turnip: add support for D32_SFLOAT_S8_UINT
[mesa.git] / src / freedreno / vulkan / tu_cmd_buffer.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "adreno_pm4.xml.h"
31 #include "adreno_common.xml.h"
32
33 #include "vk_format.h"
34
35 #include "tu_cs.h"
36
37 void
38 tu_bo_list_init(struct tu_bo_list *list)
39 {
40 list->count = list->capacity = 0;
41 list->bo_infos = NULL;
42 }
43
44 void
45 tu_bo_list_destroy(struct tu_bo_list *list)
46 {
47 free(list->bo_infos);
48 }
49
50 void
51 tu_bo_list_reset(struct tu_bo_list *list)
52 {
53 list->count = 0;
54 }
55
56 /**
57 * \a flags consists of MSM_SUBMIT_BO_FLAGS.
58 */
59 static uint32_t
60 tu_bo_list_add_info(struct tu_bo_list *list,
61 const struct drm_msm_gem_submit_bo *bo_info)
62 {
63 assert(bo_info->handle != 0);
64
65 for (uint32_t i = 0; i < list->count; ++i) {
66 if (list->bo_infos[i].handle == bo_info->handle) {
67 assert(list->bo_infos[i].presumed == bo_info->presumed);
68 list->bo_infos[i].flags |= bo_info->flags;
69 return i;
70 }
71 }
72
73 /* grow list->bo_infos if needed */
74 if (list->count == list->capacity) {
75 uint32_t new_capacity = MAX2(2 * list->count, 16);
76 struct drm_msm_gem_submit_bo *new_bo_infos = realloc(
77 list->bo_infos, new_capacity * sizeof(struct drm_msm_gem_submit_bo));
78 if (!new_bo_infos)
79 return TU_BO_LIST_FAILED;
80 list->bo_infos = new_bo_infos;
81 list->capacity = new_capacity;
82 }
83
84 list->bo_infos[list->count] = *bo_info;
85 return list->count++;
86 }
87
88 uint32_t
89 tu_bo_list_add(struct tu_bo_list *list,
90 const struct tu_bo *bo,
91 uint32_t flags)
92 {
93 return tu_bo_list_add_info(list, &(struct drm_msm_gem_submit_bo) {
94 .flags = flags,
95 .handle = bo->gem_handle,
96 .presumed = bo->iova,
97 });
98 }
99
100 VkResult
101 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other)
102 {
103 for (uint32_t i = 0; i < other->count; i++) {
104 if (tu_bo_list_add_info(list, other->bo_infos + i) == TU_BO_LIST_FAILED)
105 return VK_ERROR_OUT_OF_HOST_MEMORY;
106 }
107
108 return VK_SUCCESS;
109 }
110
111 void
112 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
113 struct tu_cs *cs,
114 enum vgt_event_type event)
115 {
116 bool need_seqno = false;
117 switch (event) {
118 case CACHE_FLUSH_TS:
119 case WT_DONE_TS:
120 case RB_DONE_TS:
121 case PC_CCU_FLUSH_DEPTH_TS:
122 case PC_CCU_FLUSH_COLOR_TS:
123 case PC_CCU_RESOLVE_TS:
124 need_seqno = true;
125 break;
126 default:
127 break;
128 }
129
130 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, need_seqno ? 4 : 1);
131 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
132 if (need_seqno) {
133 tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
134 tu_cs_emit(cs, 0);
135 }
136 }
137
138 static void
139 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
140 struct tu_cs *cs,
141 enum tu_cmd_flush_bits flushes)
142 {
143 /* Experiments show that invalidating CCU while it still has data in it
144 * doesn't work, so make sure to always flush before invalidating in case
145 * any data remains that hasn't yet been made available through a barrier.
146 * However it does seem to work for UCHE.
147 */
148 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_COLOR |
149 TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
150 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_COLOR_TS);
151 if (flushes & (TU_CMD_FLAG_CCU_FLUSH_DEPTH |
152 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
153 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_FLUSH_DEPTH_TS);
154 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
155 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_COLOR);
156 if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
157 tu6_emit_event_write(cmd_buffer, cs, PC_CCU_INVALIDATE_DEPTH);
158 if (flushes & TU_CMD_FLAG_CACHE_FLUSH)
159 tu6_emit_event_write(cmd_buffer, cs, CACHE_FLUSH_TS);
160 if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
161 tu6_emit_event_write(cmd_buffer, cs, CACHE_INVALIDATE);
162 if (flushes & TU_CMD_FLAG_WAIT_MEM_WRITES)
163 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
164 if (flushes & TU_CMD_FLAG_WAIT_FOR_IDLE)
165 tu_cs_emit_wfi(cs);
166 if (flushes & TU_CMD_FLAG_WAIT_FOR_ME)
167 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
168 }
169
170 /* "Normal" cache flushes, that don't require any special handling */
171
172 static void
173 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer,
174 struct tu_cs *cs)
175 {
176 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.cache.flush_bits);
177 cmd_buffer->state.cache.flush_bits = 0;
178 }
179
180 /* Renderpass cache flushes */
181
182 void
183 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
184 struct tu_cs *cs)
185 {
186 tu6_emit_flushes(cmd_buffer, cs, cmd_buffer->state.renderpass_cache.flush_bits);
187 cmd_buffer->state.renderpass_cache.flush_bits = 0;
188 }
189
190 /* Cache flushes for things that use the color/depth read/write path (i.e.
191 * blits and draws). This deals with changing CCU state as well as the usual
192 * cache flushing.
193 */
194
195 void
196 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
197 struct tu_cs *cs,
198 enum tu_cmd_ccu_state ccu_state)
199 {
200 enum tu_cmd_flush_bits flushes = cmd_buffer->state.cache.flush_bits;
201
202 assert(ccu_state != TU_CMD_CCU_UNKNOWN);
203
204 /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
205 * the CCU may also contain data that we haven't flushed out yet, so we
206 * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
207 * emit a WFI as it isn't pipelined.
208 */
209 if (ccu_state != cmd_buffer->state.ccu_state) {
210 if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
211 flushes |=
212 TU_CMD_FLAG_CCU_FLUSH_COLOR |
213 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
214 cmd_buffer->state.cache.pending_flush_bits &= ~(
215 TU_CMD_FLAG_CCU_FLUSH_COLOR |
216 TU_CMD_FLAG_CCU_FLUSH_DEPTH);
217 }
218 flushes |=
219 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
220 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
221 TU_CMD_FLAG_WAIT_FOR_IDLE;
222 cmd_buffer->state.cache.pending_flush_bits &= ~(
223 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
224 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
225 TU_CMD_FLAG_WAIT_FOR_IDLE);
226 }
227
228 tu6_emit_flushes(cmd_buffer, cs, flushes);
229 cmd_buffer->state.cache.flush_bits = 0;
230
231 if (ccu_state != cmd_buffer->state.ccu_state) {
232 struct tu_physical_device *phys_dev = cmd_buffer->device->physical_device;
233 tu_cs_emit_regs(cs,
234 A6XX_RB_CCU_CNTL(.offset =
235 ccu_state == TU_CMD_CCU_GMEM ?
