deebd7132d53d693a1783c653cabdc6727e15504
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "adreno_pm4.xml.h"
31 #include "adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 void
38 tu_bo_list_init(struct tu_bo_list *list)
39 {
40 list->count = list->capacity = 0;
41 list->bo_infos = NULL;
42 }
43
44 void
45 tu_bo_list_destroy(struct tu_bo_list *list)
46 {
47 free(list->bo_infos);
48 }
49
50 void
51 tu_bo_list_reset(struct tu_bo_list *list)
52 {
53 list->count = 0;
54 }
55
56 /**
57 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
58 */
59 static uint32_t
60 tu_bo_list_add_info(struct tu_bo_list *list,
61 const struct drm_msm_gem_submit_bo *bo_info)
62 {
63 assert(bo_info->handle != 0);
64
65 for (uint32_t i = 0; i < list->count; ++i) {
66 if (list->bo_infos[i].handle == bo_info->handle) {
67 assert(list->bo_infos[i].presumed == bo_info->presumed);
68 list->bo_infos[i].flags |= bo_info->flags;
69 return i;
70 }
71 }
72
73 /* grow list->bo_infos if needed */
74 if (list->count == list->capacity) {
75 uint32_t new_capacity = MAX2(2 * list->count, 16);
76 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
77 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
78 if (!new_bo_infos)
79 return TU_BO_LIST_FAILED;
80 list->bo_infos = new_bo_infos;
81 list->capacity = new_capacity;
82 }
83
84 list->bo_infos[list->count] = *bo_info;
85 return list->count++;
86 }
87
88 uint32_t
89 tu_bo_list_add(struct tu_bo_list *list,
90 const struct tu_bo *bo,
91 uint32_t flags)
92 {
93 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
94 .flags = flags,
95 .handle = bo->gem_handle,
96 .presumed = bo->iova,
97 });
98 }
99
100 VkResult
101 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
102 {
103 for (uint32_t i = 0; i < other->count; i++) {
104 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
105 return VK_ERROR_OUT_OF_HOST_MEMORY;
106 }
107
108 return VK_SUCCESS;
109 }
110
111 void
112 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
113 struct tu_cs *cs,
114 enum vgt_event_type event)
115 {
116 bool need_seqno = false;
117 switch (event) {
118 case CACHE_FLUSH_TS:
119 case WT_DONE_TS:
120 case RB_DONE_TS:
121 case PC_CCU_FLUSH_DEPTH_TS:
122 case PC_CCU_FLUSH_COLOR_TS:
123 case PC_CCU_RESOLVE_TS:
124 need_seqno = true;
125 break;
126 default:
127 break;
128 }
129
130 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
131 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
132 if (need_seqno) {
133 tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
134 tu_cs_emit(cs, 0);
135 }
136 }
137
138 static void
139 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
140 struct tu_cs *cs,
141 enum tu_cmd_flush_bits flushes)
142 {
143 /* Experiments show that invalidating CCU while it still has data in it
144 * doesn't work, so make sure to always flush before invalidating in case
145 * any data remains that hasn't yet been made available through a barrier.
146 * However it does seem to work for UCHE.
147 */
148 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
149 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
150 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
151 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
152 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
153 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
154 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
155 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
156 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
157 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
158 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
159 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
160 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
161 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
162 if (flushes & TU_CMD_FLAG_WAIT_MEM_WRITES)
163 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
164 if (flushes & TU_CMD_FLAG_WAIT_FOR_IDLE)
165 tu_cs_emit_wfi(cs);
166 if (flushes & TU_CMD_FLAG_WAIT_FOR_ME)
167 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
168 }
169
170 /* "Normal" cache flushes, that don't require any special handling */
171
172 static void
173 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
174 struct tu_cs *cs)
175 {
176 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
177 cmd_buffer->state.cache.flush_bits = 0;
178 }
179
180 /* Renderpass cache flushes */
181
182 void
183 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
184 struct tu_cs *cs)
185 {
186 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
187 cmd_buffer->state.renderpass_cache.flush_bits = 0;
188 }
189
190 /* Cache flushes for things that use the color/depth read/write path (i.e.
191 * blits and draws). This deals with changing CCU state as well as the usual
192 * cache flushing.
193 */
194
195 void
196 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
197 struct tu_cs *cs,
198 enum tu_cmd_ccu_state ccu_state)
199 {
200 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
201
202 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
203
204 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
205 * the CCU may also contain data that we haven't flushed out yet, so we
206 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
207 * emit a WFI as it isn't pipelined.
208 */
209 if (ccu_state != cmd_buffer->state.ccu_state) {
210 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
211 flushes |=
212 TU_CMD_FLAG_CCU_FLUSH_COLOR |
213 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
214 cmd_buffer->state.cache.pending_flush_bits &= ~(
215 TU_CMD_FLAG_CCU_FLUSH_COLOR |
216 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
217 }
218 flushes |=
219 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
220 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
221 TU_CMD_FLAG_WAIT_FOR_IDLE;
222 cmd_buffer->state.cache.pending_flush_bits &= ~(
223 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
224 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
225 TU_CMD_FLAG_WAIT_FOR_IDLE);
226 }
227
228 tu6_emit_flushes(cmd_buffer, cs, flushes);
229 cmd_buffer->state.cache.flush_bits = 0;
230
231 if (ccu_state != cmd_buffer->state.ccu_state) {
232 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
233 tu_cs_emit_regs(cs,
234 A6XX_RB_CCU_CNTL(.offset =
235 ccu_state == TU_CMD_CCU_GMEM ?
236 phys_dev->ccu_offset_gmem :
237 phys_dev->ccu_offset_bypass,
238 .gmem = ccu_state == TU_CMD_CCU_GMEM));
239 cmd_buffer->state.ccu_state = ccu_state;
240 }
241 }
242
243 static void
244 tu6_emit_zs(struct tu_cmd_buffer *cmd,
245 const struct tu_subpass *subpass,
246 struct tu_cs *cs)
247 {
248 const struct tu_framebuffer *fb = cmd->state.framebuffer;
249
250 const uint32_t a = subpass->depth_stencil_attachment.attachment;
251 if (a == VK_ATTACHMENT_UNUSED) {
252 tu_cs_emit_regs(cs,
253 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
254 A6XX_RB_DEPTH_BUFFER_PITCH(0),
255 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
256 A6XX_RB_DEPTH_BUFFER_BASE(0),
257 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
258
259 tu_cs_emit_regs(cs,
260 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
261
262 tu_cs_emit_regs(cs,
263 A6XX_GRAS_LRZ_BUFFER_BASE(0),
264 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
265 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
266
267 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
268
269 return;
270 }
271
272 const struct tu_image_view *iview = fb->attachments[a].attachment;
273 const struct tu_render_pass_attachment *attachment =
274 &cmd->state.pass->attachments[a];
275 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
276
277 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
278 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
279 tu_cs_image_ref(cs, iview, 0);
280 tu_cs_emit(cs, attachment->gmem_offset);
281
282 tu_cs_emit_regs(cs,
283 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
284
285 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
286 tu_cs_image_flag_ref(cs, iview, 0);
287
288 tu_cs_emit_regs(cs,
289 A6XX_GRAS_LRZ_BUFFER_BASE(0),
290 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
291 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
292
293 if (attachment->format == VK_FORMAT_S8_UINT) {
294 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
295 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
296 tu_cs_image_ref(cs, iview, 0);
297 tu_cs_emit(cs, attachment->gmem_offset);
298 } else {
299 tu_cs_emit_regs(cs,
300 A6XX_RB_STENCIL_INFO(0));
301 }
302 }
303
304 static void
305 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
306 const struct tu_subpass *subpass,
307 struct tu_cs *cs)
308 {
309 const struct tu_framebuffer *fb = cmd->state.framebuffer;
310
311 for (uint32_t i = 0; i < subpass->color_count; ++i) {
312 uint32_t a = subpass->color_attachments[i].attachment;
313 if (a == VK_ATTACHMENT_UNUSED)
314 continue;
315
316 const struct tu_image_view *iview = fb->attachments[a].attachment;
317
318 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
319 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
320 tu_cs_image_ref(cs, iview, 0);
321 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
322
323 tu_cs_emit_regs(cs,
324 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
325
326 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
327 tu_cs_image_flag_ref(cs, iview, 0);
328 }
329
330 tu_cs_emit_regs(cs,
331 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
332 tu_cs_emit_regs(cs,
333 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
334
335 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
336 }
337
338 void
339 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
340 {
341 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
342 bool msaa_disable = samples == MSAA_ONE;
343
344 tu_cs_emit_regs(cs,
345 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
346 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
347 .msaa_disable = msaa_disable));
348
349 tu_cs_emit_regs(cs,
350 A6XX_GRAS_RAS_MSAA_CNTL(samples),
351 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
352 .msaa_disable = msaa_disable));
353
354 tu_cs_emit_regs(cs,
355 A6XX_RB_RAS_MSAA_CNTL(samples),
356 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
357 .msaa_disable = msaa_disable));
358
359 tu_cs_emit_regs(cs,
360 A6XX_RB_MSAA_CNTL(samples));
361 }
362
363 static void
364 tu6_emit_bin_size(struct tu_cs *cs,
365 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
366 {
367 tu_cs_emit_regs(cs,
368 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
369 .binh = bin_h,
370 .dword = flags));
371
372 tu_cs_emit_regs(cs,
373 A6XX_RB_BIN_CONTROL(.binw = bin_w,
374 .binh = bin_h,
375 .dword = flags));
376
377 /* no flag for RB_BIN_CONTROL2... */
378 tu_cs_emit_regs(cs,
379 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
380 .binh = bin_h));
381 }
382
383 static void
384 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
385 const struct tu_subpass *subpass,
386 struct tu_cs *cs,
387 bool binning)
388 {
389 const struct tu_framebuffer *fb = cmd->state.framebuffer;
390 uint32_t cntl = 0;
391 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
392 if (binning) {
393 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
394 } else {
395 uint32_t mrts_ubwc_enable = 0;
396 for (uint32_t i = 0; i < subpass->color_count; ++i) {
397 uint32_t a = subpass->color_attachments[i].attachment;
398 if (a == VK_ATTACHMENT_UNUSED)
399 continue;
400
401 const struct tu_image_view *iview = fb->attachments[a].attachment;
402 if (iview->ubwc_enabled)
403 mrts_ubwc_enable |= 1 << i;
404 }
405
406 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
407
408 const uint32_t a = subpass->depth_stencil_attachment.attachment;
409 if (a != VK_ATTACHMENT_UNUSED) {
410 const struct tu_image_view *iview = fb->attachments[a].attachment;
411 if (iview->ubwc_enabled)
412 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
413 }
414
415 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
416 * in order to set it correctly for the different subpasses. However,
417 * that means the packets we're emitting also happen during binning. So
418 * we need to guard the write on !BINNING at CP execution time.
419 */
420 tu_cs_reserve(cs, 3 + 4);
421 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
422 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
423 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
424 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
425 }
426
427 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
428 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
429 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
430 tu_cs_emit(cs, cntl);
431 }
432
433 static void
434 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
435 {
436
437 const VkRect2D *render_area = &cmd->state.render_area;
438
439 /* Avoid assertion fails with an empty render area at (0, 0) where the
440 * subtraction below wraps around. Empty render areas should be forced to
441 * the sysmem path by use_sysmem_rendering(). It's not even clear whether
442 * an empty scissor here works, and the blob seems to force sysmem too as
443 * it sets something wrong (non-empty) for the scissor.
444 */
445 if (render_area->extent.width == 0 ||
446 render_area->extent.height == 0)
447 return;
448
449 uint32_t x1 = render_area->offset.x;
450 uint32_t y1 = render_area->offset.y;
451 uint32_t x2 = x1 + render_area->extent.width - 1;
452 uint32_t y2 = y1 + render_area->extent.height - 1;
453
454 if (align) {
455 x1 = x1 & ~(GMEM_ALIGN_W - 1);
456 y1 = y1 & ~(GMEM_ALIGN_H - 1);
457 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
458 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
459 }
460
461 tu_cs_emit_regs(cs,
462 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
463 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
464 }
465
466 void
467 tu6_emit_window_scissor(struct tu_cs *cs,
468 uint32_t x1,
469 uint32_t y1,
470 uint32_t x2,
471 uint32_t y2)
472 {
473 tu_cs_emit_regs(cs,
474 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
475 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
476
477 tu_cs_emit_regs(cs,
478 A6XX_GRAS_2D_RESOLVE_CNTL_1(.x = x1, .y = y1),
479 A6XX_GRAS_2D_RESOLVE_CNTL_2(.x = x2, .y = y2));
480 }
481
482 void
483 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
484 {
485 tu_cs_emit_regs(cs,
486 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
487
488 tu_cs_emit_regs(cs,
489 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
490
491 tu_cs_emit_regs(cs,
492 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
493
494 tu_cs_emit_regs(cs,
495 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
496 }
497
498 static void
499 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
500 {
501 uint32_t enable_mask;
502 switch (id) {
503 case TU_DRAW_STATE_PROGRAM:
504 case TU_DRAW_STATE_VI:
505 case TU_DRAW_STATE_FS_CONST:
506 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
507 * when resources would actually be used in the binning shader.
