76362c4468cd3924489d2a2b20722ed85b7e1cbf
[mesa.git] / src / freedreno / ir3 / ir3_legalize.c
1 /*
2 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Rob Clark <robclark@freedesktop.org>
25 */
26
27 #include "util/ralloc.h"
28 #include "util/u_math.h"
29
30 #include "ir3.h"
31 #include "ir3_compiler.h"
32
33 /*
34 * Legalize:
35 *
36 * We currently require that scheduling ensures that we have enough nop's
37 * in all the right places. The legalize step mostly handles fixing up
38 * instruction flags ((ss)/(sy)/(ei)), and collapses sequences of nop's
39 * into fewer nop's w/ rpt flag.
40 */
41
42 struct ir3_legalize_ctx {
43 struct ir3_compiler *compiler;
44 gl_shader_stage type;
45 bool has_ssbo;
46 bool need_pixlod;
47 int max_bary;
48 };
49
50 struct ir3_legalize_state {
51 regmask_t needs_ss;
52 regmask_t needs_ss_war; /* write after read */
53 regmask_t needs_sy;
54 };
55
56 struct ir3_legalize_block_data {
57 bool valid;
58 struct ir3_legalize_state state;
59 };
60
61 /* We want to evaluate each block from the position of any other
62 * predecessor block, in order that the flags set are the union of
63 * all possible program paths.
64 *
65 * To do this, we need to know the output state (needs_ss/ss_war/sy)
66 * of all predecessor blocks. The tricky thing is loops, which mean
67 * that we can't simply recursively process each predecessor block
68 * before legalizing the current block.
69 *
70 * How we handle that is by looping over all the blocks until the
71 * results converge. If the output state of a given block changes
72 * in a given pass, this means that all successor blocks are not
73 * yet fully legalized.
74 */
75
76 static bool
77 legalize_block(struct ir3_legalize_ctx *ctx, struct ir3_block *block)
78 {
79 struct ir3_legalize_block_data *bd = block->data;
80
81 if (bd->valid)
82 return false;
83
84 struct ir3_instruction *last_input = NULL;
85 struct ir3_instruction *last_rel = NULL;
86 struct ir3_instruction *last_n = NULL;
87 struct list_head instr_list;
88 struct ir3_legalize_state prev_state = bd->state;
89 struct ir3_legalize_state *state = &bd->state;
90 bool last_input_needs_ss = false;
91 bool has_tex_prefetch = false;
92
93 /* our input state is the OR of all predecessor blocks' state: */
94 set_foreach(block->predecessors, entry) {
95 struct ir3_block *predecessor = (struct ir3_block *)entry->key;
96 struct ir3_legalize_block_data *pbd = predecessor->data;
97 struct ir3_legalize_state *pstate = &pbd->state;
98
99 /* Our input (ss)/(sy) state is based on OR'ing the output
100 * state of all our predecessor blocks
101 */
102 regmask_or(&state->needs_ss,
103 &state->needs_ss, &pstate->needs_ss);
104 regmask_or(&state->needs_ss_war,
105 &state->needs_ss_war, &pstate->needs_ss_war);
106 regmask_or(&state->needs_sy,
107 &state->needs_sy, &pstate->needs_sy);
108 }
109
110 /* remove all the instructions from the list, we'll be adding
111 * them back in as we go
112 */
113 list_replace(&block->instr_list, &instr_list);
114 list_inithead(&block->instr_list);
115
116 list_for_each_entry_safe (struct ir3_instruction, n, &instr_list, node) {
117 struct ir3_register *reg;
118 unsigned i;
119
120 n->flags &= ~(IR3_INSTR_SS | IR3_INSTR_SY);
121
122 /* _meta::tex_prefetch instructions removed later in
123 * collect_tex_prefetches()
124 */
125 if (is_meta(n) && (n->opc != OPC_META_TEX_PREFETCH))
126 continue;
127
128 if (is_input(n)) {
129 struct ir3_register *inloc = n->regs[1];
130 assert(inloc->flags & IR3_REG_IMMED);
131 ctx->max_bary = MAX2(ctx->max_bary, inloc->iim_val);
132 }
133
134 if (last_n && is_barrier(last_n)) {
135 n->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
136 last_input_needs_ss = false;
137 }
138
139 /* NOTE: consider dst register too.. it could happen that
140 * texture sample instruction (for example) writes some
141 * components which are unused. A subsequent instruction
142 * that writes the same register can race w/ the sam instr
143 * resulting in undefined results:
144 */
145 for (i = 0; i < n->regs_count; i++) {
146 reg = n->regs[i];
147
148 if (reg_gpr(reg)) {
149
150 /* TODO: we probably only need (ss) for alu
151 * instr consuming sfu result.. need to make
152 * some tests for both this and (sy)..