236 phys_dev->ccu_offset_gmem :
237 phys_dev->ccu_offset_bypass,
238 .gmem = ccu_state == TU_CMD_CCU_GMEM));
239 cmd_buffer->state.ccu_state = ccu_state;
240 }
241 }
242
243 static void
244 tu6_emit_zs(struct tu_cmd_buffer *cmd,
245 const struct tu_subpass *subpass,
246 struct tu_cs *cs)
247 {
248 const struct tu_framebuffer *fb = cmd->state.framebuffer;
249
250 const uint32_t a = subpass->depth_stencil_attachment.attachment;
251 if (a == VK_ATTACHMENT_UNUSED) {
252 tu_cs_emit_regs(cs,
253 A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE),
254 A6XX_RB_DEPTH_BUFFER_PITCH(0),
255 A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
256 A6XX_RB_DEPTH_BUFFER_BASE(0),
257 A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
258
259 tu_cs_emit_regs(cs,
260 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
261
262 tu_cs_emit_regs(cs,
263 A6XX_GRAS_LRZ_BUFFER_BASE(0),
264 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
265 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
266
267 tu_cs_emit_regs(cs, A6XX_RB_STENCIL_INFO(0));
268
269 return;
270 }
271
272 const struct tu_image_view *iview = fb->attachments[a].attachment;
273 const struct tu_render_pass_attachment *attachment =
274 &cmd->state.pass->attachments[a];
275 enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
276
277 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
278 tu_cs_emit(cs, A6XX_RB_DEPTH_BUFFER_INFO(.depth_format = fmt).value);
279 tu_cs_image_ref(cs, iview, 0);
280 tu_cs_emit(cs, attachment->gmem_offset);
281
282 tu_cs_emit_regs(cs,
283 A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
284
285 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE_LO, 3);
286 tu_cs_image_flag_ref(cs, iview, 0);
287
288 tu_cs_emit_regs(cs,
289 A6XX_GRAS_LRZ_BUFFER_BASE(0),
290 A6XX_GRAS_LRZ_BUFFER_PITCH(0),
291 A6XX_GRAS_LRZ_FAST_CLEAR_BUFFER_BASE(0));
292
293 if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT ||
294 attachment->format == VK_FORMAT_S8_UINT) {
295
296 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
297 tu_cs_emit(cs, A6XX_RB_STENCIL_INFO(.separate_stencil = true).value);
298 if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
299 tu_cs_image_stencil_ref(cs, iview, 0);
300 tu_cs_emit(cs, attachment->gmem_offset_stencil);
301 } else {
302 tu_cs_image_ref(cs, iview, 0);
303 tu_cs_emit(cs, attachment->gmem_offset);
304 }
305 } else {
306 tu_cs_emit_regs(cs,
307 A6XX_RB_STENCIL_INFO(0));
308 }
309 }
310
311 static void
312 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
313 const struct tu_subpass *subpass,
314 struct tu_cs *cs)
315 {
316 const struct tu_framebuffer *fb = cmd->state.framebuffer;
317
318 for (uint32_t i = 0; i < subpass->color_count; ++i) {
319 uint32_t a = subpass->color_attachments[i].attachment;
320 if (a == VK_ATTACHMENT_UNUSED)
321 continue;
322
323 const struct tu_image_view *iview = fb->attachments[a].attachment;
324
325 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_BUF_INFO(i), 6);
326 tu_cs_emit(cs, iview->RB_MRT_BUF_INFO);
327 tu_cs_image_ref(cs, iview, 0);
328 tu_cs_emit(cs, cmd->state.pass->attachments[a].gmem_offset);
329
330 tu_cs_emit_regs(cs,
331 A6XX_SP_FS_MRT_REG(i, .dword = iview->SP_FS_MRT_REG));
332
333 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR_LO(i), 3);
334 tu_cs_image_flag_ref(cs, iview, 0);
335 }
336
337 tu_cs_emit_regs(cs,
338 A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
339 tu_cs_emit_regs(cs,
340 A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
341
342 tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(fb->layers - 1));
343 }
344
345 void
346 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples)
347 {
348 const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
349 bool msaa_disable = samples == MSAA_ONE;
350
351 tu_cs_emit_regs(cs,
352 A6XX_SP_TP_RAS_MSAA_CNTL(samples),
353 A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
354 .msaa_disable = msaa_disable));
355
356 tu_cs_emit_regs(cs,
357 A6XX_GRAS_RAS_MSAA_CNTL(samples),
358 A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
359 .msaa_disable = msaa_disable));
360
361 tu_cs_emit_regs(cs,
362 A6XX_RB_RAS_MSAA_CNTL(samples),
363 A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
364 .msaa_disable = msaa_disable));
365
366 tu_cs_emit_regs(cs,
367 A6XX_RB_MSAA_CNTL(samples));
368 }
369
370 static void
371 tu6_emit_bin_size(struct tu_cs *cs,
372 uint32_t bin_w, uint32_t bin_h, uint32_t flags)
373 {
374 tu_cs_emit_regs(cs,
375 A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
376 .binh = bin_h,
377 .dword = flags));
378
379 tu_cs_emit_regs(cs,
380 A6XX_RB_BIN_CONTROL(.binw = bin_w,
381 .binh = bin_h,
382 .dword = flags));
383
384 /* no flag for RB_BIN_CONTROL2... */
385 tu_cs_emit_regs(cs,
386 A6XX_RB_BIN_CONTROL2(.binw = bin_w,
387 .binh = bin_h));
388 }
389
390 static void
391 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
392 const struct tu_subpass *subpass,
393 struct tu_cs *cs,
394 bool binning)
395 {
396 const struct tu_framebuffer *fb = cmd->state.framebuffer;
397 uint32_t cntl = 0;
398 cntl |= A6XX_RB_RENDER_CNTL_UNK4;
399 if (binning) {
400 cntl |= A6XX_RB_RENDER_CNTL_BINNING;
401 } else {
402 uint32_t mrts_ubwc_enable = 0;
403 for (uint32_t i = 0; i < subpass->color_count; ++i) {
404 uint32_t a = subpass->color_attachments[i].attachment;
405 if (a == VK_ATTACHMENT_UNUSED)
406 continue;
407
408 const struct tu_image_view *iview = fb->attachments[a].attachment;
409 if (iview->ubwc_enabled)
410 mrts_ubwc_enable |= 1 << i;
411 }
412
413 cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
414
415 const uint32_t a = subpass->depth_stencil_attachment.attachment;
416 if (a != VK_ATTACHMENT_UNUSED) {
417 const struct tu_image_view *iview = fb->attachments[a].attachment;
418 if (iview->ubwc_enabled)
419 cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
420 }
421
422 /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
423 * in order to set it correctly for the different subpasses. However,
424 * that means the packets we're emitting also happen during binning. So
425 * we need to guard the write on !BINNING at CP execution time.
