shared_ir3(struct ir3_context *ctx, nir_intrinsic_instr *intr,
918 struct ir3_instruction **dst)
919 {
920 struct ir3_block *b = ctx->block;
921 struct ir3_instruction *load, *offset;
922 unsigned base;
923
924 offset = ir3_get_src(ctx, &intr->src[0])[0];
925 base = nir_intrinsic_base(intr);
926
927 load = ir3_LDLW(b, offset, 0,
928 create_immed(b, intr->num_components), 0,
929 create_immed(b, base), 0);
930
931 load->cat6.type = utype_dst(intr->dest);
932 load->regs[0]->wrmask = MASK(intr->num_components);
933
934 load->barrier_class = IR3_BARRIER_SHARED_R;
935 load->barrier_conflict = IR3_BARRIER_SHARED_W;
936
937 ir3_split_dest(b, dst, load, 0, intr->num_components);
938 }
939
940 /* src[] = { value, offset }. const_index[] = { base } */
941 static void
942 emit_intrinsic_store_shared_ir3(struct ir3_context *ctx, nir_intrinsic_instr *intr)
943 {
944 struct ir3_block *b = ctx->block;
945 struct ir3_instruction *store, *offset;
946 struct ir3_instruction * const *value;
947
948 value = ir3_get_src(ctx, &intr->src[0]);
949 offset = ir3_get_src(ctx, &intr->src[1])[0];
950
951 store = ir3_STLW(b, offset, 0,
952 ir3_create_collect(ctx, value, intr->num_components), 0,
953 create_immed(b, intr->num_components), 0);
954
955 store->cat6.dst_offset = nir_intrinsic_base(intr);
956 store->cat6.type = utype_src(intr->src[0]);
957 store->barrier_class = IR3_BARRIER_SHARED_W;
958 store->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
959
960 array_insert(b, b->keeps, store);
961 }
962
963 /*
964 * CS shared variable atomic intrinsics
965 *
966 * All of the shared variable atomic memory operations read a value from
967 * memory, compute a new value using one of the operations below, write the
968 * new value to memory, and return the original value read.
969 *
970 * All operations take 2 sources except CompSwap that takes 3. These
971 * sources represent:
972 *
973 * 0: The offset into the shared variable storage region that the atomic
974 * operation will operate on.
975 * 1: The data parameter to the atomic function (i.e. the value to add
976 * in shared_atomic_add, etc).
977 * 2: For CompSwap only: the second data parameter.
978 */
979 static struct ir3_instruction *
980 emit_intrinsic_atomic_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
981 {
982 struct ir3_block *b = ctx->block;
983 struct ir3_instruction *atomic, *src0, *src1;
984 type_t type = TYPE_U32;
985
986 src0 = ir3_get_src(ctx, &intr->src[0])[0]; /* offset */
987 src1 = ir3_get_src(ctx, &intr->src[1])[0]; /* value */
988
989 switch (intr->intrinsic) {
990 case nir_intrinsic_shared_atomic_add:
991 atomic = ir3_ATOMIC_ADD(b, src0, 0, src1, 0);
992 break;
993 case nir_intrinsic_shared_atomic_imin:
994 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
995 type = TYPE_S32;
996 break;
997 case nir_intrinsic_shared_atomic_umin:
998 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
999 break;
1000 case nir_intrinsic_shared_atomic_imax:
1001 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1002 type = TYPE_S32;
1003 break;
1004 case nir_intrinsic_shared_atomic_umax:
1005 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1006 break;
1007 case nir_intrinsic_shared_atomic_and:
1008 atomic = ir3_ATOMIC_AND(b, src0, 0, src1, 0);
1009 break;
1010 case nir_intrinsic_shared_atomic_or:
1011 atomic = ir3_ATOMIC_OR(b, src0, 0, src1, 0);
1012 break;
1013 case nir_intrinsic_shared_atomic_xor:
1014 atomic = ir3_ATOMIC_XOR(b, src0, 0, src1, 0);
1015 break;
1016 case nir_intrinsic_shared_atomic_exchange:
1017 atomic = ir3_ATOMIC_XCHG(b, src0, 0, src1, 0);
1018 break;
1019 case nir_intrinsic_shared_atomic_comp_swap:
1020 /* for cmpxchg, src1 is [ui]vec2(data, compare): */
1021 src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1022 ir3_get_src(ctx, &intr->src[2])[0],
1023 src1,
1024 }, 2);
1025 atomic = ir3_ATOMIC_CMPXCHG(b, src0, 0, src1, 0);
1026 break;
1027 default:
1028 unreachable("boo");
1029 }
1030
1031 atomic->cat6.iim_val = 1;
1032 atomic->cat6.d = 1;
1033 atomic->cat6.type = type;
1034 atomic->barrier_class = IR3_BARRIER_SHARED_W;
1035 atomic->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1036
1037 /* even if nothing consume the result, we can't DCE the instruction: */
1038 array_insert(b, b->keeps, atomic);
1039
1040 return atomic;
1041 }
1042
1043 struct tex_src_info {
1044 /* For prefetch */
1045 unsigned tex_base, samp_base, tex_idx, samp_idx;
1046 /* For normal tex instructions */
1047 unsigned base, combined_idx, a1_val, flags;
1048 struct ir3_instruction *samp_tex;
1049 };
1050
1051 /* TODO handle actual indirect/dynamic case.. which is going to be weird
1052 * to handle with the image_mapping table..
1053 */
1054 static struct tex_src_info
1055 get_image_samp_tex_src(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1056 {
1057 struct ir3_block *b = ctx->block;
1058 struct tex_src_info info = { 0 };
1059 nir_intrinsic_instr *bindless_tex = ir3_bindless_resource(intr->src[0]);
1060 ctx->so->bindless_tex = true;
1061
1062 if (bindless_tex) {
1063 /* Bindless case */
1064 info.flags |= IR3_INSTR_B;
1065
1066 /* Gather information required to determine which encoding to
1067 * choose as well as for prefetch.
1068 */
1069 info.tex_base = nir_intrinsic_desc_set(bindless_tex);
1070 bool tex_const = nir_src_is_const(bindless_tex->src[0]);
1071 if (tex_const)
1072 info.tex_idx = nir_src_as_uint(bindless_tex->src[0]);
1073 info.samp_idx = 0;
1074
1075 /* Choose encoding. */
1076 if (tex_const && info.tex_idx < 256) {
1077 if (info.tex_idx < 16) {
1078 /* Everything fits within the instruction */
1079 info.base = info.tex_base;
1080 info.combined_idx = info.samp_idx | (info.tex_idx << 4);
1081 } else {
1082 info.base = info.tex_base;
1083 info.a1_val = info.tex_idx << 3;
1084 info.combined_idx = 0;
1085 info.flags |= IR3_INSTR_A1EN;
1086 }
1087 info.samp_tex = NULL;
1088 } else {
1089 info.flags |= IR3_INSTR_S2EN;
1090 info.base = info.tex_base;
1091
1092 /* Note: the indirect source is now a vec2 instead of hvec2 */
1093 struct ir3_instruction *texture, *sampler;
1094
1095 texture = ir3_get_src(ctx, &intr->src[0])[0];
1096 sampler = create_immed(b, 0);
1097 info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1098 texture,
1099 sampler,
1100 }, 2);
1101 }
1102 } else {
1103 info.flags |= IR3_INSTR_S2EN;
1104 unsigned slot = nir_src_as_uint(intr->src[0]);
1105 unsigned tex_idx = ir3_image_to_tex(&ctx->so->image_mapping, slot);
1106 struct ir3_instruction *texture, *sampler;
1107
1108 texture = create_immed_typed(ctx->block, tex_idx, TYPE_U16);
1109 sampler = create_immed_typed(ctx->block, tex_idx, TYPE_U16);
1110
1111 info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1112 sampler,
1113 texture,
1114 }, 2);
1115 }
1116
1117 return info;
1118 }
1119
1120 static struct ir3_instruction *
1121 emit_sam(struct ir3_context *ctx, opc_t opc, struct tex_src_info info,
1122 type_t type, unsigned wrmask, struct ir3_instruction *src0,
1123 struct ir3_instruction *src1)
1124 {
1125 struct ir3_instruction *sam, *addr;
1126 if (info.flags & IR3_INSTR_A1EN) {
1127 addr = ir3_get_addr1(ctx, info.a1_val);
1128 }
1129 sam = ir3_SAM(ctx->block, opc, type, 0b1111, info.flags,
1130 info.samp_tex, src0, src1);
1131 if (info.flags & IR3_INSTR_A1EN) {
1132 ir3_instr_set_address(sam, addr);
1133 }
1134 if (info.flags & IR3_INSTR_B) {
1135 sam->cat5.tex_base = info.base;
1136 sam->cat5.samp = info.combined_idx;
1137 }
1138 return sam;
1139 }
1140
1141 /* src[] = { deref, coord, sample_index }. const_index[] = {} */
1142 static void
1143 emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1144 struct ir3_instruction **dst)
1145 {
1146 struct ir3_block *b = ctx->block;
1147 struct tex_src_info info = get_image_samp_tex_src(ctx, intr);
1148 struct ir3_instruction *sam;
1149 struct ir3_instruction * const *src0 = ir3_get_src(ctx, &intr->src[1]);
1150 struct ir3_instruction *coords[4];
1151 unsigned flags, ncoords = ir3_get_image_coords(intr, &flags);
1152 type_t type = ir3_get_type_for_image_intrinsic(intr);
1153
1154 /* hmm, this seems a bit odd, but it is what blob does and (at least
1155 * a5xx) just faults on bogus addresses otherwise:
1156 */
1157 if (flags & IR3_INSTR_3D) {
1158 flags &= ~IR3_INSTR_3D;
1159 flags |= IR3_INSTR_A;
1160 }
1161 info.flags |= flags;
1162
1163 for (unsigned i = 0; i < ncoords; i++)
1164 coords[i] = src0[i];
1165
1166 if (ncoords == 1)
1167 coords[ncoords++] = create_immed(b, 0);
1168
1169 sam = emit_sam(ctx, OPC_ISAM, info, type, 0b1111,
1170 ir3_create_collect(ctx, coords, ncoords), NULL);
1171
1172 sam->barrier_class = IR3_BARRIER_IMAGE_R;
1173 sam->barrier_conflict = IR3_BARRIER_IMAGE_W;
1174
1175 ir3_split_dest(b, dst, sam, 0, 4);
1176 }
1177
1178 /* A4xx version of image_size, see ir3_a6xx.c for newer resinfo version. */
1179 void
1180 emit_intrinsic_image_size_tex(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1181 struct ir3_instruction **dst)
1182 {
1183 struct ir3_block *b = ctx->block;
1184 struct tex_src_info info = get_image_samp_tex_src(ctx, intr);
1185 struct ir3_instruction *sam, *lod;
1186 unsigned flags, ncoords = ir3_get_image_coords(intr, &flags);
1187 type_t dst_type = nir_dest_bit_size(intr->dest) == 16 ?
1188 TYPE_U16 : TYPE_U32;
1189
1190 info.flags |= flags;
1191 lod = create_immed(b, 0);
1192 sam = emit_sam(ctx, OPC_GETSIZE, info, dst_type, 0b1111, lod, NULL);
1193
1194 /* Array size actually ends up in .w rather than .z. This doesn't
1195 * matter for miplevel 0, but for higher mips the value in z is
1196 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
1197 * returned, which means that we have to add 1 to it for arrays for
1198 * a3xx.
1199 *
1200 * Note use a temporary dst and then copy, since the size of the dst
1201 * array that is passed in is based on nir's understanding of the
1202 * result size, not the hardware's
1203 */
1204 struct ir3_instruction *tmp[4];
1205
1206 ir3_split_dest(b, tmp, sam, 0, 4);
1207
1208 /* get_size instruction returns size in bytes instead of texels
1209 * for imageBuffer, so we need to divide it by the pixel size
1210 * of the image format.
1211 *
1212 * TODO: This is at least true on a5xx. Check other gens.
1213 */
1214 if (nir_intrinsic_image_dim(intr) == GLSL_SAMPLER_DIM_BUF) {
1215 /* Since all the possible values the divisor can take are
1216 * power-of-two (4, 8, or 16), the division is implemented
1217 * as a shift-right.
1218 * During shader setup, the log2 of the image format's
1219 * bytes-per-pixel should have been emitted in 2nd slot of
1220 * image_dims. See ir3_shader::emit_image_dims().