153 */
154 if (regmask_get(&state->needs_ss, reg)) {
155 n->flags |= IR3_INSTR_SS;
156 last_input_needs_ss = false;
157 regmask_init(&state->needs_ss_war);
158 regmask_init(&state->needs_ss);
159 }
160
161 if (regmask_get(&state->needs_sy, reg)) {
162 n->flags |= IR3_INSTR_SY;
163 regmask_init(&state->needs_sy);
164 }
165 }
166
167 /* TODO: is it valid to have address reg loaded from a
168 * relative src (ie. mova a0, c<a0.x+4>)? If so, the
169 * last_rel check below should be moved ahead of this:
170 */
171 if (reg->flags & IR3_REG_RELATIV)
172 last_rel = n;
173 }
174
175 if (n->regs_count > 0) {
176 reg = n->regs[0];
177 if (regmask_get(&state->needs_ss_war, reg)) {
178 n->flags |= IR3_INSTR_SS;
179 last_input_needs_ss = false;
180 regmask_init(&state->needs_ss_war);
181 regmask_init(&state->needs_ss);
182 }
183
184 if (last_rel && (reg->num == regid(REG_A0, 0))) {
185 last_rel->flags |= IR3_INSTR_UL;
186 last_rel = NULL;
187 }
188 }
189
190 /* cat5+ does not have an (ss) bit, if needed we need to
191 * insert a nop to carry the sync flag. Would be kinda
192 * clever if we were aware of this during scheduling, but
193 * this should be a pretty rare case:
194 */
195 if ((n->flags & IR3_INSTR_SS) && (opc_cat(n->opc) >= 5)) {
196 struct ir3_instruction *nop;
197 nop = ir3_NOP(block);
198 nop->flags |= IR3_INSTR_SS;
199 n->flags &= ~IR3_INSTR_SS;
200 }
201
202 /* need to be able to set (ss) on first instruction: */
203 if (list_empty(&block->instr_list) && (opc_cat(n->opc) >= 5))
204 ir3_NOP(block);
205
206 if (is_nop(n) && !list_empty(&block->instr_list)) {
207 struct ir3_instruction *last = list_last_entry(&block->instr_list,
208 struct ir3_instruction, node);
209 if (is_nop(last) && (last->repeat < 5)) {
210 last->repeat++;
211 last->flags |= n->flags;
212 continue;
213 }
214
215 /* NOTE: I think the nopN encoding works for a5xx and
216 * probably a4xx, but not a3xx. So far only tested on
217 * a6xx.
218 */
219 if ((ctx->compiler->gpu_id >= 600) && !n->flags && (last->nop < 3) &&
220 ((opc_cat(last->opc) == 2) || (opc_cat(last->opc) == 3))) {
221 last->nop++;
222 continue;
223 }
224 }
225
226 if (ctx->compiler->samgq_workaround &&
227 ctx->type == MESA_SHADER_VERTEX && n->opc == OPC_SAMGQ) {
228 struct ir3_instruction *samgp;
229
230 for (i = 0; i < 4; i++) {
231 samgp = ir3_instr_clone(n);
232 samgp->opc = OPC_SAMGP0 + i;
233 if (i > 1)
234 samgp->flags |= IR3_INSTR_SY;
235 }
236 list_delinit(&n->node);
237 } else {
238 list_addtail(&n->node, &block->instr_list);
239 }
240
241 if (is_sfu(n))
242 regmask_set(&state->needs_ss, n->regs[0]);
243
244 if (is_tex(n) || (n->opc == OPC_META_TEX_PREFETCH)) {
245 regmask_set(&state->needs_sy, n->regs[0]);
246 ctx->need_pixlod = true;
247 if (n->opc == OPC_META_TEX_PREFETCH)
248 has_tex_prefetch = true;
249 } else if (n->opc == OPC_RESINFO) {
250 regmask_set(&state->needs_ss, n->regs[0]);
251 ir3_NOP(block)->flags |= IR3_INSTR_SS;
252 last_input_needs_ss = false;
253 } else if (is_load(n)) {
254 /* seems like ldlv needs (ss) bit instead?? which is odd but
255 * makes a bunch of flat-varying tests start working on a4xx.