426 */
427 tu_cs_reserve(cs, 3 + 4);
428 tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
429 tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
430 CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
431 tu_cs_emit(cs, CP_COND_REG_EXEC_1_DWORDS(4));
432 }
433
434 tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
435 tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
436 tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
437 tu_cs_emit(cs, cntl);
438 }
439
440 static void
441 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
442 {
443
444 const VkRect2D *render_area = &cmd->state.render_area;
445
446 /* Avoid assertion fails with an empty render area at (0, 0) where the
447 * subtraction below wraps around. Empty render areas should be forced to
448 * the sysmem path by use_sysmem_rendering(). It's not even clear whether
449 * an empty scissor here works, and the blob seems to force sysmem too as
450 * it sets something wrong (non-empty) for the scissor.
451 */
452 if (render_area->extent.width == 0 ||
453 render_area->extent.height == 0)
454 return;
455
456 uint32_t x1 = render_area->offset.x;
457 uint32_t y1 = render_area->offset.y;
458 uint32_t x2 = x1 + render_area->extent.width - 1;
459 uint32_t y2 = y1 + render_area->extent.height - 1;
460
461 if (align) {
462 x1 = x1 & ~(GMEM_ALIGN_W - 1);
463 y1 = y1 & ~(GMEM_ALIGN_H - 1);
464 x2 = ALIGN_POT(x2 + 1, GMEM_ALIGN_W) - 1;
465 y2 = ALIGN_POT(y2 + 1, GMEM_ALIGN_H) - 1;
466 }
467
468 tu_cs_emit_regs(cs,
469 A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
470 A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
471 }
472
473 void
474 tu6_emit_window_scissor(struct tu_cs *cs,
475 uint32_t x1,
476 uint32_t y1,
477 uint32_t x2,
478 uint32_t y2)
479 {
480 tu_cs_emit_regs(cs,
481 A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
482 A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
483
484 tu_cs_emit_regs(cs,
485 A6XX_GRAS_2D_RESOLVE_CNTL_1(.x = x1, .y = y1),
486 A6XX_GRAS_2D_RESOLVE_CNTL_2(.x = x2, .y = y2));
487 }
488
489 void
490 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
491 {
492 tu_cs_emit_regs(cs,
493 A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
494
495 tu_cs_emit_regs(cs,
496 A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
497
498 tu_cs_emit_regs(cs,
499 A6XX_SP_WINDOW_OFFSET(.x = x1, .y = y1));
500
501 tu_cs_emit_regs(cs,
502 A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
503 }
504
505 static void
506 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
507 {
508 uint32_t enable_mask;
509 switch (id) {
510 case TU_DRAW_STATE_PROGRAM:
511 case TU_DRAW_STATE_VI:
512 case TU_DRAW_STATE_FS_CONST:
513 /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
514 * when resources would actually be used in the binning shader.
515 * Presumably the overhead of prefetching the resources isn't
516 * worth it.
517 */
518 case TU_DRAW_STATE_DESC_SETS_LOAD:
519 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
520 CP_SET_DRAW_STATE__0_SYSMEM;
521 break;
522 case TU_DRAW_STATE_PROGRAM_BINNING:
523 case TU_DRAW_STATE_VI_BINNING:
524 enable_mask = CP_SET_DRAW_STATE__0_BINNING;
525 break;
526 case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
527 enable_mask = CP_SET_DRAW_STATE__0_GMEM;
528 break;
529 case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
530 enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
531 break;
532 default:
533 enable_mask = CP_SET_DRAW_STATE__0_GMEM |
534 CP_SET_DRAW_STATE__0_SYSMEM |
535 CP_SET_DRAW_STATE__0_BINNING;
536 break;
537 }
538
539 /* We need to reload the descriptors every time the descriptor sets
540 * change. However, the commands we send only depend on the pipeline
541 * because the whole point is to cache descriptors which are used by the
542 * pipeline. There's a problem here, in that the firmware has an
543 * "optimization" which skips executing groups that are set to the same
544 * value as the last draw. This means that if the descriptor sets change
545 * but not the pipeline, we'd try to re-execute the same buffer which
546 * the firmware would ignore and we wouldn't pre-load the new
547 * descriptors. Set the DIRTY bit to avoid this optimization
548 */
549 if (id == TU_DRAW_STATE_DESC_SETS_LOAD)
550 enable_mask |= CP_SET_DRAW_STATE__0_DIRTY;
551
552 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
553 enable_mask |
554 CP_SET_DRAW_STATE__0_GROUP_ID(id) |
555 COND(!state.size, CP_SET_DRAW_STATE__0_DISABLE));
556 tu_cs_emit_qw(cs, state.iova);
557 }
558
559 static bool
560 use_hw_binning(struct tu_cmd_buffer *cmd)
561 {
562 const struct tu_framebuffer *fb = cmd->state.framebuffer;
563
564 /* XFB commands are emitted for BINNING || SYSMEM, which makes it incompatible
565 * with non-hw binning GMEM rendering. this is required because some of the
566 * XFB commands need to only be executed once
567 */
568 if (cmd->state.xfb_used)
569 return true;
570
571 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_NOBIN))
572 return false;
573
574 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_FORCEBIN))
575 return true;
576
577 return (fb->tile_count.width * fb->tile_count.height) > 2;
578 }
579
580 static bool
581 use_sysmem_rendering(struct tu_cmd_buffer *cmd)
582 {
583 if (unlikely(cmd->device->physical_device->instance->debug_flags & TU_DEBUG_SYSMEM))
584 return true;
585
586 /* can't fit attachments into gmem */
587 if (!cmd->state.pass->gmem_pixels)
588 return true;
589
590 if (cmd->state.framebuffer->layers > 1)
591 return true;
592
593 /* Use sysmem for empty render areas */
594 if (cmd->state.render_area.extent.width == 0 ||
595 cmd->state.render_area.extent.height == 0)
596 return true;
597
598 if (cmd->has_tess)
599 return true;
600
601 return false;
602 }
603
604 static void
605 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
606 struct tu_cs *cs,
607 uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot)
608 {
609 const struct tu_framebuffer *fb = cmd->state.framebuffer;
610
611 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
612 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_YIELD));
613
614 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
615 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_GMEM));
616
617 const uint32_t x1 = fb->tile0.width * tx;
618 const uint32_t y1 = fb->tile0.height * ty;
619 const uint32_t x2 = x1 + fb->tile0.width - 1;
620 const uint32_t y2 = y1 + fb->tile0.height - 1;
621 tu6_emit_window_scissor(cs, x1, y1, x2, y2);
622 tu6_emit_window_offset(cs, x1, y1);
623
624 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
625
626 if (use_hw_binning(cmd)) {
627 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
628
629 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
630 tu_cs_emit(cs, 0x0);
631
632 tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, 4);
633 tu_cs_emit(cs, fb->pipe_sizes[pipe] |
634 CP_SET_BIN_DATA5_0_VSC_N(slot));
635 tu_cs_emit(cs, pipe * cmd->vsc_draw_strm_pitch);
636 tu_cs_emit(cs, pipe * 4);
637 tu_cs_emit(cs, pipe * cmd->vsc_prim_strm_pitch);
638
639 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
640 tu_cs_emit(cs, 0x0);
641
642 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
643 tu_cs_emit(cs, 0x0);
644 } else {
645 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
646 tu_cs_emit(cs, 0x1);
647
648 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
649 tu_cs_emit(cs, 0x0);
650 }
651 }
652
653 static void