508 * Presumably the overhead of prefetching the resources isn't
509 * worth it.
510 */
511 case TU_DRAW_STATE_DESC_SETS_LOAD:
512 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
513 CP_SET_DRAW_STATE__0_SYSMEM;
514 break;
515 case TU_DRAW_STATE_PROGRAM_BINNING:
516 case TU_DRAW_STATE_VI_BINNING:
517 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
518 break;
519 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
520 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
521 break;
522 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
523 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
524 break;
525 default:
526 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
527 CP_SET_DRAW_STATE__0_SYSMEM |
528 CP_SET_DRAW_STATE__0_BINNING;
529 break;
530 }
531
532 /* We need to reload the descriptors every time the descriptor sets
533 * change. However, the commands we send only depend on the pipeline
534 * because the whole point is to cache descriptors which are used by the
535 * pipeline. There's a problem here, in that the firmware has an
536 * "optimization" which skips executing groups that are set to the same
537 * value as the last draw. This means that if the descriptor sets change
538 * but not the pipeline, we'd try to re-execute the same buffer which
539 * the firmware would ignore and we wouldn't pre-load the new
540 * descriptors. Set the DIRTY bit to avoid this optimization
541 */
542 if (id == TU_DRAW_STATE_DESC_SETS_LOAD)
543 enable_mask |= CP_SET_DRAW_STATE__0_DIRTY;
544
545 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
546 enable_mask |
547 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
548 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
549 tu_cs_emit_qw(cs, state.iova);
550 }
551
552 static bool
553 use_hw_binning(struct tu_cmd_buffer *cmd)
554 {
555 const struct tu_framebuffer *fb = cmd->state.framebuffer;
556
557 /* XFB commands are emitted for BINNING || SYSMEM, which makes it incompatible
558 * with non-hw binning GMEM rendering. this is required because some of the
559 * XFB commands need to only be executed once
560 */
561 if (cmd->state.xfb_used)
562 return true;
563
564 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
565 return false;
566
567 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
568 return true;
569
570 return (fb->tile_count.width * fb->tile_count.height) > 2;
571 }
572
573 static bool
574 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
575 {
576 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
577 return true;
578
579 /* can't fit attachments into gmem */
580 if (!cmd->state.pass->gmem_pixels)
581 return true;
582
583 if (cmd->state.framebuffer->layers > 1)
584 return true;
585
586 /* Use sysmem for empty render areas */
587 if (cmd->state.render_area.extent.width == 0 ||
588 cmd->state.render_area.extent.height == 0)
589 return true;
590
591 if (cmd->has_tess)
592 return true;
593
594 return false;
595 }
596
597 static void
598 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
599 struct tu_cs *cs,
600 uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot)
601 {
602 const struct tu_framebuffer *fb = cmd->state.framebuffer;
603
604 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
605 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
606
607 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
608 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
609
610 const uint32_t x1 = fb->tile0.width * tx;
611 const uint32_t y1 = fb->tile0.height * ty;
612 const uint32_t x2 = x1 + fb->tile0.width - 1;
613 const uint32_t y2 = y1 + fb->tile0.height - 1;
614 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
615 tu6_emit_window_offset(cs, x1, y1);
616
617 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
618
619 if (use_hw_binning(cmd)) {
620 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
621
622 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
623 tu_cs_emit(cs, 0x0);
624
625 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, 4);
626 tu_cs_emit(cs, fb->pipe_sizes[pipe] |
627 CP_SET_BIN_DATA5_0_VSC_N(slot));
628 tu_cs_emit(cs, pipe * cmd->vsc_draw_strm_pitch);
629 tu_cs_emit(cs, pipe * 4);
630 tu_cs_emit(cs, pipe * cmd->vsc_prim_strm_pitch);
631
632 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
633 tu_cs_emit(cs, 0x0);
634
635 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
636 tu_cs_emit(cs, 0x0);
637 } else {
638 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
639 tu_cs_emit(cs, 0x1);
640
641 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
642 tu_cs_emit(cs, 0x0);
643 }
644 }
645
646 static void
647 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
648 struct tu_cs *cs,
649 uint32_t a,
650 uint32_t gmem_a)
651 {
652 const struct tu_framebuffer *fb = cmd->state.framebuffer;
653 struct tu_image_view *dst = fb->attachments[a].attachment;
654 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
655
656 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.render_area);
657 }
658
659 static void
660 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
661 struct tu_cs *cs,
662 const struct tu_subpass *subpass)
663 {
664 if (subpass->resolve_attachments) {
665 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
666 * Commands":
667 *
668 * End-of-subpass multisample resolves are treated as color
669 * attachment writes for the purposes of synchronization. That is,
670 * they are considered to execute in the
671 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
672 * their writes are synchronized with
673 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
674 * rendering within a subpass and any resolve operations at the end
675 * of the subpass occurs automatically, without need for explicit
676 * dependencies or pipeline barriers. However, if the resolve
677 * attachment is also used in a different subpass, an explicit
678 * dependency is needed.
679 *
680 * We use the CP_BLIT path for sysmem resolves, which is really a
681 * transfer command, so we have to manually flush similar to the gmem
682 * resolve case. However, a flush afterwards isn't needed because of the
683 * last sentence and the fact that we're in sysmem mode.
684 */
685 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
686 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
687
688 /* Wait for the flushes to land before using the 2D engine */
689 tu_cs_emit_wfi(cs);
690
691 for (unsigned i = 0; i < subpass->color_count; i++) {
692 uint32_t a = subpass->resolve_attachments[i].attachment;
693 if (a == VK_ATTACHMENT_UNUSED)
694 continue;
695
696 tu6_emit_sysmem_resolve(cmd, cs, a,
697 subpass->color_attachments[i].attachment);
698 }
699 }
700 }
701
702 static void
703 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
704 {
705 const struct tu_render_pass *pass = cmd->state.pass;
706 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
707
708 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
709 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
710 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
711 CP_SET_DRAW_STATE__0_GROUP_ID(0));
712 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
713 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
714
715 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
716 tu_cs_emit(cs, 0x0);
717
718 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
719 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
720
721 tu6_emit_blit_scissor(cmd, cs, true);
722
723 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
724 if (pass->attachments[a].gmem_offset >= 0)
725 tu_store_gmem_attachment(cmd, cs, a, a);
726 }
727
728 if (subpass->resolve_attachments) {
729 for (unsigned i = 0; i < subpass->color_count; i++) {
730 uint32_t a = subpass->resolve_attachments[i].attachment;
731 if (a != VK_ATTACHMENT_UNUSED)
732 tu_store_gmem_attachment(cmd, cs, a,
733 subpass->color_attachments[i].attachment);
734 }
735 }
736 }
737
738 static void
739 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
740 {
741 struct tu_device *dev = cmd->device;
742 const struct tu_physical_device *phys_dev = dev->physical_device;
743
744 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
745
746 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(
747 .vs_state = true,
748 .hs_state = true,
749 .ds_state = true,
750 .gs_state = true,
751 .fs_state = true,
752 .cs_state = true,
753 .gfx_ibo = true,
754 .cs_ibo = true,
755 .gfx_shared_const = true,
756 .cs_shared_const = true,
757 .gfx_bindless = 0x1f,
758 .cs_bindless = 0x1f));
759
760 tu_cs_emit_wfi(cs);
761
762 cmd->state.cache.pending_flush_bits &=
763 ~(TU_CMD_FLAG_WAIT_FOR_IDLE | TU_CMD_FLAG_CACHE_INVALIDATE);
764
765 tu_cs_emit_regs(cs,
766 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
767 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
768 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
769 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
770 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
771 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
772 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
773 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
774 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
775 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
776
777 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
778 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
779 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
780 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
781 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
782 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
783 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_SHARED_CONSTS, 0);
784 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
785 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
786 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
787 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
788 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
789 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
790
791 /* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
792 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
793 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
794 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
795
796 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
797
798 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
799
800 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
801 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
802 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
803 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
804 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
805 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
806 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
807 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
808 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
809 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
810 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
811
812 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
813
814 tu_cs_emit_regs(cs, A6XX_VPC_POINT_COORD_INVERT(false));
815 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
816
817 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
818
819 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
820
821 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
822 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
823
824 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
825
826 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
827
828 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
829 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
830 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
831 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
832 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
833 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
834 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
835 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
836 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
837
838 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
839
840 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
841
842 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
843
844 /* we don't use this yet.. probably best to disable.. */
845 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
846 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
847 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
848 CP_SET_DRAW_STATE__0_GROUP_ID(0));
849 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
850 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
851
852 tu_cs_emit_regs(cs,
853 A6XX_SP_HS_CTRL_REG0(0));
854
855 tu_cs_emit_regs(cs,
856 A6XX_SP_GS_CTRL_REG0(0));
857
858 tu_cs_emit_regs(cs,
859 A6XX_GRAS_LRZ_CNTL(0));
860
861 tu_cs_emit_regs(cs,
862 A6XX_RB_LRZ_CNTL(0));
863
864 tu_cs_emit_regs(cs,
865 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
866 .bo_offset = gb_offset(border_color)));
867 tu_cs_emit_regs(cs,
868 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
869 .bo_offset = gb_offset(border_color)));
870
871 /* VSC buffers:
872 * use vsc pitches from the largest values used so far with this device
873 * if there hasn't been overflow, there will already be a scratch bo
874 * allocated for these sizes
875 *
876 * if overflow is detected, the stream size is increased by 2x
877 */
878 mtx_lock(&dev->vsc_pitch_mtx);
879
880 struct tu6_global *global = dev->global_bo.map;
881
882 uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
883 uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
884
885 if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
886 dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
887
888 if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
889 dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
890
891 cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
892 cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
893
894 mtx_unlock(&dev->vsc_pitch_mtx);
895
896 struct tu_bo *vsc_bo;
897 uint32_t size0 = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES +
898 cmd->vsc_draw_strm_pitch * MAX_VSC_PIPES;
899
900 tu_get_scratch_bo(dev, size0 + MAX_VSC_PIPES * 4, &vsc_bo);
901
902 tu_cs_emit_regs(cs,
903 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = vsc_bo, .bo_offset = size0));
904 tu_cs_emit_regs(cs,
905 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = vsc_bo));
906 tu_cs_emit_regs(cs,
907 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = vsc_bo,
908 .bo_offset = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES));
909
910 tu_bo_list_add(&cmd->bo_list, vsc_bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
911
912 tu_cs_sanity_check(cs);
913 }
914
915 static void
916 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
917 {
918 const struct tu_framebuffer *fb = cmd->state.framebuffer;
919
920 tu_cs_emit_regs(cs,
921 A6XX_VSC_BIN_SIZE(.width = fb->tile0.width,
922 .height = fb->tile0.height));
923
924 tu_cs_emit_regs(cs,
925 A6XX_VSC_BIN_COUNT(.nx = fb->tile_count.width,
926 .ny = fb->tile_count.height));
927
928 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
929 tu_cs_emit_array(cs, fb->pipe_config, 32);
930
931 tu_cs_emit_regs(cs,
932 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
933 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - VSC_PAD));
934
935 tu_cs_emit_regs(cs,
936 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
937 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - VSC_PAD));
938 }
939
940 static void
941 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
942 {
943 const struct tu_framebuffer *fb = cmd->state.framebuffer;
944 const uint32_t used_pipe_count =
945 fb->pipe_count.width * fb->pipe_count.height;
946
947 for (int i = 0; i < used_pipe_count; i++) {
948 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
949 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
950 CP_COND_WRITE5_0_WRITE_MEMORY);
951 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
952 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
953 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
954 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
955 tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
956 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
957
958 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
959 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
960 CP_COND_WRITE5_0_WRITE_MEMORY);
961 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
962 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
963 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
964 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
965 tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
966 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
967 }
968
969 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
970 }
971
972 static void
973 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
974 {
975 struct tu_physical_device *phys_dev = cmd->device->physical_device;
976 const struct tu_framebuffer *fb = cmd->state.framebuffer;
977
978 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
979
980 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
981 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
982
983 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
984 tu_cs_emit(cs, 0x1);
985
986 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
987 tu_cs_emit(cs, 0x1);
988
989 tu_cs_emit_wfi(cs);
990
991 tu_cs_emit_regs(cs,
992 A6XX_VFD_MODE_CNTL(.binning_pass = true));
993
994 update_vsc_pipe(cmd, cs);
995
996 tu_cs_emit_regs(cs,
997 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
998
999 tu_cs_emit_regs(cs,
1000 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1001
1002 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1003 tu_cs_emit(cs, UNK_2C);
1004
1005 tu_cs_emit_regs(cs,
1006 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
1007
1008 tu_cs_emit_regs(cs,
1009 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
1010
1011 /* emit IB to binning drawcmds: */
1012 tu_cs_emit_call(cs, &cmd->draw_cs);
1013
1014 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1015 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1016 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1017 CP_SET_DRAW_STATE__0_GROUP_ID(0));
1018 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1019 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1020
1021 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1022 tu_cs_emit(cs, UNK_2D);
1023
1024 /* This flush is probably required because the VSC, which produces the
1025 * visibility stream, is a client of UCHE, whereas the CP needs to read the
1026 * visibility stream (without caching) to do draw skipping. The
1027 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1028 * submitted are finished before reading the VSC regs (in
1029 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1030 * part of draws).