1221 */
1222 struct ir3_const_state *const_state = &ctx->so->shader->const_state;
1223 unsigned cb = regid(const_state->offsets.image_dims, 0) +
1224 const_state->image_dims.off[nir_src_as_uint(intr->src[0])];
1225 struct ir3_instruction *aux = create_uniform(b, cb + 1);
1226
1227 tmp[0] = ir3_SHR_B(b, tmp[0], 0, aux, 0);
1228 }
1229
1230 for (unsigned i = 0; i < ncoords; i++)
1231 dst[i] = tmp[i];
1232
1233 if (flags & IR3_INSTR_A) {
1234 if (ctx->compiler->levels_add_one) {
1235 dst[ncoords-1] = ir3_ADD_U(b, tmp[3], 0, create_immed(b, 1), 0);
1236 } else {
1237 dst[ncoords-1] = ir3_MOV(b, tmp[3], TYPE_U32);
1238 }
1239 }
1240 }
1241
1242 static void
1243 emit_intrinsic_barrier(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1244 {
1245 struct ir3_block *b = ctx->block;
1246 struct ir3_instruction *barrier;
1247
1248 switch (intr->intrinsic) {
1249 case nir_intrinsic_control_barrier:
1250 barrier = ir3_BAR(b);
1251 barrier->cat7.g = true;
1252 barrier->cat7.l = true;
1253 barrier->flags = IR3_INSTR_SS | IR3_INSTR_SY;
1254 barrier->barrier_class = IR3_BARRIER_EVERYTHING;
1255 break;
1256 case nir_intrinsic_memory_barrier:
1257 barrier = ir3_FENCE(b);
1258 barrier->cat7.g = true;
1259 barrier->cat7.r = true;
1260 barrier->cat7.w = true;
1261 barrier->cat7.l = true;
1262 barrier->barrier_class = IR3_BARRIER_IMAGE_W |
1263 IR3_BARRIER_BUFFER_W;
1264 barrier->barrier_conflict =
1265 IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
1266 IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1267 break;
1268 case nir_intrinsic_memory_barrier_buffer:
1269 barrier = ir3_FENCE(b);
1270 barrier->cat7.g = true;
1271 barrier->cat7.r = true;
1272 barrier->cat7.w = true;
1273 barrier->barrier_class = IR3_BARRIER_BUFFER_W;
1274 barrier->barrier_conflict = IR3_BARRIER_BUFFER_R |
1275 IR3_BARRIER_BUFFER_W;
1276 break;
1277 case nir_intrinsic_memory_barrier_image:
1278 // TODO double check if this should have .g set
1279 barrier = ir3_FENCE(b);
1280 barrier->cat7.g = true;
1281 barrier->cat7.r = true;
1282 barrier->cat7.w = true;
1283 barrier->barrier_class = IR3_BARRIER_IMAGE_W;
1284 barrier->barrier_conflict = IR3_BARRIER_IMAGE_R |
1285 IR3_BARRIER_IMAGE_W;
1286 break;
1287 case nir_intrinsic_memory_barrier_shared:
1288 barrier = ir3_FENCE(b);
1289 barrier->cat7.g = true;
1290 barrier->cat7.l = true;
1291 barrier->cat7.r = true;
1292 barrier->cat7.w = true;
1293 barrier->barrier_class = IR3_BARRIER_SHARED_W;
1294 barrier->barrier_conflict = IR3_BARRIER_SHARED_R |
1295 IR3_BARRIER_SHARED_W;
1296 break;
1297 case nir_intrinsic_group_memory_barrier:
1298 barrier = ir3_FENCE(b);
1299 barrier->cat7.g = true;
1300 barrier->cat7.l = true;
1301 barrier->cat7.r = true;
1302 barrier->cat7.w = true;
1303 barrier->barrier_class = IR3_BARRIER_SHARED_W |
1304 IR3_BARRIER_IMAGE_W |
1305 IR3_BARRIER_BUFFER_W;
1306 barrier->barrier_conflict =
1307 IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W |
1308 IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
1309 IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1310 break;
1311 default:
1312 unreachable("boo");
1313 }
1314
1315 /* make sure barrier doesn't get DCE'd */
1316 array_insert(b, b->keeps, barrier);
1317 }
1318
1319 static void add_sysval_input_compmask(struct ir3_context *ctx,
1320 gl_system_value slot, unsigned compmask,
1321 struct ir3_instruction *instr)
1322 {
1323 struct ir3_shader_variant *so = ctx->so;
1324 unsigned n = so->inputs_count++;
1325
1326 assert(instr->opc == OPC_META_INPUT);
1327 instr->input.inidx = n;
1328 instr->input.sysval = slot;
1329
1330 so->inputs[n].sysval = true;
1331 so->inputs[n].slot = slot;
1332 so->inputs[n].compmask = compmask;
1333 so->inputs[n].interpolate = INTERP_MODE_FLAT;
1334 so->total_in++;
1335 }
1336
1337 static struct ir3_instruction *
1338 create_sysval_input(struct ir3_context *ctx, gl_system_value slot,
1339 unsigned compmask)
1340 {
1341 assert(compmask);
1342 struct ir3_instruction *sysval = create_input(ctx, compmask);
1343 add_sysval_input_compmask(ctx, slot, compmask, sysval);
1344 return sysval;
1345 }
1346
1347 static struct ir3_instruction *
1348 get_barycentric_centroid(struct ir3_context *ctx)
1349 {
1350 if (!ctx->ij_centroid) {
1351 struct ir3_instruction *xy[2];
1352 struct ir3_instruction *ij;
1353
1354 ij = create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID, 0x3);
1355 ir3_split_dest(ctx->block, xy, ij, 0, 2);
1356
1357 ctx->ij_centroid = ir3_create_collect(ctx, xy, 2);
1358 }
1359
1360 return ctx->ij_centroid;
1361 }
1362
1363 static struct ir3_instruction *
1364 get_barycentric_sample(struct ir3_context *ctx)
1365 {
1366 if (!ctx->ij_sample) {
1367 struct ir3_instruction *xy[2];
1368 struct ir3_instruction *ij;
1369
1370 ij = create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE, 0x3);
1371 ir3_split_dest(ctx->block, xy, ij, 0, 2);
1372
1373 ctx->ij_sample = ir3_create_collect(ctx, xy, 2);
1374 }
1375
1376 return ctx->ij_sample;
1377 }
1378
1379 static struct ir3_instruction *
1380 get_barycentric_pixel(struct ir3_context *ctx)
1381 {
1382 /* TODO when tgsi_to_nir supports "new-style" FS inputs switch
1383 * this to create ij_pixel only on demand:
1384 */
1385 return ctx->ij_pixel;
1386 }
1387
1388 static struct ir3_instruction *
1389 get_frag_coord(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1390 {
1391 if (!ctx->frag_coord) {
1392 struct ir3_block *b = ctx->in_block;
1393 struct ir3_instruction *xyzw[4];
1394 struct ir3_instruction *hw_frag_coord;
1395
1396 hw_frag_coord = create_sysval_input(ctx, SYSTEM_VALUE_FRAG_COORD, 0xf);
1397 ir3_split_dest(b, xyzw, hw_frag_coord, 0, 4);
1398
1399 /* for frag_coord.xy, we get unsigned values.. we need
1400 * to subtract (integer) 8 and divide by 16 (right-
1401 * shift by 4) then convert to float:
1402 *
1403 * sub.s tmp, src, 8
1404 * shr.b tmp, tmp, 4
1405 * mov.u32f32 dst, tmp
1406 *
1407 */
1408 for (int i = 0; i < 2; i++) {
1409 xyzw[i] = ir3_COV(b, xyzw[i], TYPE_U32, TYPE_F32);
1410 xyzw[i] = ir3_MUL_F(b, xyzw[i], 0, create_immed(b, fui(1.0 / 16.0)), 0);
1411 }
1412
1413 ctx->frag_coord = ir3_create_collect(ctx, xyzw, 4);
1414 }
1415
1416 ctx->so->fragcoord_compmask |=
1417 nir_ssa_def_components_read(&intr->dest.ssa);
1418
1419 return ctx->frag_coord;
1420 }
1421
1422 static void
1423 emit_intrinsic(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1424 {
1425 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1426 struct ir3_instruction **dst;
1427 struct ir3_instruction * const *src;
1428 struct ir3_block *b = ctx->block;
1429 unsigned dest_components = nir_intrinsic_dest_components(intr);
1430 int idx, comp;
1431
1432 if (info->has_dest) {
1433 dst = ir3_get_dst(ctx, &intr->dest, dest_components);
1434 } else {
1435 dst = NULL;
1436 }
1437
1438 const unsigned primitive_param = ctx->so->shader->const_state.offsets.primitive_param * 4;
1439 const unsigned primitive_map = ctx->so->shader->const_state.offsets.primitive_map * 4;
1440
1441 switch (intr->intrinsic) {
1442 case nir_intrinsic_load_uniform:
1443 idx = nir_intrinsic_base(intr);
1444 if (nir_src_is_const(intr->src[0])) {
1445 idx += nir_src_as_uint(intr->src[0]);
1446 for (int i = 0; i < dest_components; i++) {
1447 dst[i] = create_uniform_typed(b, idx + i,
1448 nir_dest_bit_size(intr->dest) == 16 ? TYPE_F16 : TYPE_F32);
1449 }
1450 } else {
1451 src = ir3_get_src(ctx, &intr->src[0]);
1452 for (int i = 0; i < dest_components; i++) {
1453 dst[i] = create_uniform_indirect(b, idx + i,
1454 ir3_get_addr0(ctx, src[0], 1));
1455 }
1456 /* NOTE: if relative addressing is used, we set
1457 * constlen in the compiler (to worst-case value)
1458 * since we don't know in the assembler what the max
1459 * addr reg value can be:
1460 */
1461 ctx->so->constlen = MAX2(ctx->so->constlen,
1462 ctx->so->shader->ubo_state.size / 16);
1463 }
1464 break;
1465
1466 case nir_intrinsic_load_vs_primitive_stride_ir3:
1467 dst[0] = create_uniform(b, primitive_param + 0);
1468 break;
1469 case nir_intrinsic_load_vs_vertex_stride_ir3:
1470 dst[0] = create_uniform(b, primitive_param + 1);
1471 break;
1472 case nir_intrinsic_load_hs_patch_stride_ir3:
1473 dst[0] = create_uniform(b, primitive_param + 2);
1474 break;
1475 case nir_intrinsic_load_patch_vertices_in:
1476 dst[0] = create_uniform(b, primitive_param + 3);
1477 break;
1478 case nir_intrinsic_load_tess_param_base_ir3:
1479 dst[0] = create_uniform(b, primitive_param + 4);
1480 dst[1] = create_uniform(b, primitive_param + 5);
1481 break;
1482 case nir_intrinsic_load_tess_factor_base_ir3:
1483 dst[0] = create_uniform(b, primitive_param + 6);
1484 dst[1] = create_uniform(b, primitive_param + 7);
1485 break;
1486
1487 case nir_intrinsic_load_primitive_location_ir3:
1488 idx = nir_intrinsic_driver_location(intr);
1489 dst[0] = create_uniform(b, primitive_map + idx);
1490 break;
1491
1492 case nir_intrinsic_load_gs_header_ir3:
1493 dst[0] = ctx->gs_header;
1494 break;
1495 case nir_intrinsic_load_tcs_header_ir3:
1496 dst[0] = ctx->tcs_header;
1497 break;
1498
1499 case nir_intrinsic_load_primitive_id:
1500 dst[0] = ctx->primitive_id;
1501 break;
1502
1503 case nir_intrinsic_load_tess_coord:
1504 if (!ctx->tess_coord) {
1505 ctx->tess_coord =
1506 create_sysval_input(ctx, SYSTEM_VALUE_TESS_COORD, 0x3);
1507 }
1508 ir3_split_dest(b, dst, ctx->tess_coord, 0, 2);
1509
1510 /* Unused, but ir3_put_dst() below wants to free something */
1511 dst[2] = create_immed(b, 0);
1512 break;
1513
1514 case nir_intrinsic_end_patch_ir3:
1515 assert(ctx->so->type == MESA_SHADER_TESS_CTRL);
1516 struct ir3_instruction *end = ir3_PREDE(b);
1517 array_insert(b, b->keeps, end);
1518
1519 end->barrier_class = IR3_BARRIER_EVERYTHING;
1520 end->barrier_conflict = IR3_BARRIER_EVERYTHING;
1521 break;
1522
1523 case nir_intrinsic_store_global_ir3: {
1524 struct ir3_instruction *value, *addr, *offset;
1525 unsigned ncomp = nir_intrinsic_src_components(intr, 0);
1526
1527 addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1528 ir3_get_src(ctx, &intr->src[1])[0],
1529 ir3_get_src(ctx, &intr->src[1])[1]
1530 }, 2);
1531
1532 offset = ir3_get_src(ctx, &intr->src[2])[0];
1533
1534 value = ir3_create_collect(ctx, ir3_get_src(ctx, &intr->src[0]), ncomp);
1535
1536 struct ir3_instruction *stg =
1537 ir3_STG_G(ctx->block, addr, 0, value, 0,
1538 create_immed(ctx->block, ncomp), 0, offset, 0);
1539 stg->cat6.type = TYPE_U32;
1540 stg->cat6.iim_val = 1;
1541
1542 array_insert(b, b->keeps, stg);
1543
1544 stg->barrier_class = IR3_BARRIER_BUFFER_W;
1545 stg->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1546 break;
1547 }
1548
1549 case nir_intrinsic_load_global_ir3: {
1550 struct ir3_instruction *addr, *offset;
1551
1552 addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1553 ir3_get_src(ctx, &intr->src[0])[0],
1554 ir3_get_src(ctx, &intr->src[0])[1]
1555 }, 2);
1556
1557 offset = ir3_get_src(ctx, &intr->src[1])[0];
1558
1559 struct ir3_instruction *load =
1560 ir3_LDG(b, addr, 0, create_immed(ctx->block, dest_components),
1561 0, offset, 0);
1562 load->cat6.type = TYPE_U32;
1563 load->regs[0]->wrmask = MASK(dest_components);
1564
1565 load->barrier_class = IR3_BARRIER_BUFFER_R;
1566 load->barrier_conflict = IR3_BARRIER_BUFFER_W;
1567
1568 ir3_split_dest(b, dst, load, 0, dest_components);
1569 break;
1570 }
1571
1572 case nir_intrinsic_load_ubo:
1573 emit_intrinsic_load_ubo(ctx, intr, dst);
1574 break;
1575 case nir_intrinsic_load_ubo_ir3:
1576 emit_intrinsic_load_ubo_ldc(ctx, intr, dst);
1577 break;
1578 case nir_intrinsic_load_frag_coord:
1579 ir3_split_dest(b, dst, get_frag_coord(ctx, intr), 0, 4);
1580 break;
1581 case nir_intrinsic_load_sample_pos_from_id: {
1582 /* NOTE: blob seems to always use TYPE_F16 and then cov.f16f32,
1583 * but that doesn't seem necessary.
1584 */
1585 struct ir3_instruction *offset =
1586 ir3_RGETPOS(b, ir3_get_src(ctx, &intr->src[0])[0], 0);
1587 offset->regs[0]->wrmask = 0x3;
1588 offset->cat5.type = TYPE_F32;
1589
1590 ir3_split_dest(b, dst, offset, 0, 2);
1591
1592 break;
1593 }
1594 case nir_intrinsic_load_size_ir3:
1595 if (!ctx->ij_size) {
1596 ctx->ij_size =
1597 create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE, 0x1);
1598 }
1599 dst[0] = ctx->ij_size;
1600 break;
1601 case nir_intrinsic_load_barycentric_centroid:
1602 ir3_split_dest(b, dst, get_barycentric_centroid(ctx), 0, 2);
1603 break;
1604 case nir_intrinsic_load_barycentric_sample:
1605 if (ctx->so->key.msaa) {
1606 ir3_split_dest(b, dst, get_barycentric_sample(ctx), 0, 2);
1607 } else {
1608 ir3_split_dest(b, dst, get_barycentric_pixel(ctx), 0, 2);
1609 }
1610 break;
1611 case nir_intrinsic_load_barycentric_pixel:
1612 ir3_split_dest(b, dst, get_barycentric_pixel(ctx), 0, 2);
1613 break;
1614 case nir_intrinsic_load_interpolated_input:
1615 idx = nir_intrinsic_base(intr);
1616 comp = nir_intrinsic_component(intr);
1617 src = ir3_get_src(ctx, &intr->src[0]);
1618 if (nir_src_is_const(intr->src[1])) {
1619 struct ir3_instruction *coord = ir3_create_collect(ctx, src, 2);
1620 idx += nir_src_as_uint(intr->src[1]);
1621 for (int i = 0; i < dest_components; i++) {
1622 unsigned inloc = idx * 4 + i + comp;
1623 if (ctx->so->inputs[idx].bary &&
1624 !ctx->so->inputs[idx].use_ldlv) {
1625 dst[i] = ir3_BARY_F(b, create_immed(b, inloc), 0, coord, 0);
1626 } else {
1627 /* for non-varyings use the pre-setup input, since
1628 * that is easier than mapping things back to a
1629 * nir_variable to figure out what it is.