654 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
655 struct tu_cs *cs,
656 uint32_t a,
657 uint32_t gmem_a)
658 {
659 const struct tu_framebuffer *fb = cmd->state.framebuffer;
660 struct tu_image_view *dst = fb->attachments[a].attachment;
661 struct tu_image_view *src = fb->attachments[gmem_a].attachment;
662
663 tu_resolve_sysmem(cmd, cs, src, dst, fb->layers, &cmd->state.render_area);
664 }
665
666 static void
667 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
668 struct tu_cs *cs,
669 const struct tu_subpass *subpass)
670 {
671 if (subpass->resolve_attachments) {
672 /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
673 * Commands":
674 *
675 * End-of-subpass multisample resolves are treated as color
676 * attachment writes for the purposes of synchronization. That is,
677 * they are considered to execute in the
678 * VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT pipeline stage and
679 * their writes are synchronized with
680 * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
681 * rendering within a subpass and any resolve operations at the end
682 * of the subpass occurs automatically, without need for explicit
683 * dependencies or pipeline barriers. However, if the resolve
684 * attachment is also used in a different subpass, an explicit
685 * dependency is needed.
686 *
687 * We use the CP_BLIT path for sysmem resolves, which is really a
688 * transfer command, so we have to manually flush similar to the gmem
689 * resolve case. However, a flush afterwards isn't needed because of the
690 * last sentence and the fact that we're in sysmem mode.
691 */
692 tu6_emit_event_write(cmd, cs, PC_CCU_FLUSH_COLOR_TS);
693 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
694
695 /* Wait for the flushes to land before using the 2D engine */
696 tu_cs_emit_wfi(cs);
697
698 for (unsigned i = 0; i < subpass->color_count; i++) {
699 uint32_t a = subpass->resolve_attachments[i].attachment;
700 if (a == VK_ATTACHMENT_UNUSED)
701 continue;
702
703 tu6_emit_sysmem_resolve(cmd, cs, a,
704 subpass->color_attachments[i].attachment);
705 }
706 }
707 }
708
709 static void
710 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
711 {
712 const struct tu_render_pass *pass = cmd->state.pass;
713 const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
714
715 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
716 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
717 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
718 CP_SET_DRAW_STATE__0_GROUP_ID(0));
719 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
720 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
721
722 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
723 tu_cs_emit(cs, 0x0);
724
725 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
726 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_RESOLVE));
727
728 tu6_emit_blit_scissor(cmd, cs, true);
729
730 for (uint32_t a = 0; a < pass->attachment_count; ++a) {
731 if (pass->attachments[a].gmem_offset >= 0)
732 tu_store_gmem_attachment(cmd, cs, a, a);
733 }
734
735 if (subpass->resolve_attachments) {
736 for (unsigned i = 0; i < subpass->color_count; i++) {
737 uint32_t a = subpass->resolve_attachments[i].attachment;
738 if (a != VK_ATTACHMENT_UNUSED)
739 tu_store_gmem_attachment(cmd, cs, a,
740 subpass->color_attachments[i].attachment);
741 }
742 }
743 }
744
745 static void
746 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
747 {
748 struct tu_device *dev = cmd->device;
749 const struct tu_physical_device *phys_dev = dev->physical_device;
750
751 tu6_emit_event_write(cmd, cs, CACHE_INVALIDATE);
752
753 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(
754 .vs_state = true,
755 .hs_state = true,
756 .ds_state = true,
757 .gs_state = true,
758 .fs_state = true,
759 .cs_state = true,
760 .gfx_ibo = true,
761 .cs_ibo = true,
762 .gfx_shared_const = true,
763 .cs_shared_const = true,
764 .gfx_bindless = 0x1f,
765 .cs_bindless = 0x1f));
766
767 tu_cs_emit_wfi(cs);
768
769 cmd->state.cache.pending_flush_bits &=
770 ~(TU_CMD_FLAG_WAIT_FOR_IDLE | TU_CMD_FLAG_CACHE_INVALIDATE);
771
772 tu_cs_emit_regs(cs,
773 A6XX_RB_CCU_CNTL(.offset = phys_dev->ccu_offset_bypass));
774 cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
775 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E04, 0x00100000);
776 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE04, 0x8);
777 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE00, 0);
778 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE0F, 0x3f);
779 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B605, 0x44);
780 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B600, 0x100000);
781 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
782 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
783
784 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9600, 0);
785 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8600, 0x880);
786 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE04, 0);
787 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AE03, 0x00000410);
788 tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0);
789 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
790 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_SHARED_CONSTS, 0);
791 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12, 0x3200000);
792 tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF, 4);
793 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01, 0x0);
794 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A982, 0);
795 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
796 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_AB00, 0x5);
797
798 /* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
799 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
800 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
801 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x1f);
802
803 tu_cs_emit_write_reg(cs, REG_A6XX_RB_SRGB_CNTL, 0);
804
805 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
806
807 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL0, 0x401);
808 tu_cs_emit_write_reg(cs, REG_A6XX_RB_RENDER_CONTROL1, 0);
809 tu_cs_emit_write_reg(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 0);
810 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
811 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
812 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
813 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
814 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
815 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
816 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
817 tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
818
819 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9107, 0);
820
821 tu_cs_emit_regs(cs, A6XX_VPC_POINT_COORD_INVERT(false));
822 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
823
824 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
825
826 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9980, 0);
827
828 tu_cs_emit_write_reg(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 0);
829 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9B07, 0);
830
831 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A81B, 0);
832
833 tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
834
835 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8099, 0);
836 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80A0, 2);
