freedreno/ir3: move ubo_state into const_state
[mesa.git] / src / freedreno / ir3 / ir3_compiler_nir.c
1 /*
2 * Copyright (C) 2015 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include <stdarg.h>
28
29 #include "util/u_string.h"
30 #include "util/u_memory.h"
31 #include "util/u_math.h"
32
33 #include "ir3_compiler.h"
34 #include "ir3_image.h"
35 #include "ir3_shader.h"
36 #include "ir3_nir.h"
37
38 #include "instr-a3xx.h"
39 #include "ir3.h"
40 #include "ir3_context.h"
41
42 void
43 ir3_handle_bindless_cat6(struct ir3_instruction *instr, nir_src rsrc)
44 {
45 nir_intrinsic_instr *intrin = ir3_bindless_resource(rsrc);
46 if (!intrin)
47 return;
48
49 instr->flags |= IR3_INSTR_B;
50 instr->cat6.base = nir_intrinsic_desc_set(intrin);
51 }
52
53 static struct ir3_instruction *
54 create_indirect_load(struct ir3_context *ctx, unsigned arrsz, int n,
55 struct ir3_instruction *address, struct ir3_instruction *collect)
56 {
57 struct ir3_block *block = ctx->block;
58 struct ir3_instruction *mov;
59 struct ir3_register *src;
60
61 mov = ir3_instr_create(block, OPC_MOV);
62 mov->cat1.src_type = TYPE_U32;
63 mov->cat1.dst_type = TYPE_U32;
64 __ssa_dst(mov);
65 src = __ssa_src(mov, collect, IR3_REG_RELATIV);
66 src->size = arrsz;
67 src->array.offset = n;
68
69 ir3_instr_set_address(mov, address);
70
71 return mov;
72 }
73
74 static struct ir3_instruction *
75 create_input(struct ir3_context *ctx, unsigned compmask)
76 {
77 struct ir3_instruction *in;
78
79 in = ir3_instr_create(ctx->in_block, OPC_META_INPUT);
80 in->input.sysval = ~0;
81 __ssa_dst(in)->wrmask = compmask;
82
83 array_insert(ctx->ir, ctx->ir->inputs, in);
84
85 return in;
86 }
87
88 static struct ir3_instruction *
89 create_frag_input(struct ir3_context *ctx, bool use_ldlv, unsigned n)
90 {
91 struct ir3_block *block = ctx->block;
92 struct ir3_instruction *instr;
93 /* packed inloc is fixed up later: */
94 struct ir3_instruction *inloc = create_immed(block, n);
95
96 if (use_ldlv) {
97 instr = ir3_LDLV(block, inloc, 0, create_immed(block, 1), 0);
98 instr->cat6.type = TYPE_U32;
99 instr->cat6.iim_val = 1;
100 } else {
101 instr = ir3_BARY_F(block, inloc, 0, ctx->ij_pixel, 0);
102 instr->regs[2]->wrmask = 0x3;
103 }
104
105 return instr;
106 }
107
108 static struct ir3_instruction *
109 create_driver_param(struct ir3_context *ctx, enum ir3_driver_param dp)
110 {
111 /* first four vec4 sysval's reserved for UBOs: */
112 /* NOTE: dp is in scalar, but there can be >4 dp components: */
113 struct ir3_const_state *const_state = ir3_const_state(ctx->so);
114 unsigned n = const_state->offsets.driver_param;
115 unsigned r = regid(n + dp / 4, dp % 4);
116 return create_uniform(ctx->block, r);
117 }
118
119 /*
120 * Adreno's comparisons produce a 1 for true and 0 for false, in either 16 or
121 * 32-bit registers. We use NIR's 1-bit integers to represent bools, and
122 * trust that we will only see and/or/xor on those 1-bit values, so we can
123 * safely store NIR i1s in a 32-bit reg while always containing either a 1 or
124 * 0.
125 */
126
127 /*
128 * alu/sfu instructions:
129 */
130
131 static struct ir3_instruction *
132 create_cov(struct ir3_context *ctx, struct ir3_instruction *src,
133 unsigned src_bitsize, nir_op op)
134 {
135 type_t src_type, dst_type;
136
137 switch (op) {
138 case nir_op_f2f32:
139 case nir_op_f2f16_rtne:
140 case nir_op_f2f16_rtz:
141 case nir_op_f2f16:
142 case nir_op_f2i32:
143 case nir_op_f2i16:
144 case nir_op_f2i8:
145 case nir_op_f2u32:
146 case nir_op_f2u16:
147 case nir_op_f2u8:
148 switch (src_bitsize) {
149 case 32:
150 src_type = TYPE_F32;
151 break;
152 case 16:
153 src_type = TYPE_F16;
154 break;
155 default:
156 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
157 }
158 break;
159
160 case nir_op_i2f32:
161 case nir_op_i2f16:
162 case nir_op_i2i32:
163 case nir_op_i2i16:
164 case nir_op_i2i8:
165 switch (src_bitsize) {
166 case 32:
167 src_type = TYPE_S32;
168 break;
169 case 16:
170 src_type = TYPE_S16;
171 break;
172 case 8:
173 src_type = TYPE_S8;
174 break;
175 default:
176 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
177 }
178 break;
179
180 case nir_op_u2f32:
181 case nir_op_u2f16:
182 case nir_op_u2u32:
183 case nir_op_u2u16:
184 case nir_op_u2u8:
185 switch (src_bitsize) {
186 case 32:
187 src_type = TYPE_U32;
188 break;
189 case 16:
190 src_type = TYPE_U16;
191 break;
192 case 8:
193 src_type = TYPE_U8;
194 break;
195 default:
196 ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
197 }
198 break;
199
200 case nir_op_b2f16:
201 case nir_op_b2f32:
202 case nir_op_b2i8:
203 case nir_op_b2i16:
204 case nir_op_b2i32:
205 src_type = TYPE_U32;
206 break;
207
208 default:
209 ir3_context_error(ctx, "invalid conversion op: %u", op);
210 }
211
212 switch (op) {
213 case nir_op_f2f32:
214 case nir_op_i2f32:
215 case nir_op_u2f32:
216 case nir_op_b2f32:
217 dst_type = TYPE_F32;
218 break;
219
220 case nir_op_f2f16_rtne:
221 case nir_op_f2f16_rtz:
222 case nir_op_f2f16:
223 case nir_op_i2f16:
224 case nir_op_u2f16:
225 case nir_op_b2f16:
226 dst_type = TYPE_F16;
227 break;
228
229 case nir_op_f2i32:
230 case nir_op_i2i32:
231 case nir_op_b2i32:
232 dst_type = TYPE_S32;
233 break;
234
235 case nir_op_f2i16:
236 case nir_op_i2i16:
237 case nir_op_b2i16:
238 dst_type = TYPE_S16;
239 break;
240
241 case nir_op_f2i8:
242 case nir_op_i2i8:
243 case nir_op_b2i8:
244 dst_type = TYPE_S8;
245 break;
246
247 case nir_op_f2u32:
248 case nir_op_u2u32:
249 dst_type = TYPE_U32;
250 break;
251
252 case nir_op_f2u16:
253 case nir_op_u2u16:
254 dst_type = TYPE_U16;
255 break;
256
257 case nir_op_f2u8:
258 case nir_op_u2u8:
259 dst_type = TYPE_U8;
260 break;
261
262 default:
263 ir3_context_error(ctx, "invalid conversion op: %u", op);
264 }
265
266 if (src_type == dst_type)
267 return src;
268
269 struct ir3_instruction *cov =
270 ir3_COV(ctx->block, src, src_type, dst_type);
271
272 if (op == nir_op_f2f16_rtne)
273 cov->regs[0]->flags |= IR3_REG_EVEN;
274
275 return cov;
276 }
277
278 static void
279 emit_alu(struct ir3_context *ctx, nir_alu_instr *alu)
280 {
281 const nir_op_info *info = &nir_op_infos[alu->op];
282 struct ir3_instruction **dst, *src[info->num_inputs];
283 unsigned bs[info->num_inputs]; /* bit size */
284 struct ir3_block *b = ctx->block;
285 unsigned dst_sz, wrmask;
286 type_t dst_type = nir_dest_bit_size(alu->dest.dest) == 16 ?
287 TYPE_U16 : TYPE_U32;
288
289 if (alu->dest.dest.is_ssa) {
290 dst_sz = alu->dest.dest.ssa.num_components;
291 wrmask = (1 << dst_sz) - 1;
292 } else {
293 dst_sz = alu->dest.dest.reg.reg->num_components;
294 wrmask = alu->dest.write_mask;
295 }
296
297 dst = ir3_get_dst(ctx, &alu->dest.dest, dst_sz);
298
299 /* Vectors are special in that they have non-scalarized writemasks,
300 * and just take the first swizzle channel for each argument in
301 * order into each writemask channel.
302 */
303 if ((alu->op == nir_op_vec2) ||
304 (alu->op == nir_op_vec3) ||
305 (alu->op == nir_op_vec4)) {
306
307 for (int i = 0; i < info->num_inputs; i++) {
308 nir_alu_src *asrc = &alu->src[i];
309
310 compile_assert(ctx, !asrc->abs);
311 compile_assert(ctx, !asrc->negate);
312
313 src[i] = ir3_get_src(ctx, &asrc->src)[asrc->swizzle[0]];
314 if (!src[i])
315 src[i] = create_immed_typed(ctx->block, 0, dst_type);
316 dst[i] = ir3_MOV(b, src[i], dst_type);
317 }
318
319 ir3_put_dst(ctx, &alu->dest.dest);
320 return;
321 }
322
323 /* We also get mov's with more than one component for mov's so
324 * handle those specially:
325 */
326 if (alu->op == nir_op_mov) {
327 nir_alu_src *asrc = &alu->src[0];
328 struct ir3_instruction *const *src0 = ir3_get_src(ctx, &asrc->src);
329
330 for (unsigned i = 0; i < dst_sz; i++) {
331 if (wrmask & (1 << i)) {
332 dst[i] = ir3_MOV(b, src0[asrc->swizzle[i]], dst_type);
333 } else {
334 dst[i] = NULL;
335 }
336 }
337
338 ir3_put_dst(ctx, &alu->dest.dest);
339 return;
340 }
341
342 /* General case: We can just grab the one used channel per src. */
343 for (int i = 0; i < info->num_inputs; i++) {
344 unsigned chan = ffs(alu->dest.write_mask) - 1;
345 nir_alu_src *asrc = &alu->src[i];
346
347 compile_assert(ctx, !asrc->abs);
348 compile_assert(ctx, !asrc->negate);
349
350 src[i] = ir3_get_src(ctx, &asrc->src)[asrc->swizzle[chan]];
351 bs[i] = nir_src_bit_size(asrc->src);
352
353 compile_assert(ctx, src[i]);
354 }
355
356 switch (alu->op) {
357 case nir_op_f2f32:
358 case nir_op_f2f16_rtne:
359 case nir_op_f2f16_rtz:
360 case nir_op_f2f16:
361 case nir_op_f2i32:
362 case nir_op_f2i16:
363 case nir_op_f2i8:
364 case nir_op_f2u32:
365 case nir_op_f2u16:
366 case nir_op_f2u8:
367 case nir_op_i2f32:
368 case nir_op_i2f16:
369 case nir_op_i2i32:
370 case nir_op_i2i16:
371 case nir_op_i2i8:
372 case nir_op_u2f32:
373 case nir_op_u2f16:
374 case nir_op_u2u32:
375 case nir_op_u2u16:
376 case nir_op_u2u8:
377 case nir_op_b2f16:
378 case nir_op_b2f32:
379 case nir_op_b2i8:
380 case nir_op_b2i16:
381 case nir_op_b2i32:
382 dst[0] = create_cov(ctx, src[0], bs[0], alu->op);
383 break;
384
385 case nir_op_fquantize2f16:
386 dst[0] = create_cov(ctx,
387 create_cov(ctx, src[0], 32, nir_op_f2f16),
388 16, nir_op_f2f32);
389 break;
390 case nir_op_f2b1:
391 dst[0] = ir3_CMPS_F(b,
392 src[0], 0,
393 create_immed_typed(b, 0, bs[0] == 16 ? TYPE_F16 : TYPE_F32), 0);
394 dst[0]->cat2.condition = IR3_COND_NE;
395 break;
396
397 case nir_op_i2b1:
398 /* i2b1 will appear when translating from nir_load_ubo or
399 * nir_intrinsic_load_ssbo, where any non-zero value is true.
400 */
401 dst[0] = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
402 dst[0]->cat2.condition = IR3_COND_NE;
403 break;
404
405 case nir_op_b2b1:
406 /* b2b1 will appear when translating from
407 *
408 * - nir_intrinsic_load_shared of a 32-bit 0/~0 value.
409 * - nir_intrinsic_load_constant of a 32-bit 0/~0 value
410 *
411 * A negate can turn those into a 1 or 0 for us.
412 */
413 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
414 break;
415
416 case nir_op_b2b32:
417 /* b2b32 will appear when converting our 1-bit bools to a store_shared
418 * argument.
419 *
420 * A negate can turn those into a ~0 for us.
421 */
422 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
423 break;
424
425 case nir_op_fneg:
426 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FNEG);
427 break;
428 case nir_op_fabs:
429 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FABS);
430 break;
431 case nir_op_fmax:
432 dst[0] = ir3_MAX_F(b, src[0], 0, src[1], 0);
433 break;
434 case nir_op_fmin:
435 dst[0] = ir3_MIN_F(b, src[0], 0, src[1], 0);
436 break;
437 case nir_op_fsat:
438 /* if there is just a single use of the src, and it supports
439 * (sat) bit, we can just fold the (sat) flag back to the
440 * src instruction and create a mov. This is easier for cp
441 * to eliminate.
442 *
443 * NOTE: a3xx definitely seen not working with flat bary.f. Same test
444 * uses ldlv on a4xx+, so not definitive. Seems rare enough to apply
445 * everywhere.
446 *
447 * TODO probably opc_cat==4 is ok too
448 */
449 if (alu->src[0].src.is_ssa &&
450 src[0]->opc != OPC_BARY_F &&
451 (list_length(&alu->src[0].src.ssa->uses) == 1) &&
452 ((opc_cat(src[0]->opc) == 2) || (opc_cat(src[0]->opc) == 3))) {
453 src[0]->flags |= IR3_INSTR_SAT;
454 dst[0] = ir3_MOV(b, src[0], dst_type);
455 } else {
456 /* otherwise generate a max.f that saturates.. blob does
457 * similar (generating a cat2 mov using max.f)
458 */
459 dst[0] = ir3_MAX_F(b, src[0], 0, src[0], 0);
460 dst[0]->flags |= IR3_INSTR_SAT;
461 }
462 break;
463 case nir_op_fmul:
464 dst[0] = ir3_MUL_F(b, src[0], 0, src[1], 0);
465 break;
466 case nir_op_fadd:
467 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], 0);
468 break;
469 case nir_op_fsub:
470 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], IR3_REG_FNEG);
471 break;
472 case nir_op_ffma:
473 dst[0] = ir3_MAD_F32(b, src[0], 0, src[1], 0, src[2], 0);
474 break;
475 case nir_op_fddx:
476 case nir_op_fddx_coarse:
477 dst[0] = ir3_DSX(b, src[0], 0);
478 dst[0]->cat5.type = TYPE_F32;
479 break;
480 case nir_op_fddx_fine:
481 dst[0] = ir3_DSXPP_1(b, src[0], 0);
482 dst[0]->cat5.type = TYPE_F32;
483 break;
484 case nir_op_fddy:
485 case nir_op_fddy_coarse:
486 dst[0] = ir3_DSY(b, src[0], 0);
487 dst[0]->cat5.type = TYPE_F32;
488 break;
489 break;
490 case nir_op_fddy_fine:
491 dst[0] = ir3_DSYPP_1(b, src[0], 0);
492 dst[0]->cat5.type = TYPE_F32;
493 break;
494 case nir_op_flt:
495 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
496 dst[0]->cat2.condition = IR3_COND_LT;
497 break;
498 case nir_op_fge:
499 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
500 dst[0]->cat2.condition = IR3_COND_GE;
501 break;
502 case nir_op_feq:
503 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
504 dst[0]->cat2.condition = IR3_COND_EQ;
505 break;
506 case nir_op_fne:
507 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
508 dst[0]->cat2.condition = IR3_COND_NE;
509 break;
510 case nir_op_fceil:
511 dst[0] = ir3_CEIL_F(b, src[0], 0);
512 break;
513 case nir_op_ffloor:
514 dst[0] = ir3_FLOOR_F(b, src[0], 0);
515 break;
516 case nir_op_ftrunc:
517 dst[0] = ir3_TRUNC_F(b, src[0], 0);
518 break;
519 case nir_op_fround_even:
520 dst[0] = ir3_RNDNE_F(b, src[0], 0);
521 break;
522 case nir_op_fsign:
523 dst[0] = ir3_SIGN_F(b, src[0], 0);
524 break;
525
526 case nir_op_fsin:
527 dst[0] = ir3_SIN(b, src[0], 0);
528 break;
529 case nir_op_fcos:
530 dst[0] = ir3_COS(b, src[0], 0);
531 break;
532 case nir_op_frsq:
533 dst[0] = ir3_RSQ(b, src[0], 0);
534 break;
535 case nir_op_frcp:
536 dst[0] = ir3_RCP(b, src[0], 0);
537 break;
538 case nir_op_flog2:
539 dst[0] = ir3_LOG2(b, src[0], 0);
540 break;
541 case nir_op_fexp2:
542 dst[0] = ir3_EXP2(b, src[0], 0);
543 break;
544 case nir_op_fsqrt:
545 dst[0] = ir3_SQRT(b, src[0], 0);
546 break;
547
548 case nir_op_iabs:
549 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SABS);
550 break;
551 case nir_op_iadd:
552 dst[0] = ir3_ADD_U(b, src[0], 0, src[1], 0);
553 break;
554 case nir_op_iand:
555 dst[0] = ir3_AND_B(b, src[0], 0, src[1], 0);
556 break;
557 case nir_op_imax:
558 dst[0] = ir3_MAX_S(b, src[0], 0, src[1], 0);
559 break;
560 case nir_op_umax:
561 dst[0] = ir3_MAX_U(b, src[0], 0, src[1], 0);
562 break;
563 case nir_op_imin:
564 dst[0] = ir3_MIN_S(b, src[0], 0, src[1], 0);
565 break;
566 case nir_op_umin:
567 dst[0] = ir3_MIN_U(b, src[0], 0, src[1], 0);
568 break;
569 case nir_op_umul_low:
570 dst[0] = ir3_MULL_U(b, src[0], 0, src[1], 0);
571 break;
572 case nir_op_imadsh_mix16:
573 dst[0] = ir3_MADSH_M16(b, src[0], 0, src[1], 0, src[2], 0);
574 break;
575 case nir_op_imad24_ir3:
576 dst[0] = ir3_MAD_S24(b, src[0], 0, src[1], 0, src[2], 0);
577 break;
578 case nir_op_imul24:
579 dst[0] = ir3_MUL_S24(b, src[0], 0, src[1], 0);
580 break;
581 case nir_op_ineg:
582 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
583 break;
584 case nir_op_inot:
585 if (bs[0] == 1) {
586 dst[0] = ir3_SUB_U(b, create_immed(ctx->block, 1), 0, src[0], 0);
587 } else {
588 dst[0] = ir3_NOT_B(b, src[0], 0);
589 }
590 break;
591 case nir_op_ior:
592 dst[0] = ir3_OR_B(b, src[0], 0, src[1], 0);
593 break;
594 case nir_op_ishl:
595 dst[0] = ir3_SHL_B(b, src[0], 0, src[1], 0);
596 break;
597 case nir_op_ishr:
598 dst[0] = ir3_ASHR_B(b, src[0], 0, src[1], 0);
599 break;
600 case nir_op_isub:
601 dst[0] = ir3_SUB_U(b, src[0], 0, src[1], 0);
602 break;
603 case nir_op_ixor:
604 dst[0] = ir3_XOR_B(b, src[0], 0, src[1], 0);
605 break;
606 case nir_op_ushr:
607 dst[0] = ir3_SHR_B(b, src[0], 0, src[1], 0);
608 break;
609 case nir_op_ilt:
610 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
611 dst[0]->cat2.condition = IR3_COND_LT;
612 break;
613 case nir_op_ige:
614 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
615 dst[0]->cat2.condition = IR3_COND_GE;
616 break;
617 case nir_op_ieq:
618 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
619 dst[0]->cat2.condition = IR3_COND_EQ;
620 break;
621 case nir_op_ine:
622 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
623 dst[0]->cat2.condition = IR3_COND_NE;
624 break;
625 case nir_op_ult:
626 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
627 dst[0]->cat2.condition = IR3_COND_LT;
628 break;
629 case nir_op_uge:
630 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
631 dst[0]->cat2.condition = IR3_COND_GE;
632 break;
633
634 case nir_op_bcsel: {
635 struct ir3_instruction *cond = src[0];
636
637 /* If src[0] is a negation (likely as a result of an ir3_b2n(cond)),
638 * we can ignore that and use original cond, since the nonzero-ness of
639 * cond stays the same.