1031 */
1032 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
1033
1034 tu_cs_emit_wfi(cs);
1035
1036 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1037
1038 emit_vsc_overflow_test(cmd, cs);
1039
1040 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1041 tu_cs_emit(cs, 0x0);
1042
1043 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1044 tu_cs_emit(cs, 0x0);
1045 }
1046
1047 static struct tu_draw_state
1048 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1049 const struct tu_subpass *subpass,
1050 bool gmem)
1051 {
1052 /* note: we can probably emit input attachments just once for the whole
1053 * renderpass, this would avoid emitting both sysmem/gmem versions
1054 *
1055 * emit two texture descriptors for each input, as a workaround for
1056 * d24s8, which can be sampled as both float (depth) and integer (stencil)
1057 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1058 * in the pair
1059 * TODO: a smarter workaround
1060 */
1061
1062 if (!subpass->input_count)
1063 return (struct tu_draw_state) {};
1064
1065 struct tu_cs_memory texture;
1066 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1067 A6XX_TEX_CONST_DWORDS, &texture);
1068 assert(result == VK_SUCCESS);
1069
1070 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1071 uint32_t a = subpass->input_attachments[i / 2].attachment;
1072 if (a == VK_ATTACHMENT_UNUSED)
1073 continue;
1074
1075 struct tu_image_view *iview =
1076 cmd->state.framebuffer->attachments[a].attachment;
1077 const struct tu_render_pass_attachment *att =
1078 &cmd->state.pass->attachments[a];
1079 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1080
1081 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1082
1083 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1084 /* note this works because spec says fb and input attachments
1085 * must use identity swizzle
1086 */
1087 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1088 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1089 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1090 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_S8Z24_UINT) |
1091 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1092 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1093 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1094 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1095 }
1096
1097 if (!gmem)
1098 continue;
1099
1100 /* patched for gmem */
1101 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1102 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1103 dst[2] =
1104 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1105 A6XX_TEX_CONST_2_PITCH(cmd->state.framebuffer->tile0.width * att->cpp);
1106 dst[3] = 0;
1107 dst[4] = cmd->device->physical_device->gmem_base + att->gmem_offset;
1108 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1109 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1110 dst[i] = 0;
1111 }
1112
1113 struct tu_cs cs;
1114 struct tu_draw_state ds = tu_cs_draw_state(&cmd->sub_cs, &cs, 9);
1115
1116 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1117 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1118 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1119 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1120 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1121 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1122 tu_cs_emit_qw(&cs, texture.iova);
1123
1124 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1125 tu_cs_emit_qw(&cs, texture.iova);
1126
1127 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1128
1129 assert(cs.cur == cs.end); /* validate draw state size */
1130
1131 return ds;
1132 }
1133
1134 static void
1135 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1136 {
1137 struct tu_cs *cs = &cmd->draw_cs;
1138
1139 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1140 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
1141 tu_emit_input_attachments(cmd, subpass, true));
1142 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
1143 tu_emit_input_attachments(cmd, subpass, false));
1144 }
1145
1146 static void
1147 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1148 const VkRenderPassBeginInfo *info)
1149 {
1150 struct tu_cs *cs = &cmd->draw_cs;
1151
1152 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1153
1154 tu6_emit_blit_scissor(cmd, cs, true);
1155
1156 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1157 tu_load_gmem_attachment(cmd, cs, i, false);
1158
1159 tu6_emit_blit_scissor(cmd, cs, false);
1160
1161 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1162 tu_clear_gmem_attachment(cmd, cs, i, info);
1163
1164 tu_cond_exec_end(cs);
1165
1166 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1167
1168 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1169 tu_clear_sysmem_attachment(cmd, cs, i, info);
1170
1171 tu_cond_exec_end(cs);
1172 }
1173
1174 static void
1175 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1176 {
1177 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1178
1179 assert(fb->width > 0 && fb->height > 0);
1180 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1181 tu6_emit_window_offset(cs, 0, 0);
1182
1183 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1184
1185 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1186
1187 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1188 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1189
1190 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1191 tu_cs_emit(cs, 0x0);
1192
1193 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1194
1195 /* enable stream-out, with sysmem there is only one pass: */
1196 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1197
1198 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1199 tu_cs_emit(cs, 0x1);
1200
1201 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1202 tu_cs_emit(cs, 0x0);
1203
1204 tu_cs_sanity_check(cs);
1205 }
1206
1207 static void
1208 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1209 {
1210 /* Do any resolves of the last subpass. These are handled in the
1211 * tile_store_ib in the gmem path.
1212 */
1213 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1214
1215 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1216
1217 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1218 tu_cs_emit(cs, 0x0);
1219
1220 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1221
1222 tu_cs_sanity_check(cs);
1223 }
1224
1225 static void
1226 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1227 {
1228 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1229
1230 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1231
1232 /* lrz clear? */
1233
1234 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1235 tu_cs_emit(cs, 0x0);
1236
1237 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1238
1239 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1240 if (use_hw_binning(cmd)) {
1241 /* enable stream-out during binning pass: */
1242 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1243
1244 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1245 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1246
1247 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1248
1249 tu6_emit_binning_pass(cmd, cs);
1250
1251 /* and disable stream-out for draw pass: */
1252 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
1253
1254 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1255 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1256
1257 tu_cs_emit_regs(cs,
1258 A6XX_VFD_MODE_CNTL(0));
1259
1260 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1261
1262 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1263
1264 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1265 tu_cs_emit(cs, 0x1);
1266 } else {
1267 /* no binning pass, so enable stream-out for draw pass:: */
1268 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1269
1270 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height, 0x6000000);
1271 }
1272
1273 tu_cs_sanity_check(cs);
1274 }
1275
1276 static void
1277 tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1278 {
1279 tu_cs_emit_call(cs, &cmd->draw_cs);
1280
1281 if (use_hw_binning(cmd)) {
1282 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1283 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1284 }
1285
1286 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1287
1288 tu_cs_sanity_check(cs);
1289 }
1290
1291 static void
1292 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1293 {
1294 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1295
1296 tu_cs_emit_regs(cs,
1297 A6XX_GRAS_LRZ_CNTL(0));
1298
1299 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1300
1301 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1302
1303 tu_cs_sanity_check(cs);
1304 }
1305
1306 static void
1307 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1308 {
1309 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1310
1311 tu6_tile_render_begin(cmd, &cmd->cs);
1312
1313 uint32_t pipe = 0;
1314 for (uint32_t py = 0; py < fb->pipe_count.height; py++) {
1315 for (uint32_t px = 0; px < fb->pipe_count.width; px++, pipe++) {
1316 uint32_t tx1 = px * fb->pipe0.width;
1317 uint32_t ty1 = py * fb->pipe0.height;
1318 uint32_t tx2 = MIN2(tx1 + fb->pipe0.width, fb->tile_count.width);
1319 uint32_t ty2 = MIN2(ty1 + fb->pipe0.height, fb->tile_count.height);
1320 uint32_t slot = 0;
1321 for (uint32_t ty = ty1; ty < ty2; ty++) {
1322 for (uint32_t tx = tx1; tx < tx2; tx++, slot++) {
1323 tu6_emit_tile_select(cmd, &cmd->cs, tx, ty, pipe, slot);
1324 tu6_render_tile(cmd, &cmd->cs);
1325 }
1326 }
1327 }
1328 }
1329
1330 tu6_tile_render_end(cmd, &cmd->cs);
1331 }
1332
1333 static void
1334 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1335 {
1336 tu6_sysmem_render_begin(cmd, &cmd->cs);
1337
1338 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1339
1340 tu6_sysmem_render_end(cmd, &cmd->cs);
1341 }
1342
1343 static void
1344 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1345 {
1346 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1347 struct tu_cs sub_cs;
1348
1349 VkResult result =
1350 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1351 if (result != VK_SUCCESS) {
1352 cmd->record_result = result;
1353 return;
1354 }
1355
1356 /* emit to tile-store sub_cs */
1357 tu6_emit_tile_store(cmd, &sub_cs);
1358
1359 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1360 }
1361
1362 static VkResult
1363 tu_create_cmd_buffer(struct tu_device *device,
1364 struct tu_cmd_pool *pool,
1365 VkCommandBufferLevel level,
1366 VkCommandBuffer *pCommandBuffer)
1367 {
1368 struct tu_cmd_buffer *cmd_buffer;
1369
1370 cmd_buffer = vk_object_zalloc(&device->vk, NULL, sizeof(*cmd_buffer),
1371 VK_OBJECT_TYPE_COMMAND_BUFFER);
1372 if (cmd_buffer == NULL)
1373 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1374
1375 cmd_buffer->device = device;
1376 cmd_buffer->pool = pool;
1377 cmd_buffer->level = level;
1378
1379 if (pool) {
1380 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1381 cmd_buffer->queue_family_index = pool->queue_family_index;
1382
1383 } else {
1384 /* Init the pool_link so we can safely call list_del when we destroy
1385 * the command buffer
1386 */
1387 list_inithead(&cmd_buffer->pool_link);
1388 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1389 }
1390
1391 tu_bo_list_init(&cmd_buffer->bo_list);
1392 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1393 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1394 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1395 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1396
1397 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1398
1399 list_inithead(&cmd_buffer->upload.list);
1400
1401 return VK_SUCCESS;
1402 }
1403
1404 static void
1405 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1406 {
1407 list_del(&cmd_buffer->pool_link);
1408
1409 tu_cs_finish(&cmd_buffer->cs);
1410 tu_cs_finish(&cmd_buffer->draw_cs);
1411 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1412 tu_cs_finish(&cmd_buffer->sub_cs);
1413
1414 tu_bo_list_destroy(&cmd_buffer->bo_list);
1415 vk_object_free(&cmd_buffer->device->vk, &cmd_buffer->pool->alloc, cmd_buffer);
1416 }
1417
1418 static VkResult
1419 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1420 {
1421 cmd_buffer->record_result = VK_SUCCESS;
1422
1423 tu_bo_list_reset(&cmd_buffer->bo_list);
1424 tu_cs_reset(&cmd_buffer->cs);
1425 tu_cs_reset(&cmd_buffer->draw_cs);
1426 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1427 tu_cs_reset(&cmd_buffer->sub_cs);
1428
1429 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1430 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1431
1432 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1433
1434 return cmd_buffer->record_result;
1435 }
1436
1437 VkResult
1438 tu_AllocateCommandBuffers(VkDevice _device,
1439 const VkCommandBufferAllocateInfo *pAllocateInfo,
1440 VkCommandBuffer *pCommandBuffers)
1441 {
1442 TU_FROM_HANDLE(tu_device, device, _device);
1443 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1444
1445 VkResult result = VK_SUCCESS;
1446 uint32_t i;
1447
1448 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1449
1450 if (!list_is_empty(&pool->free_cmd_buffers)) {
1451 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1452 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1453
1454 list_del(&cmd_buffer->pool_link);
1455 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1456
1457 result = tu_reset_cmd_buffer(cmd_buffer);
1458 cmd_buffer->level = pAllocateInfo->level;
1459
1460 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1461 } else {
1462 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1463 &pCommandBuffers[i]);
1464 }
1465 if (result != VK_SUCCESS)
1466 break;
1467 }
1468
1469 if (result != VK_SUCCESS) {
1470 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1471 pCommandBuffers);
1472
1473 /* From the Vulkan 1.0.66 spec:
1474 *
1475 * "vkAllocateCommandBuffers can be used to create multiple
1476 * command buffers. If the creation of any of those command
1477 * buffers fails, the implementation must destroy all
1478 * successfully created command buffer objects from this
1479 * command, set all entries of the pCommandBuffers array to
1480 * NULL and return the error."
1481 */
1482 memset(pCommandBuffers, 0,
1483 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1484 }
1485
1486 return result;
1487 }
1488
1489 void
1490 tu_FreeCommandBuffers(VkDevice device,
1491 VkCommandPool commandPool,
1492 uint32_t commandBufferCount,
1493 const VkCommandBuffer *pCommandBuffers)
1494 {
1495 for (uint32_t i = 0; i < commandBufferCount; i++) {
1496 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1497
1498 if (cmd_buffer) {
1499 if (cmd_buffer->pool) {
1500 list_del(&cmd_buffer->pool_link);
1501 list_addtail(&cmd_buffer->pool_link,
1502 &cmd_buffer->pool->free_cmd_buffers);
1503 } else
1504 tu_cmd_buffer_destroy(cmd_buffer);
1505 }
1506 }
1507 }
1508
1509 VkResult
1510 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1511 VkCommandBufferResetFlags flags)
1512 {
1513 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1514 return tu_reset_cmd_buffer(cmd_buffer);
1515 }
1516
1517 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1518 * invalidations.