837 tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
838 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
839 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
840 tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
841 tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
842 tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_UNKNOWN_B309, 0x000000a2);
843 tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_CONTROL_5_REG, 0xfc);
844
845 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
846
847 tu_cs_emit_write_reg(cs, REG_A6XX_VFD_UNKNOWN_A008, 0);
848
849 tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, 0x0000001f);
850
851 /* we don't use this yet.. probably best to disable.. */
852 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
853 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
854 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
855 CP_SET_DRAW_STATE__0_GROUP_ID(0));
856 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
857 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
858
859 tu_cs_emit_regs(cs,
860 A6XX_SP_HS_CTRL_REG0(0));
861
862 tu_cs_emit_regs(cs,
863 A6XX_SP_GS_CTRL_REG0(0));
864
865 tu_cs_emit_regs(cs,
866 A6XX_GRAS_LRZ_CNTL(0));
867
868 tu_cs_emit_regs(cs,
869 A6XX_RB_LRZ_CNTL(0));
870
871 tu_cs_emit_regs(cs,
872 A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
873 .bo_offset = gb_offset(border_color)));
874 tu_cs_emit_regs(cs,
875 A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = &dev->global_bo,
876 .bo_offset = gb_offset(border_color)));
877
878 /* VSC buffers:
879 * use vsc pitches from the largest values used so far with this device
880 * if there hasn't been overflow, there will already be a scratch bo
881 * allocated for these sizes
882 *
883 * if overflow is detected, the stream size is increased by 2x
884 */
885 mtx_lock(&dev->vsc_pitch_mtx);
886
887 struct tu6_global *global = dev->global_bo.map;
888
889 uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
890 uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
891
892 if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
893 dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
894
895 if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
896 dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
897
898 cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
899 cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
900
901 mtx_unlock(&dev->vsc_pitch_mtx);
902
903 struct tu_bo *vsc_bo;
904 uint32_t size0 = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES +
905 cmd->vsc_draw_strm_pitch * MAX_VSC_PIPES;
906
907 tu_get_scratch_bo(dev, size0 + MAX_VSC_PIPES * 4, &vsc_bo);
908
909 tu_cs_emit_regs(cs,
910 A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.bo = vsc_bo, .bo_offset = size0));
911 tu_cs_emit_regs(cs,
912 A6XX_VSC_PRIM_STRM_ADDRESS(.bo = vsc_bo));
913 tu_cs_emit_regs(cs,
914 A6XX_VSC_DRAW_STRM_ADDRESS(.bo = vsc_bo,
915 .bo_offset = cmd->vsc_prim_strm_pitch * MAX_VSC_PIPES));
916
917 tu_bo_list_add(&cmd->bo_list, vsc_bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
918
919 tu_cs_sanity_check(cs);
920 }
921
922 static void
923 update_vsc_pipe(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
924 {
925 const struct tu_framebuffer *fb = cmd->state.framebuffer;
926
927 tu_cs_emit_regs(cs,
928 A6XX_VSC_BIN_SIZE(.width = fb->tile0.width,
929 .height = fb->tile0.height));
930
931 tu_cs_emit_regs(cs,
932 A6XX_VSC_BIN_COUNT(.nx = fb->tile_count.width,
933 .ny = fb->tile_count.height));
934
935 tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), 32);
936 tu_cs_emit_array(cs, fb->pipe_config, 32);
937
938 tu_cs_emit_regs(cs,
939 A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
940 A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - VSC_PAD));
941
942 tu_cs_emit_regs(cs,
943 A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
944 A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - VSC_PAD));
945 }
946
947 static void
948 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
949 {
950 const struct tu_framebuffer *fb = cmd->state.framebuffer;
951 const uint32_t used_pipe_count =
952 fb->pipe_count.width * fb->pipe_count.height;
953
954 for (int i = 0; i < used_pipe_count; i++) {
955 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
956 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
957 CP_COND_WRITE5_0_WRITE_MEMORY);
958 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
959 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
960 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
961 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
962 tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
963 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
964
965 tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
966 tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
967 CP_COND_WRITE5_0_WRITE_MEMORY);
968 tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
969 tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
970 tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
971 tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
972 tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
973 tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
974 }
975
976 tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
977 }
978
979 static void
980 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
981 {
982 struct tu_physical_device *phys_dev = cmd->device->physical_device;
983 const struct tu_framebuffer *fb = cmd->state.framebuffer;
984
985 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
986
987 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
988 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BINNING));
989
990 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
991 tu_cs_emit(cs, 0x1);
992
993 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
994 tu_cs_emit(cs, 0x1);
995
996 tu_cs_emit_wfi(cs);
997
998 tu_cs_emit_regs(cs,
999 A6XX_VFD_MODE_CNTL(.binning_pass = true));
1000
1001 update_vsc_pipe(cmd, cs);
1002
1003 tu_cs_emit_regs(cs,
1004 A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1005
1006 tu_cs_emit_regs(cs,
1007 A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1008
1009 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1010 tu_cs_emit(cs, UNK_2C);
1011
1012 tu_cs_emit_regs(cs,
1013 A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
1014
1015 tu_cs_emit_regs(cs,
1016 A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
1017
1018 /* emit IB to binning drawcmds: */
1019 tu_cs_emit_call(cs, &cmd->draw_cs);
1020
1021 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1022 tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1023 CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1024 CP_SET_DRAW_STATE__0_GROUP_ID(0));
1025 tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1026 tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1027
1028 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1029 tu_cs_emit(cs, UNK_2D);
1030
1031 /* This flush is probably required because the VSC, which produces the
1032 * visibility stream, is a client of UCHE, whereas the CP needs to read the
1033 * visibility stream (without caching) to do draw skipping. The
1034 * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1035 * submitted are finished before reading the VSC regs (in
1036 * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1037 * part of draws).