640 */
641 if (cond->opc == OPC_ABSNEG_S &&
642 cond->flags == 0 &&
643 (cond->regs[1]->flags & (IR3_REG_SNEG | IR3_REG_SABS)) == IR3_REG_SNEG) {
644 cond = cond->regs[1]->instr;
645 }
646
647 compile_assert(ctx, bs[1] == bs[2]);
648 /* The condition's size has to match the other two arguments' size, so
649 * convert down if necessary.
650 */
651 if (bs[1] == 16) {
652 struct hash_entry *prev_entry =
653 _mesa_hash_table_search(ctx->sel_cond_conversions, src[0]);
654 if (prev_entry) {
655 cond = prev_entry->data;
656 } else {
657 cond = ir3_COV(b, cond, TYPE_U32, TYPE_U16);
658 _mesa_hash_table_insert(ctx->sel_cond_conversions, src[0], cond);
659 }
660 }
661
662 if (bs[1] != 16)
663 dst[0] = ir3_SEL_B32(b, src[1], 0, cond, 0, src[2], 0);
664 else
665 dst[0] = ir3_SEL_B16(b, src[1], 0, cond, 0, src[2], 0);
666 break;
667 }
668 case nir_op_bit_count: {
669 // TODO, we need to do this 16b at a time on a5xx+a6xx.. need to
670 // double check on earlier gen's. Once half-precision support is
671 // in place, this should probably move to a NIR lowering pass:
672 struct ir3_instruction *hi, *lo;
673
674 hi = ir3_COV(b, ir3_SHR_B(b, src[0], 0, create_immed(b, 16), 0),
675 TYPE_U32, TYPE_U16);
676 lo = ir3_COV(b, src[0], TYPE_U32, TYPE_U16);
677
678 hi = ir3_CBITS_B(b, hi, 0);
679 lo = ir3_CBITS_B(b, lo, 0);
680
681 // TODO maybe the builders should default to making dst half-precision
682 // if the src's were half precision, to make this less awkward.. otoh
683 // we should probably just do this lowering in NIR.
684 hi->regs[0]->flags |= IR3_REG_HALF;
685 lo->regs[0]->flags |= IR3_REG_HALF;
686
687 dst[0] = ir3_ADD_S(b, hi, 0, lo, 0);
688 dst[0]->regs[0]->flags |= IR3_REG_HALF;
689 dst[0] = ir3_COV(b, dst[0], TYPE_U16, TYPE_U32);
690 break;
691 }
692 case nir_op_ifind_msb: {
693 struct ir3_instruction *cmp;
694 dst[0] = ir3_CLZ_S(b, src[0], 0);
695 cmp = ir3_CMPS_S(b, dst[0], 0, create_immed(b, 0), 0);
696 cmp->cat2.condition = IR3_COND_GE;
697 dst[0] = ir3_SEL_B32(b,
698 ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
699 cmp, 0, dst[0], 0);
700 break;
701 }
702 case nir_op_ufind_msb:
703 dst[0] = ir3_CLZ_B(b, src[0], 0);
704 dst[0] = ir3_SEL_B32(b,
705 ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
706 src[0], 0, dst[0], 0);
707 break;
708 case nir_op_find_lsb:
709 dst[0] = ir3_BFREV_B(b, src[0], 0);
710 dst[0] = ir3_CLZ_B(b, dst[0], 0);
711 break;
712 case nir_op_bitfield_reverse:
713 dst[0] = ir3_BFREV_B(b, src[0], 0);
714 break;
715
716 default:
717 ir3_context_error(ctx, "Unhandled ALU op: %s\n",
718 nir_op_infos[alu->op].name);
719 break;
720 }
721
722 if (nir_alu_type_get_base_type(info->output_type) == nir_type_bool) {
723 assert(nir_dest_bit_size(alu->dest.dest) == 1 ||
724 alu->op == nir_op_b2b32);
725 assert(dst_sz == 1);
726 } else {
727 /* 1-bit values stored in 32-bit registers are only valid for certain
728 * ALU ops.
729 */
730 switch (alu->op) {
731 case nir_op_iand:
732 case nir_op_ior:
733 case nir_op_ixor:
734 case nir_op_inot:
735 case nir_op_bcsel:
736 break;
737 default:
738 compile_assert(ctx, nir_dest_bit_size(alu->dest.dest) != 1);
739 }
740 }
741
742 ir3_put_dst(ctx, &alu->dest.dest);
743 }
744
745 static void
746 emit_intrinsic_load_ubo_ldc(struct ir3_context *ctx, nir_intrinsic_instr *intr,
747 struct ir3_instruction **dst)
748 {
749 struct ir3_block *b = ctx->block;
750
751 unsigned ncomp = intr->num_components;
752 struct ir3_instruction *offset = ir3_get_src(ctx, &intr->src[1])[0];
753 struct ir3_instruction *idx = ir3_get_src(ctx, &intr->src[0])[0];
754 struct ir3_instruction *ldc = ir3_LDC(b, idx, 0, offset, 0);
755 ldc->regs[0]->wrmask = MASK(ncomp);
756 ldc->cat6.iim_val = ncomp;
757 ldc->cat6.d = nir_intrinsic_base(intr);
758 ldc->cat6.type = TYPE_U32;
759
760 ir3_handle_bindless_cat6(ldc, intr->src[0]);
761 if (ldc->flags & IR3_INSTR_B)
762 ctx->so->bindless_ubo = true;
763
764 ir3_split_dest(b, dst, ldc, 0, ncomp);
765 }
766
767
768 /* handles direct/indirect UBO reads: */
769 static void
770 emit_intrinsic_load_ubo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
771 struct ir3_instruction **dst)
772 {
773 struct ir3_block *b = ctx->block;
774 struct ir3_instruction *base_lo, *base_hi, *addr, *src0, *src1;
775 const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
776 unsigned ubo = regid(const_state->offsets.ubo, 0);
777 const unsigned ptrsz = ir3_pointer_size(ctx->compiler);
778
779 int off = 0;
780
781 /* First src is ubo index, which could either be an immed or not: */
782 src0 = ir3_get_src(ctx, &intr->src[0])[0];
783 if (is_same_type_mov(src0) &&
784 (src0->regs[1]->flags & IR3_REG_IMMED)) {
785 base_lo = create_uniform(b, ubo + (src0->regs[1]->iim_val * ptrsz));
786 base_hi = create_uniform(b, ubo + (src0->regs[1]->iim_val * ptrsz) + 1);
787 } else {
788 base_lo = create_uniform_indirect(b, ubo, ir3_get_addr0(ctx, src0, ptrsz));
789 base_hi = create_uniform_indirect(b, ubo + 1, ir3_get_addr0(ctx, src0, ptrsz));
790
791 /* NOTE: since relative addressing is used, make sure constlen is
792 * at least big enough to cover all the UBO addresses, since the
793 * assembler won't know what the max address reg is.
794 */
795 ctx->so->constlen = MAX2(ctx->so->constlen,
796 const_state->offsets.ubo + (ctx->s->info.num_ubos * ptrsz));
797 }
798
799 /* note: on 32bit gpu's base_hi is ignored and DCE'd */
800 addr = base_lo;
801
802 if (nir_src_is_const(intr->src[1])) {
803 off += nir_src_as_uint(intr->src[1]);
804 } else {
805 /* For load_ubo_indirect, second src is indirect offset: */
806 src1 = ir3_get_src(ctx, &intr->src[1])[0];
807
808 /* and add offset to addr: */
809 addr = ir3_ADD_S(b, addr, 0, src1, 0);
810 }
811
812 /* if offset is to large to encode in the ldg, split it out: */
813 if ((off + (intr->num_components * 4)) > 1024) {
814 /* split out the minimal amount to improve the odds that
815 * cp can fit the immediate in the add.s instruction:
816 */
817 unsigned off2 = off + (intr->num_components * 4) - 1024;
818 addr = ir3_ADD_S(b, addr, 0, create_immed(b, off2), 0);
819 off -= off2;
820 }
821
822 if (ptrsz == 2) {
823 struct ir3_instruction *carry;
824
825 /* handle 32b rollover, ie:
826 * if (addr < base_lo)
827 * base_hi++
828 */
829 carry = ir3_CMPS_U(b, addr, 0, base_lo, 0);
830 carry->cat2.condition = IR3_COND_LT;
831 base_hi = ir3_ADD_S(b, base_hi, 0, carry, 0);
832
833 addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){ addr, base_hi }, 2);
834 }
835
836 for (int i = 0; i < intr->num_components; i++) {
837 struct ir3_instruction *load =
838 ir3_LDG(b, addr, 0, create_immed(b, 1), 0, /* num components */
839 create_immed(b, off + i * 4), 0);
840 load->cat6.type = TYPE_U32;
841 dst[i] = load;
842 }
843 }
844
845 /* src[] = { block_index } */
846 static void
847 emit_intrinsic_ssbo_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
848 struct ir3_instruction **dst)
849 {
850 /* SSBO size stored as a const starting at ssbo_sizes: */
851 const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
852 unsigned blk_idx = nir_src_as_uint(intr->src[0]);
853 unsigned idx = regid(const_state->offsets.ssbo_sizes, 0) +
854 const_state->ssbo_size.off[blk_idx];
855
856 debug_assert(const_state->ssbo_size.mask & (1 << blk_idx));
857
858 dst[0] = create_uniform(ctx->block, idx);
859 }
860
861 /* src[] = { offset }. const_index[] = { base } */
862 static void
863 emit_intrinsic_load_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr,
864 struct ir3_instruction **dst)
865 {
866 struct ir3_block *b = ctx->block;
867 struct ir3_instruction *ldl, *offset;
868 unsigned base;
869
870 offset = ir3_get_src(ctx, &intr->src[0])[0];
871 base = nir_intrinsic_base(intr);
872
873 ldl = ir3_LDL(b, offset, 0,
874 create_immed(b, intr->num_components), 0,
875 create_immed(b, base), 0);
876
877 ldl->cat6.type = utype_dst(intr->dest);
878 ldl->regs[0]->wrmask = MASK(intr->num_components);
879
880 ldl->barrier_class = IR3_BARRIER_SHARED_R;
881 ldl->barrier_conflict = IR3_BARRIER_SHARED_W;
882
883 ir3_split_dest(b, dst, ldl, 0, intr->num_components);
884 }
885
886 /* src[] = { value, offset }. const_index[] = { base, write_mask } */
887 static void
888 emit_intrinsic_store_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
889 {
890 struct ir3_block *b = ctx->block;
891 struct ir3_instruction *stl, *offset;
892 struct ir3_instruction * const *value;
893 unsigned base, wrmask, ncomp;
894
895 value = ir3_get_src(ctx, &intr->src[0]);
896 offset = ir3_get_src(ctx, &intr->src[1])[0];
897
898 base = nir_intrinsic_base(intr);
899 wrmask = nir_intrinsic_write_mask(intr);
900 ncomp = ffs(~wrmask) - 1;
901
902 assert(wrmask == BITFIELD_MASK(intr->num_components));
903
904 stl = ir3_STL(b, offset, 0,
905 ir3_create_collect(ctx, value, ncomp), 0,
906 create_immed(b, ncomp), 0);
907 stl->cat6.dst_offset = base;
908 stl->cat6.type = utype_src(intr->src[0]);
909 stl->barrier_class = IR3_BARRIER_SHARED_W;
910 stl->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
911
912 array_insert(b, b->keeps, stl);
913 }
914
915 /* src[] = { offset }. const_index[] = { base } */
916 static void
917 emit_intrinsic_load_shared_ir3(struct ir3_context *ctx, nir_intrinsic_instr *intr,
918 struct ir3_instruction **dst)
919 {
920 struct ir3_block *b = ctx->block;
921 struct ir3_instruction *load, *offset;
922 unsigned base;
923
924 offset = ir3_get_src(ctx, &intr->src[0])[0];
925 base = nir_intrinsic_base(intr);
926
927 load = ir3_LDLW(b, offset, 0,
928 create_immed(b, intr->num_components), 0,
929 create_immed(b, base), 0);
930
931 load->cat6.type = utype_dst(intr->dest);
932 load->regs[0]->wrmask = MASK(intr->num_components);
933
934 load->barrier_class = IR3_BARRIER_SHARED_R;
935 load->barrier_conflict = IR3_BARRIER_SHARED_W;
936
937 ir3_split_dest(b, dst, load, 0, intr->num_components);
938 }
939
940 /* src[] = { value, offset }. const_index[] = { base } */
941 static void
942 emit_intrinsic_store_shared_ir3(struct ir3_context *ctx, nir_intrinsic_instr *intr)
943 {
944 struct ir3_block *b = ctx->block;
945 struct ir3_instruction *store, *offset;
946 struct ir3_instruction * const *value;
947
948 value = ir3_get_src(ctx, &intr->src[0]);
949 offset = ir3_get_src(ctx, &intr->src[1])[0];
950
951 store = ir3_STLW(b, offset, 0,
952 ir3_create_collect(ctx, value, intr->num_components), 0,
953 create_immed(b, intr->num_components), 0);
954
955 store->cat6.dst_offset = nir_intrinsic_base(intr);
956 store->cat6.type = utype_src(intr->src[0]);
957 store->barrier_class = IR3_BARRIER_SHARED_W;
958 store->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
959
960 array_insert(b, b->keeps, store);
961 }
962
963 /*
964 * CS shared variable atomic intrinsics
965 *
966 * All of the shared variable atomic memory operations read a value from
967 * memory, compute a new value using one of the operations below, write the
968 * new value to memory, and return the original value read.
969 *
970 * All operations take 2 sources except CompSwap that takes 3. These
971 * sources represent:
972 *
973 * 0: The offset into the shared variable storage region that the atomic
974 * operation will operate on.
975 * 1: The data parameter to the atomic function (i.e. the value to add
976 * in shared_atomic_add, etc).
977 * 2: For CompSwap only: the second data parameter.
978 */
979 static struct ir3_instruction *
980 emit_intrinsic_atomic_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
981 {
982 struct ir3_block *b = ctx->block;
983 struct ir3_instruction *atomic, *src0, *src1;
984 type_t type = TYPE_U32;
985
986 src0 = ir3_get_src(ctx, &intr->src[0])[0]; /* offset */
987 src1 = ir3_get_src(ctx, &intr->src[1])[0]; /* value */
988
989 switch (intr->intrinsic) {
990 case nir_intrinsic_shared_atomic_add:
991 atomic = ir3_ATOMIC_ADD(b, src0, 0, src1, 0);
992 break;
993 case nir_intrinsic_shared_atomic_imin:
994 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
995 type = TYPE_S32;
996 break;
997 case nir_intrinsic_shared_atomic_umin:
998 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
999 break;
1000 case nir_intrinsic_shared_atomic_imax:
1001 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1002 type = TYPE_S32;
1003 break;
1004 case nir_intrinsic_shared_atomic_umax:
1005 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1006 break;
1007 case nir_intrinsic_shared_atomic_and:
1008 atomic = ir3_ATOMIC_AND(b, src0, 0, src1, 0);
1009 break;
1010 case nir_intrinsic_shared_atomic_or:
1011 atomic = ir3_ATOMIC_OR(b, src0, 0, src1, 0);
1012 break;
1013 case nir_intrinsic_shared_atomic_xor:
1014 atomic = ir3_ATOMIC_XOR(b, src0, 0, src1, 0);
1015 break;
1016 case nir_intrinsic_shared_atomic_exchange:
1017 atomic = ir3_ATOMIC_XCHG(b, src0, 0, src1, 0);
1018 break;
1019 case nir_intrinsic_shared_atomic_comp_swap:
1020 /* for cmpxchg, src1 is [ui]vec2(data, compare): */
1021 src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1022 ir3_get_src(ctx, &intr->src[2])[0],
1023 src1,
1024 }, 2);
1025 atomic = ir3_ATOMIC_CMPXCHG(b, src0, 0, src1, 0);
1026 break;
1027 default:
1028 unreachable("boo");
1029 }
1030
1031 atomic->cat6.iim_val = 1;
1032 atomic->cat6.d = 1;
1033 atomic->cat6.type = type;
1034 atomic->barrier_class = IR3_BARRIER_SHARED_W;
1035 atomic->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1036
1037 /* even if nothing consume the result, we can't DCE the instruction: */
1038 array_insert(b, b->keeps, atomic);
1039
1040 return atomic;
1041 }
1042
1043 struct tex_src_info {
1044 /* For prefetch */
1045 unsigned tex_base, samp_base, tex_idx, samp_idx;
1046 /* For normal tex instructions */
1047 unsigned base, combined_idx, a1_val, flags;
1048 struct ir3_instruction *samp_tex;
1049 };
1050
1051 /* TODO handle actual indirect/dynamic case.. which is going to be weird
1052 * to handle with the image_mapping table..