256 */
257 if ((n->opc == OPC_LDLV) || (n->opc == OPC_LDL) || (n->opc == OPC_LDLW))
258 regmask_set(&state->needs_ss, n->regs[0]);
259 else
260 regmask_set(&state->needs_sy, n->regs[0]);
261 } else if (is_atomic(n->opc)) {
262 if (n->flags & IR3_INSTR_G) {
263 if (ctx->compiler->gpu_id >= 600) {
264 /* New encoding, returns result via second src: */
265 regmask_set(&state->needs_sy, n->regs[3]);
266 } else {
267 regmask_set(&state->needs_sy, n->regs[0]);
268 }
269 } else {
270 regmask_set(&state->needs_ss, n->regs[0]);
271 }
272 }
273
274 if (is_ssbo(n->opc) || (is_atomic(n->opc) && (n->flags & IR3_INSTR_G)))
275 ctx->has_ssbo = true;
276
277 /* both tex/sfu appear to not always immediately consume
278 * their src register(s):
279 */
280 if (is_tex(n) || is_sfu(n) || is_mem(n)) {
281 foreach_src(reg, n) {
282 if (reg_gpr(reg))
283 regmask_set(&state->needs_ss_war, reg);
284 }
285 }
286
287 if (is_input(n)) {
288 last_input = n;
289 last_input_needs_ss |= (n->opc == OPC_LDLV);
290 }
291
292 last_n = n;
293 }
294
295 if (last_input) {
296 assert(block == list_first_entry(&block->shader->block_list,
297 struct ir3_block, node));
298 /* special hack.. if using ldlv to bypass interpolation,
299 * we need to insert a dummy bary.f on which we can set
300 * the (ei) flag:
301 */
302 if (is_mem(last_input) && (last_input->opc == OPC_LDLV)) {
303 struct ir3_instruction *baryf;
304
305 /* (ss)bary.f (ei)r63.x, 0, r0.x */
306 baryf = ir3_instr_create(block, OPC_BARY_F);
307 ir3_reg_create(baryf, regid(63, 0), 0);
308 ir3_reg_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0;
309 ir3_reg_create(baryf, regid(0, 0), 0);
310
311 /* insert the dummy bary.f after last_input: */
312 list_delinit(&baryf->node);
313 list_add(&baryf->node, &last_input->node);
314
315 last_input = baryf;
316
317 /* by definition, we need (ss) since we are inserting
318 * the dummy bary.f immediately after the ldlv:
319 */
320 last_input_needs_ss = true;
321 }
322 last_input->regs[0]->flags |= IR3_REG_EI;
323 if (last_input_needs_ss)
324 last_input->flags |= IR3_INSTR_SS;
325 } else if (has_tex_prefetch) {
326 /* texture prefetch, but *no* inputs.. we need to insert a
327 * dummy bary.f at the top of the shader to unblock varying
328 * storage:
329 */
330 struct ir3_instruction *baryf;
331
332 /* (ss)bary.f (ei)r63.x, 0, r0.x */
333 baryf = ir3_instr_create(block, OPC_BARY_F);
334 ir3_reg_create(baryf, regid(63, 0), 0)->flags |= IR3_REG_EI;
335 ir3_reg_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0;
336 ir3_reg_create(baryf, regid(0, 0), 0);
337
338 /* insert the dummy bary.f at head: */
339 list_delinit(&baryf->node);
340 list_add(&baryf->node, &block->instr_list);
341 }
342
343 if (last_rel)
344 last_rel->flags |= IR3_INSTR_UL;
345
346 bd->valid = true;
347
348 if (memcmp(&prev_state, state, sizeof(*state))) {
349 /* our output state changed, this invalidates all of our
350 * successors:
351 */
352 for (unsigned i = 0; i < ARRAY_SIZE(block->successors); i++) {
353 if (!block->successors[i])
354 break;
355 struct ir3_legalize_block_data *pbd = block->successors[i]->data;
356 pbd->valid = false;
357 }
358 }
359
360 return true;
361 }
362
363 /* NOTE: branch instructions are always the last instruction(s)
364 * in the block. We take advantage of this as we resolve the
365 * branches, since "if (foo) break;" constructs turn into
366 * something like:
367 *
368 * block3 {
369 * ...