1038 */
1039 tu6_emit_event_write(cmd, cs, CACHE_FLUSH_TS);
1040
1041 tu_cs_emit_wfi(cs);
1042
1043 tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1044
1045 emit_vsc_overflow_test(cmd, cs);
1046
1047 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1048 tu_cs_emit(cs, 0x0);
1049
1050 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1051 tu_cs_emit(cs, 0x0);
1052 }
1053
1054 static struct tu_draw_state
1055 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1056 const struct tu_subpass *subpass,
1057 bool gmem)
1058 {
1059 /* note: we can probably emit input attachments just once for the whole
1060 * renderpass, this would avoid emitting both sysmem/gmem versions
1061 *
1062 * emit two texture descriptors for each input, as a workaround for
1063 * d24s8/d32s8, which can be sampled as both float (depth) and integer (stencil)
1064 * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1065 * in the pair
1066 * TODO: a smarter workaround
1067 */
1068
1069 if (!subpass->input_count)
1070 return (struct tu_draw_state) {};
1071
1072 struct tu_cs_memory texture;
1073 VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1074 A6XX_TEX_CONST_DWORDS, &texture);
1075 assert(result == VK_SUCCESS);
1076
1077 for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1078 uint32_t a = subpass->input_attachments[i / 2].attachment;
1079 if (a == VK_ATTACHMENT_UNUSED)
1080 continue;
1081
1082 struct tu_image_view *iview =
1083 cmd->state.framebuffer->attachments[a].attachment;
1084 const struct tu_render_pass_attachment *att =
1085 &cmd->state.pass->attachments[a];
1086 uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1087 uint32_t gmem_offset = att->gmem_offset;
1088 uint32_t cpp = att->cpp;
1089
1090 memcpy(dst, iview->descriptor, A6XX_TEX_CONST_DWORDS * 4);
1091
1092 if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1093 /* note this works because spec says fb and input attachments
1094 * must use identity swizzle
1095 */
1096 dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1097 A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1098 A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1099 if (cmd->device->physical_device->limited_z24s8) {
1100 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_8_8_8_UINT) |
1101 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_W) |
1102 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1103 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1104 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1105 } else {
1106 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_Z24_UINT_S8_UINT) |
1107 A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1108 A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1109 A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1110 A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1111 }
1112 }
1113
1114 if (i % 2 == 1 && att->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
1115 dst[0] &= ~A6XX_TEX_CONST_0_FMT__MASK;
1116 dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_UINT);
1117 dst[2] &= ~(A6XX_TEX_CONST_2_PITCHALIGN__MASK | A6XX_TEX_CONST_2_PITCH__MASK);
1118 dst[2] |= A6XX_TEX_CONST_2_PITCH(iview->stencil_PITCH << 6);
1119 dst[3] = 0;
1120 dst[4] = iview->stencil_base_addr;
1121 dst[5] = (dst[5] & 0xffff) | iview->stencil_base_addr >> 32;
1122
1123 cpp = att->samples;
1124 gmem_offset = att->gmem_offset_stencil;
1125 }
1126
1127 if (!gmem)
1128 continue;
1129
1130 /* patched for gmem */
1131 dst[0] &= ~(A6XX_TEX_CONST_0_SWAP__MASK | A6XX_TEX_CONST_0_TILE_MODE__MASK);
1132 dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1133 dst[2] =
1134 A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1135 A6XX_TEX_CONST_2_PITCH(cmd->state.framebuffer->tile0.width * cpp);
1136 dst[3] = 0;
1137 dst[4] = cmd->device->physical_device->gmem_base + gmem_offset;
1138 dst[5] = A6XX_TEX_CONST_5_DEPTH(1);
1139 for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1140 dst[i] = 0;
1141 }
1142
1143 struct tu_cs cs;
1144 struct tu_draw_state ds = tu_cs_draw_state(&cmd->sub_cs, &cs, 9);
1145
1146 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1147 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1148 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1149 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1150 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1151 CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1152 tu_cs_emit_qw(&cs, texture.iova);
1153
1154 tu_cs_emit_pkt4(&cs, REG_A6XX_SP_FS_TEX_CONST_LO, 2);
1155 tu_cs_emit_qw(&cs, texture.iova);
1156
1157 tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1158
1159 assert(cs.cur == cs.end); /* validate draw state size */
1160
1161 return ds;
1162 }
1163
1164 static void
1165 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1166 {
1167 struct tu_cs *cs = &cmd->draw_cs;
1168
1169 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1170 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
1171 tu_emit_input_attachments(cmd, subpass, true));
1172 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
1173 tu_emit_input_attachments(cmd, subpass, false));
1174 }
1175
1176 static void
1177 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd,
1178 const VkRenderPassBeginInfo *info)
1179 {
1180 struct tu_cs *cs = &cmd->draw_cs;
1181
1182 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
1183
1184 tu6_emit_blit_scissor(cmd, cs, true);
1185
1186 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1187 tu_load_gmem_attachment(cmd, cs, i, false);
1188
1189 tu6_emit_blit_scissor(cmd, cs, false);
1190
1191 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1192 tu_clear_gmem_attachment(cmd, cs, i, info);
1193
1194 tu_cond_exec_end(cs);
1195
1196 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
1197
1198 for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i)
1199 tu_clear_sysmem_attachment(cmd, cs, i, info);
1200
1201 tu_cond_exec_end(cs);
1202 }
1203
1204 static void
1205 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1206 {
1207 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1208
1209 assert(fb->width > 0 && fb->height > 0);
1210 tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1211 tu6_emit_window_offset(cs, 0, 0);
1212
1213 tu6_emit_bin_size(cs, 0, 0, 0xc00000); /* 0xc00000 = BYPASS? */
1214
1215 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1216
1217 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1218 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BYPASS));
1219
1220 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1221 tu_cs_emit(cs, 0x0);
1222
1223 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_SYSMEM);
1224
1225 /* enable stream-out, with sysmem there is only one pass: */
1226 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1227
1228 tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1229 tu_cs_emit(cs, 0x1);
1230
1231 tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1232 tu_cs_emit(cs, 0x0);
1233
1234 tu_cs_sanity_check(cs);
1235 }
1236
1237 static void
1238 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1239 {
1240 /* Do any resolves of the last subpass. These are handled in the
1241 * tile_store_ib in the gmem path.