1053 */
1054 static struct tex_src_info
1055 get_image_samp_tex_src(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1056 {
1057 struct ir3_block *b = ctx->block;
1058 struct tex_src_info info = { 0 };
1059 nir_intrinsic_instr *bindless_tex = ir3_bindless_resource(intr->src[0]);
1060 ctx->so->bindless_tex = true;
1061
1062 if (bindless_tex) {
1063 /* Bindless case */
1064 info.flags |= IR3_INSTR_B;
1065
1066 /* Gather information required to determine which encoding to
1067 * choose as well as for prefetch.
1068 */
1069 info.tex_base = nir_intrinsic_desc_set(bindless_tex);
1070 bool tex_const = nir_src_is_const(bindless_tex->src[0]);
1071 if (tex_const)
1072 info.tex_idx = nir_src_as_uint(bindless_tex->src[0]);
1073 info.samp_idx = 0;
1074
1075 /* Choose encoding. */
1076 if (tex_const && info.tex_idx < 256) {
1077 if (info.tex_idx < 16) {
1078 /* Everything fits within the instruction */
1079 info.base = info.tex_base;
1080 info.combined_idx = info.samp_idx | (info.tex_idx << 4);
1081 } else {
1082 info.base = info.tex_base;
1083 info.a1_val = info.tex_idx << 3;
1084 info.combined_idx = 0;
1085 info.flags |= IR3_INSTR_A1EN;
1086 }
1087 info.samp_tex = NULL;
1088 } else {
1089 info.flags |= IR3_INSTR_S2EN;
1090 info.base = info.tex_base;
1091
1092 /* Note: the indirect source is now a vec2 instead of hvec2 */
1093 struct ir3_instruction *texture, *sampler;
1094
1095 texture = ir3_get_src(ctx, &intr->src[0])[0];
1096 sampler = create_immed(b, 0);
1097 info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1098 texture,
1099 sampler,
1100 }, 2);
1101 }
1102 } else {
1103 info.flags |= IR3_INSTR_S2EN;
1104 unsigned slot = nir_src_as_uint(intr->src[0]);
1105 unsigned tex_idx = ir3_image_to_tex(&ctx->so->image_mapping, slot);
1106 struct ir3_instruction *texture, *sampler;
1107
1108 texture = create_immed_typed(ctx->block, tex_idx, TYPE_U16);
1109 sampler = create_immed_typed(ctx->block, tex_idx, TYPE_U16);
1110
1111 info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1112 sampler,
1113 texture,
1114 }, 2);
1115 }
1116
1117 return info;
1118 }
1119
1120 static struct ir3_instruction *
1121 emit_sam(struct ir3_context *ctx, opc_t opc, struct tex_src_info info,
1122 type_t type, unsigned wrmask, struct ir3_instruction *src0,
1123 struct ir3_instruction *src1)
1124 {
1125 struct ir3_instruction *sam, *addr;
1126 if (info.flags & IR3_INSTR_A1EN) {
1127 addr = ir3_get_addr1(ctx, info.a1_val);
1128 }
1129 sam = ir3_SAM(ctx->block, opc, type, 0b1111, info.flags,
1130 info.samp_tex, src0, src1);
1131 if (info.flags & IR3_INSTR_A1EN) {
1132 ir3_instr_set_address(sam, addr);
1133 }
1134 if (info.flags & IR3_INSTR_B) {
1135 sam->cat5.tex_base = info.base;
1136 sam->cat5.samp = info.combined_idx;
1137 }
1138 return sam;
1139 }
1140
1141 /* src[] = { deref, coord, sample_index }. const_index[] = {} */
1142 static void
1143 emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1144 struct ir3_instruction **dst)
1145 {
1146 struct ir3_block *b = ctx->block;
1147 struct tex_src_info info = get_image_samp_tex_src(ctx, intr);
1148 struct ir3_instruction *sam;
1149 struct ir3_instruction * const *src0 = ir3_get_src(ctx, &intr->src[1]);
1150 struct ir3_instruction *coords[4];
1151 unsigned flags, ncoords = ir3_get_image_coords(intr, &flags);
1152 type_t type = ir3_get_type_for_image_intrinsic(intr);
1153
1154 /* hmm, this seems a bit odd, but it is what blob does and (at least
1155 * a5xx) just faults on bogus addresses otherwise:
1156 */
1157 if (flags & IR3_INSTR_3D) {
1158 flags &= ~IR3_INSTR_3D;
1159 flags |= IR3_INSTR_A;
1160 }
1161 info.flags |= flags;
1162
1163 for (unsigned i = 0; i < ncoords; i++)
1164 coords[i] = src0[i];
1165
1166 if (ncoords == 1)
1167 coords[ncoords++] = create_immed(b, 0);
1168
1169 sam = emit_sam(ctx, OPC_ISAM, info, type, 0b1111,
1170 ir3_create_collect(ctx, coords, ncoords), NULL);
1171
1172 sam->barrier_class = IR3_BARRIER_IMAGE_R;
1173 sam->barrier_conflict = IR3_BARRIER_IMAGE_W;
1174
1175 ir3_split_dest(b, dst, sam, 0, 4);
1176 }
1177
1178 /* A4xx version of image_size, see ir3_a6xx.c for newer resinfo version. */
1179 void
1180 emit_intrinsic_image_size_tex(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1181 struct ir3_instruction **dst)
1182 {
1183 struct ir3_block *b = ctx->block;
1184 struct tex_src_info info = get_image_samp_tex_src(ctx, intr);
1185 struct ir3_instruction *sam, *lod;
1186 unsigned flags, ncoords = ir3_get_image_coords(intr, &flags);
1187 type_t dst_type = nir_dest_bit_size(intr->dest) == 16 ?
1188 TYPE_U16 : TYPE_U32;
1189
1190 info.flags |= flags;
1191 lod = create_immed(b, 0);
1192 sam = emit_sam(ctx, OPC_GETSIZE, info, dst_type, 0b1111, lod, NULL);
1193
1194 /* Array size actually ends up in .w rather than .z. This doesn't
1195 * matter for miplevel 0, but for higher mips the value in z is
1196 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
1197 * returned, which means that we have to add 1 to it for arrays for
1198 * a3xx.
1199 *
1200 * Note use a temporary dst and then copy, since the size of the dst
1201 * array that is passed in is based on nir's understanding of the
1202 * result size, not the hardware's
1203 */
1204 struct ir3_instruction *tmp[4];
1205
1206 ir3_split_dest(b, tmp, sam, 0, 4);
1207
1208 /* get_size instruction returns size in bytes instead of texels
1209 * for imageBuffer, so we need to divide it by the pixel size
1210 * of the image format.
1211 *
1212 * TODO: This is at least true on a5xx. Check other gens.
1213 */
1214 if (nir_intrinsic_image_dim(intr) == GLSL_SAMPLER_DIM_BUF) {
1215 /* Since all the possible values the divisor can take are
1216 * power-of-two (4, 8, or 16), the division is implemented
1217 * as a shift-right.
1218 * During shader setup, the log2 of the image format's
1219 * bytes-per-pixel should have been emitted in 2nd slot of
1220 * image_dims. See ir3_shader::emit_image_dims().
1221 */
1222 const struct ir3_const_state *const_state =
1223 ir3_const_state(ctx->so);
1224 unsigned cb = regid(const_state->offsets.image_dims, 0) +
1225 const_state->image_dims.off[nir_src_as_uint(intr->src[0])];
1226 struct ir3_instruction *aux = create_uniform(b, cb + 1);
1227
1228 tmp[0] = ir3_SHR_B(b, tmp[0], 0, aux, 0);
1229 }
1230
1231 for (unsigned i = 0; i < ncoords; i++)
1232 dst[i] = tmp[i];
1233
1234 if (flags & IR3_INSTR_A) {
1235 if (ctx->compiler->levels_add_one) {
1236 dst[ncoords-1] = ir3_ADD_U(b, tmp[3], 0, create_immed(b, 1), 0);
1237 } else {
1238 dst[ncoords-1] = ir3_MOV(b, tmp[3], TYPE_U32);
1239 }
1240 }
1241 }
1242
1243 static void
1244 emit_intrinsic_barrier(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1245 {
1246 struct ir3_block *b = ctx->block;
1247 struct ir3_instruction *barrier;
1248
1249 switch (intr->intrinsic) {
1250 case nir_intrinsic_control_barrier:
1251 barrier = ir3_BAR(b);
1252 barrier->cat7.g = true;
1253 barrier->cat7.l = true;
1254 barrier->flags = IR3_INSTR_SS | IR3_INSTR_SY;
1255 barrier->barrier_class = IR3_BARRIER_EVERYTHING;
1256 break;
1257 case nir_intrinsic_memory_barrier:
1258 barrier = ir3_FENCE(b);
1259 barrier->cat7.g = true;
1260 barrier->cat7.r = true;
1261 barrier->cat7.w = true;
1262 barrier->cat7.l = true;
1263 barrier->barrier_class = IR3_BARRIER_IMAGE_W |
1264 IR3_BARRIER_BUFFER_W;
1265 barrier->barrier_conflict =
1266 IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
1267 IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1268 break;
1269 case nir_intrinsic_memory_barrier_buffer:
1270 barrier = ir3_FENCE(b);
1271 barrier->cat7.g = true;
1272 barrier->cat7.r = true;
1273 barrier->cat7.w = true;
1274 barrier->barrier_class = IR3_BARRIER_BUFFER_W;
1275 barrier->barrier_conflict = IR3_BARRIER_BUFFER_R |
1276 IR3_BARRIER_BUFFER_W;
1277 break;
1278 case nir_intrinsic_memory_barrier_image:
1279 // TODO double check if this should have .g set
1280 barrier = ir3_FENCE(b);
1281 barrier->cat7.g = true;
1282 barrier->cat7.r = true;
1283 barrier->cat7.w = true;
1284 barrier->barrier_class = IR3_BARRIER_IMAGE_W;
1285 barrier->barrier_conflict = IR3_BARRIER_IMAGE_R |
1286 IR3_BARRIER_IMAGE_W;
1287 break;
1288 case nir_intrinsic_memory_barrier_shared:
1289 barrier = ir3_FENCE(b);
1290 barrier->cat7.g = true;
1291 barrier->cat7.l = true;
1292 barrier->cat7.r = true;
1293 barrier->cat7.w = true;
1294 barrier->barrier_class = IR3_BARRIER_SHARED_W;
1295 barrier->barrier_conflict = IR3_BARRIER_SHARED_R |
1296 IR3_BARRIER_SHARED_W;
1297 break;
1298 case nir_intrinsic_group_memory_barrier:
1299 barrier = ir3_FENCE(b);
1300 barrier->cat7.g = true;
1301 barrier->cat7.l = true;
1302 barrier->cat7.r = true;
1303 barrier->cat7.w = true;
1304 barrier->barrier_class = IR3_BARRIER_SHARED_W |
1305 IR3_BARRIER_IMAGE_W |
1306 IR3_BARRIER_BUFFER_W;
1307 barrier->barrier_conflict =
1308 IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W |
1309 IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
1310 IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1311 break;
1312 default:
1313 unreachable("boo");
1314 }
1315
1316 /* make sure barrier doesn't get DCE'd */
1317 array_insert(b, b->keeps, barrier);
1318 }
1319
1320 static void add_sysval_input_compmask(struct ir3_context *ctx,
1321 gl_system_value slot, unsigned compmask,
1322 struct ir3_instruction *instr)
1323 {
1324 struct ir3_shader_variant *so = ctx->so;
1325 unsigned n = so->inputs_count++;
1326
1327 assert(instr->opc == OPC_META_INPUT);
1328 instr->input.inidx = n;
1329 instr->input.sysval = slot;
1330
1331 so->inputs[n].sysval = true;
1332 so->inputs[n].slot = slot;
1333 so->inputs[n].compmask = compmask;
1334 so->inputs[n].interpolate = INTERP_MODE_FLAT;
1335 so->total_in++;
1336 }
1337
1338 static struct ir3_instruction *
1339 create_sysval_input(struct ir3_context *ctx, gl_system_value slot,
1340 unsigned compmask)
1341 {
1342 assert(compmask);
1343 struct ir3_instruction *sysval = create_input(ctx, compmask);
1344 add_sysval_input_compmask(ctx, slot, compmask, sysval);
1345 return sysval;
1346 }
1347
1348 static struct ir3_instruction *
1349 get_barycentric_centroid(struct ir3_context *ctx)
1350 {
1351 if (!ctx->ij_centroid) {
1352 struct ir3_instruction *xy[2];
1353 struct ir3_instruction *ij;
1354
1355 ij = create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID, 0x3);
1356 ir3_split_dest(ctx->block, xy, ij, 0, 2);
1357
1358 ctx->ij_centroid = ir3_create_collect(ctx, xy, 2);
1359 }
1360
1361 return ctx->ij_centroid;
1362 }
1363
1364 static struct ir3_instruction *
1365 get_barycentric_sample(struct ir3_context *ctx)
1366 {
1367 if (!ctx->ij_sample) {
1368 struct ir3_instruction *xy[2];
1369 struct ir3_instruction *ij;
1370
1371 ij = create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE, 0x3);
1372 ir3_split_dest(ctx->block, xy, ij, 0, 2);
1373
1374 ctx->ij_sample = ir3_create_collect(ctx, xy, 2);
1375 }
1376
1377 return ctx->ij_sample;
1378 }
1379
1380 static struct ir3_instruction *
1381 get_barycentric_pixel(struct ir3_context *ctx)
1382 {
1383 /* TODO when tgsi_to_nir supports "new-style" FS inputs switch
1384 * this to create ij_pixel only on demand:
1385 */
1386 return ctx->ij_pixel;
1387 }
1388
1389 static struct ir3_instruction *
1390 get_frag_coord(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1391 {
1392 if (!ctx->frag_coord) {
1393 struct ir3_block *b = ctx->in_block;
1394 struct ir3_instruction *xyzw[4];
1395 struct ir3_instruction *hw_frag_coord;
1396
1397 hw_frag_coord = create_sysval_input(ctx, SYSTEM_VALUE_FRAG_COORD, 0xf);
1398 ir3_split_dest(b, xyzw, hw_frag_coord, 0, 4);
1399
1400 /* for frag_coord.xy, we get unsigned values.. we need
1401 * to subtract (integer) 8 and divide by 16 (right-
1402 * shift by 4) then convert to float:
1403 *
1404 * sub.s tmp, src, 8
1405 * shr.b tmp, tmp, 4
1406 * mov.u32f32 dst, tmp
1407 *
1408 */
1409 for (int i = 0; i < 2; i++) {
1410 xyzw[i] = ir3_COV(b, xyzw[i], TYPE_U32, TYPE_F32);
1411 xyzw[i] = ir3_MUL_F(b, xyzw[i], 0, create_immed(b, fui(1.0 / 16.0)), 0);
1412 }
1413
1414 ctx->frag_coord = ir3_create_collect(ctx, xyzw, 4);
1415 }
1416
1417 ctx->so->fragcoord_compmask |=
1418 nir_ssa_def_components_read(&intr->dest.ssa);
1419
1420 return ctx->frag_coord;
1421 }
1422
1423 static void
1424 emit_intrinsic(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1425 {
1426 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1427 struct ir3_instruction **dst;
1428 struct ir3_instruction * const *src;
1429 struct ir3_block *b = ctx->block;
1430 unsigned dest_components = nir_intrinsic_dest_components(intr);
1431 int idx, comp;
1432
1433 if (info->has_dest) {
1434 dst = ir3_get_dst(ctx, &intr->dest, dest_components);
1435 } else {
1436 dst = NULL;
1437 }
1438
1439 const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
1440 const unsigned primitive_param = const_state->offsets.primitive_param * 4;
1441 const unsigned primitive_map = const_state->offsets.primitive_map * 4;
1442
1443 switch (intr->intrinsic) {
1444 case nir_intrinsic_load_uniform:
1445 idx = nir_intrinsic_base(intr);
1446 if (nir_src_is_const(intr->src[0])) {
1447 idx += nir_src_as_uint(intr->src[0]);
1448 for (int i = 0; i < dest_components; i++) {
1449 dst[i] = create_uniform_typed(b, idx + i,
1450 nir_dest_bit_size(intr->dest) == 16 ? TYPE_F16 : TYPE_F32);
1451 }
1452 } else {
1453 src = ir3_get_src(ctx, &intr->src[0]);
1454 for (int i = 0; i < dest_components; i++) {
1455 dst[i] = create_uniform_indirect(b, idx + i,
1456 ir3_get_addr0(ctx, src[0], 1));
1457 }
1458 /* NOTE: if relative addressing is used, we set
1459 * constlen in the compiler (to worst-case value)
1460 * since we don't know in the assembler what the max
1461 * addr reg value can be:
1462 */
1463 ctx->so->constlen = MAX2(ctx->so->constlen,
1464 const_state->ubo_state.size / 16);
1465 }
1466 break;
1467
1468 case nir_intrinsic_load_vs_primitive_stride_ir3:
1469 dst[0] = create_uniform(b, primitive_param + 0);
1470 break;
1471 case nir_intrinsic_load_vs_vertex_stride_ir3:
1472 dst[0] = create_uniform(b, primitive_param + 1);
1473 break;
1474 case nir_intrinsic_load_hs_patch_stride_ir3:
1475 dst[0] = create_uniform(b, primitive_param + 2);
1476 break;
1477 case nir_intrinsic_load_patch_vertices_in:
1478 dst[0] = create_uniform(b, primitive_param + 3);
1479 break;
1480 case nir_intrinsic_load_tess_param_base_ir3:
1481 dst[0] = create_uniform(b, primitive_param + 4);
1482 dst[1] = create_uniform(b, primitive_param + 5);
1483 break;
1484 case nir_intrinsic_load_tess_factor_base_ir3:
1485 dst[0] = create_uniform(b, primitive_param + 6);
1486 dst[1] = create_uniform(b, primitive_param + 7);
1487 break;
1488
1489 case nir_intrinsic_load_primitive_location_ir3:
1490 idx = nir_intrinsic_driver_location(intr);
1491 dst[0] = create_uniform(b, primitive_map + idx);
1492 break;
1493
1494 case nir_intrinsic_load_gs_header_ir3:
1495 dst[0] = ctx->gs_header;
1496 break;
1497 case nir_intrinsic_load_tcs_header_ir3:
1498 dst[0] = ctx->tcs_header;
1499 break;
1500
1501 case nir_intrinsic_load_primitive_id:
1502 dst[0] = ctx->primitive_id;
1503 break;
1504
1505 case nir_intrinsic_load_tess_coord:
1506 if (!ctx->tess_coord) {
1507 ctx->tess_coord =
1508 create_sysval_input(ctx, SYSTEM_VALUE_TESS_COORD, 0x3);
1509 }
1510 ir3_split_dest(b, dst, ctx->tess_coord, 0, 2);
1511
1512 /* Unused, but ir3_put_dst() below wants to free something */
1513 dst[2] = create_immed(b, 0);
1514 break;
1515
1516 case nir_intrinsic_end_patch_ir3:
1517 assert(ctx->so->type == MESA_SHADER_TESS_CTRL);
1518 struct ir3_instruction *end = ir3_PREDE(b);
1519 array_insert(b, b->keeps, end);
1520
1521 end->barrier_class = IR3_BARRIER_EVERYTHING;
1522 end->barrier_conflict = IR3_BARRIER_EVERYTHING;
1523 break;
1524
1525 case nir_intrinsic_store_global_ir3: {
1526 struct ir3_instruction *value, *addr, *offset;
1527 unsigned ncomp = nir_intrinsic_src_components(intr, 0);
1528
1529 addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1530 ir3_get_src(ctx, &intr->src[1])[0],
1531 ir3_get_src(ctx, &intr->src[1])[1]
1532 }, 2);
1533
1534 offset = ir3_get_src(ctx, &intr->src[2])[0];
1535
1536 value = ir3_create_collect(ctx, ir3_get_src(ctx, &intr->src[0]), ncomp);
1537
1538 struct ir3_instruction *stg =
1539 ir3_STG_G(ctx->block, addr, 0, value, 0,
1540 create_immed(ctx->block, ncomp), 0, offset, 0);
1541 stg->cat6.type = TYPE_U32;
1542 stg->cat6.iim_val = 1;
1543
1544 array_insert(b, b->keeps, stg);
1545
1546 stg->barrier_class = IR3_BARRIER_BUFFER_W;
1547 stg->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1548 break;
1549 }
1550
1551 case nir_intrinsic_load_global_ir3: {
1552 struct ir3_instruction *addr, *offset;
1553
1554 addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1555 ir3_get_src(ctx, &intr->src[0])[0],
1556 ir3_get_src(ctx, &intr->src[0])[1]
1557 }, 2);
1558
1559 offset = ir3_get_src(ctx, &intr->src[1])[0];
1560
1561 struct ir3_instruction *load =
1562 ir3_LDG(b, addr, 0, create_immed(ctx->block, dest_components),
1563 0, offset, 0);
1564 load->cat6.type = TYPE_U32;
1565 load->regs[0]->wrmask = MASK(dest_components);
1566
1567 load->barrier_class = IR3_BARRIER_BUFFER_R;
1568 load->barrier_conflict = IR3_BARRIER_BUFFER_W;
1569
1570 ir3_split_dest(b, dst, load, 0, dest_components);
1571 break;
1572 }
1573
1574 case nir_intrinsic_load_ubo:
1575 emit_intrinsic_load_ubo(ctx, intr, dst);
1576 break;
1577 case nir_intrinsic_load_ubo_ir3:
1578 emit_intrinsic_load_ubo_ldc(ctx, intr, dst);
1579 break;
1580 case nir_intrinsic_load_frag_coord:
1581 ir3_split_dest(b, dst, get_frag_coord(ctx, intr), 0, 4);
1582 break;
1583 case nir_intrinsic_load_sample_pos_from_id: {
1584 /* NOTE: blob seems to always use TYPE_F16 and then cov.f16f32,
1585 * but that doesn't seem necessary.