370 * 0029:021: mov.s32s32 r62.x, r1.y
371 * 0082:022: br !p0.x, target=block5
372 * 0083:023: br p0.x, target=block4
373 * // succs: if _[0029:021: mov.s32s32] block4; else block5;
374 * }
375 * block4 {
376 * 0084:024: jump, target=block6
377 * // succs: block6;
378 * }
379 * block5 {
380 * 0085:025: jump, target=block7
381 * // succs: block7;
382 * }
383 *
384 * ie. only instruction in block4/block5 is a jump, so when
385 * resolving branches we can easily detect this by checking
386 * that the first instruction in the target block is itself
387 * a jump, and setup the br directly to the jump's target
388 * (and strip back out the now unreached jump)
389 *
390 * TODO sometimes we end up with things like:
391 *
392 * br !p0.x, #2
393 * br p0.x, #12
394 * add.u r0.y, r0.y, 1
395 *
396 * If we swapped the order of the branches, we could drop one.
397 */
398 static struct ir3_block *
399 resolve_dest_block(struct ir3_block *block)
400 {
401 /* special case for last block: */
402 if (!block->successors[0])
403 return block;
404
405 /* NOTE that we may or may not have inserted the jump
406 * in the target block yet, so conditions to resolve
407 * the dest to the dest block's successor are:
408 *
409 * (1) successor[1] == NULL &&
410 * (2) (block-is-empty || only-instr-is-jump)
411 */
412 if (block->successors[1] == NULL) {
413 if (list_empty(&block->instr_list)) {
414 return block->successors[0];
415 } else if (list_length(&block->instr_list) == 1) {
416 struct ir3_instruction *instr = list_first_entry(
417 &block->instr_list, struct ir3_instruction, node);
418 if (instr->opc == OPC_JUMP)
419 return block->successors[0];
420 }
421 }
422 return block;
423 }
424
425 static void
426 remove_unused_block(struct ir3_block *old_target)
427 {
428 list_delinit(&old_target->node);
429
430 /* cleanup dangling predecessors: */
431 for (unsigned i = 0; i < ARRAY_SIZE(old_target->successors); i++) {
432 if (old_target->successors[i]) {
433 struct ir3_block *succ = old_target->successors[i];
434 _mesa_set_remove_key(succ->predecessors, old_target);
435 }
436 }
437 }
438
439 static void
440 retarget_jump(struct ir3_instruction *instr, struct ir3_block *new_target)
441 {
442 struct ir3_block *old_target = instr->cat0.target;
443 struct ir3_block *cur_block = instr->block;
444
445 /* update current blocks successors to reflect the retargetting: */
446 if (cur_block->successors[0] == old_target) {
447 cur_block->successors[0] = new_target;
448 } else {
449 debug_assert(cur_block->successors[1] == old_target);
450 cur_block->successors[1] = new_target;
451 }
452
453 /* update new target's predecessors: */
454 _mesa_set_add(new_target->predecessors, cur_block);
455
456 /* and remove old_target's predecessor: */
457 debug_assert(_mesa_set_search(old_target->predecessors, cur_block));
458 _mesa_set_remove_key(old_target->predecessors, cur_block);
459
460 if (old_target->predecessors->entries == 0)
461 remove_unused_block(old_target);
462
463 instr->cat0.target = new_target;
464 }
465
466 static bool
467 resolve_jump(struct ir3_instruction *instr)
468 {
469 struct ir3_block *tblock =
470 resolve_dest_block(instr->cat0.target);
471 struct ir3_instruction *target;
472
473 if (tblock != instr->cat0.target) {
474 retarget_jump(instr, tblock);
475 return true;
476 }
477
478 target = list_first_entry(&tblock->instr_list,
479 struct ir3_instruction, node);
480
481 /* TODO maybe a less fragile way to do this. But we are expecting
482 * a pattern from sched_block() that looks like:
483 *
484 * br !p0.x, #else-block
485 * br p0.x, #if-block
486 *
487 * if the first branch target is +2, or if 2nd branch target is +1
488 * then we can just drop the jump.