1242 */
1243 tu6_emit_sysmem_resolves(cmd, cs, cmd->state.subpass);
1244
1245 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1246
1247 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1248 tu_cs_emit(cs, 0x0);
1249
1250 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1251
1252 tu_cs_sanity_check(cs);
1253 }
1254
1255 static void
1256 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1257 {
1258 struct tu_physical_device *phys_dev = cmd->device->physical_device;
1259
1260 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1261
1262 /* lrz clear? */
1263
1264 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1265 tu_cs_emit(cs, 0x0);
1266
1267 tu_emit_cache_flush_ccu(cmd, cs, TU_CMD_CCU_GMEM);
1268
1269 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1270 if (use_hw_binning(cmd)) {
1271 /* enable stream-out during binning pass: */
1272 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1273
1274 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1275 A6XX_RB_BIN_CONTROL_BINNING_PASS | 0x6000000);
1276
1277 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, true);
1278
1279 tu6_emit_binning_pass(cmd, cs);
1280
1281 /* and disable stream-out for draw pass: */
1282 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
1283
1284 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height,
1285 A6XX_RB_BIN_CONTROL_USE_VIZ | 0x6000000);
1286
1287 tu_cs_emit_regs(cs,
1288 A6XX_VFD_MODE_CNTL(0));
1289
1290 tu_cs_emit_regs(cs, A6XX_PC_UNKNOWN_9805(.unknown = phys_dev->magic.PC_UNKNOWN_9805));
1291
1292 tu_cs_emit_regs(cs, A6XX_SP_UNKNOWN_A0F8(.unknown = phys_dev->magic.SP_UNKNOWN_A0F8));
1293
1294 tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
1295 tu_cs_emit(cs, 0x1);
1296 } else {
1297 /* no binning pass, so enable stream-out for draw pass:: */
1298 tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
1299
1300 tu6_emit_bin_size(cs, fb->tile0.width, fb->tile0.height, 0x6000000);
1301 }
1302
1303 tu_cs_sanity_check(cs);
1304 }
1305
1306 static void
1307 tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1308 {
1309 tu_cs_emit_call(cs, &cmd->draw_cs);
1310
1311 if (use_hw_binning(cmd)) {
1312 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1313 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_ENDVIS));
1314 }
1315
1316 tu_cs_emit_ib(cs, &cmd->state.tile_store_ib);
1317
1318 tu_cs_sanity_check(cs);
1319 }
1320
1321 static void
1322 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1323 {
1324 tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
1325
1326 tu_cs_emit_regs(cs,
1327 A6XX_GRAS_LRZ_CNTL(0));
1328
1329 tu6_emit_event_write(cmd, cs, LRZ_FLUSH);
1330
1331 tu6_emit_event_write(cmd, cs, PC_CCU_RESOLVE_TS);
1332
1333 tu_cs_sanity_check(cs);
1334 }
1335
1336 static void
1337 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd)
1338 {
1339 const struct tu_framebuffer *fb = cmd->state.framebuffer;
1340
1341 tu6_tile_render_begin(cmd, &cmd->cs);
1342
1343 uint32_t pipe = 0;
1344 for (uint32_t py = 0; py < fb->pipe_count.height; py++) {
1345 for (uint32_t px = 0; px < fb->pipe_count.width; px++, pipe++) {
1346 uint32_t tx1 = px * fb->pipe0.width;
1347 uint32_t ty1 = py * fb->pipe0.height;
1348 uint32_t tx2 = MIN2(tx1 + fb->pipe0.width, fb->tile_count.width);
1349 uint32_t ty2 = MIN2(ty1 + fb->pipe0.height, fb->tile_count.height);
1350 uint32_t slot = 0;
1351 for (uint32_t ty = ty1; ty < ty2; ty++) {
1352 for (uint32_t tx = tx1; tx < tx2; tx++, slot++) {
1353 tu6_emit_tile_select(cmd, &cmd->cs, tx, ty, pipe, slot);
1354 tu6_render_tile(cmd, &cmd->cs);
1355 }
1356 }
1357 }
1358 }
1359
1360 tu6_tile_render_end(cmd, &cmd->cs);
1361 }
1362
1363 static void
1364 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd)
1365 {
1366 tu6_sysmem_render_begin(cmd, &cmd->cs);
1367
1368 tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
1369
1370 tu6_sysmem_render_end(cmd, &cmd->cs);
1371 }
1372
1373 static void
1374 tu_cmd_prepare_tile_store_ib(struct tu_cmd_buffer *cmd)
1375 {
1376 const uint32_t tile_store_space = 11 + (35 * 2) * cmd->state.pass->attachment_count;
1377 struct tu_cs sub_cs;
1378
1379 VkResult result =
1380 tu_cs_begin_sub_stream(&cmd->sub_cs, tile_store_space, &sub_cs);
1381 if (result != VK_SUCCESS) {
1382 cmd->record_result = result;
1383 return;
1384 }
1385
1386 /* emit to tile-store sub_cs */
1387 tu6_emit_tile_store(cmd, &sub_cs);
1388
1389 cmd->state.tile_store_ib = tu_cs_end_sub_stream(&cmd->sub_cs, &sub_cs);
1390 }
1391
1392 static VkResult
1393 tu_create_cmd_buffer(struct tu_device *device,
1394 struct tu_cmd_pool *pool,
1395 VkCommandBufferLevel level,
1396 VkCommandBuffer *pCommandBuffer)
1397 {
1398 struct tu_cmd_buffer *cmd_buffer;
1399
1400 cmd_buffer = vk_object_zalloc(&device->vk, NULL, sizeof(*cmd_buffer),
1401 VK_OBJECT_TYPE_COMMAND_BUFFER);
1402 if (cmd_buffer == NULL)
1403 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
1404
1405 cmd_buffer->device = device;
1406 cmd_buffer->pool = pool;
1407 cmd_buffer->level = level;
1408
1409 if (pool) {
1410 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1411 cmd_buffer->queue_family_index = pool->queue_family_index;
1412
1413 } else {
1414 /* Init the pool_link so we can safely call list_del when we destroy
1415 * the command buffer
1416 */
1417 list_inithead(&cmd_buffer->pool_link);
1418 cmd_buffer->queue_family_index = TU_QUEUE_GENERAL;
1419 }
1420
1421 tu_bo_list_init(&cmd_buffer->bo_list);
1422 tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096);
1423 tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096);
1424 tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096);
1425 tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048);
1426
1427 *pCommandBuffer = tu_cmd_buffer_to_handle(cmd_buffer);
1428
1429 list_inithead(&cmd_buffer->upload.list);
1430
1431 return VK_SUCCESS;
1432 }
1433
1434 static void
1435 tu_cmd_buffer_destroy(struct tu_cmd_buffer *cmd_buffer)
1436 {
1437 list_del(&cmd_buffer->pool_link);
1438
1439 tu_cs_finish(&cmd_buffer->cs);
1440 tu_cs_finish(&cmd_buffer->draw_cs);
1441 tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
1442 tu_cs_finish(&cmd_buffer->sub_cs);
1443
1444 tu_bo_list_destroy(&cmd_buffer->bo_list);
1445 vk_object_free(&cmd_buffer->device->vk, &cmd_buffer->pool->alloc, cmd_buffer);
1446 }
1447
1448 static VkResult
1449 tu_reset_cmd_buffer(struct tu_cmd_buffer *cmd_buffer)
1450 {
1451 cmd_buffer->record_result = VK_SUCCESS;
1452
1453 tu_bo_list_reset(&cmd_buffer->bo_list);
1454 tu_cs_reset(&cmd_buffer->cs);
1455 tu_cs_reset(&cmd_buffer->draw_cs);
1456 tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
1457 tu_cs_reset(&cmd_buffer->sub_cs);
1458
1459 for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
1460 memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
1461
1462 cmd_buffer->status = TU_CMD_BUFFER_STATUS_INITIAL;
1463
1464 return cmd_buffer->record_result;
1465 }
1466
1467 VkResult
1468 tu_AllocateCommandBuffers(VkDevice _device,
1469 const VkCommandBufferAllocateInfo *pAllocateInfo,
1470 VkCommandBuffer *pCommandBuffers)
1471 {
1472 TU_FROM_HANDLE(tu_device, device, _device);
1473 TU_FROM_HANDLE(tu_cmd_pool, pool, pAllocateInfo->commandPool);
1474
1475 VkResult result = VK_SUCCESS;
1476 uint32_t i;
1477
1478 for (i = 0; i < pAllocateInfo->commandBufferCount; i++) {
1479
1480 if (!list_is_empty(&pool->free_cmd_buffers)) {
1481 struct tu_cmd_buffer *cmd_buffer = list_first_entry(
1482 &pool->free_cmd_buffers, struct tu_cmd_buffer, pool_link);
1483
1484 list_del(&cmd_buffer->pool_link);
1485 list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
1486
1487 result = tu_reset_cmd_buffer(cmd_buffer);
1488 cmd_buffer->level = pAllocateInfo->level;
1489
1490 pCommandBuffers[i] = tu_cmd_buffer_to_handle(cmd_buffer);
1491 } else {
1492 result = tu_create_cmd_buffer(device, pool, pAllocateInfo->level,
1493 &pCommandBuffers[i]);
1494 }
1495 if (result != VK_SUCCESS)
1496 break;
1497 }
1498
1499 if (result != VK_SUCCESS) {
1500 tu_FreeCommandBuffers(_device, pAllocateInfo->commandPool, i,
1501 pCommandBuffers);
1502
1503 /* From the Vulkan 1.0.66 spec:
1504 *
1505 * "vkAllocateCommandBuffers can be used to create multiple
1506 * command buffers. If the creation of any of those command
1507 * buffers fails, the implementation must destroy all
1508 * successfully created command buffer objects from this
1509 * command, set all entries of the pCommandBuffers array to
1510 * NULL and return the error."