1586 */
1587 struct ir3_instruction *offset =
1588 ir3_RGETPOS(b, ir3_get_src(ctx, &intr->src[0])[0], 0);
1589 offset->regs[0]->wrmask = 0x3;
1590 offset->cat5.type = TYPE_F32;
1591
1592 ir3_split_dest(b, dst, offset, 0, 2);
1593
1594 break;
1595 }
1596 case nir_intrinsic_load_size_ir3:
1597 if (!ctx->ij_size) {
1598 ctx->ij_size =
1599 create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE, 0x1);
1600 }
1601 dst[0] = ctx->ij_size;
1602 break;
1603 case nir_intrinsic_load_barycentric_centroid:
1604 ir3_split_dest(b, dst, get_barycentric_centroid(ctx), 0, 2);
1605 break;
1606 case nir_intrinsic_load_barycentric_sample:
1607 if (ctx->so->key.msaa) {
1608 ir3_split_dest(b, dst, get_barycentric_sample(ctx), 0, 2);
1609 } else {
1610 ir3_split_dest(b, dst, get_barycentric_pixel(ctx), 0, 2);
1611 }
1612 break;
1613 case nir_intrinsic_load_barycentric_pixel:
1614 ir3_split_dest(b, dst, get_barycentric_pixel(ctx), 0, 2);
1615 break;
1616 case nir_intrinsic_load_interpolated_input:
1617 idx = nir_intrinsic_base(intr);
1618 comp = nir_intrinsic_component(intr);
1619 src = ir3_get_src(ctx, &intr->src[0]);
1620 if (nir_src_is_const(intr->src[1])) {
1621 struct ir3_instruction *coord = ir3_create_collect(ctx, src, 2);
1622 idx += nir_src_as_uint(intr->src[1]);
1623 for (int i = 0; i < dest_components; i++) {
1624 unsigned inloc = idx * 4 + i + comp;
1625 if (ctx->so->inputs[idx].bary &&
1626 !ctx->so->inputs[idx].use_ldlv) {
1627 dst[i] = ir3_BARY_F(b, create_immed(b, inloc), 0, coord, 0);
1628 } else {
1629 /* for non-varyings use the pre-setup input, since
1630 * that is easier than mapping things back to a
1631 * nir_variable to figure out what it is.
1632 */
1633 dst[i] = ctx->inputs[inloc];
1634 compile_assert(ctx, dst[i]);
1635 }
1636 }
1637 } else {
1638 ir3_context_error(ctx, "unhandled");
1639 }
1640 break;
1641 case nir_intrinsic_load_input:
1642 idx = nir_intrinsic_base(intr);
1643 comp = nir_intrinsic_component(intr);
1644 if (nir_src_is_const(intr->src[0])) {
1645 idx += nir_src_as_uint(intr->src[0]);
1646 for (int i = 0; i < dest_components; i++) {
1647 unsigned n = idx * 4 + i + comp;
1648 dst[i] = ctx->inputs[n];
1649 compile_assert(ctx, ctx->inputs[n]);
1650 }
1651 } else {
1652 src = ir3_get_src(ctx, &intr->src[0]);
1653 struct ir3_instruction *collect =
1654 ir3_create_collect(ctx, ctx->ir->inputs, ctx->ninputs);
1655 struct ir3_instruction *addr = ir3_get_addr0(ctx, src[0], 4);
1656 for (int i = 0; i < dest_components; i++) {
1657 unsigned n = idx * 4 + i + comp;
1658 dst[i] = create_indirect_load(ctx, ctx->ninputs,
1659 n, addr, collect);
1660 }
1661 }
1662 break;
1663 /* All SSBO intrinsics should have been lowered by 'lower_io_offsets'
1664 * pass and replaced by an ir3-specifc version that adds the
1665 * dword-offset in the last source.
1666 */
1667 case nir_intrinsic_load_ssbo_ir3:
1668 ctx->funcs->emit_intrinsic_load_ssbo(ctx, intr, dst);
1669 break;
1670 case nir_intrinsic_store_ssbo_ir3:
1671 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1672 !ctx->s->info.fs.early_fragment_tests)
1673 ctx->so->no_earlyz = true;
1674 ctx->funcs->emit_intrinsic_store_ssbo(ctx, intr);
1675 break;
1676 case nir_intrinsic_get_buffer_size:
1677 emit_intrinsic_ssbo_size(ctx, intr, dst);
1678 break;
1679 case nir_intrinsic_ssbo_atomic_add_ir3:
1680 case nir_intrinsic_ssbo_atomic_imin_ir3:
1681 case nir_intrinsic_ssbo_atomic_umin_ir3:
1682 case nir_intrinsic_ssbo_atomic_imax_ir3:
1683 case nir_intrinsic_ssbo_atomic_umax_ir3:
1684 case nir_intrinsic_ssbo_atomic_and_ir3:
1685 case nir_intrinsic_ssbo_atomic_or_ir3:
1686 case nir_intrinsic_ssbo_atomic_xor_ir3:
1687 case nir_intrinsic_ssbo_atomic_exchange_ir3:
1688 case nir_intrinsic_ssbo_atomic_comp_swap_ir3:
1689 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1690 !ctx->s->info.fs.early_fragment_tests)
1691 ctx->so->no_earlyz = true;
1692 dst[0] = ctx->funcs->emit_intrinsic_atomic_ssbo(ctx, intr);
1693 break;
1694 case nir_intrinsic_load_shared:
1695 emit_intrinsic_load_shared(ctx, intr, dst);
1696 break;
1697 case nir_intrinsic_store_shared:
1698 emit_intrinsic_store_shared(ctx, intr);
1699 break;
1700 case nir_intrinsic_shared_atomic_add:
1701 case nir_intrinsic_shared_atomic_imin:
1702 case nir_intrinsic_shared_atomic_umin:
1703 case nir_intrinsic_shared_atomic_imax:
1704 case nir_intrinsic_shared_atomic_umax:
1705 case nir_intrinsic_shared_atomic_and:
1706 case nir_intrinsic_shared_atomic_or:
1707 case nir_intrinsic_shared_atomic_xor:
1708 case nir_intrinsic_shared_atomic_exchange:
1709 case nir_intrinsic_shared_atomic_comp_swap:
1710 dst[0] = emit_intrinsic_atomic_shared(ctx, intr);
1711 break;
1712 case nir_intrinsic_image_load:
1713 emit_intrinsic_load_image(ctx, intr, dst);
1714 break;
1715 case nir_intrinsic_bindless_image_load:
1716 /* Bindless uses the IBO state, which doesn't have swizzle filled out,
1717 * so using isam doesn't work.
1718 *
1719 * TODO: can we use isam if we fill out more fields?
1720 */
1721 ctx->funcs->emit_intrinsic_load_image(ctx, intr, dst);
1722 break;
1723 case nir_intrinsic_image_store:
1724 case nir_intrinsic_bindless_image_store:
1725 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1726 !ctx->s->info.fs.early_fragment_tests)
1727 ctx->so->no_earlyz = true;
1728 ctx->funcs->emit_intrinsic_store_image(ctx, intr);
1729 break;
1730 case nir_intrinsic_image_size:
1731 case nir_intrinsic_bindless_image_size:
1732 ctx->funcs->emit_intrinsic_image_size(ctx, intr, dst);
1733 break;
1734 case nir_intrinsic_image_atomic_add:
1735 case nir_intrinsic_bindless_image_atomic_add:
1736 case nir_intrinsic_image_atomic_imin:
1737 case nir_intrinsic_bindless_image_atomic_imin:
1738 case nir_intrinsic_image_atomic_umin:
1739 case nir_intrinsic_bindless_image_atomic_umin:
1740 case nir_intrinsic_image_atomic_imax:
1741 case nir_intrinsic_bindless_image_atomic_imax:
1742 case nir_intrinsic_image_atomic_umax:
1743 case nir_intrinsic_bindless_image_atomic_umax:
1744 case nir_intrinsic_image_atomic_and:
1745 case nir_intrinsic_bindless_image_atomic_and:
1746 case nir_intrinsic_image_atomic_or:
1747 case nir_intrinsic_bindless_image_atomic_or:
1748 case nir_intrinsic_image_atomic_xor:
1749 case nir_intrinsic_bindless_image_atomic_xor:
1750 case nir_intrinsic_image_atomic_exchange:
1751 case nir_intrinsic_bindless_image_atomic_exchange:
1752 case nir_intrinsic_image_atomic_comp_swap:
1753 case nir_intrinsic_bindless_image_atomic_comp_swap:
1754 if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1755 !ctx->s->info.fs.early_fragment_tests)
1756 ctx->so->no_earlyz = true;
1757 dst[0] = ctx->funcs->emit_intrinsic_atomic_image(ctx, intr);
1758 break;
1759 case nir_intrinsic_control_barrier:
1760 case nir_intrinsic_memory_barrier:
1761 case nir_intrinsic_group_memory_barrier:
1762 case nir_intrinsic_memory_barrier_buffer:
1763 case nir_intrinsic_memory_barrier_image:
1764 case nir_intrinsic_memory_barrier_shared:
1765 emit_intrinsic_barrier(ctx, intr);
1766 /* note that blk ptr no longer valid, make that obvious: */
1767 b = NULL;
1768 break;
1769 case nir_intrinsic_store_output:
1770 idx = nir_intrinsic_base(intr);
1771 comp = nir_intrinsic_component(intr);
1772 compile_assert(ctx, nir_src_is_const(intr->src[1]));
1773 idx += nir_src_as_uint(intr->src[1]);
1774
1775 src = ir3_get_src(ctx, &intr->src[0]);
1776 for (int i = 0; i < nir_intrinsic_src_components(intr, 0); i++) {
1777 unsigned n = idx * 4 + i + comp;
1778 ctx->outputs[n] = src[i];
1779 }
1780 break;
1781 case nir_intrinsic_load_base_vertex:
1782 case nir_intrinsic_load_first_vertex:
1783 if (!ctx->basevertex) {
1784 ctx->basevertex = create_driver_param(ctx, IR3_DP_VTXID_BASE);
1785 }
1786 dst[0] = ctx->basevertex;
1787 break;
1788 case nir_intrinsic_load_base_instance:
1789 if (!ctx->base_instance) {
1790 ctx->base_instance = create_driver_param(ctx, IR3_DP_INSTID_BASE);
1791 }
1792 dst[0] = ctx->base_instance;
1793 break;
1794 case nir_intrinsic_load_vertex_id_zero_base:
1795 case nir_intrinsic_load_vertex_id:
1796 if (!ctx->vertex_id) {
1797 gl_system_value sv = (intr->intrinsic == nir_intrinsic_load_vertex_id) ?
1798 SYSTEM_VALUE_VERTEX_ID : SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
1799 ctx->vertex_id = create_sysval_input(ctx, sv, 0x1);
1800 }
1801 dst[0] = ctx->vertex_id;
1802 break;
1803 case nir_intrinsic_load_instance_id:
1804 if (!ctx->instance_id) {
1805 ctx->instance_id = create_sysval_input(ctx, SYSTEM_VALUE_INSTANCE_ID, 0x1);
1806 }
1807 dst[0] = ctx->instance_id;
1808 break;
1809 case nir_intrinsic_load_sample_id:
1810 ctx->so->per_samp = true;
1811 /* fall-thru */
1812 case nir_intrinsic_load_sample_id_no_per_sample:
1813 if (!ctx->samp_id) {
1814 ctx->samp_id = create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_ID, 0x1);
1815 ctx->samp_id->regs[0]->flags |= IR3_REG_HALF;
1816 }
1817 dst[0] = ir3_COV(b, ctx->samp_id, TYPE_U16, TYPE_U32);
1818 break;
1819 case nir_intrinsic_load_sample_mask_in:
1820 if (!ctx->samp_mask_in) {
1821 ctx->samp_mask_in = create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_MASK_IN, 0x1);
1822 }
1823 dst[0] = ctx->samp_mask_in;
1824 break;
1825 case nir_intrinsic_load_user_clip_plane:
1826 idx = nir_intrinsic_ucp_id(intr);
1827 for (int i = 0; i < dest_components; i++) {
1828 unsigned n = idx * 4 + i;
1829 dst[i] = create_driver_param(ctx, IR3_DP_UCP0_X + n);
1830 }
1831 break;
1832 case nir_intrinsic_load_front_face:
1833 if (!ctx->frag_face) {
1834 ctx->so->frag_face = true;
1835 ctx->frag_face = create_sysval_input(ctx, SYSTEM_VALUE_FRONT_FACE, 0x1);
1836 ctx->frag_face->regs[0]->flags |= IR3_REG_HALF;
1837 }
1838 /* for fragface, we get -1 for back and 0 for front. However this is
1839 * the inverse of what nir expects (where ~0 is true).