1630 */
1631 dst[i] = ctx->inputs[inloc];
1632 compile_assert(ctx, dst[i]);
1633 }
1634 }
1635 } else {
1636 ir3_context_error(ctx, "unhandled");
1637 }
1638 break;
1639 case nir_intrinsic_load_input:
1640 idx = nir_intrinsic_base(intr);
1641 comp = nir_intrinsic_component(intr);
1642 if (nir_src_is_const(intr->src[0])) {
1643 idx += nir_src_as_uint(intr->src[0]);
1644 for (int i = 0; i < dest_components; i++) {
1645 unsigned n = idx * 4 + i + comp;
1646 dst[i] = ctx->inputs[n];
1647 compile_assert(ctx, ctx->inputs[n]);
1648 }
1649 } else {
1650 src = ir3_get_src(ctx, &intr->src[0]);
1651 struct ir3_instruction *collect =
1652 ir3_create_collect(ctx, ctx->ir->inputs, ctx->ninputs);
1653 struct ir3_instruction *addr = ir3_get_addr0(ctx, src[0], 4);
1654 for (int i = 0; i < dest_components; i++) {
1655 unsigned n = idx * 4 + i + comp;
1656 dst[i] = create_indirect_load(ctx, ctx->ninputs,
1657 n, addr, collect);
1658 }
1659 }
1660 break;
1661 /* All SSBO intrinsics should have been lowered by 'lower_io_offsets'
1662 * pass and replaced by an ir3-specifc version that adds the
1663 * dword-offset in the last source.
1664 */
1665 case nir_intrinsic_load_ssbo_ir3:
1666 ctx->funcs->emit_intrinsic_load_ssbo(ctx, intr, dst);
1667 break;
1668 case nir_intrinsic_store_ssbo_ir3:
1669 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1670 !ctx->s->info.fs.early_fragment_tests)
1671 ctx->so->no_earlyz = true;
1672 ctx->funcs->emit_intrinsic_store_ssbo(ctx, intr);
1673 break;
1674 case nir_intrinsic_get_buffer_size:
1675 emit_intrinsic_ssbo_size(ctx, intr, dst);
1676 break;
1677 case nir_intrinsic_ssbo_atomic_add_ir3:
1678 case nir_intrinsic_ssbo_atomic_imin_ir3:
1679 case nir_intrinsic_ssbo_atomic_umin_ir3:
1680 case nir_intrinsic_ssbo_atomic_imax_ir3:
1681 case nir_intrinsic_ssbo_atomic_umax_ir3:
1682 case nir_intrinsic_ssbo_atomic_and_ir3:
1683 case nir_intrinsic_ssbo_atomic_or_ir3:
1684 case nir_intrinsic_ssbo_atomic_xor_ir3:
1685 case nir_intrinsic_ssbo_atomic_exchange_ir3:
1686 case nir_intrinsic_ssbo_atomic_comp_swap_ir3:
1687 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1688 !ctx->s->info.fs.early_fragment_tests)
1689 ctx->so->no_earlyz = true;
1690 dst[0] = ctx->funcs->emit_intrinsic_atomic_ssbo(ctx, intr);
1691 break;
1692 case nir_intrinsic_load_shared:
1693 emit_intrinsic_load_shared(ctx, intr, dst);
1694 break;
1695 case nir_intrinsic_store_shared:
1696 emit_intrinsic_store_shared(ctx, intr);
1697 break;
1698 case nir_intrinsic_shared_atomic_add:
1699 case nir_intrinsic_shared_atomic_imin:
1700 case nir_intrinsic_shared_atomic_umin:
1701 case nir_intrinsic_shared_atomic_imax:
1702 case nir_intrinsic_shared_atomic_umax:
1703 case nir_intrinsic_shared_atomic_and:
1704 case nir_intrinsic_shared_atomic_or:
1705 case nir_intrinsic_shared_atomic_xor:
1706 case nir_intrinsic_shared_atomic_exchange:
1707 case nir_intrinsic_shared_atomic_comp_swap:
1708 dst[0] = emit_intrinsic_atomic_shared(ctx, intr);
1709 break;
1710 case nir_intrinsic_image_load:
1711 emit_intrinsic_load_image(ctx, intr, dst);
1712 break;
1713 case nir_intrinsic_bindless_image_load:
1714 /* Bindless uses the IBO state, which doesn't have swizzle filled out,
1715 * so using isam doesn't work.
1716 *
1717 * TODO: can we use isam if we fill out more fields?
1718 */
1719 ctx->funcs->emit_intrinsic_load_image(ctx, intr, dst);
1720 break;
1721 case nir_intrinsic_image_store:
1722 case nir_intrinsic_bindless_image_store:
1723 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1724 !ctx->s->info.fs.early_fragment_tests)
1725 ctx->so->no_earlyz = true;
1726 ctx->funcs->emit_intrinsic_store_image(ctx, intr);
1727 break;
1728 case nir_intrinsic_image_size:
1729 case nir_intrinsic_bindless_image_size:
1730 ctx->funcs->emit_intrinsic_image_size(ctx, intr, dst);
1731 break;
1732 case nir_intrinsic_image_atomic_add:
1733 case nir_intrinsic_bindless_image_atomic_add:
1734 case nir_intrinsic_image_atomic_imin:
1735 case nir_intrinsic_bindless_image_atomic_imin:
1736 case nir_intrinsic_image_atomic_umin:
1737 case nir_intrinsic_bindless_image_atomic_umin:
1738 case nir_intrinsic_image_atomic_imax:
1739 case nir_intrinsic_bindless_image_atomic_imax:
1740 case nir_intrinsic_image_atomic_umax:
1741 case nir_intrinsic_bindless_image_atomic_umax:
1742 case nir_intrinsic_image_atomic_and:
1743 case nir_intrinsic_bindless_image_atomic_and:
1744 case nir_intrinsic_image_atomic_or:
1745 case nir_intrinsic_bindless_image_atomic_or:
1746 case nir_intrinsic_image_atomic_xor:
1747 case nir_intrinsic_bindless_image_atomic_xor:
1748 case nir_intrinsic_image_atomic_exchange:
1749 case nir_intrinsic_bindless_image_atomic_exchange:
1750 case nir_intrinsic_image_atomic_comp_swap:
1751 case nir_intrinsic_bindless_image_atomic_comp_swap:
1752 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1753 !ctx->s->info.fs.early_fragment_tests)
1754 ctx->so->no_earlyz = true;
1755 dst[0] = ctx->funcs->emit_intrinsic_atomic_image(ctx, intr);
1756 break;
1757 case nir_intrinsic_control_barrier:
1758 case nir_intrinsic_memory_barrier:
1759 case nir_intrinsic_group_memory_barrier:
1760 case nir_intrinsic_memory_barrier_buffer:
1761 case nir_intrinsic_memory_barrier_image:
1762 case nir_intrinsic_memory_barrier_shared:
1763 emit_intrinsic_barrier(ctx, intr);
1764 /* note that blk ptr no longer valid, make that obvious: */
1765 b = NULL;
1766 break;
1767 case nir_intrinsic_store_output:
1768 idx = nir_intrinsic_base(intr);
1769 comp = nir_intrinsic_component(intr);
1770 compile_assert(ctx, nir_src_is_const(intr->src[1]));
1771 idx += nir_src_as_uint(intr->src[1]);
1772
1773 src = ir3_get_src(ctx, &intr->src[0]);
1774 for (int i = 0; i < nir_intrinsic_src_components(intr, 0); i++) {
1775 unsigned n = idx * 4 + i + comp;
1776 ctx->outputs[n] = src[i];
1777 }
1778 break;
1779 case nir_intrinsic_load_base_vertex:
1780 case nir_intrinsic_load_first_vertex:
1781 if (!ctx->basevertex) {
1782 ctx->basevertex = create_driver_param(ctx, IR3_DP_VTXID_BASE);
1783 }
1784 dst[0] = ctx->basevertex;
1785 break;
1786 case nir_intrinsic_load_base_instance:
1787 if (!ctx->base_instance) {
1788 ctx->base_instance = create_driver_param(ctx, IR3_DP_INSTID_BASE);
1789 }
1790 dst[0] = ctx->base_instance;
1791 break;
1792 case nir_intrinsic_load_vertex_id_zero_base:
1793 case nir_intrinsic_load_vertex_id:
1794 if (!ctx->vertex_id) {
1795 gl_system_value sv = (intr->intrinsic == nir_intrinsic_load_vertex_id) ?
1796 SYSTEM_VALUE_VERTEX_ID : SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
1797 ctx->vertex_id = create_sysval_input(ctx, sv, 0x1);
1798 }
1799 dst[0] = ctx->vertex_id;
1800 break;
1801 case nir_intrinsic_load_instance_id:
1802 if (!ctx->instance_id) {
1803 ctx->instance_id = create_sysval_input(ctx, SYSTEM_VALUE_INSTANCE_ID, 0x1);
1804 }
1805 dst[0] = ctx->instance_id;
1806 break;
1807 case nir_intrinsic_load_sample_id:
1808 ctx->so->per_samp = true;
1809 /* fall-thru */
1810 case nir_intrinsic_load_sample_id_no_per_sample:
1811 if (!ctx->samp_id) {
1812 ctx->samp_id = create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_ID, 0x1);
1813 ctx->samp_id->regs[0]->flags |= IR3_REG_HALF;
1814 }
1815 dst[0] = ir3_COV(b, ctx->samp_id, TYPE_U16, TYPE_U32);
1816 break;
1817 case nir_intrinsic_load_sample_mask_in:
1818 if (!ctx->samp_mask_in) {
1819 ctx->samp_mask_in = create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_MASK_IN, 0x1);
1820 }
1821 dst[0] = ctx->samp_mask_in;
1822 break;
1823 case nir_intrinsic_load_user_clip_plane:
1824 idx = nir_intrinsic_ucp_id(intr);
1825 for (int i = 0; i < dest_components; i++) {
1826 unsigned n = idx * 4 + i;
1827 dst[i] = create_driver_param(ctx, IR3_DP_UCP0_X + n);
1828 }
1829 break;
1830 case nir_intrinsic_load_front_face:
1831 if (!ctx->frag_face) {
1832 ctx->so->frag_face = true;
1833 ctx->frag_face = create_sysval_input(ctx, SYSTEM_VALUE_FRONT_FACE, 0x1);
1834 ctx->frag_face->regs[0]->flags |= IR3_REG_HALF;
1835 }
1836 /* for fragface, we get -1 for back and 0 for front. However this is
1837 * the inverse of what nir expects (where ~0 is true).
1838 */
1839 dst[0] = ir3_CMPS_S(b,
1840 ctx->frag_face, 0,
1841 create_immed_typed(b, 0, TYPE_U16), 0);
1842 dst[0]->cat2.condition = IR3_COND_EQ;
1843 break;
1844 case nir_intrinsic_load_local_invocation_id:
1845 if (!ctx->local_invocation_id) {
1846 ctx->local_invocation_id =
1847 create_sysval_input(ctx, SYSTEM_VALUE_LOCAL_INVOCATION_ID, 0x7);
1848 }
1849 ir3_split_dest(b, dst, ctx->local_invocation_id, 0, 3);
1850 break;
1851 case nir_intrinsic_load_work_group_id:
1852 if (!ctx->work_group_id) {
1853 ctx->work_group_id =
1854 create_sysval_input(ctx, SYSTEM_VALUE_WORK_GROUP_ID, 0x7);
1855 ctx->work_group_id->regs[0]->flags |= IR3_REG_HIGH;
1856 }
1857 ir3_split_dest(b, dst, ctx->work_group_id, 0, 3);
1858 break;
1859 case nir_intrinsic_load_num_work_groups:
1860 for (int i = 0; i < dest_components; i++) {
1861 dst[i] = create_driver_param(ctx, IR3_DP_NUM_WORK_GROUPS_X + i);
1862 }
1863 break;
1864 case nir_intrinsic_load_local_group_size:
1865 for (int i = 0; i < dest_components; i++) {
1866 dst[i] = create_driver_param(ctx, IR3_DP_LOCAL_GROUP_SIZE_X + i);
1867 }
1868 break;
1869 case nir_intrinsic_discard_if:
1870 case nir_intrinsic_discard: {
1871 struct ir3_instruction *cond, *kill;
1872
1873 if (intr->intrinsic == nir_intrinsic_discard_if) {
1874 /* conditional discard: */
1875 src = ir3_get_src(ctx, &intr->src[0]);
1876 cond = src[0];
1877 } else {
1878 /* unconditional discard: */
1879 cond = create_immed(b, 1);
1880 }
1881
1882 /* NOTE: only cmps.*.* can write p0.x: */
1883 cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
1884 cond->cat2.condition = IR3_COND_NE;
1885
1886 /* condition always goes in predicate register: */
1887 cond->regs[0]->num = regid(REG_P0, 0);
1888 cond->regs[0]->flags &= ~IR3_REG_SSA;
1889
1890 kill = ir3_KILL(b, cond, 0);
1891 kill->regs[1]->num = regid(REG_P0, 0);
1892 array_insert(ctx->ir, ctx->ir->predicates, kill);
1893
1894 array_insert(b, b->keeps, kill);
1895 ctx->so->has_kill = true;
1896
1897 break;
1898 }
1899
1900 case nir_intrinsic_cond_end_ir3: {
1901 struct ir3_instruction *cond, *kill;
1902
1903 src = ir3_get_src(ctx, &intr->src[0]);
1904 cond = src[0];
1905
1906 /* NOTE: only cmps.*.* can write p0.x: */
1907 cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
1908 cond->cat2.condition = IR3_COND_NE;
1909
1910 /* condition always goes in predicate register: */
1911 cond->regs[0]->num = regid(REG_P0, 0);
1912
1913 kill = ir3_PREDT(b, cond, 0);
1914
1915 kill->barrier_class = IR3_BARRIER_EVERYTHING;
1916 kill->barrier_conflict = IR3_BARRIER_EVERYTHING;
1917
1918 array_insert(ctx->ir, ctx->ir->predicates, kill);
1919 array_insert(b, b->keeps, kill);
1920 break;
1921 }
1922
1923 case nir_intrinsic_load_shared_ir3:
1924 emit_intrinsic_load_shared_ir3(ctx, intr, dst);
1925 break;
1926 case nir_intrinsic_store_shared_ir3:
1927 emit_intrinsic_store_shared_ir3(ctx, intr);
1928 break;
1929 case nir_intrinsic_bindless_resource_ir3:
1930 dst[0] = ir3_get_src(ctx, &intr->src[0])[0];
1931 break;
1932 default:
1933 ir3_context_error(ctx, "Unhandled intrinsic type: %s\n",
1934 nir_intrinsic_infos[intr->intrinsic].name);
1935 break;
1936 }
1937
1938 if (info->has_dest)
1939 ir3_put_dst(ctx, &intr->dest);
1940 }
1941
1942 static void
1943 emit_load_const(struct ir3_context *ctx, nir_load_const_instr *instr)
1944 {
1945 struct ir3_instruction **dst = ir3_get_dst_ssa(ctx, &instr->def,
1946 instr->def.num_components);
1947
1948 if (instr->def.bit_size == 16) {
1949 for (int i = 0; i < instr->def.num_components; i++)
1950 dst[i] = create_immed_typed(ctx->block,
1951 instr->value[i].u16,
1952 TYPE_U16);
1953 } else {
1954 for (int i = 0; i < instr->def.num_components; i++)
1955 dst[i] = create_immed_typed(ctx->block,
1956 instr->value[i].u32,
1957 TYPE_U32);
1958 }
1959
1960 }
1961
1962 static void
1963 emit_undef(struct ir3_context *ctx, nir_ssa_undef_instr *undef)
1964 {
1965 struct ir3_instruction **dst = ir3_get_dst_ssa(ctx, &undef->def,
1966 undef->def.num_components);
1967 type_t type = (undef->def.bit_size == 16) ? TYPE_U16 : TYPE_U32;
1968
1969 /* backend doesn't want undefined instructions, so just plug
1970 * in 0.0..