1519 */
1520 static void
1521 tu_cache_init(struct tu_cache_state *cache)
1522 {
1523 cache->flush_bits = 0;
1524 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1525 }
1526
1527 VkResult
1528 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1529 const VkCommandBufferBeginInfo *pBeginInfo)
1530 {
1531 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1532 VkResult result = VK_SUCCESS;
1533
1534 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1535 /* If the command buffer has already been resetted with
1536 * vkResetCommandBuffer, no need to do it again.
1537 */
1538 result = tu_reset_cmd_buffer(cmd_buffer);
1539 if (result != VK_SUCCESS)
1540 return result;
1541 }
1542
1543 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1544 cmd_buffer->state.index_size = 0xff; /* dirty restart index */
1545
1546 tu_cache_init(&cmd_buffer->state.cache);
1547 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1548 cmd_buffer->usage_flags = pBeginInfo->flags;
1549
1550 tu_cs_begin(&cmd_buffer->cs);
1551 tu_cs_begin(&cmd_buffer->draw_cs);
1552 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1553
1554 /* setup initial configuration into command buffer */
1555 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1556 switch (cmd_buffer->queue_family_index) {
1557 case TU_QUEUE_GENERAL:
1558 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1559 break;
1560 default:
1561 break;
1562 }
1563 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1564 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1565 assert(pBeginInfo->pInheritanceInfo);
1566 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1567 cmd_buffer->state.subpass =
1568 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1569 } else {
1570 /* When executing in the middle of another command buffer, the CCU
1571 * state is unknown.
1572 */
1573 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1574 }
1575 }
1576
1577 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1578
1579 return VK_SUCCESS;
1580 }
1581
1582 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1583 * rendering can skip over unused state), so we need to collect all the
1584 * bindings together into a single state emit at draw time.
1585 */
1586 void
1587 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1588 uint32_t firstBinding,
1589 uint32_t bindingCount,
1590 const VkBuffer *pBuffers,
1591 const VkDeviceSize *pOffsets)
1592 {
1593 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1594
1595 assert(firstBinding + bindingCount <= MAX_VBS);
1596
1597 for (uint32_t i = 0; i < bindingCount; i++) {
1598 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1599
1600 cmd->state.vb.buffers[firstBinding + i] = buf;
1601 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1602
1603 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1604 }
1605
1606 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1607 }
1608
1609 void
1610 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1611 VkBuffer buffer,
1612 VkDeviceSize offset,
1613 VkIndexType indexType)
1614 {
1615 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1616 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1617
1618
1619
1620 uint32_t index_size, index_shift, restart_index;
1621
1622 switch (indexType) {
1623 case VK_INDEX_TYPE_UINT16:
1624 index_size = INDEX4_SIZE_16_BIT;
1625 index_shift = 1;
1626 restart_index = 0xffff;
1627 break;
1628 case VK_INDEX_TYPE_UINT32:
1629 index_size = INDEX4_SIZE_32_BIT;
1630 index_shift = 2;
1631 restart_index = 0xffffffff;
1632 break;
1633 case VK_INDEX_TYPE_UINT8_EXT:
1634 index_size = INDEX4_SIZE_8_BIT;
1635 index_shift = 0;
1636 restart_index = 0xff;
1637 break;
1638 default:
1639 unreachable("invalid VkIndexType");
1640 }
1641
1642 /* initialize/update the restart index */
1643 if (cmd->state.index_size != index_size)
1644 tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
1645
1646 assert(buf->size >= offset);
1647
1648 cmd->state.index_va = buf->bo->iova + buf->bo_offset + offset;
1649 cmd->state.max_index_count = (buf->size - offset) >> index_shift;
1650 cmd->state.index_size = index_size;
1651
1652 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1653 }
1654
1655 void
1656 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1657 VkPipelineBindPoint pipelineBindPoint,
1658 VkPipelineLayout _layout,
1659 uint32_t firstSet,
1660 uint32_t descriptorSetCount,
1661 const VkDescriptorSet *pDescriptorSets,
1662 uint32_t dynamicOffsetCount,
1663 const uint32_t *pDynamicOffsets)
1664 {
1665 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1666 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1667 unsigned dyn_idx = 0;
1668
1669 struct tu_descriptor_state *descriptors_state =
1670 tu_get_descriptors_state(cmd, pipelineBindPoint);
1671
1672 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1673 unsigned idx = i + firstSet;
1674 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1675
1676 descriptors_state->sets[idx] = set;
1677
1678 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1679 /* update the contents of the dynamic descriptor set */
1680 unsigned src_idx = j;
1681 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1682 assert(dyn_idx < dynamicOffsetCount);
1683
1684 uint32_t *dst =
1685 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1686 uint32_t *src =
1687 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1688 uint32_t offset = pDynamicOffsets[dyn_idx];
1689
1690 /* Patch the storage/uniform descriptors right away. */
1691 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1692 /* Note: we can assume here that the addition won't roll over and
1693 * change the SIZE field.
1694 */
1695 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1696 va += offset;
1697 dst[0] = va;
1698 dst[1] = va >> 32;
1699 } else {
1700 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1701 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1702 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1703 va += offset;
1704 dst[4] = va;
1705 dst[5] = va >> 32;
1706 }
1707 }
1708
1709 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1710 if (set->buffers[j]) {
1711 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1712 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1713 }
1714 }
1715
1716 if (set->size > 0) {
1717 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1718 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1719 }
1720 }
1721 assert(dyn_idx == dynamicOffsetCount);
1722
1723 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_invalidate_value;
1724 uint64_t addr[MAX_SETS + 1] = {};
1725 struct tu_cs *cs, state_cs;
1726
1727 for (uint32_t i = 0; i < MAX_SETS; i++) {
1728 struct tu_descriptor_set *set = descriptors_state->sets[i];
1729 if (set)
1730 addr[i] = set->va | 3;
1731 }
1732
1733 if (layout->dynamic_offset_count) {
1734 /* allocate and fill out dynamic descriptor set */
1735 struct tu_cs_memory dynamic_desc_set;
1736 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1737 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1738 assert(result == VK_SUCCESS);
1739
1740 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1741 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1742 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1743 }
1744
1745 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1746 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1747 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1748 hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_GFX_BINDLESS(0x1f);
1749
1750 cmd->state.desc_sets = tu_cs_draw_state(&cmd->sub_cs, &state_cs, 24);
1751 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
1752 cs = &state_cs;
1753 } else {
1754 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1755
1756 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1757 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1758 hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_CS_BINDLESS(0x1f);
1759
1760 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
1761 cs = &cmd->cs;
1762 }
1763
1764 tu_cs_emit_pkt4(cs, sp_bindless_base_reg, 10);
1765 tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
1766 tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg, 10);
1767 tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
1768 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(.dword = hlsq_invalidate_value));
1769
1770 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1771 assert(cs->cur == cs->end); /* validate draw state size */
1772 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1773 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
1774 }
1775 }
1776
1777 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1778 uint32_t firstBinding,
1779 uint32_t bindingCount,
1780 const VkBuffer *pBuffers,
1781 const VkDeviceSize *pOffsets,
1782 const VkDeviceSize *pSizes)
1783 {
1784 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1785 struct tu_cs *cs = &cmd->draw_cs;
1786
1787 /* using COND_REG_EXEC for xfb commands matches the blob behavior
1788 * presumably there isn't any benefit using a draw state when the
1789 * condition is (SYSMEM | BINNING)
1790 */
1791 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1792 CP_COND_REG_EXEC_0_SYSMEM |
1793 CP_COND_REG_EXEC_0_BINNING);
1794
1795 for (uint32_t i = 0; i < bindingCount; i++) {
1796 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
1797 uint64_t iova = buf->bo->iova + pOffsets[i];
1798 uint32_t size = buf->bo->size - pOffsets[i];
1799 uint32_t idx = i + firstBinding;
1800
1801 if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
1802 size = pSizes[i];
1803
1804 /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
1805 uint32_t offset = iova & 0x1f;
1806 iova &= ~(uint64_t) 0x1f;
1807
1808 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
1809 tu_cs_emit_qw(cs, iova);
1810 tu_cs_emit(cs, size + offset);
1811
1812 cmd->state.streamout_offset[idx] = offset;
1813
1814 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1815 }
1816
1817 tu_cond_exec_end(cs);
1818 }
1819
1820 void
1821 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1822 uint32_t firstCounterBuffer,
1823 uint32_t counterBufferCount,
1824 const VkBuffer *pCounterBuffers,
1825 const VkDeviceSize *pCounterBufferOffsets)
1826 {
1827 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1828 struct tu_cs *cs = &cmd->draw_cs;
1829
1830 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1831 CP_COND_REG_EXEC_0_SYSMEM |
1832 CP_COND_REG_EXEC_0_BINNING);
1833
1834 /* TODO: only update offset for active buffers */
1835 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
1836 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
1837
1838 for (uint32_t i = 0; i < counterBufferCount; i++) {
1839 uint32_t idx = firstCounterBuffer + i;
1840 uint32_t offset = cmd->state.streamout_offset[idx];
1841
1842 if (!pCounterBuffers[i])
1843 continue;
1844
1845 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1846
1847 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1848
1849 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1850 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1851 CP_MEM_TO_REG_0_UNK31 |
1852 CP_MEM_TO_REG_0_CNT(1));
1853 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1854
1855 if (offset) {
1856 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1857 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1858 CP_REG_RMW_0_SRC1_ADD);
1859 tu_cs_emit_qw(cs, 0xffffffff);
1860 tu_cs_emit_qw(cs, offset);
1861 }
1862 }
1863
1864 tu_cond_exec_end(cs);
1865 }
1866
1867 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1868 uint32_t firstCounterBuffer,
1869 uint32_t counterBufferCount,
1870 const VkBuffer *pCounterBuffers,
1871 const VkDeviceSize *pCounterBufferOffsets)
1872 {
1873 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1874 struct tu_cs *cs = &cmd->draw_cs;
1875
1876 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1877 CP_COND_REG_EXEC_0_SYSMEM |
1878 CP_COND_REG_EXEC_0_BINNING);
1879
1880 /* TODO: only flush buffers that need to be flushed */
1881 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
1882 /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
1883 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
1884 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[i]));
1885 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
1886 }
1887
1888 for (uint32_t i = 0; i < counterBufferCount; i++) {
1889 uint32_t idx = firstCounterBuffer + i;
1890 uint32_t offset = cmd->state.streamout_offset[idx];
1891
1892 if (!pCounterBuffers[i])
1893 continue;
1894
1895 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1896
1897 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1898
1899 /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
1900 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1901 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1902 CP_MEM_TO_REG_0_SHIFT_BY_2 |
1903 0x40000 | /* ??? */
1904 CP_MEM_TO_REG_0_UNK31 |
1905 CP_MEM_TO_REG_0_CNT(1));
1906 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[idx]));
1907
1908 if (offset) {
1909 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1910 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1911 CP_REG_RMW_0_SRC1_ADD);
1912 tu_cs_emit_qw(cs, 0xffffffff);
1913 tu_cs_emit_qw(cs, -offset);
1914 }
1915
1916 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
1917 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1918 CP_REG_TO_MEM_0_CNT(1));
1919 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1920 }
1921
1922 tu_cond_exec_end(cs);
1923
1924 cmd->state.xfb_used = true;
1925 }
1926
1927 void
1928 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
1929 VkPipelineLayout layout,
1930 VkShaderStageFlags stageFlags,
1931 uint32_t offset,
1932 uint32_t size,
1933 const void *pValues)
1934 {
1935 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1936 memcpy((void*) cmd->push_constants + offset, pValues, size);
1937 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
1938 }
1939
1940 /* Flush everything which has been made available but we haven't actually
1941 * flushed yet.
1942 */
1943 static void
1944 tu_flush_all_pending(struct tu_cache_state *cache)
1945 {
1946 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
1947 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
1948 }
1949
1950 VkResult
1951 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
1952 {
1953 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1954
1955 /* We currently flush CCU at the end of the command buffer, like
1956 * what the blob does. There's implicit synchronization around every
1957 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
1958 * know yet if this command buffer will be the last in the submit so we
1959 * have to defensively flush everything else.
1960 *
1961 * TODO: We could definitely do better than this, since these flushes
1962 * aren't required by Vulkan, but we'd need kernel support to do that.
1963 * Ideally, we'd like the kernel to flush everything afterwards, so that we
1964 * wouldn't have to do any flushes here, and when submitting multiple
1965 * command buffers there wouldn't be any unnecessary flushes in between.