1840 */
1841 dst[0] = ir3_CMPS_S(b,
1842 ctx->frag_face, 0,
1843 create_immed_typed(b, 0, TYPE_U16), 0);
1844 dst[0]->cat2.condition = IR3_COND_EQ;
1845 break;
1846 case nir_intrinsic_load_local_invocation_id:
1847 if (!ctx->local_invocation_id) {
1848 ctx->local_invocation_id =
1849 create_sysval_input(ctx, SYSTEM_VALUE_LOCAL_INVOCATION_ID, 0x7);
1850 }
1851 ir3_split_dest(b, dst, ctx->local_invocation_id, 0, 3);
1852 break;
1853 case nir_intrinsic_load_work_group_id:
1854 if (!ctx->work_group_id) {
1855 ctx->work_group_id =
1856 create_sysval_input(ctx, SYSTEM_VALUE_WORK_GROUP_ID, 0x7);
1857 ctx->work_group_id->regs[0]->flags |= IR3_REG_HIGH;
1858 }
1859 ir3_split_dest(b, dst, ctx->work_group_id, 0, 3);
1860 break;
1861 case nir_intrinsic_load_num_work_groups:
1862 for (int i = 0; i < dest_components; i++) {
1863 dst[i] = create_driver_param(ctx, IR3_DP_NUM_WORK_GROUPS_X + i);
1864 }
1865 break;
1866 case nir_intrinsic_load_local_group_size:
1867 for (int i = 0; i < dest_components; i++) {
1868 dst[i] = create_driver_param(ctx, IR3_DP_LOCAL_GROUP_SIZE_X + i);
1869 }
1870 break;
1871 case nir_intrinsic_discard_if:
1872 case nir_intrinsic_discard: {
1873 struct ir3_instruction *cond, *kill;
1874
1875 if (intr->intrinsic == nir_intrinsic_discard_if) {
1876 /* conditional discard: */
1877 src = ir3_get_src(ctx, &intr->src[0]);
1878 cond = src[0];
1879 } else {
1880 /* unconditional discard: */
1881 cond = create_immed(b, 1);
1882 }
1883
1884 /* NOTE: only cmps.*.* can write p0.x: */
1885 cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
1886 cond->cat2.condition = IR3_COND_NE;
1887
1888 /* condition always goes in predicate register: */
1889 cond->regs[0]->num = regid(REG_P0, 0);
1890 cond->regs[0]->flags &= ~IR3_REG_SSA;
1891
1892 kill = ir3_KILL(b, cond, 0);
1893 kill->regs[1]->num = regid(REG_P0, 0);
1894 array_insert(ctx->ir, ctx->ir->predicates, kill);
1895
1896 array_insert(b, b->keeps, kill);
1897 ctx->so->has_kill = true;
1898
1899 break;
1900 }
1901
1902 case nir_intrinsic_cond_end_ir3: {
1903 struct ir3_instruction *cond, *kill;
1904
1905 src = ir3_get_src(ctx, &intr->src[0]);
1906 cond = src[0];
1907
1908 /* NOTE: only cmps.*.* can write p0.x: */
1909 cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
1910 cond->cat2.condition = IR3_COND_NE;
1911
1912 /* condition always goes in predicate register: */
1913 cond->regs[0]->num = regid(REG_P0, 0);
1914
1915 kill = ir3_PREDT(b, cond, 0);
1916
1917 kill->barrier_class = IR3_BARRIER_EVERYTHING;
1918 kill->barrier_conflict = IR3_BARRIER_EVERYTHING;
1919
1920 array_insert(ctx->ir, ctx->ir->predicates, kill);
1921 array_insert(b, b->keeps, kill);
1922 break;
1923 }
1924
1925 case nir_intrinsic_load_shared_ir3:
1926 emit_intrinsic_load_shared_ir3(ctx, intr, dst);
1927 break;
1928 case nir_intrinsic_store_shared_ir3:
1929 emit_intrinsic_store_shared_ir3(ctx, intr);
1930 break;
1931 case nir_intrinsic_bindless_resource_ir3:
1932 dst[0] = ir3_get_src(ctx, &intr->src[0])[0];
1933 break;
1934 default:
1935 ir3_context_error(ctx, "Unhandled intrinsic type: %s\n",
1936 nir_intrinsic_infos[intr->intrinsic].name);
1937 break;
1938 }
1939
1940 if (info->has_dest)
1941 ir3_put_dst(ctx, &intr->dest);
1942 }
1943
1944 static void
1945 emit_load_const(struct ir3_context *ctx, nir_load_const_instr *instr)
1946 {
1947 struct ir3_instruction **dst = ir3_get_dst_ssa(ctx, &instr->def,
1948 instr->def.num_components);
1949
1950 if (instr->def.bit_size == 16) {
1951 for (int i = 0; i < instr->def.num_components; i++)
1952 dst[i] = create_immed_typed(ctx->block,
1953 instr->value[i].u16,
1954 TYPE_U16);
1955 } else {
1956 for (int i = 0; i < instr->def.num_components; i++)
1957 dst[i] = create_immed_typed(ctx->block,
1958 instr->value[i].u32,
1959 TYPE_U32);
1960 }
1961
1962 }
1963
1964 static void
1965 emit_undef(struct ir3_context *ctx, nir_ssa_undef_instr *undef)
1966 {
1967 struct ir3_instruction **dst = ir3_get_dst_ssa(ctx, &undef->def,
1968 undef->def.num_components);
1969 type_t type = (undef->def.bit_size == 16) ? TYPE_U16 : TYPE_U32;
1970
1971 /* backend doesn't want undefined instructions, so just plug
1972 * in 0.0..
1973 */
1974 for (int i = 0; i < undef->def.num_components; i++)
1975 dst[i] = create_immed_typed(ctx->block, fui(0.0), type);
1976 }
1977
1978 /*
1979 * texture fetch/sample instructions:
1980 */
1981
1982 static type_t
1983 get_tex_dest_type(nir_tex_instr *tex)
1984 {
1985 type_t type;
1986
1987 switch (nir_alu_type_get_base_type(tex->dest_type)) {
1988 case nir_type_invalid:
1989 case nir_type_float:
1990 type = nir_dest_bit_size(tex->dest) == 16 ? TYPE_F16 : TYPE_F32;
1991 break;
1992 case nir_type_int:
1993 type = nir_dest_bit_size(tex->dest) == 16 ? TYPE_S16 : TYPE_S32;
1994 break;
1995 case nir_type_uint:
1996 case nir_type_bool:
1997 type = nir_dest_bit_size(tex->dest) == 16 ? TYPE_U16 : TYPE_U32;
1998 break;
1999 default:
2000 unreachable("bad dest_type");
2001 }
2002
2003 return type;
2004 }
2005
2006 static void
2007 tex_info(nir_tex_instr *tex, unsigned *flagsp, unsigned *coordsp)
2008 {
2009 unsigned coords = glsl_get_sampler_dim_coordinate_components(tex->sampler_dim);
2010 unsigned flags = 0;
2011
2012 /* note: would use tex->coord_components.. except txs.. also,
2013 * since array index goes after shadow ref, we don't want to
2014 * count it:
2015 */
2016 if (coords == 3)
2017 flags |= IR3_INSTR_3D;
2018
2019 if (tex->is_shadow && tex->op != nir_texop_lod)
2020 flags |= IR3_INSTR_S;
2021
2022 if (tex->is_array && tex->op != nir_texop_lod)
2023 flags |= IR3_INSTR_A;
2024
2025 *flagsp = flags;
2026 *coordsp = coords;
2027 }
2028
2029 /* Gets the sampler/texture idx as a hvec2. Which could either be dynamic
2030 * or immediate (in which case it will get lowered later to a non .s2en
2031 * version of the tex instruction which encode tex/samp as immediates:
2032 */
2033 static struct tex_src_info
2034 get_tex_samp_tex_src(struct ir3_context *ctx, nir_tex_instr *tex)
2035 {
2036 struct ir3_block *b = ctx->block;
2037 struct tex_src_info info = { 0 };
2038 int texture_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_handle);
2039 int sampler_idx = nir_tex_instr_src_index(tex, nir_tex_src_sampler_handle);
2040 struct ir3_instruction *texture, *sampler;
2041
2042 if (texture_idx >= 0 || sampler_idx >= 0) {
2043 /* Bindless case */
2044 info.flags |= IR3_INSTR_B;
2045
2046 /* Gather information required to determine which encoding to
2047 * choose as well as for prefetch.
2048 */
2049 nir_intrinsic_instr *bindless_tex = NULL;
2050 bool tex_const;
2051 if (texture_idx >= 0) {
2052 ctx->so->bindless_tex = true;
2053 bindless_tex = ir3_bindless_resource(tex->src[texture_idx].src);
2054 assert(bindless_tex);
2055 info.tex_base = nir_intrinsic_desc_set(bindless_tex);
2056 tex_const = nir_src_is_const(bindless_tex->src[0]);
2057 if (tex_const)
2058 info.tex_idx = nir_src_as_uint(bindless_tex->src[0]);
2059 } else {
2060 /* To simplify some of the logic below, assume the index is
2061 * constant 0 when it's not enabled.
2062 */
2063 tex_const = true;
2064 info.tex_idx = 0;
2065 }
2066 nir_intrinsic_instr *bindless_samp = NULL;
2067 bool samp_const;
2068 if (sampler_idx >= 0) {
2069 ctx->so->bindless_samp = true;
2070 bindless_samp = ir3_bindless_resource(tex->src[sampler_idx].src);
2071 assert(bindless_samp);
2072 info.samp_base = nir_intrinsic_desc_set(bindless_samp);
2073 samp_const = nir_src_is_const(bindless_samp->src[0]);
2074 if (samp_const)
2075 info.samp_idx = nir_src_as_uint(bindless_samp->src[0]);
2076 } else {
2077 samp_const = true;
2078 info.samp_idx = 0;
2079 }
2080
2081 /* Choose encoding. */
2082 if (tex_const && samp_const && info.tex_idx < 256 && info.samp_idx < 256) {
2083 if (info.tex_idx < 16 && info.samp_idx < 16 &&
2084 (!bindless_tex || !bindless_samp || info.tex_base == info.samp_base)) {
2085 /* Everything fits within the instruction */
2086 info.base = info.tex_base;
2087 info.combined_idx = info.samp_idx | (info.tex_idx << 4);
2088 } else {
2089 info.base = info.tex_base;
2090 info.a1_val = info.tex_idx << 3 | info.samp_base;
2091 info.combined_idx = info.samp_idx;
2092 info.flags |= IR3_INSTR_A1EN;
2093 }
2094 info.samp_tex = NULL;
2095 } else {
2096 info.flags |= IR3_INSTR_S2EN;
2097 /* In the indirect case, we only use a1.x to store the sampler
2098 * base if it differs from the texture base.
2099 */
2100 if (!bindless_tex || !bindless_samp || info.tex_base == info.samp_base) {
2101 info.base = info.tex_base;
2102 } else {
2103 info.base = info.tex_base;
2104 info.a1_val = info.samp_base;
2105 info.flags |= IR3_INSTR_A1EN;
2106 }
2107
2108 /* Note: the indirect source is now a vec2 instead of hvec2, and
2109 * for some reason the texture and sampler are swapped.
2110 */
2111 struct ir3_instruction *texture, *sampler;
2112
2113 if (bindless_tex) {
2114 texture = ir3_get_src(ctx, &tex->src[texture_idx].src)[0];
2115 } else {
2116 texture = create_immed(b, 0);
2117 }
2118
2119 if (bindless_samp) {
2120 sampler = ir3_get_src(ctx, &tex->src[sampler_idx].src)[0];
2121 } else {
2122 sampler = create_immed(b, 0);
2123 }
2124 info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
2125 texture,
2126 sampler,
2127 }, 2);
2128 }
2129 } else {
2130 info.flags |= IR3_INSTR_S2EN;
2131 texture_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_offset);
2132 sampler_idx = nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset);
2133 if (texture_idx >= 0) {
2134 texture = ir3_get_src(ctx, &tex->src[texture_idx].src)[0];
2135 texture = ir3_COV(ctx->block, texture, TYPE_U32, TYPE_U16);
2136 } else {
2137 /* TODO what to do for dynamic case? I guess we only need the
2138 * max index for astc srgb workaround so maybe not a problem
2139 * to worry about if we don't enable indirect samplers for
2140 * a4xx?
2141 */
2142 ctx->max_texture_index = MAX2(ctx->max_texture_index, tex->texture_index);
2143 texture = create_immed_typed(ctx->block, tex->texture_index, TYPE_U16);
2144 info.tex_idx = tex->texture_index;
2145 }
2146
2147 if (sampler_idx >= 0) {
2148 sampler = ir3_get_src(ctx, &tex->src[sampler_idx].src)[0];
2149 sampler = ir3_COV(ctx->block, sampler, TYPE_U32, TYPE_U16);
2150 } else {
2151 sampler = create_immed_typed(ctx->block, tex->sampler_index, TYPE_U16);
2152 info.samp_idx = tex->texture_index;
2153 }
2154
2155 info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
2156 sampler,
2157 texture,
2158 }, 2);
2159 }
2160
2161 return info;
2162 }
2163
2164 static void
2165 emit_tex(struct ir3_context *ctx, nir_tex_instr *tex)
2166 {
2167 struct ir3_block *b = ctx->block;
2168 struct ir3_instruction **dst, *sam, *src0[12], *src1[4];
2169 struct ir3_instruction * const *coord, * const *off, * const *ddx, * const *ddy;
2170 struct ir3_instruction *lod, *compare, *proj, *sample_index;
2171 struct tex_src_info info = { 0 };
2172 bool has_bias = false, has_lod = false, has_proj = false, has_off = false;
2173 unsigned i, coords, flags, ncomp;
2174 unsigned nsrc0 = 0, nsrc1 = 0;
2175 type_t type;
2176 opc_t opc = 0;
2177
2178 ncomp = nir_dest_num_components(tex->dest);
2179
2180 coord = off = ddx = ddy = NULL;
2181 lod = proj = compare = sample_index = NULL;
2182
2183 dst = ir3_get_dst(ctx, &tex->dest, ncomp);
2184
2185 for (unsigned i = 0; i < tex->num_srcs; i++) {
2186 switch (tex->src[i].src_type) {
2187 case nir_tex_src_coord:
2188 coord = ir3_get_src(ctx, &tex->src[i].src);
2189 break;
2190 case nir_tex_src_bias:
2191 lod = ir3_get_src(ctx, &tex->src[i].src)[0];
2192 has_bias = true;
2193 break;
2194 case nir_tex_src_lod:
2195 lod = ir3_get_src(ctx, &tex->src[i].src)[0];
2196 has_lod = true;
2197 break;
2198 case nir_tex_src_comparator: /* shadow comparator */
2199 compare = ir3_get_src(ctx, &tex->src[i].src)[0];
2200 break;
2201 case nir_tex_src_projector:
2202 proj = ir3_get_src(ctx, &tex->src[i].src)[0];
2203 has_proj = true;
2204 break;
2205 case nir_tex_src_offset:
2206 off = ir3_get_src(ctx, &tex->src[i].src);
2207 has_off = true;
2208 break;
2209 case nir_tex_src_ddx:
2210 ddx = ir3_get_src(ctx, &tex->src[i].src);
2211 break;
2212 case nir_tex_src_ddy:
2213 ddy = ir3_get_src(ctx, &tex->src[i].src);
2214 break;
2215 case nir_tex_src_ms_index:
2216 sample_index = ir3_get_src(ctx, &tex->src[i].src)[0];
2217 break;
2218 case nir_tex_src_texture_offset:
2219 case nir_tex_src_sampler_offset:
2220 case nir_tex_src_texture_handle:
2221 case nir_tex_src_sampler_handle:
2222 /* handled in get_tex_samp_src() */
2223 break;
2224 default:
2225 ir3_context_error(ctx, "Unhandled NIR tex src type: %d\n",
2226 tex->src[i].src_type);
2227 return;
2228 }
2229 }
2230
2231 switch (tex->op) {
2232 case nir_texop_tex_prefetch:
2233 compile_assert(ctx, !has_bias);
2234 compile_assert(ctx, !has_lod);
2235 compile_assert(ctx, !compare);
2236 compile_assert(ctx, !has_proj);
2237 compile_assert(ctx, !has_off);
2238 compile_assert(ctx, !ddx);
2239 compile_assert(ctx, !ddy);
2240 compile_assert(ctx, !sample_index);
2241 compile_assert(ctx, nir_tex_instr_src_index(tex, nir_tex_src_texture_offset) < 0);
2242 compile_assert(ctx, nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset) < 0);
2243
2244 if (ctx->so->num_sampler_prefetch < ctx->prefetch_limit) {
2245 opc = OPC_META_TEX_PREFETCH;
2246 ctx->so->num_sampler_prefetch++;
2247 break;
2248 }
2249 /* fallthru */
2250 case nir_texop_tex: opc = has_lod ? OPC_SAML : OPC_SAM; break;
2251 case nir_texop_txb: opc = OPC_SAMB; break;
2252 case nir_texop_txl: opc = OPC_SAML; break;
2253 case nir_texop_txd: opc = OPC_SAMGQ; break;
2254 case nir_texop_txf: opc = OPC_ISAML; break;
2255 case nir_texop_lod: opc = OPC_GETLOD; break;
2256 case nir_texop_tg4:
2257 /* NOTE: a4xx might need to emulate gather w/ txf (this is
2258 * what blob does, seems gather is broken?), and a3xx did
2259 * not support it (but probably could also emulate).
2260 */
2261 switch (tex->component) {
2262 case 0: opc = OPC_GATHER4R; break;
2263 case 1: opc = OPC_GATHER4G; break;
2264 case 2: opc = OPC_GATHER4B; break;
2265 case 3: opc = OPC_GATHER4A; break;
2266 }
2267 break;
2268 case nir_texop_txf_ms_fb:
2269 case nir_texop_txf_ms: opc = OPC_ISAMM; break;
2270 default:
2271 ir3_context_error(ctx, "Unhandled NIR tex type: %d\n", tex->op);
2272 return;
2273 }
2274
2275 tex_info(tex, &flags, &coords);
2276
2277 /*
2278 * lay out the first argument in the proper order:
2279 * - actual coordinates first
2280 * - shadow reference
2281 * - array index
2282 * - projection w
2283 * - starting at offset 4, dpdx.xy, dpdy.xy
2284 *
2285 * bias/lod go into the second arg
2286 */
2287
2288 /* insert tex coords: */
2289 for (i = 0; i < coords; i++)
2290 src0[i] = coord[i];
2291
2292 nsrc0 = i;
2293
2294 /* scale up integer coords for TXF based on the LOD */
2295 if (ctx->compiler->unminify_coords && (opc == OPC_ISAML)) {
2296 assert(has_lod);
2297 for (i = 0; i < coords; i++)
2298 src0[i] = ir3_SHL_B(b, src0[i], 0, lod, 0);
2299 }
2300
2301 if (coords == 1) {
2302 /* hw doesn't do 1d, so we treat it as 2d with
2303 * height of 1, and patch up the y coord.