1971 */
1972 for (int i = 0; i < undef->def.num_components; i++)
1973 dst[i] = create_immed_typed(ctx->block, fui(0.0), type);
1974 }
1975
1976 /*
1977 * texture fetch/sample instructions:
1978 */
1979
1980 static type_t
1981 get_tex_dest_type(nir_tex_instr *tex)
1982 {
1983 type_t type;
1984
1985 switch (nir_alu_type_get_base_type(tex->dest_type)) {
1986 case nir_type_invalid:
1987 case nir_type_float:
1988 type = nir_dest_bit_size(tex->dest) == 16 ? TYPE_F16 : TYPE_F32;
1989 break;
1990 case nir_type_int:
1991 type = nir_dest_bit_size(tex->dest) == 16 ? TYPE_S16 : TYPE_S32;
1992 break;
1993 case nir_type_uint:
1994 case nir_type_bool:
1995 type = nir_dest_bit_size(tex->dest) == 16 ? TYPE_U16 : TYPE_U32;
1996 break;
1997 default:
1998 unreachable("bad dest_type");
1999 }
2000
2001 return type;
2002 }
2003
2004 static void
2005 tex_info(nir_tex_instr *tex, unsigned *flagsp, unsigned *coordsp)
2006 {
2007 unsigned coords = glsl_get_sampler_dim_coordinate_components(tex->sampler_dim);
2008 unsigned flags = 0;
2009
2010 /* note: would use tex->coord_components.. except txs.. also,
2011 * since array index goes after shadow ref, we don't want to
2012 * count it:
2013 */
2014 if (coords == 3)
2015 flags |= IR3_INSTR_3D;
2016
2017 if (tex->is_shadow && tex->op != nir_texop_lod)
2018 flags |= IR3_INSTR_S;
2019
2020 if (tex->is_array && tex->op != nir_texop_lod)
2021 flags |= IR3_INSTR_A;
2022
2023 *flagsp = flags;
2024 *coordsp = coords;
2025 }
2026
2027 /* Gets the sampler/texture idx as a hvec2. Which could either be dynamic
2028 * or immediate (in which case it will get lowered later to a non .s2en
2029 * version of the tex instruction which encode tex/samp as immediates:
2030 */
2031 static struct tex_src_info
2032 get_tex_samp_tex_src(struct ir3_context *ctx, nir_tex_instr *tex)
2033 {
2034 struct ir3_block *b = ctx->block;
2035 struct tex_src_info info = { 0 };
2036 int texture_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_handle);
2037 int sampler_idx = nir_tex_instr_src_index(tex, nir_tex_src_sampler_handle);
2038 struct ir3_instruction *texture, *sampler;
2039
2040 if (texture_idx >= 0 || sampler_idx >= 0) {
2041 /* Bindless case */
2042 info.flags |= IR3_INSTR_B;
2043
2044 /* Gather information required to determine which encoding to
2045 * choose as well as for prefetch.
2046 */
2047 nir_intrinsic_instr *bindless_tex = NULL;
2048 bool tex_const;
2049 if (texture_idx >= 0) {
2050 ctx->so->bindless_tex = true;
2051 bindless_tex = ir3_bindless_resource(tex->src[texture_idx].src);
2052 assert(bindless_tex);
2053 info.tex_base = nir_intrinsic_desc_set(bindless_tex);
2054 tex_const = nir_src_is_const(bindless_tex->src[0]);
2055 if (tex_const)
2056 info.tex_idx = nir_src_as_uint(bindless_tex->src[0]);
2057 } else {
2058 /* To simplify some of the logic below, assume the index is
2059 * constant 0 when it's not enabled.
2060 */
2061 tex_const = true;
2062 info.tex_idx = 0;
2063 }
2064 nir_intrinsic_instr *bindless_samp = NULL;
2065 bool samp_const;
2066 if (sampler_idx >= 0) {
2067 ctx->so->bindless_samp = true;
2068 bindless_samp = ir3_bindless_resource(tex->src[sampler_idx].src);
2069 assert(bindless_samp);
2070 info.samp_base = nir_intrinsic_desc_set(bindless_samp);
2071 samp_const = nir_src_is_const(bindless_samp->src[0]);
2072 if (samp_const)
2073 info.samp_idx = nir_src_as_uint(bindless_samp->src[0]);
2074 } else {
2075 samp_const = true;
2076 info.samp_idx = 0;
2077 }
2078
2079 /* Choose encoding. */
2080 if (tex_const && samp_const && info.tex_idx < 256 && info.samp_idx < 256) {
2081 if (info.tex_idx < 16 && info.samp_idx < 16 &&
2082 (!bindless_tex || !bindless_samp || info.tex_base == info.samp_base)) {
2083 /* Everything fits within the instruction */
2084 info.base = info.tex_base;
2085 info.combined_idx = info.samp_idx | (info.tex_idx << 4);
2086 } else {
2087 info.base = info.tex_base;
2088 info.a1_val = info.tex_idx << 3 | info.samp_base;
2089 info.combined_idx = info.samp_idx;
2090 info.flags |= IR3_INSTR_A1EN;
2091 }
2092 info.samp_tex = NULL;
2093 } else {
2094 info.flags |= IR3_INSTR_S2EN;
2095 /* In the indirect case, we only use a1.x to store the sampler
2096 * base if it differs from the texture base.
2097 */
2098 if (!bindless_tex || !bindless_samp || info.tex_base == info.samp_base) {
2099 info.base = info.tex_base;
2100 } else {
2101 info.base = info.tex_base;
2102 info.a1_val = info.samp_base;
2103 info.flags |= IR3_INSTR_A1EN;
2104 }
2105
2106 /* Note: the indirect source is now a vec2 instead of hvec2, and
2107 * for some reason the texture and sampler are swapped.
2108 */
2109 struct ir3_instruction *texture, *sampler;
2110
2111 if (bindless_tex) {
2112 texture = ir3_get_src(ctx, &tex->src[texture_idx].src)[0];
2113 } else {
2114 texture = create_immed(b, 0);
2115 }
2116
2117 if (bindless_samp) {
2118 sampler = ir3_get_src(ctx, &tex->src[sampler_idx].src)[0];
2119 } else {
2120 sampler = create_immed(b, 0);
2121 }
2122 info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
2123 texture,
2124 sampler,
2125 }, 2);
2126 }
2127 } else {
2128 info.flags |= IR3_INSTR_S2EN;
2129 texture_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_offset);
2130 sampler_idx = nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset);
2131 if (texture_idx >= 0) {
2132 texture = ir3_get_src(ctx, &tex->src[texture_idx].src)[0];
2133 texture = ir3_COV(ctx->block, texture, TYPE_U32, TYPE_U16);
2134 } else {
2135 /* TODO what to do for dynamic case? I guess we only need the
2136 * max index for astc srgb workaround so maybe not a problem
2137 * to worry about if we don't enable indirect samplers for
2138 * a4xx?
2139 */
2140 ctx->max_texture_index = MAX2(ctx->max_texture_index, tex->texture_index);
2141 texture = create_immed_typed(ctx->block, tex->texture_index, TYPE_U16);
2142 info.tex_idx = tex->texture_index;
2143 }
2144
2145 if (sampler_idx >= 0) {
2146 sampler = ir3_get_src(ctx, &tex->src[sampler_idx].src)[0];
2147 sampler = ir3_COV(ctx->block, sampler, TYPE_U32, TYPE_U16);
2148 } else {
2149 sampler = create_immed_typed(ctx->block, tex->sampler_index, TYPE_U16);
2150 info.samp_idx = tex->texture_index;
2151 }
2152
2153 info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
2154 sampler,
2155 texture,
2156 }, 2);
2157 }
2158
2159 return info;
2160 }
2161
2162 static void
2163 emit_tex(struct ir3_context *ctx, nir_tex_instr *tex)
2164 {
2165 struct ir3_block *b = ctx->block;
2166 struct ir3_instruction **dst, *sam, *src0[12], *src1[4];
2167 struct ir3_instruction * const *coord, * const *off, * const *ddx, * const *ddy;
2168 struct ir3_instruction *lod, *compare, *proj, *sample_index;
2169 struct tex_src_info info = { 0 };
2170 bool has_bias = false, has_lod = false, has_proj = false, has_off = false;
2171 unsigned i, coords, flags, ncomp;
2172 unsigned nsrc0 = 0, nsrc1 = 0;
2173 type_t type;
2174 opc_t opc = 0;
2175
2176 ncomp = nir_dest_num_components(tex->dest);
2177
2178 coord = off = ddx = ddy = NULL;
2179 lod = proj = compare = sample_index = NULL;
2180
2181 dst = ir3_get_dst(ctx, &tex->dest, ncomp);
2182
2183 for (unsigned i = 0; i < tex->num_srcs; i++) {
2184 switch (tex->src[i].src_type) {
2185 case nir_tex_src_coord:
2186 coord = ir3_get_src(ctx, &tex->src[i].src);
2187 break;
2188 case nir_tex_src_bias:
2189 lod = ir3_get_src(ctx, &tex->src[i].src)[0];
2190 has_bias = true;
2191 break;
2192 case nir_tex_src_lod:
2193 lod = ir3_get_src(ctx, &tex->src[i].src)[0];
2194 has_lod = true;
2195 break;
2196 case nir_tex_src_comparator: /* shadow comparator */
2197 compare = ir3_get_src(ctx, &tex->src[i].src)[0];
2198 break;
2199 case nir_tex_src_projector:
2200 proj = ir3_get_src(ctx, &tex->src[i].src)[0];
2201 has_proj = true;
2202 break;
2203 case nir_tex_src_offset:
2204 off = ir3_get_src(ctx, &tex->src[i].src);
2205 has_off = true;
2206 break;
2207 case nir_tex_src_ddx:
2208 ddx = ir3_get_src(ctx, &tex->src[i].src);
2209 break;
2210 case nir_tex_src_ddy:
2211 ddy = ir3_get_src(ctx, &tex->src[i].src);
2212 break;
2213 case nir_tex_src_ms_index:
2214 sample_index = ir3_get_src(ctx, &tex->src[i].src)[0];
2215 break;
2216 case nir_tex_src_texture_offset:
2217 case nir_tex_src_sampler_offset:
2218 case nir_tex_src_texture_handle:
2219 case nir_tex_src_sampler_handle:
2220 /* handled in get_tex_samp_src() */
2221 break;
2222 default:
2223 ir3_context_error(ctx, "Unhandled NIR tex src type: %d\n",
2224 tex->src[i].src_type);
2225 return;
2226 }
2227 }
2228
2229 switch (tex->op) {
2230 case nir_texop_tex_prefetch:
2231 compile_assert(ctx, !has_bias);
2232 compile_assert(ctx, !has_lod);
2233 compile_assert(ctx, !compare);
2234 compile_assert(ctx, !has_proj);
2235 compile_assert(ctx, !has_off);
2236 compile_assert(ctx, !ddx);
2237 compile_assert(ctx, !ddy);
2238 compile_assert(ctx, !sample_index);
2239 compile_assert(ctx, nir_tex_instr_src_index(tex, nir_tex_src_texture_offset) < 0);
2240 compile_assert(ctx, nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset) < 0);
2241
2242 if (ctx->so->num_sampler_prefetch < ctx->prefetch_limit) {
2243 opc = OPC_META_TEX_PREFETCH;
2244 ctx->so->num_sampler_prefetch++;
2245 break;
2246 }
2247 /* fallthru */
2248 case nir_texop_tex: opc = has_lod ? OPC_SAML : OPC_SAM; break;
2249 case nir_texop_txb: opc = OPC_SAMB; break;
2250 case nir_texop_txl: opc = OPC_SAML; break;
2251 case nir_texop_txd: opc = OPC_SAMGQ; break;
2252 case nir_texop_txf: opc = OPC_ISAML; break;
2253 case nir_texop_lod: opc = OPC_GETLOD; break;
2254 case nir_texop_tg4:
2255 /* NOTE: a4xx might need to emulate gather w/ txf (this is
2256 * what blob does, seems gather is broken?), and a3xx did
2257 * not support it (but probably could also emulate).
2258 */
2259 switch (tex->component) {
2260 case 0: opc = OPC_GATHER4R; break;
2261 case 1: opc = OPC_GATHER4G; break;
2262 case 2: opc = OPC_GATHER4B; break;
2263 case 3: opc = OPC_GATHER4A; break;
2264 }
2265 break;
2266 case nir_texop_txf_ms_fb:
2267 case nir_texop_txf_ms: opc = OPC_ISAMM; break;
2268 default:
2269 ir3_context_error(ctx, "Unhandled NIR tex type: %d\n", tex->op);
2270 return;
2271 }
2272
2273 tex_info(tex, &flags, &coords);
2274
2275 /*
2276 * lay out the first argument in the proper order:
2277 * - actual coordinates first
2278 * - shadow reference
2279 * - array index
2280 * - projection w
2281 * - starting at offset 4, dpdx.xy, dpdy.xy
2282 *
2283 * bias/lod go into the second arg
2284 */
2285
2286 /* insert tex coords: */
2287 for (i = 0; i < coords; i++)
2288 src0[i] = coord[i];
2289
2290 nsrc0 = i;
2291
2292 /* scale up integer coords for TXF based on the LOD */
2293 if (ctx->compiler->unminify_coords && (opc == OPC_ISAML)) {
2294 assert(has_lod);
2295 for (i = 0; i < coords; i++)
2296 src0[i] = ir3_SHL_B(b, src0[i], 0, lod, 0);
2297 }
2298
2299 if (coords == 1) {
2300 /* hw doesn't do 1d, so we treat it as 2d with
2301 * height of 1, and patch up the y coord.