489 */
490 unsigned next_block;
491 if (instr->cat0.inv == true)
492 next_block = 2;
493 else
494 next_block = 1;
495
496 if (target->ip == (instr->ip + next_block)) {
497 list_delinit(&instr->node);
498 return true;
499 } else {
500 instr->cat0.immed =
501 (int)target->ip - (int)instr->ip;
502 }
503 return false;
504 }
505
506 /* resolve jumps, removing jumps/branches to immediately following
507 * instruction which we end up with from earlier stages. Since
508 * removing an instruction can invalidate earlier instruction's
509 * branch offsets, we need to do this iteratively until no more
510 * branches are removed.
511 */
512 static bool
513 resolve_jumps(struct ir3 *ir)
514 {
515 list_for_each_entry (struct ir3_block, block, &ir->block_list, node)
516 list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node)
517 if (is_flow(instr) && instr->cat0.target)
518 if (resolve_jump(instr))
519 return true;
520
521 return false;
522 }
523
524 static void mark_jp(struct ir3_block *block)
525 {
526 struct ir3_instruction *target = list_first_entry(&block->instr_list,
527 struct ir3_instruction, node);
528 target->flags |= IR3_INSTR_JP;
529 }
530
531 /* Mark points where control flow converges or diverges.
532 *
533 * Divergence points could actually be re-convergence points where
534 * "parked" threads are recoverged with threads that took the opposite
535 * path last time around. Possibly it is easier to think of (jp) as
536 * "the execution mask might have changed".
537 */
538 static void
539 mark_xvergence_points(struct ir3 *ir)
540 {
541 list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
542 if (block->predecessors->entries > 1) {
543 /* if a block has more than one possible predecessor, then
544 * the first instruction is a convergence point.
545 */
546 mark_jp(block);
547 } else if (block->predecessors->entries == 1) {
548 /* If a block has one predecessor, which has multiple possible
549 * successors, it is a divergence point.
550 */
551 set_foreach(block->predecessors, entry) {
552 struct ir3_block *predecessor = (struct ir3_block *)entry->key;
553 if (predecessor->successors[1]) {
554 mark_jp(block);
555 }
556 }
557 }
558 }
559 }
560
561 void
562 ir3_legalize(struct ir3 *ir, bool *has_ssbo, bool *need_pixlod, int *max_bary)
563 {
564 struct ir3_legalize_ctx *ctx = rzalloc(ir, struct ir3_legalize_ctx);
565 bool progress;
566
567 ctx->max_bary = -1;
568 ctx->compiler = ir->compiler;
569 ctx->type = ir->type;
570
571 /* allocate per-block data: */
572 list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
573 block->data = rzalloc(ctx, struct ir3_legalize_block_data);
574 }
575
576 /* process each block: */
577 do {
578 progress = false;
579 list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
580 progress |= legalize_block(ctx, block);
581 }
582 } while (progress);
583
584 *has_ssbo = ctx->has_ssbo;
585 *need_pixlod = ctx->need_pixlod;
586 *max_bary = ctx->max_bary;
587
588 do {
589 ir3_count_instructions(ir);
590 } while(resolve_jumps(ir));
591
592 mark_xvergence_points(ir);
593
594 ralloc_free(ctx);
595 }