2304 */
2305 if (is_isam(opc)) {
2306 src0[nsrc0++] = create_immed(b, 0);
2307 } else {
2308 src0[nsrc0++] = create_immed(b, fui(0.5));
2309 }
2310 }
2311
2312 if (tex->is_shadow && tex->op != nir_texop_lod)
2313 src0[nsrc0++] = compare;
2314
2315 if (tex->is_array && tex->op != nir_texop_lod) {
2316 struct ir3_instruction *idx = coord[coords];
2317
2318 /* the array coord for cube arrays needs 0.5 added to it */
2319 if (ctx->compiler->array_index_add_half && !is_isam(opc))
2320 idx = ir3_ADD_F(b, idx, 0, create_immed(b, fui(0.5)), 0);
2321
2322 src0[nsrc0++] = idx;
2323 }
2324
2325 if (has_proj) {
2326 src0[nsrc0++] = proj;
2327 flags |= IR3_INSTR_P;
2328 }
2329
2330 /* pad to 4, then ddx/ddy: */
2331 if (tex->op == nir_texop_txd) {
2332 while (nsrc0 < 4)
2333 src0[nsrc0++] = create_immed(b, fui(0.0));
2334 for (i = 0; i < coords; i++)
2335 src0[nsrc0++] = ddx[i];
2336 if (coords < 2)
2337 src0[nsrc0++] = create_immed(b, fui(0.0));
2338 for (i = 0; i < coords; i++)
2339 src0[nsrc0++] = ddy[i];
2340 if (coords < 2)
2341 src0[nsrc0++] = create_immed(b, fui(0.0));
2342 }
2343
2344 /* NOTE a3xx (and possibly a4xx?) might be different, using isaml
2345 * with scaled x coord according to requested sample:
2346 */
2347 if (opc == OPC_ISAMM) {
2348 if (ctx->compiler->txf_ms_with_isaml) {
2349 /* the samples are laid out in x dimension as
2350 * 0 1 2 3
2351 * x_ms = (x << ms) + sample_index;
2352 */
2353 struct ir3_instruction *ms;
2354 ms = create_immed(b, (ctx->samples >> (2 * tex->texture_index)) & 3);
2355
2356 src0[0] = ir3_SHL_B(b, src0[0], 0, ms, 0);
2357 src0[0] = ir3_ADD_U(b, src0[0], 0, sample_index, 0);
2358
2359 opc = OPC_ISAML;
2360 } else {
2361 src0[nsrc0++] = sample_index;
2362 }
2363 }
2364
2365 /*
2366 * second argument (if applicable):
2367 * - offsets
2368 * - lod
2369 * - bias
2370 */
2371 if (has_off | has_lod | has_bias) {
2372 if (has_off) {
2373 unsigned off_coords = coords;
2374 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2375 off_coords--;
2376 for (i = 0; i < off_coords; i++)
2377 src1[nsrc1++] = off[i];
2378 if (off_coords < 2)
2379 src1[nsrc1++] = create_immed(b, fui(0.0));
2380 flags |= IR3_INSTR_O;
2381 }
2382
2383 if (has_lod | has_bias)
2384 src1[nsrc1++] = lod;
2385 }
2386
2387 type = get_tex_dest_type(tex);
2388
2389 if (opc == OPC_GETLOD)
2390 type = TYPE_S32;
2391
2392
2393 if (tex->op == nir_texop_txf_ms_fb) {
2394 /* only expect a single txf_ms_fb per shader: */
2395 compile_assert(ctx, !ctx->so->fb_read);
2396 compile_assert(ctx, ctx->so->type == MESA_SHADER_FRAGMENT);
2397
2398 ctx->so->fb_read = true;
2399 info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
2400 create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16),
2401 create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16),
2402 }, 2);
2403 info.flags = IR3_INSTR_S2EN;
2404
2405 ctx->so->num_samp++;
2406 } else {
2407 info = get_tex_samp_tex_src(ctx, tex);
2408 }
2409
2410 struct ir3_instruction *col0 = ir3_create_collect(ctx, src0, nsrc0);
2411 struct ir3_instruction *col1 = ir3_create_collect(ctx, src1, nsrc1);
2412
2413 if (opc == OPC_META_TEX_PREFETCH) {
2414 int idx = nir_tex_instr_src_index(tex, nir_tex_src_coord);
2415
2416 compile_assert(ctx, tex->src[idx].src.is_ssa);
2417
2418 sam = ir3_META_TEX_PREFETCH(b);
2419 __ssa_dst(sam)->wrmask = MASK(ncomp); /* dst */
2420 __ssa_src(sam, get_barycentric_pixel(ctx), 0);
2421 sam->prefetch.input_offset =
2422 ir3_nir_coord_offset(tex->src[idx].src.ssa);
2423 /* make sure not to add irrelevant flags like S2EN */
2424 sam->flags = flags | (info.flags & IR3_INSTR_B);
2425 sam->prefetch.tex = info.tex_idx;
2426 sam->prefetch.samp = info.samp_idx;
2427 sam->prefetch.tex_base = info.tex_base;
2428 sam->prefetch.samp_base = info.samp_base;
2429 } else {
2430 info.flags |= flags;
2431 sam = emit_sam(ctx, opc, info, type, MASK(ncomp), col0, col1);
2432 }
2433
2434 if ((ctx->astc_srgb & (1 << tex->texture_index)) && !nir_tex_instr_is_query(tex)) {
2435 assert(opc != OPC_META_TEX_PREFETCH);
2436
2437 /* only need first 3 components: */
2438 sam->regs[0]->wrmask = 0x7;
2439 ir3_split_dest(b, dst, sam, 0, 3);
2440
2441 /* we need to sample the alpha separately with a non-ASTC
2442 * texture state:
2443 */
2444 sam = ir3_SAM(b, opc, type, 0b1000, flags | info.flags,
2445 info.samp_tex, col0, col1);
2446
2447 array_insert(ctx->ir, ctx->ir->astc_srgb, sam);
2448
2449 /* fixup .w component: */
2450 ir3_split_dest(b, &dst[3], sam, 3, 1);
2451 } else {
2452 /* normal (non-workaround) case: */
2453 ir3_split_dest(b, dst, sam, 0, ncomp);
2454 }
2455
2456 /* GETLOD returns results in 4.8 fixed point */
2457 if (opc == OPC_GETLOD) {
2458 struct ir3_instruction *factor = create_immed(b, fui(1.0 / 256));
2459
2460 compile_assert(ctx, tex->dest_type == nir_type_float);
2461 for (i = 0; i < 2; i++) {
2462 dst[i] = ir3_MUL_F(b, ir3_COV(b, dst[i], TYPE_S32, TYPE_F32), 0,
2463 factor, 0);
2464 }
2465 }
2466
2467 ir3_put_dst(ctx, &tex->dest);
2468 }
2469
2470 static void
2471 emit_tex_info(struct ir3_context *ctx, nir_tex_instr *tex, unsigned idx)
2472 {
2473 struct ir3_block *b = ctx->block;
2474 struct ir3_instruction **dst, *sam;
2475 type_t dst_type = get_tex_dest_type(tex);
2476 struct tex_src_info info = get_tex_samp_tex_src(ctx, tex);
2477
2478 dst = ir3_get_dst(ctx, &tex->dest, 1);
2479
2480 sam = emit_sam(ctx, OPC_GETINFO, info, dst_type, 1 << idx, NULL, NULL);
2481
2482 /* even though there is only one component, since it ends
2483 * up in .y/.z/.w rather than .x, we need a split_dest()
2484 */
2485 ir3_split_dest(b, dst, sam, idx, 1);
2486
2487 /* The # of levels comes from getinfo.z. We need to add 1 to it, since
2488 * the value in TEX_CONST_0 is zero-based.
2489 */
2490 if (ctx->compiler->levels_add_one)
2491 dst[0] = ir3_ADD_U(b, dst[0], 0, create_immed(b, 1), 0);
2492
2493 ir3_put_dst(ctx, &tex->dest);
2494 }
2495
2496 static void
2497 emit_tex_txs(struct ir3_context *ctx, nir_tex_instr *tex)
2498 {
2499 struct ir3_block *b = ctx->block;
2500 struct ir3_instruction **dst, *sam;
2501 struct ir3_instruction *lod;
2502 unsigned flags, coords;
2503 type_t dst_type = get_tex_dest_type(tex);
2504 struct tex_src_info info = get_tex_samp_tex_src(ctx, tex);
2505
2506 tex_info(tex, &flags, &coords);
2507 info.flags |= flags;
2508
2509 /* Actually we want the number of dimensions, not coordinates. This
2510 * distinction only matters for cubes.
2511 */
2512 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2513 coords = 2;
2514
2515 dst = ir3_get_dst(ctx, &tex->dest, 4);
2516
2517 int lod_idx = nir_tex_instr_src_index(tex, nir_tex_src_lod);
2518 compile_assert(ctx, lod_idx >= 0);
2519
2520 lod = ir3_get_src(ctx, &tex->src[lod_idx].src)[0];
2521
2522 sam = emit_sam(ctx, OPC_GETSIZE, info, dst_type, 0b1111, lod, NULL);
2523 ir3_split_dest(b, dst, sam, 0, 4);
2524
2525 /* Array size actually ends up in .w rather than .z. This doesn't
2526 * matter for miplevel 0, but for higher mips the value in z is
2527 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
2528 * returned, which means that we have to add 1 to it for arrays.
2529 */
2530 if (tex->is_array) {
2531 if (ctx->compiler->levels_add_one) {
2532 dst[coords] = ir3_ADD_U(b, dst[3], 0, create_immed(b, 1), 0);
2533 } else {
2534 dst[coords] = ir3_MOV(b, dst[3], TYPE_U32);
2535 }
2536 }
2537
2538 ir3_put_dst(ctx, &tex->dest);
2539 }
2540
2541 static void
2542 emit_jump(struct ir3_context *ctx, nir_jump_instr *jump)
2543 {
2544 switch (jump->type) {
2545 case nir_jump_break:
2546 case nir_jump_continue:
2547 case nir_jump_return:
2548 /* I *think* we can simply just ignore this, and use the
2549 * successor block link to figure out where we need to
2550 * jump to for break/continue
2551 */
2552 break;
2553 default:
2554 ir3_context_error(ctx, "Unhandled NIR jump type: %d\n", jump->type);
2555 break;
2556 }
2557 }
2558
2559 static void
2560 emit_instr(struct ir3_context *ctx, nir_instr *instr)
2561 {
2562 switch (instr->type) {
2563 case nir_instr_type_alu:
2564 emit_alu(ctx, nir_instr_as_alu(instr));
2565 break;
2566 case nir_instr_type_deref:
2567 /* ignored, handled as part of the intrinsic they are src to */
2568 break;
2569 case nir_instr_type_intrinsic:
2570 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
2571 break;
2572 case nir_instr_type_load_const:
2573 emit_load_const(ctx, nir_instr_as_load_const(instr));
2574 break;
2575 case nir_instr_type_ssa_undef:
2576 emit_undef(ctx, nir_instr_as_ssa_undef(instr));
2577 break;
2578 case nir_instr_type_tex: {
2579 nir_tex_instr *tex = nir_instr_as_tex(instr);
2580 /* couple tex instructions get special-cased:
2581 */
2582 switch (tex->op) {
2583 case nir_texop_txs:
2584 emit_tex_txs(ctx, tex);
2585 break;
2586 case nir_texop_query_levels:
2587 emit_tex_info(ctx, tex, 2);
2588 break;
2589 case nir_texop_texture_samples:
2590 emit_tex_info(ctx, tex, 3);
2591 break;
2592 default:
2593 emit_tex(ctx, tex);
2594 break;
2595 }
2596 break;
2597 }
2598 case nir_instr_type_jump:
2599 emit_jump(ctx, nir_instr_as_jump(instr));
2600 break;
2601 case nir_instr_type_phi:
2602 /* we have converted phi webs to regs in NIR by now */
2603 ir3_context_error(ctx, "Unexpected NIR instruction type: %d\n", instr->type);
2604 break;
2605 case nir_instr_type_call:
2606 case nir_instr_type_parallel_copy:
2607 ir3_context_error(ctx, "Unhandled NIR instruction type: %d\n", instr->type);
2608 break;
2609 }
2610 }
2611
2612 static struct ir3_block *
2613 get_block(struct ir3_context *ctx, const nir_block *nblock)
2614 {
2615 struct ir3_block *block;
2616 struct hash_entry *hentry;
2617
2618 hentry = _mesa_hash_table_search(ctx->block_ht, nblock);
2619 if (hentry)
2620 return hentry->data;
2621
2622 block = ir3_block_create(ctx->ir);
2623 block->nblock = nblock;
2624 _mesa_hash_table_insert(ctx->block_ht, nblock, block);
2625
2626 set_foreach(nblock->predecessors, sentry) {
2627 _mesa_set_add(block->predecessors, get_block(ctx, sentry->key));
2628 }
2629
2630 return block;
2631 }
2632
2633 static void
2634 emit_block(struct ir3_context *ctx, nir_block *nblock)
2635 {
2636 struct ir3_block *block = get_block(ctx, nblock);
2637
2638 for (int i = 0; i < ARRAY_SIZE(block->successors); i++) {
2639 if (nblock->successors[i]) {
2640 block->successors[i] =
2641 get_block(ctx, nblock->successors[i]);
2642 }
2643 }
2644
2645 ctx->block = block;
2646 list_addtail(&block->node, &ctx->ir->block_list);
2647
2648 /* re-emit addr register in each block if needed: */
2649 for (int i = 0; i < ARRAY_SIZE(ctx->addr0_ht); i++) {
2650 _mesa_hash_table_destroy(ctx->addr0_ht[i], NULL);
2651 ctx->addr0_ht[i] = NULL;
2652 }
2653
2654 _mesa_hash_table_u64_destroy(ctx->addr1_ht, NULL);
2655 ctx->addr1_ht = NULL;
2656
2657 nir_foreach_instr (instr, nblock) {
2658 ctx->cur_instr = instr;
2659 emit_instr(ctx, instr);
2660 ctx->cur_instr = NULL;
2661 if (ctx->error)
2662 return;
2663 }
2664
2665 _mesa_hash_table_clear(ctx->sel_cond_conversions, NULL);
2666 }
2667
2668 static void emit_cf_list(struct ir3_context *ctx, struct exec_list *list);
2669
2670 static void
2671 emit_if(struct ir3_context *ctx, nir_if *nif)
2672 {
2673 struct ir3_instruction *condition = ir3_get_src(ctx, &nif->condition)[0];
2674
2675 ctx->block->condition = ir3_get_predicate(ctx, condition);
2676
2677 emit_cf_list(ctx, &nif->then_list);
2678 emit_cf_list(ctx, &nif->else_list);
2679 }
2680
2681 static void
2682 emit_loop(struct ir3_context *ctx, nir_loop *nloop)
2683 {
2684 emit_cf_list(ctx, &nloop->body);
2685 ctx->so->loops++;
2686 }
2687
2688 static void
2689 stack_push(struct ir3_context *ctx)
2690 {
2691 ctx->stack++;
2692 ctx->max_stack = MAX2(ctx->max_stack, ctx->stack);
2693 }
2694
2695 static void
2696 stack_pop(struct ir3_context *ctx)
2697 {
2698 compile_assert(ctx, ctx->stack > 0);
2699 ctx->stack--;
2700 }
2701
2702 static void
2703 emit_cf_list(struct ir3_context *ctx, struct exec_list *list)
2704 {
2705 foreach_list_typed (nir_cf_node, node, node, list) {
2706 switch (node->type) {
2707 case nir_cf_node_block:
2708 emit_block(ctx, nir_cf_node_as_block(node));
2709 break;
2710 case nir_cf_node_if:
2711 stack_push(ctx);
2712 emit_if(ctx, nir_cf_node_as_if(node));
2713 stack_pop(ctx);
2714 break;
2715 case nir_cf_node_loop:
2716 stack_push(ctx);
2717 emit_loop(ctx, nir_cf_node_as_loop(node));
2718 stack_pop(ctx);
2719 break;
2720 case nir_cf_node_function:
2721 ir3_context_error(ctx, "TODO\n");
2722 break;
2723 }
2724 }
2725 }
2726
2727 /* emit stream-out code. At this point, the current block is the original
2728 * (nir) end block, and nir ensures that all flow control paths terminate
2729 * into the end block. We re-purpose the original end block to generate
2730 * the 'if (vtxcnt < maxvtxcnt)' condition, then append the conditional
2731 * block holding stream-out write instructions, followed by the new end
2732 * block:
2733 *
2734 * blockOrigEnd {
2735 * p0.x = (vtxcnt < maxvtxcnt)
2736 * // succs: blockStreamOut, blockNewEnd
2737 * }
2738 * blockStreamOut {
2739 * // preds: blockOrigEnd
2740 * ... stream-out instructions ...
2741 * // succs: blockNewEnd
2742 * }
2743 * blockNewEnd {
2744 * // preds: blockOrigEnd, blockStreamOut
2745 * }
2746 */
2747 static void
2748 emit_stream_out(struct ir3_context *ctx)
2749 {
2750 struct ir3 *ir = ctx->ir;
2751 struct ir3_stream_output_info *strmout =
2752 &ctx->so->shader->stream_output;
2753 struct ir3_block *orig_end_block, *stream_out_block, *new_end_block;
2754 struct ir3_instruction *vtxcnt, *maxvtxcnt, *cond;
2755 struct ir3_instruction *bases[IR3_MAX_SO_BUFFERS];
2756
2757 /* create vtxcnt input in input block at top of shader,
2758 * so that it is seen as live over the entire duration
2759 * of the shader:
2760 */
2761 vtxcnt = create_sysval_input(ctx, SYSTEM_VALUE_VERTEX_CNT, 0x1);
2762 maxvtxcnt = create_driver_param(ctx, IR3_DP_VTXCNT_MAX);
2763
2764 /* at this point, we are at the original 'end' block,
2765 * re-purpose this block to stream-out condition, then
2766 * append stream-out block and new-end block
2767 */
2768 orig_end_block = ctx->block;
2769
2770 // maybe w/ store_global intrinsic, we could do this
2771 // stuff in nir->nir pass
2772
2773 stream_out_block = ir3_block_create(ir);
2774 list_addtail(&stream_out_block->node, &ir->block_list);
2775
2776 new_end_block = ir3_block_create(ir);
2777 list_addtail(&new_end_block->node, &ir->block_list);
2778
2779 orig_end_block->successors[0] = stream_out_block;
2780 orig_end_block->successors[1] = new_end_block;
2781
2782 stream_out_block->successors[0] = new_end_block;
2783 _mesa_set_add(stream_out_block->predecessors, orig_end_block);
2784
2785 _mesa_set_add(new_end_block->predecessors, orig_end_block);
2786 _mesa_set_add(new_end_block->predecessors, stream_out_block);
2787
2788 /* setup 'if (vtxcnt < maxvtxcnt)' condition: */
2789 cond = ir3_CMPS_S(ctx->block, vtxcnt, 0, maxvtxcnt, 0);
2790 cond->regs[0]->num = regid(REG_P0, 0);
2791 cond->regs[0]->flags &= ~IR3_REG_SSA;
2792 cond->cat2.condition = IR3_COND_LT;
2793
2794 /* condition goes on previous block to the conditional,
2795 * since it is used to pick which of the two successor
2796 * paths to take:
2797 */
2798 orig_end_block->condition = cond;
2799
2800 /* switch to stream_out_block to generate the stream-out
2801 * instructions:
2802 */
2803 ctx->block = stream_out_block;
2804
2805 /* Calculate base addresses based on vtxcnt. Instructions
2806 * generated for bases not used in following loop will be
2807 * stripped out in the backend.
2808 */
2809 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
2810 const struct ir3_const_state *const_state =
2811 ir3_const_state(ctx->so);
2812 unsigned stride = strmout->stride[i];
2813 struct ir3_instruction *base, *off;
2814
2815 base = create_uniform(ctx->block, regid(const_state->offsets.tfbo, i));
2816
2817 /* 24-bit should be enough: */
2818 off = ir3_MUL_U24(ctx->block, vtxcnt, 0,
2819 create_immed(ctx->block, stride * 4), 0);
2820
2821 bases[i] = ir3_ADD_S(ctx->block, off, 0, base, 0);
2822 }
2823
2824 /* Generate the per-output store instructions: */
2825 for (unsigned i = 0; i < strmout->num_outputs; i++) {
2826 for (unsigned j = 0; j < strmout->output[i].num_components; j++) {
2827 unsigned c = j + strmout->output[i].start_component;
2828 struct ir3_instruction *base, *out, *stg;
2829
2830 base = bases[strmout->output[i].output_buffer];
2831 out = ctx->outputs[regid(strmout->output[i].register_index, c)];
2832
2833 stg = ir3_STG(ctx->block, base, 0, out, 0,
2834 create_immed(ctx->block, 1), 0);
2835 stg->cat6.type = TYPE_U32;
2836 stg->cat6.dst_offset = (strmout->output[i].dst_offset + j) * 4;
2837
2838 array_insert(ctx->block, ctx->block->keeps, stg);
2839 }
2840 }
2841
2842 /* and finally switch to the new_end_block: */
2843 ctx->block = new_end_block;
2844 }
2845
2846 static void
2847 emit_function(struct ir3_context *ctx, nir_function_impl *impl)
2848 {
2849 nir_metadata_require(impl, nir_metadata_block_index);
2850
2851 compile_assert(ctx, ctx->stack == 0);
2852
2853 emit_cf_list(ctx, &impl->body);
2854 emit_block(ctx, impl->end_block);
2855
2856 compile_assert(ctx, ctx->stack == 0);
2857
2858 /* at this point, we should have a single empty block,
2859 * into which we emit the 'end' instruction.