2302 */
2303 if (is_isam(opc)) {
2304 src0[nsrc0++] = create_immed(b, 0);
2305 } else {
2306 src0[nsrc0++] = create_immed(b, fui(0.5));
2307 }
2308 }
2309
2310 if (tex->is_shadow && tex->op != nir_texop_lod)
2311 src0[nsrc0++] = compare;
2312
2313 if (tex->is_array && tex->op != nir_texop_lod) {
2314 struct ir3_instruction *idx = coord[coords];
2315
2316 /* the array coord for cube arrays needs 0.5 added to it */
2317 if (ctx->compiler->array_index_add_half && !is_isam(opc))
2318 idx = ir3_ADD_F(b, idx, 0, create_immed(b, fui(0.5)), 0);
2319
2320 src0[nsrc0++] = idx;
2321 }
2322
2323 if (has_proj) {
2324 src0[nsrc0++] = proj;
2325 flags |= IR3_INSTR_P;
2326 }
2327
2328 /* pad to 4, then ddx/ddy: */
2329 if (tex->op == nir_texop_txd) {
2330 while (nsrc0 < 4)
2331 src0[nsrc0++] = create_immed(b, fui(0.0));
2332 for (i = 0; i < coords; i++)
2333 src0[nsrc0++] = ddx[i];
2334 if (coords < 2)
2335 src0[nsrc0++] = create_immed(b, fui(0.0));
2336 for (i = 0; i < coords; i++)
2337 src0[nsrc0++] = ddy[i];
2338 if (coords < 2)
2339 src0[nsrc0++] = create_immed(b, fui(0.0));
2340 }
2341
2342 /* NOTE a3xx (and possibly a4xx?) might be different, using isaml
2343 * with scaled x coord according to requested sample:
2344 */
2345 if (opc == OPC_ISAMM) {
2346 if (ctx->compiler->txf_ms_with_isaml) {
2347 /* the samples are laid out in x dimension as
2348 * 0 1 2 3
2349 * x_ms = (x << ms) + sample_index;
2350 */
2351 struct ir3_instruction *ms;
2352 ms = create_immed(b, (ctx->samples >> (2 * tex->texture_index)) & 3);
2353
2354 src0[0] = ir3_SHL_B(b, src0[0], 0, ms, 0);
2355 src0[0] = ir3_ADD_U(b, src0[0], 0, sample_index, 0);
2356
2357 opc = OPC_ISAML;
2358 } else {
2359 src0[nsrc0++] = sample_index;
2360 }
2361 }
2362
2363 /*
2364 * second argument (if applicable):
2365 * - offsets
2366 * - lod
2367 * - bias
2368 */
2369 if (has_off | has_lod | has_bias) {
2370 if (has_off) {
2371 unsigned off_coords = coords;
2372 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2373 off_coords--;
2374 for (i = 0; i < off_coords; i++)
2375 src1[nsrc1++] = off[i];
2376 if (off_coords < 2)
2377 src1[nsrc1++] = create_immed(b, fui(0.0));
2378 flags |= IR3_INSTR_O;
2379 }
2380
2381 if (has_lod | has_bias)
2382 src1[nsrc1++] = lod;
2383 }
2384
2385 type = get_tex_dest_type(tex);
2386
2387 if (opc == OPC_GETLOD)
2388 type = TYPE_S32;
2389
2390
2391 if (tex->op == nir_texop_txf_ms_fb) {
2392 /* only expect a single txf_ms_fb per shader: */
2393 compile_assert(ctx, !ctx->so->fb_read);
2394 compile_assert(ctx, ctx->so->type == MESA_SHADER_FRAGMENT);
2395
2396 ctx->so->fb_read = true;
2397 info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
2398 create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16),
2399 create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16),
2400 }, 2);
2401 info.flags = IR3_INSTR_S2EN;
2402
2403 ctx->so->num_samp++;
2404 } else {
2405 info = get_tex_samp_tex_src(ctx, tex);
2406 }
2407
2408 struct ir3_instruction *col0 = ir3_create_collect(ctx, src0, nsrc0);
2409 struct ir3_instruction *col1 = ir3_create_collect(ctx, src1, nsrc1);
2410
2411 if (opc == OPC_META_TEX_PREFETCH) {
2412 int idx = nir_tex_instr_src_index(tex, nir_tex_src_coord);
2413
2414 compile_assert(ctx, tex->src[idx].src.is_ssa);
2415
2416 sam = ir3_META_TEX_PREFETCH(b);
2417 __ssa_dst(sam)->wrmask = MASK(ncomp); /* dst */
2418 __ssa_src(sam, get_barycentric_pixel(ctx), 0);
2419 sam->prefetch.input_offset =
2420 ir3_nir_coord_offset(tex->src[idx].src.ssa);
2421 /* make sure not to add irrelevant flags like S2EN */
2422 sam->flags = flags | (info.flags & IR3_INSTR_B);
2423 sam->prefetch.tex = info.tex_idx;
2424 sam->prefetch.samp = info.samp_idx;
2425 sam->prefetch.tex_base = info.tex_base;
2426 sam->prefetch.samp_base = info.samp_base;
2427 } else {
2428 info.flags |= flags;
2429 sam = emit_sam(ctx, opc, info, type, MASK(ncomp), col0, col1);
2430 }
2431
2432 if ((ctx->astc_srgb & (1 << tex->texture_index)) && !nir_tex_instr_is_query(tex)) {
2433 assert(opc != OPC_META_TEX_PREFETCH);
2434
2435 /* only need first 3 components: */
2436 sam->regs[0]->wrmask = 0x7;
2437 ir3_split_dest(b, dst, sam, 0, 3);
2438
2439 /* we need to sample the alpha separately with a non-ASTC
2440 * texture state:
2441 */
2442 sam = ir3_SAM(b, opc, type, 0b1000, flags | info.flags,
2443 info.samp_tex, col0, col1);
2444
2445 array_insert(ctx->ir, ctx->ir->astc_srgb, sam);
2446
2447 /* fixup .w component: */
2448 ir3_split_dest(b, &dst[3], sam, 3, 1);
2449 } else {
2450 /* normal (non-workaround) case: */
2451 ir3_split_dest(b, dst, sam, 0, ncomp);
2452 }
2453
2454 /* GETLOD returns results in 4.8 fixed point */
2455 if (opc == OPC_GETLOD) {
2456 struct ir3_instruction *factor = create_immed(b, fui(1.0 / 256));
2457
2458 compile_assert(ctx, tex->dest_type == nir_type_float);
2459 for (i = 0; i < 2; i++) {
2460 dst[i] = ir3_MUL_F(b, ir3_COV(b, dst[i], TYPE_S32, TYPE_F32), 0,
2461 factor, 0);
2462 }
2463 }
2464
2465 ir3_put_dst(ctx, &tex->dest);
2466 }
2467
2468 static void
2469 emit_tex_info(struct ir3_context *ctx, nir_tex_instr *tex, unsigned idx)
2470 {
2471 struct ir3_block *b = ctx->block;
2472 struct ir3_instruction **dst, *sam;
2473 type_t dst_type = get_tex_dest_type(tex);
2474 struct tex_src_info info = get_tex_samp_tex_src(ctx, tex);
2475
2476 dst = ir3_get_dst(ctx, &tex->dest, 1);
2477
2478 sam = emit_sam(ctx, OPC_GETINFO, info, dst_type, 1 << idx, NULL, NULL);
2479
2480 /* even though there is only one component, since it ends
2481 * up in .y/.z/.w rather than .x, we need a split_dest()
2482 */
2483 ir3_split_dest(b, dst, sam, idx, 1);
2484
2485 /* The # of levels comes from getinfo.z. We need to add 1 to it, since
2486 * the value in TEX_CONST_0 is zero-based.
2487 */
2488 if (ctx->compiler->levels_add_one)
2489 dst[0] = ir3_ADD_U(b, dst[0], 0, create_immed(b, 1), 0);
2490
2491 ir3_put_dst(ctx, &tex->dest);
2492 }
2493
2494 static void
2495 emit_tex_txs(struct ir3_context *ctx, nir_tex_instr *tex)
2496 {
2497 struct ir3_block *b = ctx->block;
2498 struct ir3_instruction **dst, *sam;
2499 struct ir3_instruction *lod;
2500 unsigned flags, coords;
2501 type_t dst_type = get_tex_dest_type(tex);
2502 struct tex_src_info info = get_tex_samp_tex_src(ctx, tex);
2503
2504 tex_info(tex, &flags, &coords);
2505 info.flags |= flags;
2506
2507 /* Actually we want the number of dimensions, not coordinates. This
2508 * distinction only matters for cubes.
2509 */
2510 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2511 coords = 2;
2512
2513 dst = ir3_get_dst(ctx, &tex->dest, 4);
2514
2515 int lod_idx = nir_tex_instr_src_index(tex, nir_tex_src_lod);
2516 compile_assert(ctx, lod_idx >= 0);
2517
2518 lod = ir3_get_src(ctx, &tex->src[lod_idx].src)[0];
2519
2520 sam = emit_sam(ctx, OPC_GETSIZE, info, dst_type, 0b1111, lod, NULL);
2521 ir3_split_dest(b, dst, sam, 0, 4);
2522
2523 /* Array size actually ends up in .w rather than .z. This doesn't
2524 * matter for miplevel 0, but for higher mips the value in z is
2525 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
2526 * returned, which means that we have to add 1 to it for arrays.
2527 */
2528 if (tex->is_array) {
2529 if (ctx->compiler->levels_add_one) {
2530 dst[coords] = ir3_ADD_U(b, dst[3], 0, create_immed(b, 1), 0);
2531 } else {
2532 dst[coords] = ir3_MOV(b, dst[3], TYPE_U32);
2533 }
2534 }
2535
2536 ir3_put_dst(ctx, &tex->dest);
2537 }
2538
2539 static void
2540 emit_jump(struct ir3_context *ctx, nir_jump_instr *jump)
2541 {
2542 switch (jump->type) {
2543 case nir_jump_break:
2544 case nir_jump_continue:
2545 case nir_jump_return:
2546 /* I *think* we can simply just ignore this, and use the
2547 * successor block link to figure out where we need to
2548 * jump to for break/continue
2549 */
2550 break;
2551 default:
2552 ir3_context_error(ctx, "Unhandled NIR jump type: %d\n", jump->type);
2553 break;
2554 }
2555 }
2556
2557 static void
2558 emit_instr(struct ir3_context *ctx, nir_instr *instr)
2559 {
2560 switch (instr->type) {
2561 case nir_instr_type_alu:
2562 emit_alu(ctx, nir_instr_as_alu(instr));
2563 break;
2564 case nir_instr_type_deref:
2565 /* ignored, handled as part of the intrinsic they are src to */
2566 break;
2567 case nir_instr_type_intrinsic:
2568 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
2569 break;
2570 case nir_instr_type_load_const:
2571 emit_load_const(ctx, nir_instr_as_load_const(instr));
2572 break;
2573 case nir_instr_type_ssa_undef:
2574 emit_undef(ctx, nir_instr_as_ssa_undef(instr));
2575 break;
2576 case nir_instr_type_tex: {
2577 nir_tex_instr *tex = nir_instr_as_tex(instr);
2578 /* couple tex instructions get special-cased:
2579 */
2580 switch (tex->op) {
2581 case nir_texop_txs:
2582 emit_tex_txs(ctx, tex);
2583 break;
2584 case nir_texop_query_levels:
2585 emit_tex_info(ctx, tex, 2);
2586 break;
2587 case nir_texop_texture_samples:
2588 emit_tex_info(ctx, tex, 3);
2589 break;
2590 default:
2591 emit_tex(ctx, tex);
2592 break;
2593 }
2594 break;
2595 }
2596 case nir_instr_type_jump:
2597 emit_jump(ctx, nir_instr_as_jump(instr));
2598 break;
2599 case nir_instr_type_phi:
2600 /* we have converted phi webs to regs in NIR by now */
2601 ir3_context_error(ctx, "Unexpected NIR instruction type: %d\n", instr->type);
2602 break;
2603 case nir_instr_type_call:
2604 case nir_instr_type_parallel_copy:
2605 ir3_context_error(ctx, "Unhandled NIR instruction type: %d\n", instr->type);
2606 break;
2607 }
2608 }
2609
2610 static struct ir3_block *
2611 get_block(struct ir3_context *ctx, const nir_block *nblock)
2612 {
2613 struct ir3_block *block;
2614 struct hash_entry *hentry;
2615
2616 hentry = _mesa_hash_table_search(ctx->block_ht, nblock);
2617 if (hentry)
2618 return hentry->data;
2619
2620 block = ir3_block_create(ctx->ir);
2621 block->nblock = nblock;
2622 _mesa_hash_table_insert(ctx->block_ht, nblock, block);
2623
2624 set_foreach(nblock->predecessors, sentry) {
2625 _mesa_set_add(block->predecessors, get_block(ctx, sentry->key));
2626 }
2627
2628 return block;
2629 }
2630
2631 static void
2632 emit_block(struct ir3_context *ctx, nir_block *nblock)
2633 {
2634 struct ir3_block *block = get_block(ctx, nblock);
2635
2636 for (int i = 0; i < ARRAY_SIZE(block->successors); i++) {
2637 if (nblock->successors[i]) {
2638 block->successors[i] =
2639 get_block(ctx, nblock->successors[i]);
2640 }
2641 }
2642
2643 ctx->block = block;
2644 list_addtail(&block->node, &ctx->ir->block_list);
2645
2646 /* re-emit addr register in each block if needed: */
2647 for (int i = 0; i < ARRAY_SIZE(ctx->addr0_ht); i++) {
2648 _mesa_hash_table_destroy(ctx->addr0_ht[i], NULL);
2649 ctx->addr0_ht[i] = NULL;
2650 }
2651
2652 _mesa_hash_table_u64_destroy(ctx->addr1_ht, NULL);
2653 ctx->addr1_ht = NULL;
2654
2655 nir_foreach_instr (instr, nblock) {
2656 ctx->cur_instr = instr;
2657 emit_instr(ctx, instr);
2658 ctx->cur_instr = NULL;
2659 if (ctx->error)
2660 return;
2661 }
2662
2663 _mesa_hash_table_clear(ctx->sel_cond_conversions, NULL);
2664 }
2665
2666 static void emit_cf_list(struct ir3_context *ctx, struct exec_list *list);
2667
2668 static void
2669 emit_if(struct ir3_context *ctx, nir_if *nif)
2670 {
2671 struct ir3_instruction *condition = ir3_get_src(ctx, &nif->condition)[0];
2672
2673 ctx->block->condition = ir3_get_predicate(ctx, condition);
2674
2675 emit_cf_list(ctx, &nif->then_list);
2676 emit_cf_list(ctx, &nif->else_list);
2677 }
2678
2679 static void
2680 emit_loop(struct ir3_context *ctx, nir_loop *nloop)
2681 {
2682 emit_cf_list(ctx, &nloop->body);
2683 ctx->so->loops++;
2684 }
2685
2686 static void
2687 stack_push(struct ir3_context *ctx)
2688 {
2689 ctx->stack++;
2690 ctx->max_stack = MAX2(ctx->max_stack, ctx->stack);
2691 }
2692
2693 static void
2694 stack_pop(struct ir3_context *ctx)
2695 {
2696 compile_assert(ctx, ctx->stack > 0);
2697 ctx->stack--;
2698 }
2699
2700 static void
2701 emit_cf_list(struct ir3_context *ctx, struct exec_list *list)
2702 {
2703 foreach_list_typed (nir_cf_node, node, node, list) {
2704 switch (node->type) {
2705 case nir_cf_node_block:
2706 emit_block(ctx, nir_cf_node_as_block(node));
2707 break;
2708 case nir_cf_node_if:
2709 stack_push(ctx);
2710 emit_if(ctx, nir_cf_node_as_if(node));
2711 stack_pop(ctx);
2712 break;
2713 case nir_cf_node_loop:
2714 stack_push(ctx);
2715 emit_loop(ctx, nir_cf_node_as_loop(node));
2716 stack_pop(ctx);
2717 break;
2718 case nir_cf_node_function:
2719 ir3_context_error(ctx, "TODO\n");
2720 break;
2721 }
2722 }
2723 }
2724
2725 /* emit stream-out code. At this point, the current block is the original
2726 * (nir) end block, and nir ensures that all flow control paths terminate
2727 * into the end block. We re-purpose the original end block to generate
2728 * the 'if (vtxcnt < maxvtxcnt)' condition, then append the conditional
2729 * block holding stream-out write instructions, followed by the new end
2730 * block:
2731 *
2732 * blockOrigEnd {
2733 * p0.x = (vtxcnt < maxvtxcnt)
2734 * // succs: blockStreamOut, blockNewEnd
2735 * }
2736 * blockStreamOut {
2737 * // preds: blockOrigEnd
2738 * ... stream-out instructions ...