1966 */
1967 if (cmd_buffer->state.pass) {
1968 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
1969 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
1970 } else {
1971 tu_flush_all_pending(&cmd_buffer->state.cache);
1972 cmd_buffer->state.cache.flush_bits |=
1973 TU_CMD_FLAG_CCU_FLUSH_COLOR |
1974 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
1975 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
1976 }
1977
1978 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->global_bo,
1979 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1980
1981 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
1982 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
1983 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1984 }
1985
1986 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
1987 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
1988 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1989 }
1990
1991 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
1992 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
1993 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1994 }
1995
1996 tu_cs_end(&cmd_buffer->cs);
1997 tu_cs_end(&cmd_buffer->draw_cs);
1998 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
1999
2000 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
2001
2002 return cmd_buffer->record_result;
2003 }
2004
2005 static struct tu_cs
2006 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
2007 {
2008 struct tu_cs cs;
2009
2010 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2011 cmd->state.dynamic_state[id] = tu_cs_draw_state(&cmd->sub_cs, &cs, size);
2012
2013 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2014 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2015
2016 return cs;
2017 }
2018
2019 void
2020 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
2021 VkPipelineBindPoint pipelineBindPoint,
2022 VkPipeline _pipeline)
2023 {
2024 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2025 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2026
2027 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2028 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2029 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2030 }
2031
2032 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2033 cmd->state.compute_pipeline = pipeline;
2034 tu_cs_emit_state_ib(&cmd->cs, pipeline->program.state);
2035 return;
2036 }
2037
2038 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2039
2040 cmd->state.pipeline = pipeline;
2041 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
2042
2043 struct tu_cs *cs = &cmd->draw_cs;
2044 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2045 uint32_t i;
2046
2047 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2048 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
2049 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
2050 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
2051 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
2052 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
2053 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
2054 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
2055 for_each_bit(i, mask)
2056 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2057
2058 /* If the new pipeline requires more VBs than we had previously set up, we
2059 * need to re-emit them in SDS. If it requires the same set or fewer, we
2060 * can just re-use the old SDS.
2061 */
2062 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2063 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2064
2065 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2066 * so the dynamic state ib must be updated when pipeline changes
2067 */
2068 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2069 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2070
2071 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2072 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2073
2074 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2075 }
2076 }
2077
2078 void
2079 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2080 uint32_t firstViewport,
2081 uint32_t viewportCount,
2082 const VkViewport *pViewports)
2083 {
2084 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2085 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2086
2087 assert(firstViewport == 0 && viewportCount == 1);
2088
2089 tu6_emit_viewport(&cs, pViewports);
2090 }
2091
2092 void
2093 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2094 uint32_t firstScissor,
2095 uint32_t scissorCount,
2096 const VkRect2D *pScissors)
2097 {
2098 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2099 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2100
2101 assert(firstScissor == 0 && scissorCount == 1);
2102
2103 tu6_emit_scissor(&cs, pScissors);
2104 }
2105
2106 void
2107 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2108 {
2109 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2110 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2111
2112 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2113 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2114
2115 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2116 }
2117
2118 void
2119 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2120 float depthBiasConstantFactor,
2121 float depthBiasClamp,
2122 float depthBiasSlopeFactor)
2123 {
2124 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2125 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2126
2127 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2128 }
2129
2130 void
2131 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2132 const float blendConstants[4])
2133 {
2134 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2135 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2136
2137 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2138 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2139 }
2140
2141 void
2142 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2143 float minDepthBounds,
2144 float maxDepthBounds)
2145 {
2146 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2147 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3);
2148
2149 tu_cs_emit_regs(&cs,
2150 A6XX_RB_Z_BOUNDS_MIN(minDepthBounds),
2151 A6XX_RB_Z_BOUNDS_MAX(maxDepthBounds));
2152 }
2153
2154 static void
2155 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2156 {
2157 if (face & VK_STENCIL_FACE_FRONT_BIT)
2158 *value = (*value & 0xff00) | (mask & 0xff);
2159 if (face & VK_STENCIL_FACE_BACK_BIT)
2160 *value = (*value & 0xff) | (mask & 0xff) << 8;
2161 }
2162
2163 void
2164 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2165 VkStencilFaceFlags faceMask,
2166 uint32_t compareMask)
2167 {
2168 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2169 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2170
2171 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2172
2173 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2174 }
2175
2176 void
2177 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2178 VkStencilFaceFlags faceMask,
2179 uint32_t writeMask)
2180 {
2181 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2182 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2183
2184 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2185
2186 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2187 }
2188
2189 void
2190 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2191 VkStencilFaceFlags faceMask,
2192 uint32_t reference)
2193 {
2194 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2195 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2196
2197 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2198
2199 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2200 }
2201
2202 void
2203 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2204 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2205 {
2206 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2207 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2208
2209 assert(pSampleLocationsInfo);
2210
2211 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2212 }
2213
2214 static void
2215 tu_flush_for_access(struct tu_cache_state *cache,
2216 enum tu_cmd_access_mask src_mask,
2217 enum tu_cmd_access_mask dst_mask)
2218 {
2219 enum tu_cmd_flush_bits flush_bits = 0;
2220
2221 if (src_mask & TU_ACCESS_HOST_WRITE) {
2222 /* Host writes are always visible to CP, so only invalidate GPU caches */
2223 cache->pending_flush_bits |= TU_CMD_FLAG_GPU_INVALIDATE;
2224 }
2225
2226 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2227 /* Invalidate CP and 2D engine (make it do WFI + WFM if necessary) as
2228 * well.
2229 */
2230 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2231 }
2232
2233 if (src_mask & TU_ACCESS_CP_WRITE) {
2234 /* Flush the CP write queue. However a WFI shouldn't be necessary as
2235 * WAIT_MEM_WRITES should cover it.
2236 */
2237 cache->pending_flush_bits |=
2238 TU_CMD_FLAG_WAIT_MEM_WRITES |
2239 TU_CMD_FLAG_GPU_INVALIDATE |
2240 TU_CMD_FLAG_WAIT_FOR_ME;
2241 }
2242
2243 #define SRC_FLUSH(domain, flush, invalidate) \
2244 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2245 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2246 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2247 }
2248
2249 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2250 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2251 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2252
2253 #undef SRC_FLUSH
2254
2255 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2256 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2257 flush_bits |= TU_CMD_FLAG_##flush; \
2258 cache->pending_flush_bits |= \
2259 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2260 }
2261
2262 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2263 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2264
2265 #undef SRC_INCOHERENT_FLUSH
2266
2267 /* Treat host & sysmem write accesses the same, since the kernel implicitly
2268 * drains the queue before signalling completion to the host.
2269 */
2270 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE |
2271 TU_ACCESS_HOST_READ | TU_ACCESS_HOST_WRITE)) {
2272 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2273 }
2274
2275 #define DST_FLUSH(domain, flush, invalidate) \
2276 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2277 TU_ACCESS_##domain##_WRITE)) { \
2278 flush_bits |= cache->pending_flush_bits & \
2279 (TU_CMD_FLAG_##invalidate | \
2280 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2281 }
2282
2283 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2284 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2285 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2286
2287 #undef DST_FLUSH
2288
2289 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2290 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2291 TU_ACCESS_##domain##_WRITE)) { \
2292 flush_bits |= TU_CMD_FLAG_##invalidate | \
2293 (cache->pending_flush_bits & \
2294 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2295 }
2296
2297 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2298 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2299
2300 #undef DST_INCOHERENT_FLUSH
2301
2302 if (dst_mask & TU_ACCESS_WFI_READ) {
2303 flush_bits |= cache->pending_flush_bits &
2304 (TU_CMD_FLAG_ALL_FLUSH | TU_CMD_FLAG_WAIT_FOR_IDLE);
2305 }
2306
2307 if (dst_mask & TU_ACCESS_WFM_READ) {
2308 flush_bits |= cache->pending_flush_bits &
2309 (TU_CMD_FLAG_ALL_FLUSH | TU_CMD_FLAG_WAIT_FOR_ME);
2310 }
2311
2312 cache->flush_bits |= flush_bits;
2313 cache->pending_flush_bits &= ~flush_bits;
2314 }
2315
2316 static enum tu_cmd_access_mask
2317 vk2tu_access(VkAccessFlags flags, bool gmem)
2318 {
2319 enum tu_cmd_access_mask mask = 0;
2320
2321 /* If the GPU writes a buffer that is then read by an indirect draw
2322 * command, we theoretically need to emit a WFI to wait for any cache
2323 * flushes, and then a WAIT_FOR_ME to wait on the CP for the WFI to
2324 * complete. Waiting for the WFI to complete is performed as part of the
2325 * draw by the firmware, so we just need to execute the WFI.
2326 *
2327 * Transform feedback counters are read via CP_MEM_TO_REG, which implicitly
2328 * does CP_WAIT_FOR_ME, but we still need a WFI if the GPU writes it.
2329 */
2330 if (flags &
2331 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2332 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT |
2333 VK_ACCESS_MEMORY_READ_BIT)) {
2334 mask |= TU_ACCESS_WFI_READ;
2335 }
2336
2337 if (flags &
2338 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2339 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2340 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP */
2341 VK_ACCESS_MEMORY_READ_BIT)) {
2342 mask |= TU_ACCESS_SYSMEM_READ;
2343 }
2344
2345 if (flags &
2346 (VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT |
2347 VK_ACCESS_MEMORY_WRITE_BIT)) {
2348 mask |= TU_ACCESS_CP_WRITE;
2349 }
2350
2351 if (flags &
2352 (VK_ACCESS_HOST_READ_BIT |
2353 VK_ACCESS_MEMORY_WRITE_BIT)) {
2354 mask |= TU_ACCESS_HOST_READ;
2355 }
2356
2357 if (flags &
2358 (VK_ACCESS_HOST_WRITE_BIT |
2359 VK_ACCESS_MEMORY_WRITE_BIT)) {
2360 mask |= TU_ACCESS_HOST_WRITE;
2361 }
2362
2363 if (flags &
2364 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2365 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2366 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2367 /* TODO: Is there a no-cache bit for textures so that we can ignore
2368 * these?
2369 */
2370 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2371 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2372 VK_ACCESS_MEMORY_READ_BIT)) {
2373 mask |= TU_ACCESS_UCHE_READ;
2374 }
2375
2376 if (flags &
2377 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2378 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2379 VK_ACCESS_MEMORY_WRITE_BIT)) {
2380 mask |= TU_ACCESS_UCHE_WRITE;
2381 }
2382
2383 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2384 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2385 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2386 * can ignore CCU and pretend that color attachments and transfers use
2387 * sysmem directly.
2388 */
2389
2390 if (flags &
2391 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2392 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2393 VK_ACCESS_MEMORY_READ_BIT)) {
2394 if (gmem)
2395 mask |= TU_ACCESS_SYSMEM_READ;
2396 else
2397 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2398 }
2399
2400 if (flags &
2401 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2402 VK_ACCESS_MEMORY_READ_BIT)) {
2403 if (gmem)
2404 mask |= TU_ACCESS_SYSMEM_READ;
2405 else
2406 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2407 }
2408
2409 if (flags &
2410 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2411 VK_ACCESS_MEMORY_WRITE_BIT)) {
2412 if (gmem) {
2413 mask |= TU_ACCESS_SYSMEM_WRITE;
2414 } else {
2415 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2416 }
2417 }
2418
2419 if (flags &
2420 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2421 VK_ACCESS_MEMORY_WRITE_BIT)) {
2422 if (gmem) {
2423 mask |= TU_ACCESS_SYSMEM_WRITE;
2424 } else {
2425 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2426 }
2427 }
2428
2429 /* When the dst access is a transfer read/write, it seems we sometimes need
2430 * to insert a WFI after any flushes, to guarantee that the flushes finish
2431 * before the 2D engine starts. However the opposite (i.e. a WFI after
2432 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2433 * the blob doesn't emit such a WFI.
2434 */
2435
2436 if (flags &
2437 (VK_ACCESS_TRANSFER_WRITE_BIT |
2438 VK_ACCESS_MEMORY_WRITE_BIT)) {
2439 if (gmem) {
2440 mask |= TU_ACCESS_SYSMEM_WRITE;
2441 } else {
2442 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2443 }
2444 mask |= TU_ACCESS_WFI_READ;
2445 }
2446
2447 if (flags &
2448 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2449 VK_ACCESS_MEMORY_READ_BIT)) {
2450 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2451 }
2452
2453 return mask;
2454 }
2455
2456
2457 void
2458 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2459 uint32_t commandBufferCount,
2460 const VkCommandBuffer *pCmdBuffers)
2461 {
2462 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2463 VkResult result;
2464
2465 assert(commandBufferCount > 0);
2466
2467 /* Emit any pending flushes. */
2468 if (cmd->state.pass) {
2469 tu_flush_all_pending(&cmd->state.renderpass_cache);
2470 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2471 } else {
2472 tu_flush_all_pending(&cmd->state.cache);
2473 tu_emit_cache_flush(cmd, &cmd->cs);
2474 }
2475
2476 for (uint32_t i = 0; i < commandBufferCount; i++) {
2477 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2478
2479 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2480 if (result != VK_SUCCESS) {
2481 cmd->record_result = result;
2482 break;
2483 }
2484
2485 if (secondary->usage_flags &
2486 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2487 assert(tu_cs_is_empty(&secondary->cs));
2488
2489 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2490 if (result != VK_SUCCESS) {
2491 cmd->record_result = result;
2492 break;
2493 }
2494
2495 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2496 &secondary->draw_epilogue_cs);
2497 if (result != VK_SUCCESS) {
2498 cmd->record_result = result;
2499 break;
2500 }
2501
2502 if (secondary->has_tess)
2503 cmd->has_tess = true;
2504 } else {
2505 assert(tu_cs_is_empty(&secondary->draw_cs));
2506 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2507
2508 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2509 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2510 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2511 }
2512
2513 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2514 }
2515
2516 cmd->state.index_size = secondary->state.index_size; /* for restart index update */
2517 }
2518 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2519
2520 /* After executing secondary command buffers, there may have been arbitrary
2521 * flushes executed, so when we encounter a pipeline barrier with a
2522 * srcMask, we have to assume that we need to invalidate. Therefore we need
2523 * to re-initialize the cache with all pending invalidate bits set.