2860 */
2861 compile_assert(ctx, list_is_empty(&ctx->block->instr_list));
2862
2863 /* If stream-out (aka transform-feedback) enabled, emit the
2864 * stream-out instructions, followed by a new empty block (into
2865 * which the 'end' instruction lands).
2866 *
2867 * NOTE: it is done in this order, rather than inserting before
2868 * we emit end_block, because NIR guarantees that all blocks
2869 * flow into end_block, and that end_block has no successors.
2870 * So by re-purposing end_block as the first block of stream-
2871 * out, we guarantee that all exit paths flow into the stream-
2872 * out instructions.
2873 */
2874 if ((ctx->compiler->gpu_id < 500) &&
2875 (ctx->so->shader->stream_output.num_outputs > 0) &&
2876 !ctx->so->binning_pass) {
2877 debug_assert(ctx->so->type == MESA_SHADER_VERTEX);
2878 emit_stream_out(ctx);
2879 }
2880
2881 /* Vertex shaders in a tessellation or geometry pipeline treat END as a
2882 * NOP and has an epilogue that writes the VS outputs to local storage, to
2883 * be read by the HS. Then it resets execution mask (chmask) and chains
2884 * to the next shader (chsh).
2885 */
2886 if ((ctx->so->type == MESA_SHADER_VERTEX &&
2887 (ctx->so->key.has_gs || ctx->so->key.tessellation)) ||
2888 (ctx->so->type == MESA_SHADER_TESS_EVAL && ctx->so->key.has_gs)) {
2889 struct ir3_instruction *chmask =
2890 ir3_CHMASK(ctx->block);
2891 chmask->barrier_class = IR3_BARRIER_EVERYTHING;
2892 chmask->barrier_conflict = IR3_BARRIER_EVERYTHING;
2893
2894 struct ir3_instruction *chsh =
2895 ir3_CHSH(ctx->block);
2896 chsh->barrier_class = IR3_BARRIER_EVERYTHING;
2897 chsh->barrier_conflict = IR3_BARRIER_EVERYTHING;
2898 } else {
2899 ir3_END(ctx->block);
2900 }
2901 }
2902
2903 static void
2904 setup_input(struct ir3_context *ctx, nir_variable *in)
2905 {
2906 struct ir3_shader_variant *so = ctx->so;
2907 unsigned ncomp = glsl_get_components(in->type);
2908 unsigned n = in->data.driver_location;
2909 unsigned frac = in->data.location_frac;
2910 unsigned slot = in->data.location;
2911
2912 /* Inputs are loaded using ldlw or ldg for these stages. */
2913 if (ctx->so->type == MESA_SHADER_TESS_CTRL ||
2914 ctx->so->type == MESA_SHADER_TESS_EVAL ||
2915 ctx->so->type == MESA_SHADER_GEOMETRY)
2916 return;
2917
2918 /* skip unread inputs, we could end up with (for example), unsplit
2919 * matrix/etc inputs in the case they are not read, so just silently
2920 * skip these.
2921 */
2922 if (ncomp > 4)
2923 return;
2924
2925 so->inputs[n].slot = slot;
2926 so->inputs[n].compmask |= (1 << (ncomp + frac)) - 1;
2927 so->inputs_count = MAX2(so->inputs_count, n + 1);
2928 so->inputs[n].interpolate = in->data.interpolation;
2929
2930 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
2931
2932 /* if any varyings have 'sample' qualifer, that triggers us
2933 * to run in per-sample mode:
2934 */
2935 so->per_samp |= in->data.sample;
2936
2937 for (int i = 0; i < ncomp; i++) {
2938 struct ir3_instruction *instr = NULL;
2939 unsigned idx = (n * 4) + i + frac;
2940
2941 if (slot == VARYING_SLOT_POS) {
2942 ir3_context_error(ctx, "fragcoord should be a sysval!\n");
2943 } else {
2944 /* detect the special case for front/back colors where
2945 * we need to do flat vs smooth shading depending on
2946 * rast state:
2947 */
2948 if (in->data.interpolation == INTERP_MODE_NONE) {
2949 switch (slot) {
2950 case VARYING_SLOT_COL0:
2951 case VARYING_SLOT_COL1:
2952 case VARYING_SLOT_BFC0:
2953 case VARYING_SLOT_BFC1:
2954 so->inputs[n].rasterflat = true;
2955 break;
2956 default:
2957 break;
2958 }
2959 }
2960
2961 if (ctx->compiler->flat_bypass) {
2962 if ((so->inputs[n].interpolate == INTERP_MODE_FLAT) ||
2963 (so->inputs[n].rasterflat && ctx->so->key.rasterflat))
2964 so->inputs[n].use_ldlv = true;
2965 }
2966
2967 so->inputs[n].bary = true;
2968
2969 instr = create_frag_input(ctx, so->inputs[n].use_ldlv, idx);
2970 }
2971
2972 compile_assert(ctx, idx < ctx->ninputs);
2973
2974 ctx->inputs[idx] = instr;
2975 }
2976 } else if (ctx->so->type == MESA_SHADER_VERTEX) {
2977 struct ir3_instruction *input = NULL;
2978 struct ir3_instruction *components[4];
2979 unsigned mask = (1 << (ncomp + frac)) - 1;
2980
2981 foreach_input (in, ctx->ir) {
2982 if (in->input.inidx == n) {
2983 input = in;
2984 break;
2985 }
2986 }
2987
2988 if (!input) {
2989 input = create_input(ctx, mask);
2990 input->input.inidx = n;
2991 } else {
2992 /* For aliased inputs, just append to the wrmask.. ie. if we
2993 * first see a vec2 index at slot N, and then later a vec4,
2994 * the wrmask of the resulting overlapped vec2 and vec4 is 0xf
2995 *
2996 * If the new input that aliases a previously processed input
2997 * sets no new bits, then just bail as there is nothing to see
2998 * here.
2999 *
3000 * Note that we don't expect to get an input w/ frac!=0, if we
3001 * did we'd have to adjust ncomp and frac to cover the entire
3002 * merged input.
3003 */
3004 if (!(mask & ~input->regs[0]->wrmask))
3005 return;
3006 input->regs[0]->wrmask |= mask;
3007 }
3008
3009 ir3_split_dest(ctx->block, components, input, frac, ncomp);
3010
3011 for (int i = 0; i < ncomp; i++) {
3012 unsigned idx = (n * 4) + i + frac;
3013 compile_assert(ctx, idx < ctx->ninputs);
3014
3015 /* With aliased inputs, since we add to the wrmask above, we
3016 * can end up with stale meta:split instructions in the inputs
3017 * table. This is basically harmless, since eventually they
3018 * will get swept away by DCE, but the mismatch wrmask (since
3019 * they would be using the previous wrmask before we OR'd in
3020 * more bits) angers ir3_validate. So just preemptively clean
3021 * them up. See:
3022 *
3023 * dEQP-GLES2.functional.attribute_location.bind_aliasing.cond_vec2
3024 *
3025 * Note however that split_dest() will return the src if it is
3026 * scalar, so the previous ctx->inputs[idx] could be the input
3027 * itself (which we don't want to remove)
3028 */
3029 if (ctx->inputs[idx] && (ctx->inputs[idx] != input)) {
3030 list_del(&ctx->inputs[idx]->node);
3031 }
3032
3033 ctx->inputs[idx] = components[i];
3034 }
3035 } else {
3036 ir3_context_error(ctx, "unknown shader type: %d\n", ctx->so->type);
3037 }
3038
3039 if (so->inputs[n].bary || (ctx->so->type == MESA_SHADER_VERTEX)) {
3040 so->total_in += ncomp;
3041 }
3042 }
3043
3044 /* Initially we assign non-packed inloc's for varyings, as we don't really
3045 * know up-front which components will be unused. After all the compilation
3046 * stages we scan the shader to see which components are actually used, and
3047 * re-pack the inlocs to eliminate unneeded varyings.
3048 */
3049 static void
3050 pack_inlocs(struct ir3_context *ctx)
3051 {
3052 struct ir3_shader_variant *so = ctx->so;
3053 uint8_t used_components[so->inputs_count];
3054
3055 memset(used_components, 0, sizeof(used_components));
3056
3057 /*
3058 * First Step: scan shader to find which bary.f/ldlv remain:
3059 */
3060
3061 foreach_block (block, &ctx->ir->block_list) {
3062 foreach_instr (instr, &block->instr_list) {
3063 if (is_input(instr)) {
3064 unsigned inloc = instr->regs[1]->iim_val;
3065 unsigned i = inloc / 4;
3066 unsigned j = inloc % 4;
3067
3068 compile_assert(ctx, instr->regs[1]->flags & IR3_REG_IMMED);
3069 compile_assert(ctx, i < so->inputs_count);
3070
3071 used_components[i] |= 1 << j;
3072 } else if (instr->opc == OPC_META_TEX_PREFETCH) {
3073 for (int n = 0; n < 2; n++) {
3074 unsigned inloc = instr->prefetch.input_offset + n;
3075 unsigned i = inloc / 4;
3076 unsigned j = inloc % 4;
3077
3078 compile_assert(ctx, i < so->inputs_count);
3079
3080 used_components[i] |= 1 << j;
3081 }
3082 }
3083 }
3084 }
3085
3086 /*
3087 * Second Step: reassign varying inloc/slots:
3088 */
3089
3090 unsigned actual_in = 0;
3091 unsigned inloc = 0;
3092
3093 for (unsigned i = 0; i < so->inputs_count; i++) {
3094 unsigned compmask = 0, maxcomp = 0;
3095
3096 so->inputs[i].inloc = inloc;
3097 so->inputs[i].bary = false;
3098
3099 for (unsigned j = 0; j < 4; j++) {
3100 if (!(used_components[i] & (1 << j)))
3101 continue;
3102
3103 compmask |= (1 << j);
3104 actual_in++;
3105 maxcomp = j + 1;
3106
3107 /* at this point, since used_components[i] mask is only
3108 * considering varyings (ie. not sysvals) we know this
3109 * is a varying:
3110 */
3111 so->inputs[i].bary = true;
3112 }
3113
3114 if (so->inputs[i].bary) {
3115 so->varying_in++;
3116 so->inputs[i].compmask = (1 << maxcomp) - 1;
3117 inloc += maxcomp;
3118 }
3119 }
3120
3121 /*
3122 * Third Step: reassign packed inloc's:
3123 */
3124
3125 foreach_block (block, &ctx->ir->block_list) {
3126 foreach_instr (instr, &block->instr_list) {
3127 if (is_input(instr)) {
3128 unsigned inloc = instr->regs[1]->iim_val;
3129 unsigned i = inloc / 4;
3130 unsigned j = inloc % 4;
3131
3132 instr->regs[1]->iim_val = so->inputs[i].inloc + j;
3133 } else if (instr->opc == OPC_META_TEX_PREFETCH) {
3134 unsigned i = instr->prefetch.input_offset / 4;
3135 unsigned j = instr->prefetch.input_offset % 4;
3136 instr->prefetch.input_offset = so->inputs[i].inloc + j;
3137 }
3138 }
3139 }
3140 }
3141
3142 static void
3143 setup_output(struct ir3_context *ctx, nir_variable *out)
3144 {
3145 struct ir3_shader_variant *so = ctx->so;
3146 unsigned slots = glsl_count_vec4_slots(out->type, false, false);
3147 unsigned ncomp = glsl_get_components(glsl_without_array(out->type));
3148 unsigned n = out->data.driver_location;
3149 unsigned frac = out->data.location_frac;
3150 unsigned slot = out->data.location;
3151
3152 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
3153 switch (slot) {
3154 case FRAG_RESULT_DEPTH:
3155 so->writes_pos = true;
3156 break;
3157 case FRAG_RESULT_COLOR:
3158 so->color0_mrt = 1;
3159 break;
3160 case FRAG_RESULT_SAMPLE_MASK:
3161 so->writes_smask = true;
3162 break;
3163 default:
3164 slot += out->data.index; /* For dual-src blend */
3165 if (slot >= FRAG_RESULT_DATA0)
3166 break;
3167 ir3_context_error(ctx, "unknown FS output name: %s\n",
3168 gl_frag_result_name(slot));
3169 }
3170 } else if (ctx->so->type == MESA_SHADER_VERTEX ||
3171 ctx->so->type == MESA_SHADER_TESS_EVAL ||
3172 ctx->so->type == MESA_SHADER_GEOMETRY) {
3173 switch (slot) {
3174 case VARYING_SLOT_POS:
3175 so->writes_pos = true;
3176 break;
3177 case VARYING_SLOT_PSIZ:
3178 so->writes_psize = true;
3179 break;
3180 case VARYING_SLOT_PRIMITIVE_ID:
3181 case VARYING_SLOT_LAYER:
3182 case VARYING_SLOT_GS_VERTEX_FLAGS_IR3:
3183 debug_assert(ctx->so->type == MESA_SHADER_GEOMETRY);
3184 /* fall through */
3185 case VARYING_SLOT_COL0:
3186 case VARYING_SLOT_COL1:
3187 case VARYING_SLOT_BFC0:
3188 case VARYING_SLOT_BFC1:
3189 case VARYING_SLOT_FOGC:
3190 case VARYING_SLOT_CLIP_DIST0:
3191 case VARYING_SLOT_CLIP_DIST1:
3192 case VARYING_SLOT_CLIP_VERTEX:
3193 break;
3194 default:
3195 if (slot >= VARYING_SLOT_VAR0)
3196 break;
3197 if ((VARYING_SLOT_TEX0 <= slot) && (slot <= VARYING_SLOT_TEX7))
3198 break;
3199 ir3_context_error(ctx, "unknown %s shader output name: %s\n",
3200 _mesa_shader_stage_to_string(ctx->so->type),
3201 gl_varying_slot_name(slot));
3202 }
3203 } else if (ctx->so->type == MESA_SHADER_TESS_CTRL) {
3204 /* output lowered to buffer writes. */
3205 return;
3206 } else {
3207 ir3_context_error(ctx, "unknown shader type: %d\n", ctx->so->type);
3208 }
3209
3210
3211 so->outputs_count = out->data.driver_location + slots;
3212 compile_assert(ctx, so->outputs_count < ARRAY_SIZE(so->outputs));
3213
3214 for (int i = 0; i < slots; i++) {
3215 int slot_base = n + i;
3216 so->outputs[slot_base].slot = slot + i;
3217
3218 for (int i = 0; i < ncomp; i++) {
3219 unsigned idx = (slot_base * 4) + i + frac;
3220 compile_assert(ctx, idx < ctx->noutputs);
3221 ctx->outputs[idx] = create_immed(ctx->block, fui(0.0));
3222 }
3223
3224 /* if varying packing doesn't happen, we could end up in a situation
3225 * with "holes" in the output, and since the per-generation code that
3226 * sets up varying linkage registers doesn't expect to have more than
3227 * one varying per vec4 slot, pad the holes.
3228 *
3229 * Note that this should probably generate a performance warning of
3230 * some sort.
3231 */
3232 for (int i = 0; i < frac; i++) {
3233 unsigned idx = (slot_base * 4) + i;
3234 if (!ctx->outputs[idx]) {
3235 ctx->outputs[idx] = create_immed(ctx->block, fui(0.0));
3236 }
3237 }
3238 }
3239 }
3240
3241 static void
3242 emit_instructions(struct ir3_context *ctx)
3243 {
3244 nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->s);
3245
3246 ctx->ninputs = ctx->s->num_inputs * 4;
3247 ctx->noutputs = ctx->s->num_outputs * 4;
3248 ctx->inputs = rzalloc_array(ctx, struct ir3_instruction *, ctx->ninputs);
3249 ctx->outputs = rzalloc_array(ctx, struct ir3_instruction *, ctx->noutputs);
3250
3251 ctx->ir = ir3_create(ctx->compiler, ctx->so->type);
3252
3253 /* Create inputs in first block: */
3254 ctx->block = get_block(ctx, nir_start_block(fxn));
3255 ctx->in_block = ctx->block;
3256
3257 /* for fragment shader, the vcoord input register is used as the
3258 * base for bary.f varying fetch instrs:
3259 *
3260 * TODO defer creating ctx->ij_pixel and corresponding sysvals
3261 * until emit_intrinsic when we know they are actually needed.
3262 * For now, we defer creating ctx->ij_centroid, etc, since we
3263 * only need ij_pixel for "old style" varying inputs (ie.
3264 * tgsi_to_nir)
3265 */
3266 if (ctx->so->type == MESA_SHADER_FRAGMENT) {
3267 ctx->ij_pixel = create_input(ctx, 0x3);
3268 }
3269
3270 /* Setup inputs: */
3271 nir_foreach_variable (var, &ctx->s->inputs) {
3272 setup_input(ctx, var);
3273 }
3274
3275 /* Defer add_sysval_input() stuff until after setup_inputs(),
3276 * because sysvals need to be appended after varyings:
3277 */
3278 if (ctx->ij_pixel) {
3279 add_sysval_input_compmask(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL,
3280 0x3, ctx->ij_pixel);
3281 }
3282
3283
3284 /* Tesselation shaders always need primitive ID for indexing the
3285 * BO. Geometry shaders don't always need it but when they do it has be
3286 * delivered and unclobbered in the VS. To make things easy, we always
3287 * make room for it in VS/DS.
3288 */
3289 bool has_tess = ctx->so->key.tessellation != IR3_TESS_NONE;
3290 bool has_gs = ctx->so->key.has_gs;
3291 switch (ctx->so->type) {
3292 case MESA_SHADER_VERTEX:
3293 if (has_tess) {
3294 ctx->tcs_header = create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1);
3295 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3296 } else if (has_gs) {
3297 ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
3298 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3299 }
3300 break;
3301 case MESA_SHADER_TESS_CTRL:
3302 ctx->tcs_header = create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1);
3303 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3304 break;
3305 case MESA_SHADER_TESS_EVAL:
3306 if (has_gs)
3307 ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
3308 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3309 break;
3310 case MESA_SHADER_GEOMETRY:
3311 ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
3312 ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3313 break;
3314 default:
3315 break;
3316 }
3317
3318 /* Setup outputs: */
3319 nir_foreach_variable (var, &ctx->s->outputs) {
3320 setup_output(ctx, var);
3321 }
3322
3323 /* Find # of samplers. Just assume that we'll be reading from images.. if
3324 * it is write-only we don't have to count it, but after lowering derefs
3325 * is too late to compact indices for that.