2739 * // succs: blockNewEnd
2740 * }
2741 * blockNewEnd {
2742 * // preds: blockOrigEnd, blockStreamOut
2743 * }
2744 */
2745 static void
2746 emit_stream_out(struct ir3_context *ctx)
2747 {
2748 struct ir3 *ir = ctx->ir;
2749 struct ir3_stream_output_info *strmout =
2750 &ctx->so->shader->stream_output;
2751 struct ir3_block *orig_end_block, *stream_out_block, *new_end_block;
2752 struct ir3_instruction *vtxcnt, *maxvtxcnt, *cond;
2753 struct ir3_instruction *bases[IR3_MAX_SO_BUFFERS];
2754
2755 /* create vtxcnt input in input block at top of shader,
2756 * so that it is seen as live over the entire duration
2757 * of the shader:
2758 */
2759 vtxcnt = create_sysval_input(ctx, SYSTEM_VALUE_VERTEX_CNT, 0x1);
2760 maxvtxcnt = create_driver_param(ctx, IR3_DP_VTXCNT_MAX);
2761
2762 /* at this point, we are at the original 'end' block,
2763 * re-purpose this block to stream-out condition, then
2764 * append stream-out block and new-end block
2765 */
2766 orig_end_block = ctx->block;
2767
2768 // maybe w/ store_global intrinsic, we could do this
2769 // stuff in nir->nir pass
2770
2771 stream_out_block = ir3_block_create(ir);
2772 list_addtail(&stream_out_block->node, &ir->block_list);
2773
2774 new_end_block = ir3_block_create(ir);
2775 list_addtail(&new_end_block->node, &ir->block_list);
2776
2777 orig_end_block->successors[0] = stream_out_block;
2778 orig_end_block->successors[1] = new_end_block;
2779
2780 stream_out_block->successors[0] = new_end_block;
2781 _mesa_set_add(stream_out_block->predecessors, orig_end_block);
2782
2783 _mesa_set_add(new_end_block->predecessors, orig_end_block);
2784 _mesa_set_add(new_end_block->predecessors, stream_out_block);
2785
2786 /* setup 'if (vtxcnt < maxvtxcnt)' condition: */
2787 cond = ir3_CMPS_S(ctx->block, vtxcnt, 0, maxvtxcnt, 0);
2788 cond->regs[0]->num = regid(REG_P0, 0);
2789 cond->regs[0]->flags &= ~IR3_REG_SSA;
2790 cond->cat2.condition = IR3_COND_LT;
2791
2792 /* condition goes on previous block to the conditional,
2793 * since it is used to pick which of the two successor
2794 * paths to take:
2795 */
2796 orig_end_block->condition = cond;
2797
2798 /* switch to stream_out_block to generate the stream-out
2799 * instructions:
2800 */
2801 ctx->block = stream_out_block;
2802
2803 /* Calculate base addresses based on vtxcnt. Instructions
2804 * generated for bases not used in following loop will be
2805 * stripped out in the backend.
2806 */
2807 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
2808 struct ir3_const_state *const_state = &ctx->so->shader->const_state;
2809 unsigned stride = strmout->stride[i];
2810 struct ir3_instruction *base, *off;
2811
2812 base = create_uniform(ctx->block, regid(const_state->offsets.tfbo, i));
2813
2814 /* 24-bit should be enough: */
2815 off = ir3_MUL_U24(ctx->block, vtxcnt, 0,
2816 create_immed(ctx->block, stride * 4), 0);
2817
2818 bases[i] = ir3_ADD_S(ctx->block, off, 0, base, 0);
2819 }
2820
2821 /* Generate the per-output store instructions: */
2822 for (unsigned i = 0; i < strmout->num_outputs; i++) {
2823 for (unsigned j = 0; j < strmout->output[i].num_components; j++) {
2824 unsigned c = j + strmout->output[i].start_component;
2825 struct ir3_instruction *base, *out, *stg;
2826
2827 base = bases[strmout->output[i].output_buffer];
2828 out = ctx->outputs[regid(strmout->output[i].register_index, c)];
2829
2830 stg = ir3_STG(ctx->block, base, 0, out, 0,
2831 create_immed(ctx->block, 1), 0);
2832 stg->cat6.type = TYPE_U32;
2833 stg->cat6.dst_offset = (strmout->output[i].dst_offset + j) * 4;
2834
2835 array_insert(ctx->block, ctx->block->keeps, stg);
2836 }
2837 }
2838
2839 /* and finally switch to the new_end_block: */
2840 ctx->block = new_end_block;
2841 }
2842
2843 static void
2844 emit_function(struct ir3_context *ctx, nir_function_impl *impl)
2845 {
2846 nir_metadata_require(impl, nir_metadata_block_index);
2847
2848 compile_assert(ctx, ctx->stack == 0);
2849
2850 emit_cf_list(ctx, &impl->body);
2851 emit_block(ctx, impl->end_block);
2852
2853 compile_assert(ctx, ctx->stack == 0);
2854
2855 /* at this point, we should have a single empty block,
2856 * into which we emit the 'end' instruction.
2857 */
2858 compile_assert(ctx, list_is_empty(&ctx->block->instr_list));
2859
2860 /* If stream-out (aka transform-feedback) enabled, emit the
2861 * stream-out instructions, followed by a new empty block (into
2862 * which the 'end' instruction lands).
2863 *
2864 * NOTE: it is done in this order, rather than inserting before
2865 * we emit end_block, because NIR guarantees that all blocks
2866 * flow into end_block, and that end_block has no successors.
2867 * So by re-purposing end_block as the first block of stream-
2868 * out, we guarantee that all exit paths flow into the stream-
2869 * out instructions.
2870 */
2871 if ((ctx->compiler->gpu_id < 500) &&
2872 (ctx->so->shader->stream_output.num_outputs > 0) &&
2873 !ctx->so->binning_pass) {
2874 debug_assert(ctx->so->type == MESA_SHADER_VERTEX);
2875 emit_stream_out(ctx);
2876 }
2877
2878 /* Vertex shaders in a tessellation or geometry pipeline treat END as a
2879 * NOP and has an epilogue that writes the VS outputs to local storage, to
2880 * be read by the HS. Then it resets execution mask (chmask) and chains
2881 * to the next shader (chsh).
2882 */
2883 if ((ctx->so->type == MESA_SHADER_VERTEX &&
2884 (ctx->so->key.has_gs || ctx->so->key.tessellation)) ||
2885 (ctx->so->type == MESA_SHADER_TESS_EVAL && ctx->so->key.has_gs)) {
2886 struct ir3_instruction *chmask =
2887 ir3_CHMASK(ctx->block);
2888 chmask->barrier_class = IR3_BARRIER_EVERYTHING;
2889 chmask->barrier_conflict = IR3_BARRIER_EVERYTHING;
2890
2891 struct ir3_instruction *chsh =
2892 ir3_CHSH(ctx->block);
2893 chsh->barrier_class = IR3_BARRIER_EVERYTHING;
2894 chsh->barrier_conflict = IR3_BARRIER_EVERYTHING;
2895 } else {
2896 ir3_END(ctx->block);
2897 }
2898 }
2899
2900 static void
2901 setup_input(struct ir3_context *ctx, nir_variable *in)
2902 {
2903 struct ir3_shader_variant *so = ctx->so;
2904 unsigned ncomp = glsl_get_components(in->type);
2905 unsigned n = in->data.driver_location;
2906 unsigned frac = in->data.location_frac;
2907 unsigned slot = in->data.location;
2908
2909 /* Inputs are loaded using ldlw or ldg for these stages. */
2910 if (ctx->so->type == MESA_SHADER_TESS_CTRL ||
2911 ctx->so->type == MESA_SHADER_TESS_EVAL ||
2912 ctx->so->type == MESA_SHADER_GEOMETRY)
2913 return;
2914
2915 /* skip unread inputs, we could end up with (for example), unsplit
2916 * matrix/etc inputs in the case they are not read, so just silently
2917 * skip these.
2918 */
2919 if (ncomp > 4)
2920 return;
2921
2922 so->inputs[n].slot = slot;
2923 so->inputs[n].compmask |= (1 << (ncomp + frac)) - 1;
2924 so->inputs_count = MAX2(so->inputs_count, n + 1);
2925 so->inputs[n].interpolate = in->data.interpolation;
2926
2927 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
2928
2929 /* if any varyings have 'sample' qualifer, that triggers us
2930 * to run in per-sample mode:
2931 */
2932 so->per_samp |= in->data.sample;
2933
2934 for (int i = 0; i < ncomp; i++) {
2935 struct ir3_instruction *instr = NULL;
2936 unsigned idx = (n * 4) + i + frac;
2937
2938 if (slot == VARYING_SLOT_POS) {
2939 ir3_context_error(ctx, "fragcoord should be a sysval!\n");
2940 } else {
2941 /* detect the special case for front/back colors where
2942 * we need to do flat vs smooth shading depending on
2943 * rast state:
2944 */
2945 if (in->data.interpolation == INTERP_MODE_NONE) {
2946 switch (slot) {
2947 case VARYING_SLOT_COL0:
2948 case VARYING_SLOT_COL1:
2949 case VARYING_SLOT_BFC0:
2950 case VARYING_SLOT_BFC1:
2951 so->inputs[n].rasterflat = true;
2952 break;
2953 default:
2954 break;
2955 }
2956 }
2957
2958 if (ctx->compiler->flat_bypass) {
2959 if ((so->inputs[n].interpolate == INTERP_MODE_FLAT) ||
2960 (so->inputs[n].rasterflat && ctx->so->key.rasterflat))
2961 so->inputs[n].use_ldlv = true;
2962 }
2963
2964 so->inputs[n].bary = true;
2965
2966 instr = create_frag_input(ctx, so->inputs[n].use_ldlv, idx);
2967 }
2968
2969 compile_assert(ctx, idx < ctx->ninputs);
2970
2971 ctx->inputs[idx] = instr;
2972 }
2973 } else if (ctx->so->type == MESA_SHADER_VERTEX) {
2974 struct ir3_instruction *input = NULL;
2975 struct ir3_instruction *components[4];
2976 unsigned mask = (1 << (ncomp + frac)) - 1;
2977
2978 foreach_input (in, ctx->ir) {
2979 if (in->input.inidx == n) {
2980 input = in;
2981 break;
2982 }
2983 }
2984
2985 if (!input) {
2986 input = create_input(ctx, mask);
2987 input->input.inidx = n;
2988 } else {
2989 /* For aliased inputs, just append to the wrmask.. ie. if we
2990 * first see a vec2 index at slot N, and then later a vec4,
2991 * the wrmask of the resulting overlapped vec2 and vec4 is 0xf
2992 *
2993 * If the new input that aliases a previously processed input
2994 * sets no new bits, then just bail as there is nothing to see
2995 * here.
2996 *
2997 * Note that we don't expect to get an input w/ frac!=0, if we
2998 * did we'd have to adjust ncomp and frac to cover the entire
2999 * merged input.
3000 */
3001 if (!(mask & ~input->regs[0]->wrmask))
3002 return;
3003 input->regs[0]->wrmask |= mask;
3004 }
3005
3006 ir3_split_dest(ctx->block, components, input, frac, ncomp);
3007
3008 for (int i = 0; i < ncomp; i++) {
3009 unsigned idx = (n * 4) + i + frac;
3010 compile_assert(ctx, idx < ctx->ninputs);
3011
3012 /* With aliased inputs, since we add to the wrmask above, we
3013 * can end up with stale meta:split instructions in the inputs
3014 * table. This is basically harmless, since eventually they
3015 * will get swept away by DCE, but the mismatch wrmask (since
3016 * they would be using the previous wrmask before we OR'd in
3017 * more bits) angers ir3_validate. So just preemptively clean
3018 * them up. See:
3019 *
3020 * dEQP-GLES2.functional.attribute_location.bind_aliasing.cond_vec2
3021 *
3022 * Note however that split_dest() will return the src if it is
3023 * scalar, so the previous ctx->inputs[idx] could be the input
3024 * itself (which we don't want to remove)
3025 */
3026 if (ctx->inputs[idx] && (ctx->inputs[idx] != input)) {
3027 list_del(&ctx->inputs[idx]->node);
3028 }
3029
3030 ctx->inputs[idx] = components[i];
3031 }
3032 } else {
3033 ir3_context_error(ctx, "unknown shader type: %d\n", ctx->so->type);
3034 }
3035
3036 if (so->inputs[n].bary || (ctx->so->type == MESA_SHADER_VERTEX)) {
3037 so->total_in += ncomp;
3038 }
3039 }
3040
3041 /* Initially we assign non-packed inloc's for varyings, as we don't really
3042 * know up-front which components will be unused. After all the compilation
3043 * stages we scan the shader to see which components are actually used, and
3044 * re-pack the inlocs to eliminate unneeded varyings.