2524 */
2525 if (cmd->state.pass) {
2526 tu_cache_init(&cmd->state.renderpass_cache);
2527 } else {
2528 tu_cache_init(&cmd->state.cache);
2529 }
2530 }
2531
2532 VkResult
2533 tu_CreateCommandPool(VkDevice _device,
2534 const VkCommandPoolCreateInfo *pCreateInfo,
2535 const VkAllocationCallbacks *pAllocator,
2536 VkCommandPool *pCmdPool)
2537 {
2538 TU_FROM_HANDLE(tu_device, device, _device);
2539 struct tu_cmd_pool *pool;
2540
2541 pool = vk_object_alloc(&device->vk, pAllocator, sizeof(*pool),
2542 VK_OBJECT_TYPE_COMMAND_POOL);
2543 if (pool == NULL)
2544 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2545
2546 if (pAllocator)
2547 pool->alloc = *pAllocator;
2548 else
2549 pool->alloc = device->vk.alloc;
2550
2551 list_inithead(&pool->cmd_buffers);
2552 list_inithead(&pool->free_cmd_buffers);
2553
2554 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2555
2556 *pCmdPool = tu_cmd_pool_to_handle(pool);
2557
2558 return VK_SUCCESS;
2559 }
2560
2561 void
2562 tu_DestroyCommandPool(VkDevice _device,
2563 VkCommandPool commandPool,
2564 const VkAllocationCallbacks *pAllocator)
2565 {
2566 TU_FROM_HANDLE(tu_device, device, _device);
2567 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2568
2569 if (!pool)
2570 return;
2571
2572 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2573 &pool->cmd_buffers, pool_link)
2574 {
2575 tu_cmd_buffer_destroy(cmd_buffer);
2576 }
2577
2578 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2579 &pool->free_cmd_buffers, pool_link)
2580 {
2581 tu_cmd_buffer_destroy(cmd_buffer);
2582 }
2583
2584 vk_object_free(&device->vk, pAllocator, pool);
2585 }
2586
2587 VkResult
2588 tu_ResetCommandPool(VkDevice device,
2589 VkCommandPool commandPool,
2590 VkCommandPoolResetFlags flags)
2591 {
2592 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2593 VkResult result;
2594
2595 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2596 pool_link)
2597 {
2598 result = tu_reset_cmd_buffer(cmd_buffer);
2599 if (result != VK_SUCCESS)
2600 return result;
2601 }
2602
2603 return VK_SUCCESS;
2604 }
2605
2606 void
2607 tu_TrimCommandPool(VkDevice device,
2608 VkCommandPool commandPool,
2609 VkCommandPoolTrimFlags flags)
2610 {
2611 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2612
2613 if (!pool)
2614 return;
2615
2616 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2617 &pool->free_cmd_buffers, pool_link)
2618 {
2619 tu_cmd_buffer_destroy(cmd_buffer);
2620 }
2621 }
2622
2623 static void
2624 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2625 const struct tu_subpass_barrier *barrier,
2626 bool external)
2627 {
2628 /* Note: we don't know until the end of the subpass whether we'll use
2629 * sysmem, so assume sysmem here to be safe.
2630 */
2631 struct tu_cache_state *cache =
2632 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2633 enum tu_cmd_access_mask src_flags =
2634 vk2tu_access(barrier->src_access_mask, false);
2635 enum tu_cmd_access_mask dst_flags =
2636 vk2tu_access(barrier->dst_access_mask, false);
2637
2638 if (barrier->incoherent_ccu_color)
2639 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2640 if (barrier->incoherent_ccu_depth)
2641 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2642
2643 tu_flush_for_access(cache, src_flags, dst_flags);
2644 }
2645
2646 void
2647 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2648 const VkRenderPassBeginInfo *pRenderPassBegin,
2649 VkSubpassContents contents)
2650 {
2651 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2652 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2653 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2654
2655 cmd->state.pass = pass;
2656 cmd->state.subpass = pass->subpasses;
2657 cmd->state.framebuffer = fb;
2658 cmd->state.render_area = pRenderPassBegin->renderArea;
2659
2660 tu_cmd_prepare_tile_store_ib(cmd);
2661
2662 /* Note: because this is external, any flushes will happen before draw_cs
2663 * gets called. However deferred flushes could have to happen later as part
2664 * of the subpass.
2665 */
2666 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2667 cmd->state.renderpass_cache.pending_flush_bits =
2668 cmd->state.cache.pending_flush_bits;
2669 cmd->state.renderpass_cache.flush_bits = 0;
2670
2671 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2672
2673 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2674 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2675 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2676 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2677
2678 tu_set_input_attachments(cmd, cmd->state.subpass);
2679
2680 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2681 const struct tu_image_view *iview = fb->attachments[i].attachment;
2682 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2683 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2684 }
2685
2686 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2687 }
2688
2689 void
2690 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2691 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2692 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2693 {
2694 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2695 pSubpassBeginInfo->contents);
2696 }
2697
2698 void
2699 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2700 {
2701 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2702 const struct tu_render_pass *pass = cmd->state.pass;
2703 struct tu_cs *cs = &cmd->draw_cs;
2704
2705 const struct tu_subpass *subpass = cmd->state.subpass++;
2706
2707 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2708
2709 if (subpass->resolve_attachments) {
2710 tu6_emit_blit_scissor(cmd, cs, true);
2711
2712 for (unsigned i = 0; i < subpass->color_count; i++) {
2713 uint32_t a = subpass->resolve_attachments[i].attachment;
2714 if (a == VK_ATTACHMENT_UNUSED)
2715 continue;
2716
2717 tu_store_gmem_attachment(cmd, cs, a,
2718 subpass->color_attachments[i].attachment);
2719
2720 if (pass->attachments[a].gmem_offset < 0)
2721 continue;
2722
2723 /* TODO:
2724 * check if the resolved attachment is needed by later subpasses,
2725 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2726 */
2727 tu_finishme("missing GMEM->GMEM resolve path\n");
2728 tu_load_gmem_attachment(cmd, cs, a, true);
2729 }
2730 }
2731
2732 tu_cond_exec_end(cs);
2733
2734 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2735
2736 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2737
2738 tu_cond_exec_end(cs);
2739
2740 /* Handle dependencies for the next subpass */
2741 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2742
2743 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2744 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2745 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2746 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2747 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2748
2749 tu_set_input_attachments(cmd, cmd->state.subpass);
2750 }
2751
2752 void
2753 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2754 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2755 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2756 {
2757 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2758 }
2759
2760 static void
2761 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2762 struct tu_descriptor_state *descriptors_state,
2763 gl_shader_stage type,
2764 uint32_t *push_constants)
2765 {
2766 const struct tu_program_descriptor_linkage *link =
2767 &pipeline->program.link[type];
2768 const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
2769
2770 if (link->push_consts.count > 0) {
2771 unsigned num_units = link->push_consts.count;
2772 unsigned offset = link->push_consts.lo;
2773 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2774 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2775 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2776 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2777 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2778 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2779 tu_cs_emit(cs, 0);
2780 tu_cs_emit(cs, 0);
2781 for (unsigned i = 0; i < num_units * 4; i++)
2782 tu_cs_emit(cs, push_constants[i + offset * 4]);
2783 }
2784
2785 for (uint32_t i = 0; i < state->num_enabled; i++) {
2786 uint32_t size = state->range[i].end - state->range[i].start;
2787 uint32_t offset = state->range[i].start;
2788
2789 /* and even if the start of the const buffer is before
2790 * first_immediate, the end may not be:
2791 */
2792 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2793
2794 if (size == 0)
2795 continue;
2796
2797 /* things should be aligned to vec4: */
2798 debug_assert((state->range[i].offset % 16) == 0);
2799 debug_assert((size % 16) == 0);
2800 debug_assert((offset % 16) == 0);
2801
2802 /* Dig out the descriptor from the descriptor state and read the VA from
2803 * it.
2804 */
2805 assert(state->range[i].ubo.bindless);
2806 uint32_t *base = state->range[i].ubo.bindless_base == MAX_SETS ?
2807 descriptors_state->dynamic_descriptors :
2808 descriptors_state->sets[state->range[i].ubo.bindless_base]->mapped_ptr;
2809 unsigned block = state->range[i].ubo.block;
2810 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2811 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2812 assert(va);
2813
2814 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2815 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2816 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2817 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2818 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2819 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2820 tu_cs_emit_qw(cs, va + offset);
2821 }
2822 }
2823
2824 static struct tu_draw_state
2825 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2826 const struct tu_pipeline *pipeline,
2827 struct tu_descriptor_state *descriptors_state,
2828 gl_shader_stage type)
2829 {
2830 struct tu_cs cs;
2831 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2832
2833 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2834
2835 return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2836 }
2837
2838 static struct tu_draw_state
2839 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
2840 const struct tu_pipeline *pipeline)
2841 {
2842 struct tu_cs cs;
2843 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
2844
2845 int binding;
2846 for_each_bit(binding, pipeline->vi.bindings_used) {
2847 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
2848 const VkDeviceSize offset = buf->bo_offset +
2849 cmd->state.vb.offsets[binding];
2850
2851 tu_cs_emit_regs(&cs,
2852 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
2853 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
2854
2855 }
2856
2857 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
2858
2859 return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2860 }
2861
2862 static uint64_t
2863 get_tess_param_bo_size(const struct tu_pipeline *pipeline,
2864 uint32_t draw_count)
2865 {
2866 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2867 * Still not sure what to do here, so just allocate a reasonably large
2868 * BO and hope for the best for now. */
2869 if (!draw_count)
2870 draw_count = 2048;
2871
2872 /* the tess param BO is pipeline->tess.param_stride bytes per patch,
2873 * which includes both the per-vertex outputs and per-patch outputs
2874 * build_primitive_map in ir3 calculates this stride
2875 */
2876 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2877 uint32_t num_patches = draw_count / verts_per_patch;
2878 return num_patches * pipeline->tess.param_stride;
2879 }
2880
2881 static uint64_t
2882 get_tess_factor_bo_size(const struct tu_pipeline *pipeline,
2883 uint32_t draw_count)
2884 {
2885 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2886 * Still not sure what to do here, so just allocate a reasonably large
2887 * BO and hope for the best for now. */
2888 if (!draw_count)
2889 draw_count = 2048;
2890
2891 /* Each distinct patch gets its own tess factor output. */
2892 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2893 uint32_t num_patches = draw_count / verts_per_patch;
2894 uint32_t factor_stride;
2895 switch (pipeline->tess.patch_type) {
2896 case IR3_TESS_ISOLINES:
2897 factor_stride = 12;
2898 break;
2899 case IR3_TESS_TRIANGLES:
2900 factor_stride = 20;
2901 break;
2902 case IR3_TESS_QUADS:
2903 factor_stride = 28;
2904 break;
2905 default:
2906 unreachable("bad tessmode");
2907 }
2908 return factor_stride * num_patches;
2909 }
2910
2911 static VkResult
2912 tu6_emit_tess_consts(struct tu_cmd_buffer *cmd,
2913 uint32_t draw_count,
2914 const struct tu_pipeline *pipeline,
2915 struct tu_draw_state *state,
2916 uint64_t *factor_iova)
2917 {
2918 struct tu_cs cs;
2919 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 16, &cs);
2920 if (result != VK_SUCCESS)
2921 return result;
2922
2923 uint64_t tess_factor_size = get_tess_factor_bo_size(pipeline, draw_count);
2924 uint64_t tess_param_size = get_tess_param_bo_size(pipeline, draw_count);
2925 uint64_t tess_bo_size = tess_factor_size + tess_param_size;
2926 if (tess_bo_size > 0) {
2927 struct tu_bo *tess_bo;
2928 result = tu_get_scratch_bo(cmd->device, tess_bo_size, &tess_bo);
2929 if (result != VK_SUCCESS)
2930 return result;
2931
2932 tu_bo_list_add(&cmd->bo_list, tess_bo,
2933 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2934 uint64_t tess_factor_iova = tess_bo->iova;
2935 uint64_t tess_param_iova = tess_factor_iova + tess_factor_size;
2936
2937 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2938 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.hs_bo_regid) |
2939 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2940 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2941 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_HS_SHADER) |
2942 CP_LOAD_STATE6_0_NUM_UNIT(1));
2943 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2944 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2945 tu_cs_emit_qw(&cs, tess_param_iova);
2946 tu_cs_emit_qw(&cs, tess_factor_iova);
2947
2948 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2949 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.ds_bo_regid) |
2950 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2951 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2952 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_DS_SHADER) |
2953 CP_LOAD_STATE6_0_NUM_UNIT(1));
2954 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2955 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2956 tu_cs_emit_qw(&cs, tess_param_iova);