3326 */
3327 ctx->so->num_samp = util_last_bit(ctx->s->info.textures_used) + ctx->s->info.num_images;
3328
3329 /* NOTE: need to do something more clever when we support >1 fxn */
3330 nir_foreach_register (reg, &fxn->registers) {
3331 ir3_declare_array(ctx, reg);
3332 }
3333 /* And emit the body: */
3334 ctx->impl = fxn;
3335 emit_function(ctx, fxn);
3336 }
3337
3338 /* Fixup tex sampler state for astc/srgb workaround instructions. We
3339 * need to assign the tex state indexes for these after we know the
3340 * max tex index.
3341 */
3342 static void
3343 fixup_astc_srgb(struct ir3_context *ctx)
3344 {
3345 struct ir3_shader_variant *so = ctx->so;
3346 /* indexed by original tex idx, value is newly assigned alpha sampler
3347 * state tex idx. Zero is invalid since there is at least one sampler
3348 * if we get here.
3349 */
3350 unsigned alt_tex_state[16] = {0};
3351 unsigned tex_idx = ctx->max_texture_index + 1;
3352 unsigned idx = 0;
3353
3354 so->astc_srgb.base = tex_idx;
3355
3356 for (unsigned i = 0; i < ctx->ir->astc_srgb_count; i++) {
3357 struct ir3_instruction *sam = ctx->ir->astc_srgb[i];
3358
3359 compile_assert(ctx, sam->cat5.tex < ARRAY_SIZE(alt_tex_state));
3360
3361 if (alt_tex_state[sam->cat5.tex] == 0) {
3362 /* assign new alternate/alpha tex state slot: */
3363 alt_tex_state[sam->cat5.tex] = tex_idx++;
3364 so->astc_srgb.orig_idx[idx++] = sam->cat5.tex;
3365 so->astc_srgb.count++;
3366 }
3367
3368 sam->cat5.tex = alt_tex_state[sam->cat5.tex];
3369 }
3370 }
3371
3372 static void
3373 fixup_binning_pass(struct ir3_context *ctx)
3374 {
3375 struct ir3_shader_variant *so = ctx->so;
3376 struct ir3 *ir = ctx->ir;
3377 unsigned i, j;
3378
3379 /* first pass, remove unused outputs from the IR level outputs: */
3380 for (i = 0, j = 0; i < ir->outputs_count; i++) {
3381 struct ir3_instruction *out = ir->outputs[i];
3382 assert(out->opc == OPC_META_COLLECT);
3383 unsigned outidx = out->collect.outidx;
3384 unsigned slot = so->outputs[outidx].slot;
3385
3386 /* throw away everything but first position/psize */
3387 if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) {
3388 ir->outputs[j] = ir->outputs[i];
3389 j++;
3390 }
3391 }
3392 ir->outputs_count = j;
3393
3394 /* second pass, cleanup the unused slots in ir3_shader_variant::outputs
3395 * table:
3396 */
3397 for (i = 0, j = 0; i < so->outputs_count; i++) {
3398 unsigned slot = so->outputs[i].slot;
3399
3400 /* throw away everything but first position/psize */
3401 if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) {
3402 so->outputs[j] = so->outputs[i];
3403
3404 /* fixup outidx to point to new output table entry: */
3405 foreach_output (out, ir) {
3406 if (out->collect.outidx == i) {
3407 out->collect.outidx = j;
3408 break;
3409 }
3410 }
3411
3412 j++;
3413 }
3414 }
3415 so->outputs_count = j;
3416 }
3417
3418 static void
3419 collect_tex_prefetches(struct ir3_context *ctx, struct ir3 *ir)
3420 {
3421 unsigned idx = 0;
3422
3423 /* Collect sampling instructions eligible for pre-dispatch. */
3424 foreach_block (block, &ir->block_list) {
3425 foreach_instr_safe (instr, &block->instr_list) {
3426 if (instr->opc == OPC_META_TEX_PREFETCH) {
3427 assert(idx < ARRAY_SIZE(ctx->so->sampler_prefetch));
3428 struct ir3_sampler_prefetch *fetch =
3429 &ctx->so->sampler_prefetch[idx];
3430 idx++;
3431
3432 if (instr->flags & IR3_INSTR_B) {
3433 fetch->cmd = IR3_SAMPLER_BINDLESS_PREFETCH_CMD;
3434 /* In bindless mode, the index is actually the base */
3435 fetch->tex_id = instr->prefetch.tex_base;
3436 fetch->samp_id = instr->prefetch.samp_base;
3437 fetch->tex_bindless_id = instr->prefetch.tex;
3438 fetch->samp_bindless_id = instr->prefetch.samp;
3439 } else {
3440 fetch->cmd = IR3_SAMPLER_PREFETCH_CMD;
3441 fetch->tex_id = instr->prefetch.tex;
3442 fetch->samp_id = instr->prefetch.samp;
3443 }
3444 fetch->wrmask = instr->regs[0]->wrmask;
3445 fetch->dst = instr->regs[0]->num;
3446 fetch->src = instr->prefetch.input_offset;
3447
3448 /* These are the limits on a5xx/a6xx, we might need to
3449 * revisit if SP_FS_PREFETCH[n] changes on later gens:
3450 */
3451 assert(fetch->dst <= 0x3f);
3452 assert(fetch->tex_id <= 0x1f);
3453 assert(fetch->samp_id < 0xf);
3454
3455 ctx->so->total_in =
3456 MAX2(ctx->so->total_in, instr->prefetch.input_offset + 2);
3457
3458 fetch->half_precision = !!(instr->regs[0]->flags & IR3_REG_HALF);
3459
3460 /* Remove the prefetch placeholder instruction: */
3461 list_delinit(&instr->node);
3462 }
3463 }
3464 }
3465 }
3466
3467 int
3468 ir3_compile_shader_nir(struct ir3_compiler *compiler,
3469 struct ir3_shader_variant *so)
3470 {
3471 struct ir3_context *ctx;
3472 struct ir3 *ir;
3473 int ret = 0, max_bary;
3474 bool progress;
3475
3476 assert(!so->ir);
3477
3478 ctx = ir3_context_init(compiler, so);
3479 if (!ctx) {
3480 DBG("INIT failed!");
3481 ret = -1;
3482 goto out;
3483 }
3484
3485 emit_instructions(ctx);
3486
3487 if (ctx->error) {
3488 DBG("EMIT failed!");
3489 ret = -1;
3490 goto out;
3491 }
3492
3493 ir = so->ir = ctx->ir;
3494
3495 assert((ctx->noutputs % 4) == 0);
3496
3497 /* Setup IR level outputs, which are "collects" that gather
3498 * the scalar components of outputs.
3499 */
3500 for (unsigned i = 0; i < ctx->noutputs; i += 4) {
3501 unsigned ncomp = 0;
3502 /* figure out the # of components written:
3503 *
3504 * TODO do we need to handle holes, ie. if .x and .z
3505 * components written, but .y component not written?
3506 */
3507 for (unsigned j = 0; j < 4; j++) {
3508 if (!ctx->outputs[i + j])
3509 break;
3510 ncomp++;
3511 }
3512
3513 /* Note that in some stages, like TCS, store_output is
3514 * lowered to memory writes, so no components of the
3515 * are "written" from the PoV of traditional store-
3516 * output instructions:
3517 */
3518 if (!ncomp)
3519 continue;
3520
3521 struct ir3_instruction *out =
3522 ir3_create_collect(ctx, &ctx->outputs[i], ncomp);
3523
3524 int outidx = i / 4;
3525 assert(outidx < so->outputs_count);
3526
3527 /* stash index into so->outputs[] so we can map the
3528 * output back to slot/etc later:
3529 */
3530 out->collect.outidx = outidx;
3531
3532 array_insert(ir, ir->outputs, out);
3533 }
3534
3535 /* Set up the gs header as an output for the vertex shader so it won't
3536 * clobber it for the tess ctrl shader.
3537 *
3538 * TODO this could probably be done more cleanly in a nir pass.
3539 */
3540 if (ctx->so->type == MESA_SHADER_VERTEX ||
3541 (ctx->so->key.has_gs && ctx->so->type == MESA_SHADER_TESS_EVAL)) {
3542 if (ctx->primitive_id) {
3543 unsigned n = so->outputs_count++;
3544 so->outputs[n].slot = VARYING_SLOT_PRIMITIVE_ID;
3545
3546 struct ir3_instruction *out =
3547 ir3_create_collect(ctx, &ctx->primitive_id, 1);
3548 out->collect.outidx = n;
3549 array_insert(ir, ir->outputs, out);
3550 }
3551
3552 if (ctx->gs_header) {
3553 unsigned n = so->outputs_count++;
3554 so->outputs[n].slot = VARYING_SLOT_GS_HEADER_IR3;
3555 struct ir3_instruction *out =
3556 ir3_create_collect(ctx, &ctx->gs_header, 1);
3557 out->collect.outidx = n;
3558 array_insert(ir, ir->outputs, out);
3559 }
3560
3561 if (ctx->tcs_header) {
3562 unsigned n = so->outputs_count++;
3563 so->outputs[n].slot = VARYING_SLOT_TCS_HEADER_IR3;
3564 struct ir3_instruction *out =
3565 ir3_create_collect(ctx, &ctx->tcs_header, 1);
3566 out->collect.outidx = n;
3567 array_insert(ir, ir->outputs, out);
3568 }
3569 }
3570
3571 /* for a6xx+, binning and draw pass VS use same VBO state, so we
3572 * need to make sure not to remove any inputs that are used by
3573 * the nonbinning VS.
3574 */
3575 if (ctx->compiler->gpu_id >= 600 && so->binning_pass &&
3576 so->type == MESA_SHADER_VERTEX) {
3577 for (int i = 0; i < ctx->ninputs; i++) {
3578 struct ir3_instruction *in = ctx->inputs[i];
3579
3580 if (!in)
3581 continue;
3582
3583 unsigned n = i / 4;
3584 unsigned c = i % 4;
3585
3586 debug_assert(n < so->nonbinning->inputs_count);
3587
3588 if (so->nonbinning->inputs[n].sysval)
3589 continue;
3590
3591 /* be sure to keep inputs, even if only used in VS */
3592 if (so->nonbinning->inputs[n].compmask & (1 << c))
3593 array_insert(in->block, in->block->keeps, in);
3594 }
3595 }
3596
3597 /* at this point, for binning pass, throw away unneeded outputs: */
3598 if (so->binning_pass && (ctx->compiler->gpu_id < 600))
3599 fixup_binning_pass(ctx);
3600
3601 ir3_debug_print(ir, "AFTER: nir->ir3");
3602 ir3_validate(ir);
3603
3604 do {
3605 progress = false;
3606
3607 progress |= IR3_PASS(ir, ir3_cf);
3608 progress |= IR3_PASS(ir, ir3_cp, so);
3609 progress |= IR3_PASS(ir, ir3_dce, so);
3610 } while (progress);
3611
3612 /* at this point, for binning pass, throw away unneeded outputs:
3613 * Note that for a6xx and later, we do this after ir3_cp to ensure
3614 * that the uniform/constant layout for BS and VS matches, so that
3615 * we can re-use same VS_CONST state group.
3616 */
3617 if (so->binning_pass && (ctx->compiler->gpu_id >= 600)) {
3618 fixup_binning_pass(ctx);
3619 /* cleanup the result of removing unneeded outputs: */
3620 while (IR3_PASS(ir, ir3_dce, so)) {}
3621 }
3622
3623 IR3_PASS(ir, ir3_sched_add_deps);
3624
3625 /* Group left/right neighbors, inserting mov's where needed to
3626 * solve conflicts:
3627 */
3628 IR3_PASS(ir, ir3_group);
3629
3630 /* At this point, all the dead code should be long gone: */
3631 assert(!IR3_PASS(ir, ir3_dce, so));
3632
3633 ret = ir3_sched(ir);
3634 if (ret) {
3635 DBG("SCHED failed!");
3636 goto out;
3637 }
3638
3639 ir3_debug_print(ir, "AFTER: ir3_sched");
3640
3641 if (IR3_PASS(ir, ir3_cp_postsched)) {
3642 /* cleanup the result of removing unneeded mov's: */
3643 while (IR3_PASS(ir, ir3_dce, so)) {}
3644 }
3645
3646 /* Pre-assign VS inputs on a6xx+ binning pass shader, to align
3647 * with draw pass VS, so binning and draw pass can both use the
3648 * same VBO state.
3649 *
3650 * Note that VS inputs are expected to be full precision.
3651 */
3652 bool pre_assign_inputs = (ir->compiler->gpu_id >= 600) &&
3653 (ir->type == MESA_SHADER_VERTEX) &&
3654 so->binning_pass;
3655
3656 if (pre_assign_inputs) {
3657 for (unsigned i = 0; i < ctx->ninputs; i++) {
3658 struct ir3_instruction *instr = ctx->inputs[i];
3659
3660 if (!instr)
3661 continue;
3662
3663 unsigned n = i / 4;
3664 unsigned c = i % 4;
3665 unsigned regid = so->nonbinning->inputs[n].regid + c;
3666
3667 instr->regs[0]->num = regid;
3668 }
3669
3670 ret = ir3_ra(so, ctx->inputs, ctx->ninputs);
3671 } else if (ctx->tcs_header) {
3672 /* We need to have these values in the same registers between VS and TCS
3673 * since the VS chains to TCS and doesn't get the sysvals redelivered.
3674 */
3675
3676 ctx->tcs_header->regs[0]->num = regid(0, 0);
3677 ctx->primitive_id->regs[0]->num = regid(0, 1);
3678 struct ir3_instruction *precolor[] = { ctx->tcs_header, ctx->primitive_id };
3679 ret = ir3_ra(so, precolor, ARRAY_SIZE(precolor));
3680 } else if (ctx->gs_header) {
3681 /* We need to have these values in the same registers between producer
3682 * (VS or DS) and GS since the producer chains to GS and doesn't get
3683 * the sysvals redelivered.
3684 */
3685
3686 ctx->gs_header->regs[0]->num = regid(0, 0);
3687 ctx->primitive_id->regs[0]->num = regid(0, 1);
3688 struct ir3_instruction *precolor[] = { ctx->gs_header, ctx->primitive_id };
3689 ret = ir3_ra(so, precolor, ARRAY_SIZE(precolor));
3690 } else if (so->num_sampler_prefetch) {
3691 assert(so->type == MESA_SHADER_FRAGMENT);
3692 struct ir3_instruction *precolor[2];
3693 int idx = 0;
3694
3695 foreach_input (instr, ir) {
3696 if (instr->input.sysval != SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL)
3697 continue;
3698
3699 assert(idx < ARRAY_SIZE(precolor));
3700
3701 precolor[idx] = instr;
3702 instr->regs[0]->num = idx;
3703
3704 idx++;
3705 }
3706 ret = ir3_ra(so, precolor, idx);
3707 } else {
3708 ret = ir3_ra(so, NULL, 0);
3709 }
3710
3711 if (ret) {
3712 DBG("RA failed!");
3713 goto out;
3714 }
3715
3716 IR3_PASS(ir, ir3_postsched, so);
3717
3718 if (compiler->gpu_id >= 600) {
3719 IR3_PASS(ir, ir3_a6xx_fixup_atomic_dests, so);
3720 }
3721
3722 if (so->type == MESA_SHADER_FRAGMENT)
3723 pack_inlocs(ctx);
3724
3725 /*
3726 * Fixup inputs/outputs to point to the actual registers assigned:
3727 *
3728 * 1) initialize to r63.x (invalid/unused)
3729 * 2) iterate IR level inputs/outputs and update the variants
3730 * inputs/outputs table based on the assigned registers for
3731 * the remaining inputs/outputs.
3732 */
3733
3734 for (unsigned i = 0; i < so->inputs_count; i++)
3735 so->inputs[i].regid = INVALID_REG;
3736 for (unsigned i = 0; i < so->outputs_count; i++)
3737 so->outputs[i].regid = INVALID_REG;
3738
3739 foreach_output (out, ir) {
3740 assert(out->opc == OPC_META_COLLECT);
3741 unsigned outidx = out->collect.outidx;
3742
3743 so->outputs[outidx].regid = out->regs[0]->num;
3744 so->outputs[outidx].half = !!(out->regs[0]->flags & IR3_REG_HALF);
3745 }
3746
3747 foreach_input (in, ir) {
3748 assert(in->opc == OPC_META_INPUT);
3749 unsigned inidx = in->input.inidx;
3750
3751 if (pre_assign_inputs && !so->inputs[inidx].sysval) {
3752 if (VALIDREG(so->nonbinning->inputs[inidx].regid)) {
3753 compile_assert(ctx, in->regs[0]->num ==
3754 so->nonbinning->inputs[inidx].regid);
3755 compile_assert(ctx, !!(in->regs[0]->flags & IR3_REG_HALF) ==
3756 so->nonbinning->inputs[inidx].half);
3757 }
3758 so->inputs[inidx].regid = so->nonbinning->inputs[inidx].regid;
3759 so->inputs[inidx].half = so->nonbinning->inputs[inidx].half;
3760 } else {
3761 so->inputs[inidx].regid = in->regs[0]->num;
3762 so->inputs[inidx].half = !!(in->regs[0]->flags & IR3_REG_HALF);
3763 }
3764 }
3765
3766 if (ctx->astc_srgb)
3767 fixup_astc_srgb(ctx);
3768
3769 /* We need to do legalize after (for frag shader's) the "bary.f"
3770 * offsets (inloc) have been assigned.
3771 */
3772 IR3_PASS(ir, ir3_legalize, so, &max_bary);
3773
3774 /* Set (ss)(sy) on first TCS and GEOMETRY instructions, since we don't
3775 * know what we might have to wait on when coming in from VS chsh.
3776 */
3777 if (so->type == MESA_SHADER_TESS_CTRL ||
3778 so->type == MESA_SHADER_GEOMETRY ) {
3779 foreach_block (block, &ir->block_list) {
3780 foreach_instr (instr, &block->instr_list) {
3781 instr->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
3782 break;
3783 }
3784 }
3785 }
3786
3787 so->branchstack = ctx->max_stack;
3788
3789 /* Note that actual_in counts inputs that are not bary.f'd for FS: */
3790 if (so->type == MESA_SHADER_FRAGMENT)
3791 so->total_in = max_bary + 1;
3792
3793 /* Collect sampling instructions eligible for pre-dispatch. */
3794 collect_tex_prefetches(ctx, ir);
3795
3796 if (so->type == MESA_SHADER_FRAGMENT &&
3797 ctx->s->info.fs.needs_helper_invocations)
3798 so->need_pixlod = true;
3799
3800 out:
3801 if (ret) {
3802 if (so->ir)
3803 ir3_destroy(so->ir);
3804 so->ir = NULL;
3805 }
3806 ir3_context_free(ctx);
3807
3808 return ret;
3809 }