3045 */
3046 static void
3047 pack_inlocs(struct ir3_context *ctx)
3048 {
3049 struct ir3_shader_variant *so = ctx->so;
3050 uint8_t used_components[so->inputs_count];
3051
3052 memset(used_components, 0, sizeof(used_components));
3053
3054 /*
3055 * First Step: scan shader to find which bary.f/ldlv remain:
3056 */
3057
3058 foreach_block (block, &ctx->ir->block_list) {
3059 foreach_instr (instr, &block->instr_list) {
3060 if (is_input(instr)) {
3061 unsigned inloc = instr->regs[1]->iim_val;
3062 unsigned i = inloc / 4;
3063 unsigned j = inloc % 4;
3064
3065 compile_assert(ctx, instr->regs[1]->flags & IR3_REG_IMMED);
3066 compile_assert(ctx, i < so->inputs_count);
3067
3068 used_components[i] |= 1 << j;
3069 } else if (instr->opc == OPC_META_TEX_PREFETCH) {
3070 for (int n = 0; n < 2; n++) {
3071 unsigned inloc = instr->prefetch.input_offset + n;
3072 unsigned i = inloc / 4;
3073 unsigned j = inloc % 4;
3074
3075 compile_assert(ctx, i < so->inputs_count);
3076
3077 used_components[i] |= 1 << j;
3078 }
3079 }
3080 }
3081 }
3082
3083 /*
3084 * Second Step: reassign varying inloc/slots:
3085 */
3086
3087 unsigned actual_in = 0;
3088 unsigned inloc = 0;
3089
3090 for (unsigned i = 0; i < so->inputs_count; i++) {
3091 unsigned compmask = 0, maxcomp = 0;
3092
3093 so->inputs[i].inloc = inloc;
3094 so->inputs[i].bary = false;
3095
3096 for (unsigned j = 0; j < 4; j++) {
3097 if (!(used_components[i] & (1 << j)))
3098 continue;
3099
3100 compmask |= (1 << j);
3101 actual_in++;
3102 maxcomp = j + 1;
3103
3104 /* at this point, since used_components[i] mask is only
3105 * considering varyings (ie. not sysvals) we know this
3106 * is a varying:
3107 */
3108 so->inputs[i].bary = true;
3109 }
3110
3111 if (so->inputs[i].bary) {
3112 so->varying_in++;
3113 so->inputs[i].compmask = (1 << maxcomp) - 1;
3114 inloc += maxcomp;
3115 }
3116 }
3117
3118 /*
3119 * Third Step: reassign packed inloc's:
3120 */
3121
3122 foreach_block (block, &ctx->ir->block_list) {
3123 foreach_instr (instr, &block->instr_list) {
3124 if (is_input(instr)) {
3125 unsigned inloc = instr->regs[1]->iim_val;
3126 unsigned i = inloc / 4;
3127 unsigned j = inloc % 4;
3128
3129 instr->regs[1]->iim_val = so->inputs[i].inloc + j;
3130 } else if (instr->opc == OPC_META_TEX_PREFETCH) {
3131 unsigned i = instr->prefetch.input_offset / 4;
3132 unsigned j = instr->prefetch.input_offset % 4;
3133 instr->prefetch.input_offset = so->inputs[i].inloc + j;
3134 }
3135 }
3136 }
3137 }
3138
3139 static void
3140 setup_output(struct ir3_context *ctx, nir_variable *out)
3141 {
3142 struct ir3_shader_variant *so = ctx->so;
3143 unsigned slots = glsl_count_vec4_slots(out->type, false, false);
3144 unsigned ncomp = glsl_get_components(glsl_without_array(out->type));
3145 unsigned n = out->data.driver_location;
3146 unsigned frac = out->data.location_frac;
3147 unsigned slot = out->data.location;
3148
3149 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
3150 switch (slot) {
3151 case FRAG_RESULT_DEPTH:
3152 so->writes_pos = true;
3153 break;
3154 case FRAG_RESULT_COLOR:
3155 so->color0_mrt = 1;
3156 break;
3157 case FRAG_RESULT_SAMPLE_MASK:
3158 so->writes_smask = true;
3159 break;
3160 default:
3161 slot += out->data.index; /* For dual-src blend */
3162 if (slot >= FRAG_RESULT_DATA0)
3163 break;
3164 ir3_context_error(ctx, "unknown FS output name: %s\n",
3165 gl_frag_result_name(slot));
3166 }
3167 } else if (ctx->so->type == MESA_SHADER_VERTEX ||
3168 ctx->so->type == MESA_SHADER_TESS_EVAL ||
3169 ctx->so->type == MESA_SHADER_GEOMETRY) {
3170 switch (slot) {
3171 case VARYING_SLOT_POS:
3172 so->writes_pos = true;
3173 break;
3174 case VARYING_SLOT_PSIZ:
3175 so->writes_psize = true;
3176 break;
3177 case VARYING_SLOT_PRIMITIVE_ID:
3178 case VARYING_SLOT_LAYER:
3179 case VARYING_SLOT_GS_VERTEX_FLAGS_IR3:
3180 debug_assert(ctx->so->type == MESA_SHADER_GEOMETRY);
3181 /* fall through */
3182 case VARYING_SLOT_COL0:
3183 case VARYING_SLOT_COL1:
3184 case VARYING_SLOT_BFC0:
3185 case VARYING_SLOT_BFC1:
3186 case VARYING_SLOT_FOGC:
3187 case VARYING_SLOT_CLIP_DIST0:
3188 case VARYING_SLOT_CLIP_DIST1:
3189 case VARYING_SLOT_CLIP_VERTEX:
3190 break;
3191 default:
3192 if (slot >= VARYING_SLOT_VAR0)
3193 break;
3194 if ((VARYING_SLOT_TEX0 <= slot) && (slot <= VARYING_SLOT_TEX7))
3195 break;
3196 ir3_context_error(ctx, "unknown %s shader output name: %s\n",
3197 _mesa_shader_stage_to_string(ctx->so->type),
3198 gl_varying_slot_name(slot));
3199 }
3200 } else if (ctx->so->type == MESA_SHADER_TESS_CTRL) {
3201 /* output lowered to buffer writes. */
3202 return;
3203 } else {
3204 ir3_context_error(ctx, "unknown shader type: %d\n", ctx->so->type);
3205 }
3206
3207
3208 so->outputs_count = out->data.driver_location + slots;
3209 compile_assert(ctx, so->outputs_count < ARRAY_SIZE(so->outputs));
3210
3211 for (int i = 0; i < slots; i++) {
3212 int slot_base = n + i;
3213 so->outputs[slot_base].slot = slot + i;
3214
3215 for (int i = 0; i < ncomp; i++) {
3216 unsigned idx = (slot_base * 4) + i + frac;
3217 compile_assert(ctx, idx < ctx->noutputs);
3218 ctx->outputs[idx] = create_immed(ctx->block, fui(0.0));
3219 }
3220
3221 /* if varying packing doesn't happen, we could end up in a situation
3222 * with "holes" in the output, and since the per-generation code that
3223 * sets up varying linkage registers doesn't expect to have more than
3224 * one varying per vec4 slot, pad the holes.
3225 *
3226 * Note that this should probably generate a performance warning of
3227 * some sort.
3228 */
3229 for (int i = 0; i < frac; i++) {
3230 unsigned idx = (slot_base * 4) + i;
3231 if (!ctx->outputs[idx]) {
3232 ctx->outputs[idx] = create_immed(ctx->block, fui(0.0));
3233 }
3234 }
3235 }
3236 }
3237
3238 static void
3239 emit_instructions(struct ir3_context *ctx)
3240 {
3241 nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->s);
3242
3243 ctx->ninputs = ctx->s->num_inputs * 4;
3244 ctx->noutputs = ctx->s->num_outputs * 4;
3245 ctx->inputs = rzalloc_array(ctx, struct ir3_instruction *, ctx->ninputs);
3246 ctx->outputs = rzalloc_array(ctx, struct ir3_instruction *, ctx->noutputs);
3247
3248 ctx->ir = ir3_create(ctx->compiler, ctx->so->type);
3249
3250 /* Create inputs in first block: */
3251 ctx->block = get_block(ctx, nir_start_block(fxn));
3252 ctx->in_block = ctx->block;
3253
3254 /* for fragment shader, the vcoord input register is used as the
3255 * base for bary.f varying fetch instrs:
3256 *
3257 * TODO defer creating ctx->ij_pixel and corresponding sysvals
3258 * until emit_intrinsic when we know they are actually needed.
3259 * For now, we defer creating ctx->ij_centroid, etc, since we
3260 * only need ij_pixel for "old style" varying inputs (ie.
3261 * tgsi_to_nir)
3262 */
3263 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
3264 ctx->ij_pixel = create_input(ctx, 0x3);
3265 }
3266
3267 /* Setup inputs: */
3268 nir_foreach_variable (var, &ctx->s->inputs) {
3269 setup_input(ctx, var);
3270 }
3271
3272 /* Defer add_sysval_input() stuff until after setup_inputs(),
3273 * because sysvals need to be appended after varyings:
3274 */
3275 if (ctx->ij_pixel) {
3276 add_sysval_input_compmask(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL,
3277 0x3, ctx->ij_pixel);
3278 }
3279
3280
3281 /* Tesselation shaders always need primitive ID for indexing the
3282 * BO. Geometry shaders don't always need it but when they do it has be
3283 * delivered and unclobbered in the VS. To make things easy, we always
3284 * make room for it in VS/DS.
3285 */
3286 bool has_tess = ctx->so->key.tessellation != IR3_TESS_NONE;
3287 bool has_gs = ctx->so->key.has_gs;
3288 switch (ctx->so->type) {
3289 case MESA_SHADER_VERTEX:
3290 if (has_tess) {
3291 ctx->tcs_header = create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1);
3292 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3293 } else if (has_gs) {
3294 ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
3295 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3296 }
3297 break;
3298 case MESA_SHADER_TESS_CTRL:
3299 ctx->tcs_header = create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1);
3300 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3301 break;
3302 case MESA_SHADER_TESS_EVAL:
3303 if (has_gs)
3304 ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
3305 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3306 break;
3307 case MESA_SHADER_GEOMETRY:
3308 ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
3309 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3310 break;
3311 default:
3312 break;
3313 }
3314
3315 /* Setup outputs: */
3316 nir_foreach_variable (var, &ctx->s->outputs) {
3317 setup_output(ctx, var);
3318 }
3319
3320 /* Find # of samplers: */
3321 nir_foreach_variable (var, &ctx->s->uniforms) {
3322 ctx->so->num_samp += glsl_type_get_sampler_count(var->type);
3323 /* just assume that we'll be reading from images.. if it
3324 * is write-only we don't have to count it, but not sure
3325 * if there is a good way to know?
3326 */
3327 ctx->so->num_samp += glsl_type_get_image_count(var->type);
3328 }
3329
3330 /* NOTE: need to do something more clever when we support >1 fxn */
3331 nir_foreach_register (reg, &fxn->registers) {
3332 ir3_declare_array(ctx, reg);
3333 }
3334 /* And emit the body: */
3335 ctx->impl = fxn;
3336 emit_function(ctx, fxn);
3337 }
3338
3339 /* Fixup tex sampler state for astc/srgb workaround instructions. We
3340 * need to assign the tex state indexes for these after we know the
3341 * max tex index.
3342 */
3343 static void
3344 fixup_astc_srgb(struct ir3_context *ctx)
3345 {
3346 struct ir3_shader_variant *so = ctx->so;
3347 /* indexed by original tex idx, value is newly assigned alpha sampler
3348 * state tex idx. Zero is invalid since there is at least one sampler
3349 * if we get here.
3350 */
3351 unsigned alt_tex_state[16] = {0};
3352 unsigned tex_idx = ctx->max_texture_index + 1;
3353 unsigned idx = 0;
3354
3355 so->astc_srgb.base = tex_idx;
3356
3357 for (unsigned i = 0; i < ctx->ir->astc_srgb_count; i++) {
3358 struct ir3_instruction *sam = ctx->ir->astc_srgb[i];
3359
3360 compile_assert(ctx, sam->cat5.tex < ARRAY_SIZE(alt_tex_state));
3361
3362 if (alt_tex_state[sam->cat5.tex] == 0) {
3363 /* assign new alternate/alpha tex state slot: */
3364 alt_tex_state[sam->cat5.tex] = tex_idx++;
3365 so->astc_srgb.orig_idx[idx++] = sam->cat5.tex;
3366 so->astc_srgb.count++;
3367 }
3368
3369 sam->cat5.tex = alt_tex_state[sam->cat5.tex];
3370 }
3371 }
3372
3373 static void
3374 fixup_binning_pass(struct ir3_context *ctx)
3375 {
3376 struct ir3_shader_variant *so = ctx->so;
3377 struct ir3 *ir = ctx->ir;
3378 unsigned i, j;
3379
3380 /* first pass, remove unused outputs from the IR level outputs: */
3381 for (i = 0, j = 0; i < ir->outputs_count; i++) {
3382 struct ir3_instruction *out = ir->outputs[i];
3383 assert(out->opc == OPC_META_COLLECT);
3384 unsigned outidx = out->collect.outidx;
3385 unsigned slot = so->outputs[outidx].slot;
3386
3387 /* throw away everything but first position/psize */
3388 if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) {
3389 ir->outputs[j] = ir->outputs[i];
3390 j++;
3391 }
3392 }
3393 ir->outputs_count = j;
3394
3395 /* second pass, cleanup the unused slots in ir3_shader_variant::outputs
3396 * table:
3397 */
3398 for (i = 0, j = 0; i < so->outputs_count; i++) {
3399 unsigned slot = so->outputs[i].slot;
3400
3401 /* throw away everything but first position/psize */
3402 if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) {
3403 so->outputs[j] = so->outputs[i];
3404
3405 /* fixup outidx to point to new output table entry: */
3406 foreach_output (out, ir) {
3407 if (out->collect.outidx == i) {
3408 out->collect.outidx = j;
3409 break;
3410 }
3411 }
3412
3413 j++;
3414 }
3415 }
3416 so->outputs_count = j;
3417 }
3418
3419 static void
3420 collect_tex_prefetches(struct ir3_context *ctx, struct ir3 *ir)
3421 {
3422 unsigned idx = 0;
3423
3424 /* Collect sampling instructions eligible for pre-dispatch. */
3425 foreach_block (block, &ir->block_list) {
3426 foreach_instr_safe (instr, &block->instr_list) {
3427 if (instr->opc == OPC_META_TEX_PREFETCH) {
3428 assert(idx < ARRAY_SIZE(ctx->so->sampler_prefetch));
3429 struct ir3_sampler_prefetch *fetch =
3430 &ctx->so->sampler_prefetch[idx];
3431 idx++;
3432
3433 if (instr->flags & IR3_INSTR_B) {
3434 fetch->cmd = IR3_SAMPLER_BINDLESS_PREFETCH_CMD;
3435 /* In bindless mode, the index is actually the base */
3436 fetch->tex_id = instr->prefetch.tex_base;
3437 fetch->samp_id = instr->prefetch.samp_base;
3438 fetch->tex_bindless_id = instr->prefetch.tex;
3439 fetch->samp_bindless_id = instr->prefetch.samp;
3440 } else {
3441 fetch->cmd = IR3_SAMPLER_PREFETCH_CMD;
3442 fetch->tex_id = instr->prefetch.tex;
3443 fetch->samp_id = instr->prefetch.samp;
3444 }
3445 fetch->wrmask = instr->regs[0]->wrmask;
3446 fetch->dst = instr->regs[0]->num;
3447 fetch->src = instr->prefetch.input_offset;
3448
3449 /* These are the limits on a5xx/a6xx, we might need to
3450 * revisit if SP_FS_PREFETCH[n] changes on later gens:
3451 */
3452 assert(fetch->dst <= 0x3f);
3453 assert(fetch->tex_id <= 0x1f);
3454 assert(fetch->samp_id < 0xf);
3455
3456 ctx->so->total_in =
3457 MAX2(ctx->so->total_in, instr->prefetch.input_offset + 2);
3458
3459 fetch->half_precision = !!(instr->regs[0]->flags & IR3_REG_HALF);
3460
3461 /* Remove the prefetch placeholder instruction: */
3462 list_delinit(&instr->node);
3463 }
3464 }
3465 }
3466 }
3467
3468 int
3469 ir3_compile_shader_nir(struct ir3_compiler *compiler,
3470 struct ir3_shader_variant *so)
3471 {
3472 struct ir3_context *ctx;
3473 struct ir3 *ir;
3474 int ret = 0, max_bary;
3475 bool progress;
3476
3477 assert(!so->ir);
3478
3479 ctx = ir3_context_init(compiler, so);
3480 if (!ctx) {
3481 DBG("INIT failed!");
3482 ret = -1;
3483 goto out;
3484 }
3485
3486 emit_instructions(ctx);
3487
3488 if (ctx->error) {
3489 DBG("EMIT failed!");
3490 ret = -1;
3491 goto out;
3492 }
3493
3494 ir = so->ir = ctx->ir;
3495
3496 assert((ctx->noutputs % 4) == 0);
3497
3498 /* Setup IR level outputs, which are "collects" that gather
3499 * the scalar components of outputs.