2957 tu_cs_emit_qw(&cs, tess_factor_iova);
2958
2959 *factor_iova = tess_factor_iova;
2960 }
2961 *state = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2962 return VK_SUCCESS;
2963 }
2964
2965 static VkResult
2966 tu6_draw_common(struct tu_cmd_buffer *cmd,
2967 struct tu_cs *cs,
2968 bool indexed,
2969 /* note: draw_count is 0 for indirect */
2970 uint32_t draw_count)
2971 {
2972 const struct tu_pipeline *pipeline = cmd->state.pipeline;
2973 VkResult result;
2974
2975 struct tu_descriptor_state *descriptors_state =
2976 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
2977
2978 tu_emit_cache_flush_renderpass(cmd, cs);
2979
2980 /* TODO lrz */
2981
2982 tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
2983 .primitive_restart =
2984 pipeline->ia.primitive_restart && indexed,
2985 .tess_upper_left_domain_origin =
2986 pipeline->tess.upper_left_domain_origin));
2987
2988 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
2989 cmd->state.shader_const[MESA_SHADER_VERTEX] =
2990 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
2991 cmd->state.shader_const[MESA_SHADER_TESS_CTRL] =
2992 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_CTRL);
2993 cmd->state.shader_const[MESA_SHADER_TESS_EVAL] =
2994 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_EVAL);
2995 cmd->state.shader_const[MESA_SHADER_GEOMETRY] =
2996 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
2997 cmd->state.shader_const[MESA_SHADER_FRAGMENT] =
2998 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
2999 }
3000
3001 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3002 cmd->state.vertex_buffers = tu6_emit_vertex_buffers(cmd, pipeline);
3003
3004 bool has_tess =
3005 pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
3006 struct tu_draw_state tess_consts = {};
3007 if (has_tess) {
3008 uint64_t tess_factor_iova = 0;
3009
3010 cmd->has_tess = true;
3011 result = tu6_emit_tess_consts(cmd, draw_count, pipeline, &tess_consts, &tess_factor_iova);
3012 if (result != VK_SUCCESS)
3013 return result;
3014
3015 /* this sequence matches what the blob does before every tess draw
3016 * PC_TESSFACTOR_ADDR_LO is a non-context register and needs a wfi
3017 * before writing to it
3018 */
3019 tu_cs_emit_wfi(cs);
3020
3021 tu_cs_emit_pkt4(cs, REG_A6XX_PC_TESSFACTOR_ADDR_LO, 2);
3022 tu_cs_emit_qw(cs, tess_factor_iova);
3023
3024 tu_cs_emit_pkt7(cs, CP_SET_SUBDRAW_SIZE, 1);
3025 tu_cs_emit(cs, draw_count);
3026 }
3027
3028 /* for the first draw in a renderpass, re-emit all the draw states
3029 *
3030 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
3031 * used, then draw states must be re-emitted. note however this only happens
3032 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
3033 *
3034 * the two input attachment states are excluded because secondary command
3035 * buffer doesn't have a state ib to restore it, and not re-emitting them
3036 * is OK since CmdClearAttachments won't disable/overwrite them
3037 */
3038 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
3039 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
3040
3041 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
3042 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
3043 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
3044 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
3045 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
3046 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
3047 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
3048 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
3049 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
3050 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
3051 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
3052 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
3053 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
3054 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
3055 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
3056 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
3057 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3058
3059 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
3060 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
3061 ((pipeline->dynamic_state_mask & BIT(i)) ?
3062 cmd->state.dynamic_state[i] :
3063 pipeline->dynamic_state[i]));
3064 }
3065 } else {
3066
3067 /* emit draw states that were just updated
3068 * note we eventually don't want to have to emit anything here
3069 */
3070 uint32_t draw_state_count =
3071 has_tess +
3072 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 5 : 0) +
3073 ((cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD) ? 1 : 0) +
3074 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
3075 1; /* vs_params */
3076
3077 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3078
3079 /* We may need to re-emit tess consts if the current draw call is
3080 * sufficiently larger than the last draw call. */
3081 if (has_tess)
3082 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
3083 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3084 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
3085 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
3086 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
3087 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
3088 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
3089 }
3090 if (cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD)
3091 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
3092 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3093 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
3094 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3095 }
3096
3097 tu_cs_sanity_check(cs);
3098
3099 /* There are too many graphics dirty bits to list here, so just list the
3100 * bits to preserve instead. The only things not emitted here are
3101 * compute-related state.
3102 */
3103 cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
3104 return VK_SUCCESS;
3105 }
3106
3107 static uint32_t
3108 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
3109 {
3110 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3111 uint32_t initiator =
3112 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(pipeline->ia.primtype) |
3113 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
3114 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(cmd->state.index_size) |
3115 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
3116
3117 if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
3118 initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
3119
3120 switch (pipeline->tess.patch_type) {
3121 case IR3_TESS_TRIANGLES:
3122 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
3123 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3124 break;
3125 case IR3_TESS_ISOLINES:
3126 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
3127 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3128 break;
3129 case IR3_TESS_NONE:
3130 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
3131 break;
3132 case IR3_TESS_QUADS:
3133 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
3134 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3135 break;
3136 }
3137 return initiator;
3138 }
3139
3140
3141 static uint32_t
3142 vs_params_offset(struct tu_cmd_buffer *cmd)
3143 {
3144 const struct tu_program_descriptor_linkage *link =
3145 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
3146 const struct ir3_const_state *const_state = &link->const_state;
3147
3148 if (const_state->offsets.driver_param >= link->constlen)
3149 return 0;
3150
3151 /* this layout is required by CP_DRAW_INDIRECT_MULTI */
3152 STATIC_ASSERT(IR3_DP_DRAWID == 0);
3153 STATIC_ASSERT(IR3_DP_VTXID_BASE == 1);
3154 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
3155
3156 /* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
3157 assert(const_state->offsets.driver_param != 0);
3158
3159 return const_state->offsets.driver_param;
3160 }
3161
3162 static struct tu_draw_state
3163 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
3164 uint32_t vertex_offset,
3165 uint32_t first_instance)
3166 {
3167 uint32_t offset = vs_params_offset(cmd);
3168
3169 struct tu_cs cs;
3170 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 8 : 0), &cs);
3171 if (result != VK_SUCCESS) {
3172 cmd->record_result = result;
3173 return (struct tu_draw_state) {};
3174 }
3175
3176 /* TODO: don't make a new draw state when it doesn't change */
3177
3178 tu_cs_emit_regs(&cs,
3179 A6XX_VFD_INDEX_OFFSET(vertex_offset),
3180 A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
3181
3182 if (offset) {
3183 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3184 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3185 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3186 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3187 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
3188 CP_LOAD_STATE6_0_NUM_UNIT(1));
3189 tu_cs_emit(&cs, 0);
3190 tu_cs_emit(&cs, 0);
3191
3192 tu_cs_emit(&cs, 0);
3193 tu_cs_emit(&cs, vertex_offset);
3194 tu_cs_emit(&cs, first_instance);
3195 tu_cs_emit(&cs, 0);
3196 }
3197
3198 struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3199 return (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
3200 }
3201
3202 void
3203 tu_CmdDraw(VkCommandBuffer commandBuffer,
3204 uint32_t vertexCount,
3205 uint32_t instanceCount,
3206 uint32_t firstVertex,
3207 uint32_t firstInstance)
3208 {
3209 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3210 struct tu_cs *cs = &cmd->draw_cs;
3211
3212 cmd->state.vs_params = tu6_emit_vs_params(cmd, firstVertex, firstInstance);
3213
3214 tu6_draw_common(cmd, cs, false, vertexCount);
3215
3216 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3217 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3218 tu_cs_emit(cs, instanceCount);
3219 tu_cs_emit(cs, vertexCount);
3220 }
3221
3222 void
3223 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3224 uint32_t indexCount,
3225 uint32_t instanceCount,
3226 uint32_t firstIndex,
3227 int32_t vertexOffset,
3228 uint32_t firstInstance)
3229 {
3230 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3231 struct tu_cs *cs = &cmd->draw_cs;
3232
3233 cmd->state.vs_params = tu6_emit_vs_params(cmd, vertexOffset, firstInstance);
3234
3235 tu6_draw_common(cmd, cs, true, indexCount);
3236
3237 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3238 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3239 tu_cs_emit(cs, instanceCount);
3240 tu_cs_emit(cs, indexCount);
3241 tu_cs_emit(cs, firstIndex);
3242 tu_cs_emit_qw(cs, cmd->state.index_va);
3243 tu_cs_emit(cs, cmd->state.max_index_count);
3244 }
3245
3246 /* Various firmware bugs/inconsistencies mean that some indirect draw opcodes
3247 * do not wait for WFI's to complete before executing. Add a WAIT_FOR_ME if
3248 * pending for these opcodes. This may result in a few extra WAIT_FOR_ME's
3249 * with these opcodes, but the alternative would add unnecessary WAIT_FOR_ME's
3250 * before draw opcodes that don't need it.
3251 */
3252 static void
3253 draw_wfm(struct tu_cmd_buffer *cmd)
3254 {
3255 cmd->state.renderpass_cache.flush_bits |=
3256 cmd->state.renderpass_cache.pending_flush_bits & TU_CMD_FLAG_WAIT_FOR_ME;
3257 cmd->state.renderpass_cache.pending_flush_bits &= ~TU_CMD_FLAG_WAIT_FOR_ME;
3258 }
3259
3260 void
3261 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3262 VkBuffer _buffer,
3263 VkDeviceSize offset,
3264 uint32_t drawCount,
3265 uint32_t stride)
3266 {
3267 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3268 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3269 struct tu_cs *cs = &cmd->draw_cs;
3270
3271 cmd->state.vs_params = (struct tu_draw_state) {};
3272
3273 /* The latest known a630_sqe.fw fails to wait for WFI before reading the
3274 * indirect buffer when using CP_DRAW_INDIRECT_MULTI, so we have to fall
3275 * back to CP_WAIT_FOR_ME except for a650 which has a fixed firmware.
3276 *
3277 * TODO: There may be newer a630_sqe.fw released in the future which fixes
3278 * this, if so we should detect it and avoid this workaround.
3279 */
3280 if (cmd->device->physical_device->gpu_id != 650)
3281 draw_wfm(cmd);
3282
3283 tu6_draw_common(cmd, cs, false, 0);
3284
3285 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
3286 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3287 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
3288 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3289 tu_cs_emit(cs, drawCount);
3290 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3291 tu_cs_emit(cs, stride);
3292
3293 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3294 }
3295
3296 void
3297 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3298 VkBuffer _buffer,
3299 VkDeviceSize offset,
3300 uint32_t drawCount,
3301 uint32_t stride)
3302 {
3303 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3304 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3305 struct tu_cs *cs = &cmd->draw_cs;
3306
3307 cmd->state.vs_params = (struct tu_draw_state) {};
3308
3309 if (cmd->device->physical_device->gpu_id != 650)
3310 draw_wfm(cmd);
3311
3312 tu6_draw_common(cmd, cs, true, 0);
3313
3314 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
3315 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3316 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
3317 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3318 tu_cs_emit(cs, drawCount);
3319 tu_cs_emit_qw(cs, cmd->state.index_va);
3320 tu_cs_emit(cs, cmd->state.max_index_count);
3321 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3322 tu_cs_emit(cs, stride);
3323
3324 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3325 }
3326
3327 void
3328 tu_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,
3329 VkBuffer _buffer,
3330 VkDeviceSize offset,
3331 VkBuffer countBuffer,
3332 VkDeviceSize countBufferOffset,
3333 uint32_t drawCount,
3334 uint32_t stride)
3335 {
3336 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3337 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3338 TU_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
3339 struct tu_cs *cs = &cmd->draw_cs;
3340
3341 cmd->state.vs_params = (struct tu_draw_state) {};
3342
3343 /* It turns out that the firmware we have for a650 only partially fixed the
3344 * problem with CP_DRAW_INDIRECT_MULTI not waiting for WFI's to complete
3345 * before reading indirect parameters. It waits for WFI's before reading
3346 * the draw parameters, but after reading the indirect count :(.