3500 */
3501 for (unsigned i = 0; i < ctx->noutputs; i += 4) {
3502 unsigned ncomp = 0;
3503 /* figure out the # of components written:
3504 *
3505 * TODO do we need to handle holes, ie. if .x and .z
3506 * components written, but .y component not written?
3507 */
3508 for (unsigned j = 0; j < 4; j++) {
3509 if (!ctx->outputs[i + j])
3510 break;
3511 ncomp++;
3512 }
3513
3514 /* Note that in some stages, like TCS, store_output is
3515 * lowered to memory writes, so no components of the
3516 * are "written" from the PoV of traditional store-
3517 * output instructions:
3518 */
3519 if (!ncomp)
3520 continue;
3521
3522 struct ir3_instruction *out =
3523 ir3_create_collect(ctx, &ctx->outputs[i], ncomp);
3524
3525 int outidx = i / 4;
3526 assert(outidx < so->outputs_count);
3527
3528 /* stash index into so->outputs[] so we can map the
3529 * output back to slot/etc later:
3530 */
3531 out->collect.outidx = outidx;
3532
3533 array_insert(ir, ir->outputs, out);
3534 }
3535
3536 /* Set up the gs header as an output for the vertex shader so it won't
3537 * clobber it for the tess ctrl shader.
3538 *
3539 * TODO this could probably be done more cleanly in a nir pass.
3540 */
3541 if (ctx->so->type == MESA_SHADER_VERTEX ||
3542 (ctx->so->key.has_gs && ctx->so->type == MESA_SHADER_TESS_EVAL)) {
3543 if (ctx->primitive_id) {
3544 unsigned n = so->outputs_count++;
3545 so->outputs[n].slot = VARYING_SLOT_PRIMITIVE_ID;
3546
3547 struct ir3_instruction *out =
3548 ir3_create_collect(ctx, &ctx->primitive_id, 1);
3549 out->collect.outidx = n;
3550 array_insert(ir, ir->outputs, out);
3551 }
3552
3553 if (ctx->gs_header) {
3554 unsigned n = so->outputs_count++;
3555 so->outputs[n].slot = VARYING_SLOT_GS_HEADER_IR3;
3556 struct ir3_instruction *out =
3557 ir3_create_collect(ctx, &ctx->gs_header, 1);
3558 out->collect.outidx = n;
3559 array_insert(ir, ir->outputs, out);
3560 }
3561
3562 if (ctx->tcs_header) {
3563 unsigned n = so->outputs_count++;
3564 so->outputs[n].slot = VARYING_SLOT_TCS_HEADER_IR3;
3565 struct ir3_instruction *out =
3566 ir3_create_collect(ctx, &ctx->tcs_header, 1);
3567 out->collect.outidx = n;
3568 array_insert(ir, ir->outputs, out);
3569 }
3570 }
3571
3572 /* for a6xx+, binning and draw pass VS use same VBO state, so we
3573 * need to make sure not to remove any inputs that are used by
3574 * the nonbinning VS.
3575 */
3576 if (ctx->compiler->gpu_id >= 600 && so->binning_pass &&
3577 so->type == MESA_SHADER_VERTEX) {
3578 for (int i = 0; i < ctx->ninputs; i++) {
3579 struct ir3_instruction *in = ctx->inputs[i];
3580
3581 if (!in)
3582 continue;
3583
3584 unsigned n = i / 4;
3585 unsigned c = i % 4;
3586
3587 debug_assert(n < so->nonbinning->inputs_count);
3588
3589 if (so->nonbinning->inputs[n].sysval)
3590 continue;
3591
3592 /* be sure to keep inputs, even if only used in VS */
3593 if (so->nonbinning->inputs[n].compmask & (1 << c))
3594 array_insert(in->block, in->block->keeps, in);
3595 }
3596 }
3597
3598 /* at this point, for binning pass, throw away unneeded outputs: */
3599 if (so->binning_pass && (ctx->compiler->gpu_id < 600))
3600 fixup_binning_pass(ctx);
3601
3602 ir3_debug_print(ir, "AFTER: nir->ir3");
3603 ir3_validate(ir);
3604
3605 do {
3606 progress = false;
3607
3608 progress |= IR3_PASS(ir, ir3_cf);
3609 progress |= IR3_PASS(ir, ir3_cp, so);
3610 progress |= IR3_PASS(ir, ir3_dce, so);
3611 } while (progress);
3612
3613 /* at this point, for binning pass, throw away unneeded outputs:
3614 * Note that for a6xx and later, we do this after ir3_cp to ensure
3615 * that the uniform/constant layout for BS and VS matches, so that
3616 * we can re-use same VS_CONST state group.
3617 */
3618 if (so->binning_pass && (ctx->compiler->gpu_id >= 600)) {
3619 fixup_binning_pass(ctx);
3620 /* cleanup the result of removing unneeded outputs: */
3621 while (IR3_PASS(ir, ir3_dce, so)) {}
3622 }
3623
3624 IR3_PASS(ir, ir3_sched_add_deps);
3625
3626 /* Group left/right neighbors, inserting mov's where needed to
3627 * solve conflicts:
3628 */
3629 IR3_PASS(ir, ir3_group);
3630
3631 /* At this point, all the dead code should be long gone: */
3632 assert(!IR3_PASS(ir, ir3_dce, so));
3633
3634 ret = ir3_sched(ir);
3635 if (ret) {
3636 DBG("SCHED failed!");
3637 goto out;
3638 }
3639
3640 ir3_debug_print(ir, "AFTER: ir3_sched");
3641
3642 if (IR3_PASS(ir, ir3_cp_postsched)) {
3643 /* cleanup the result of removing unneeded mov's: */
3644 while (IR3_PASS(ir, ir3_dce, so)) {}
3645 }
3646
3647 /* Pre-assign VS inputs on a6xx+ binning pass shader, to align
3648 * with draw pass VS, so binning and draw pass can both use the
3649 * same VBO state.
3650 *
3651 * Note that VS inputs are expected to be full precision.
3652 */
3653 bool pre_assign_inputs = (ir->compiler->gpu_id >= 600) &&
3654 (ir->type == MESA_SHADER_VERTEX) &&
3655 so->binning_pass;
3656
3657 if (pre_assign_inputs) {
3658 for (unsigned i = 0; i < ctx->ninputs; i++) {
3659 struct ir3_instruction *instr = ctx->inputs[i];
3660
3661 if (!instr)
3662 continue;
3663
3664 unsigned n = i / 4;
3665 unsigned c = i % 4;
3666 unsigned regid = so->nonbinning->inputs[n].regid + c;
3667
3668 instr->regs[0]->num = regid;
3669 }
3670
3671 ret = ir3_ra(so, ctx->inputs, ctx->ninputs);
3672 } else if (ctx->tcs_header) {
3673 /* We need to have these values in the same registers between VS and TCS
3674 * since the VS chains to TCS and doesn't get the sysvals redelivered.
3675 */
3676
3677 ctx->tcs_header->regs[0]->num = regid(0, 0);
3678 ctx->primitive_id->regs[0]->num = regid(0, 1);
3679 struct ir3_instruction *precolor[] = { ctx->tcs_header, ctx->primitive_id };
3680 ret = ir3_ra(so, precolor, ARRAY_SIZE(precolor));
3681 } else if (ctx->gs_header) {
3682 /* We need to have these values in the same registers between producer
3683 * (VS or DS) and GS since the producer chains to GS and doesn't get
3684 * the sysvals redelivered.
3685 */
3686
3687 ctx->gs_header->regs[0]->num = regid(0, 0);
3688 ctx->primitive_id->regs[0]->num = regid(0, 1);
3689 struct ir3_instruction *precolor[] = { ctx->gs_header, ctx->primitive_id };
3690 ret = ir3_ra(so, precolor, ARRAY_SIZE(precolor));
3691 } else if (so->num_sampler_prefetch) {
3692 assert(so->type == MESA_SHADER_FRAGMENT);
3693 struct ir3_instruction *precolor[2];
3694 int idx = 0;
3695
3696 foreach_input (instr, ir) {
3697 if (instr->input.sysval != SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL)
3698 continue;
3699
3700 assert(idx < ARRAY_SIZE(precolor));
3701
3702 precolor[idx] = instr;
3703 instr->regs[0]->num = idx;
3704
3705 idx++;
3706 }
3707 ret = ir3_ra(so, precolor, idx);
3708 } else {
3709 ret = ir3_ra(so, NULL, 0);
3710 }
3711
3712 if (ret) {
3713 DBG("RA failed!");
3714 goto out;
3715 }
3716
3717 IR3_PASS(ir, ir3_postsched);
3718
3719 if (compiler->gpu_id >= 600) {
3720 IR3_PASS(ir, ir3_a6xx_fixup_atomic_dests, so);
3721 }
3722
3723 if (so->type == MESA_SHADER_FRAGMENT)
3724 pack_inlocs(ctx);
3725
3726 /*
3727 * Fixup inputs/outputs to point to the actual registers assigned:
3728 *
3729 * 1) initialize to r63.x (invalid/unused)
3730 * 2) iterate IR level inputs/outputs and update the variants
3731 * inputs/outputs table based on the assigned registers for
3732 * the remaining inputs/outputs.
3733 */
3734
3735 for (unsigned i = 0; i < so->inputs_count; i++)
3736 so->inputs[i].regid = INVALID_REG;
3737 for (unsigned i = 0; i < so->outputs_count; i++)
3738 so->outputs[i].regid = INVALID_REG;
3739
3740 foreach_output (out, ir) {
3741 assert(out->opc == OPC_META_COLLECT);
3742 unsigned outidx = out->collect.outidx;
3743
3744 so->outputs[outidx].regid = out->regs[0]->num;
3745 so->outputs[outidx].half = !!(out->regs[0]->flags & IR3_REG_HALF);
3746 }
3747
3748 foreach_input (in, ir) {
3749 assert(in->opc == OPC_META_INPUT);
3750 unsigned inidx = in->input.inidx;
3751
3752 if (pre_assign_inputs && !so->inputs[inidx].sysval) {
3753 if (VALIDREG(so->nonbinning->inputs[inidx].regid)) {
3754 compile_assert(ctx, in->regs[0]->num ==
3755 so->nonbinning->inputs[inidx].regid);
3756 compile_assert(ctx, !!(in->regs[0]->flags & IR3_REG_HALF) ==
3757 so->nonbinning->inputs[inidx].half);
3758 }
3759 so->inputs[inidx].regid = so->nonbinning->inputs[inidx].regid;
3760 so->inputs[inidx].half = so->nonbinning->inputs[inidx].half;
3761 } else {
3762 so->inputs[inidx].regid = in->regs[0]->num;
3763 so->inputs[inidx].half = !!(in->regs[0]->flags & IR3_REG_HALF);
3764 }
3765 }
3766
3767 if (ctx->astc_srgb)
3768 fixup_astc_srgb(ctx);
3769
3770 /* We need to do legalize after (for frag shader's) the "bary.f"
3771 * offsets (inloc) have been assigned.
3772 */
3773 IR3_PASS(ir, ir3_legalize, so, &max_bary);
3774
3775 /* Set (ss)(sy) on first TCS and GEOMETRY instructions, since we don't
3776 * know what we might have to wait on when coming in from VS chsh.
3777 */
3778 if (so->type == MESA_SHADER_TESS_CTRL ||
3779 so->type == MESA_SHADER_GEOMETRY ) {
3780 foreach_block (block, &ir->block_list) {
3781 foreach_instr (instr, &block->instr_list) {
3782 instr->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
3783 break;
3784 }
3785 }
3786 }
3787
3788 so->branchstack = ctx->max_stack;
3789
3790 /* Note that actual_in counts inputs that are not bary.f'd for FS: */
3791 if (so->type == MESA_SHADER_FRAGMENT)
3792 so->total_in = max_bary + 1;
3793
3794 /* Collect sampling instructions eligible for pre-dispatch. */
3795 collect_tex_prefetches(ctx, ir);
3796
3797 if (so->type == MESA_SHADER_FRAGMENT &&
3798 ctx->s->info.fs.needs_helper_invocations)
3799 so->need_pixlod = true;
3800
3801 out:
3802 if (ret) {
3803 if (so->ir)
3804 ir3_destroy(so->ir);
3805 so->ir = NULL;
3806 }
3807 ir3_context_free(ctx);
3808
3809 return ret;
3810 }