3347 */
3348 draw_wfm(cmd);
3349
3350 tu6_draw_common(cmd, cs, false, 0);
3351
3352 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 8);
3353 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3354 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT) |
3355 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3356 tu_cs_emit(cs, drawCount);
3357 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3358 tu_cs_emit_qw(cs, count_buf->bo->iova + count_buf->bo_offset + countBufferOffset);
3359 tu_cs_emit(cs, stride);
3360
3361 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3362 tu_bo_list_add(&cmd->bo_list, count_buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3363 }
3364
3365 void
3366 tu_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,
3367 VkBuffer _buffer,
3368 VkDeviceSize offset,
3369 VkBuffer countBuffer,
3370 VkDeviceSize countBufferOffset,
3371 uint32_t drawCount,
3372 uint32_t stride)
3373 {
3374 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3375 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3376 TU_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
3377 struct tu_cs *cs = &cmd->draw_cs;
3378
3379 cmd->state.vs_params = (struct tu_draw_state) {};
3380
3381 draw_wfm(cmd);
3382
3383 tu6_draw_common(cmd, cs, true, 0);
3384
3385 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 11);
3386 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3387 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT_INDEXED) |
3388 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3389 tu_cs_emit(cs, drawCount);
3390 tu_cs_emit_qw(cs, cmd->state.index_va);
3391 tu_cs_emit(cs, cmd->state.max_index_count);
3392 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3393 tu_cs_emit_qw(cs, count_buf->bo->iova + count_buf->bo_offset + countBufferOffset);
3394 tu_cs_emit(cs, stride);
3395
3396 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3397 tu_bo_list_add(&cmd->bo_list, count_buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3398 }
3399
3400 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3401 uint32_t instanceCount,
3402 uint32_t firstInstance,
3403 VkBuffer _counterBuffer,
3404 VkDeviceSize counterBufferOffset,
3405 uint32_t counterOffset,
3406 uint32_t vertexStride)
3407 {
3408 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3409 TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
3410 struct tu_cs *cs = &cmd->draw_cs;
3411
3412 /* All known firmware versions do not wait for WFI's with CP_DRAW_AUTO.
3413 * Plus, for the common case where the counter buffer is written by
3414 * vkCmdEndTransformFeedback, we need to wait for the CP_WAIT_MEM_WRITES to
3415 * complete which means we need a WAIT_FOR_ME anyway.
3416 */
3417 draw_wfm(cmd);
3418
3419 cmd->state.vs_params = tu6_emit_vs_params(cmd, 0, firstInstance);
3420
3421 tu6_draw_common(cmd, cs, false, 0);
3422
3423 tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
3424 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
3425 tu_cs_emit(cs, instanceCount);
3426 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + counterBufferOffset);
3427 tu_cs_emit(cs, counterOffset);
3428 tu_cs_emit(cs, vertexStride);
3429
3430 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3431 }
3432
3433 struct tu_dispatch_info
3434 {
3435 /**
3436 * Determine the layout of the grid (in block units) to be used.
3437 */
3438 uint32_t blocks[3];
3439
3440 /**
3441 * A starting offset for the grid. If unaligned is set, the offset
3442 * must still be aligned.
3443 */
3444 uint32_t offsets[3];
3445 /**
3446 * Whether it's an unaligned compute dispatch.
3447 */
3448 bool unaligned;
3449
3450 /**
3451 * Indirect compute parameters resource.
3452 */
3453 struct tu_buffer *indirect;
3454 uint64_t indirect_offset;
3455 };
3456
3457 static void
3458 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3459 const struct tu_dispatch_info *info)
3460 {
3461 gl_shader_stage type = MESA_SHADER_COMPUTE;
3462 const struct tu_program_descriptor_linkage *link =
3463 &pipeline->program.link[type];
3464 const struct ir3_const_state *const_state = &link->const_state;
3465 uint32_t offset = const_state->offsets.driver_param;
3466
3467 if (link->constlen <= offset)
3468 return;
3469
3470 if (!info->indirect) {
3471 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3472 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3473 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3474 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3475 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3476 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3477 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3478 };
3479
3480 uint32_t num_consts = MIN2(const_state->num_driver_params,
3481 (link->constlen - offset) * 4);
3482 /* push constants */
3483 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3484 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3485 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3486 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3487 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3488 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3489 tu_cs_emit(cs, 0);
3490 tu_cs_emit(cs, 0);
3491 uint32_t i;
3492 for (i = 0; i < num_consts; i++)
3493 tu_cs_emit(cs, driver_params[i]);
3494 } else {
3495 tu_finishme("Indirect driver params");
3496 }
3497 }
3498
3499 static void
3500 tu_dispatch(struct tu_cmd_buffer *cmd,
3501 const struct tu_dispatch_info *info)
3502 {
3503 struct tu_cs *cs = &cmd->cs;
3504 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3505 struct tu_descriptor_state *descriptors_state =
3506 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3507
3508 /* TODO: We could probably flush less if we add a compute_flush_bits
3509 * bitfield.
3510 */
3511 tu_emit_cache_flush(cmd, cs);
3512
3513 /* note: no reason to have this in a separate IB */
3514 tu_cs_emit_state_ib(cs,
3515 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE));
3516
3517 tu_emit_compute_driver_params(cs, pipeline, info);
3518
3519 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD)
3520 tu_cs_emit_state_ib(cs, pipeline->load_state);
3521
3522 cmd->state.dirty &= ~TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
3523
3524 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3525 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3526
3527 const uint32_t *local_size = pipeline->compute.local_size;
3528 const uint32_t *num_groups = info->blocks;
3529 tu_cs_emit_regs(cs,
3530 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3531 .localsizex = local_size[0] - 1,
3532 .localsizey = local_size[1] - 1,
3533 .localsizez = local_size[2] - 1),
3534 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3535 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3536 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3537 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3538 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3539 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3540
3541 tu_cs_emit_regs(cs,
3542 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3543 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3544 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3545
3546 if (info->indirect) {
3547 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3548
3549 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3550 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3551
3552 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3553 tu_cs_emit(cs, 0x00000000);
3554 tu_cs_emit_qw(cs, iova);
3555 tu_cs_emit(cs,
3556 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3557 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3558 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3559 } else {
3560 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3561 tu_cs_emit(cs, 0x00000000);
3562 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3563 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3564 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3565 }
3566
3567 tu_cs_emit_wfi(cs);
3568 }
3569
3570 void
3571 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3572 uint32_t base_x,
3573 uint32_t base_y,
3574 uint32_t base_z,
3575 uint32_t x,
3576 uint32_t y,
3577 uint32_t z)
3578 {
3579 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3580 struct tu_dispatch_info info = {};
3581
3582 info.blocks[0] = x;
3583 info.blocks[1] = y;
3584 info.blocks[2] = z;
3585
3586 info.offsets[0] = base_x;
3587 info.offsets[1] = base_y;
3588 info.offsets[2] = base_z;
3589 tu_dispatch(cmd_buffer, &info);
3590 }
3591
3592 void
3593 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3594 uint32_t x,
3595 uint32_t y,
3596 uint32_t z)
3597 {
3598 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3599 }
3600
3601 void
3602 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3603 VkBuffer _buffer,
3604 VkDeviceSize offset)
3605 {
3606 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3607 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3608 struct tu_dispatch_info info = {};
3609
3610 info.indirect = buffer;
3611 info.indirect_offset = offset;
3612
3613 tu_dispatch(cmd_buffer, &info);
3614 }
3615
3616 void
3617 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3618 {
3619 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3620
3621 tu_cs_end(&cmd_buffer->draw_cs);
3622 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3623
3624 if (use_sysmem_rendering(cmd_buffer))
3625 tu_cmd_render_sysmem(cmd_buffer);
3626 else
3627 tu_cmd_render_tiles(cmd_buffer);
3628
3629 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3630 rendered */
3631 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3632 tu_cs_begin(&cmd_buffer->draw_cs);
3633 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3634 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3635
3636 cmd_buffer->state.cache.pending_flush_bits |=
3637 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3638 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3639
3640 cmd_buffer->state.pass = NULL;
3641 cmd_buffer->state.subpass = NULL;
3642 cmd_buffer->state.framebuffer = NULL;
3643 }
3644
3645 void
3646 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3647 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3648 {
3649 tu_CmdEndRenderPass(commandBuffer);
3650 }
3651
3652 struct tu_barrier_info
3653 {
3654 uint32_t eventCount;
3655 const VkEvent *pEvents;
3656 VkPipelineStageFlags srcStageMask;
3657 };
3658
3659 static void
3660 tu_barrier(struct tu_cmd_buffer *cmd,
3661 uint32_t memoryBarrierCount,
3662 const VkMemoryBarrier *pMemoryBarriers,
3663 uint32_t bufferMemoryBarrierCount,
3664 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3665 uint32_t imageMemoryBarrierCount,
3666 const VkImageMemoryBarrier *pImageMemoryBarriers,
3667 const struct tu_barrier_info *info)
3668 {
3669 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3670 VkAccessFlags srcAccessMask = 0;
3671 VkAccessFlags dstAccessMask = 0;
3672
3673 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3674 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3675 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3676 }
3677
3678 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3679 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3680 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3681 }
3682
3683 enum tu_cmd_access_mask src_flags = 0;
3684 enum tu_cmd_access_mask dst_flags = 0;
3685
3686 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3687 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3688 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3689 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3690 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3691 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3692 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3693 /* The underlying memory for this image may have been used earlier
3694 * within the same queue submission for a different image, which
3695 * means that there may be old, stale cache entries which are in the
3696 * "wrong" location, which could cause problems later after writing
3697 * to the image. We don't want these entries being flushed later and
3698 * overwriting the actual image, so we need to flush the CCU.
3699 */
3700 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3701 }
3702 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3703 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3704 }
3705
3706 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3707 * so we have to use the sysmem flushes.
3708 */
3709 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3710 !cmd->state.pass;
3711 src_flags |= vk2tu_access(srcAccessMask, gmem);
3712 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3713
3714 struct tu_cache_state *cache =
3715 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3716 tu_flush_for_access(cache, src_flags, dst_flags);
3717
3718 for (uint32_t i = 0; i < info->eventCount; i++) {
3719 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3720
3721 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3722
3723 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3724 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3725 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3726 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3727 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3728 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3729 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3730 }
3731 }
3732
3733 void
3734 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3735 VkPipelineStageFlags srcStageMask,
3736 VkPipelineStageFlags dstStageMask,
3737 VkDependencyFlags dependencyFlags,
3738 uint32_t memoryBarrierCount,
3739 const VkMemoryBarrier *pMemoryBarriers,
3740 uint32_t bufferMemoryBarrierCount,
3741 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3742 uint32_t imageMemoryBarrierCount,
3743 const VkImageMemoryBarrier *pImageMemoryBarriers)
3744 {
3745 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3746 struct tu_barrier_info info;
3747
3748 info.eventCount = 0;
3749 info.pEvents = NULL;
3750 info.srcStageMask = srcStageMask;
3751
3752 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3753 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3754 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3755 }
3756
3757 static void
3758 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3759 VkPipelineStageFlags stageMask, unsigned value)
3760 {
3761 struct tu_cs *cs = &cmd->cs;
3762
3763 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3764 assert(!cmd->state.pass);
3765
3766 tu_emit_cache_flush(cmd, cs);
3767
3768 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3769
3770 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3771 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3772 */
3773 VkPipelineStageFlags top_of_pipe_flags =
3774 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3775 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3776
3777 if (!(stageMask & ~top_of_pipe_flags)) {
3778 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3779 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3780 tu_cs_emit(cs, value);
3781 } else {
3782 /* Use a RB_DONE_TS event to wait for everything to complete. */
3783 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3784 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3785 tu_cs_emit_qw(cs, event->bo.iova);
3786 tu_cs_emit(cs, value);
3787 }
3788 }
3789
3790 void
3791 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3792 VkEvent _event,
3793 VkPipelineStageFlags stageMask)
3794 {
3795 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3796 TU_FROM_HANDLE(tu_event, event, _event);
3797
3798 write_event(cmd, event, stageMask, 1);
3799 }
3800
3801 void
3802 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3803 VkEvent _event,
3804 VkPipelineStageFlags stageMask)
3805 {
3806 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3807 TU_FROM_HANDLE(tu_event, event, _event);
3808
3809 write_event(cmd, event, stageMask, 0);
3810 }
3811
3812 void
3813 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3814 uint32_t eventCount,
3815 const VkEvent *pEvents,
3816 VkPipelineStageFlags srcStageMask,
3817 VkPipelineStageFlags dstStageMask,
3818 uint32_t memoryBarrierCount,
3819 const VkMemoryBarrier *pMemoryBarriers,
3820 uint32_t bufferMemoryBarrierCount,
3821 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3822 uint32_t imageMemoryBarrierCount,
3823 const VkImageMemoryBarrier *pImageMemoryBarriers)
3824 {
3825 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3826 struct tu_barrier_info info;
3827
3828 info.eventCount = eventCount;
3829 info.pEvents = pEvents;
3830 info.srcStageMask = 0;
3831
3832 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3833 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3834 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3835 }
3836
3837 void
3838 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3839 {
3840 /* No-op */
3841 }