1511 */
1512 memset(pCommandBuffers, 0,
1513 sizeof(*pCommandBuffers) * pAllocateInfo->commandBufferCount);
1514 }
1515
1516 return result;
1517 }
1518
1519 void
1520 tu_FreeCommandBuffers(VkDevice device,
1521 VkCommandPool commandPool,
1522 uint32_t commandBufferCount,
1523 const VkCommandBuffer *pCommandBuffers)
1524 {
1525 for (uint32_t i = 0; i < commandBufferCount; i++) {
1526 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, pCommandBuffers[i]);
1527
1528 if (cmd_buffer) {
1529 if (cmd_buffer->pool) {
1530 list_del(&cmd_buffer->pool_link);
1531 list_addtail(&cmd_buffer->pool_link,
1532 &cmd_buffer->pool->free_cmd_buffers);
1533 } else
1534 tu_cmd_buffer_destroy(cmd_buffer);
1535 }
1536 }
1537 }
1538
1539 VkResult
1540 tu_ResetCommandBuffer(VkCommandBuffer commandBuffer,
1541 VkCommandBufferResetFlags flags)
1542 {
1543 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1544 return tu_reset_cmd_buffer(cmd_buffer);
1545 }
1546
1547 /* Initialize the cache, assuming all necessary flushes have happened but *not*
1548 * invalidations.
1549 */
1550 static void
1551 tu_cache_init(struct tu_cache_state *cache)
1552 {
1553 cache->flush_bits = 0;
1554 cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
1555 }
1556
1557 VkResult
1558 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
1559 const VkCommandBufferBeginInfo *pBeginInfo)
1560 {
1561 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1562 VkResult result = VK_SUCCESS;
1563
1564 if (cmd_buffer->status != TU_CMD_BUFFER_STATUS_INITIAL) {
1565 /* If the command buffer has already been resetted with
1566 * vkResetCommandBuffer, no need to do it again.
1567 */
1568 result = tu_reset_cmd_buffer(cmd_buffer);
1569 if (result != VK_SUCCESS)
1570 return result;
1571 }
1572
1573 memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
1574 cmd_buffer->state.index_size = 0xff; /* dirty restart index */
1575
1576 tu_cache_init(&cmd_buffer->state.cache);
1577 tu_cache_init(&cmd_buffer->state.renderpass_cache);
1578 cmd_buffer->usage_flags = pBeginInfo->flags;
1579
1580 tu_cs_begin(&cmd_buffer->cs);
1581 tu_cs_begin(&cmd_buffer->draw_cs);
1582 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
1583
1584 /* setup initial configuration into command buffer */
1585 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
1586 switch (cmd_buffer->queue_family_index) {
1587 case TU_QUEUE_GENERAL:
1588 tu6_init_hw(cmd_buffer, &cmd_buffer->cs);
1589 break;
1590 default:
1591 break;
1592 }
1593 } else if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1594 if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1595 assert(pBeginInfo->pInheritanceInfo);
1596 cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1597 cmd_buffer->state.subpass =
1598 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1599 } else {
1600 /* When executing in the middle of another command buffer, the CCU
1601 * state is unknown.
1602 */
1603 cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
1604 }
1605 }
1606
1607 cmd_buffer->status = TU_CMD_BUFFER_STATUS_RECORDING;
1608
1609 return VK_SUCCESS;
1610 }
1611
1612 /* Sets vertex buffers to HW binding points. We emit VBs in SDS (so that bin
1613 * rendering can skip over unused state), so we need to collect all the
1614 * bindings together into a single state emit at draw time.
1615 */
1616 void
1617 tu_CmdBindVertexBuffers(VkCommandBuffer commandBuffer,
1618 uint32_t firstBinding,
1619 uint32_t bindingCount,
1620 const VkBuffer *pBuffers,
1621 const VkDeviceSize *pOffsets)
1622 {
1623 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1624
1625 assert(firstBinding + bindingCount <= MAX_VBS);
1626
1627 for (uint32_t i = 0; i < bindingCount; i++) {
1628 struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
1629
1630 cmd->state.vb.buffers[firstBinding + i] = buf;
1631 cmd->state.vb.offsets[firstBinding + i] = pOffsets[i];
1632
1633 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1634 }
1635
1636 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
1637 }
1638
1639 void
1640 tu_CmdBindIndexBuffer(VkCommandBuffer commandBuffer,
1641 VkBuffer buffer,
1642 VkDeviceSize offset,
1643 VkIndexType indexType)
1644 {
1645 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1646 TU_FROM_HANDLE(tu_buffer, buf, buffer);
1647
1648
1649
1650 uint32_t index_size, index_shift, restart_index;
1651
1652 switch (indexType) {
1653 case VK_INDEX_TYPE_UINT16:
1654 index_size = INDEX4_SIZE_16_BIT;
1655 index_shift = 1;
1656 restart_index = 0xffff;
1657 break;
1658 case VK_INDEX_TYPE_UINT32:
1659 index_size = INDEX4_SIZE_32_BIT;
1660 index_shift = 2;
1661 restart_index = 0xffffffff;
1662 break;
1663 case VK_INDEX_TYPE_UINT8_EXT:
1664 index_size = INDEX4_SIZE_8_BIT;
1665 index_shift = 0;
1666 restart_index = 0xff;
1667 break;
1668 default:
1669 unreachable("invalid VkIndexType");
1670 }
1671
1672 /* initialize/update the restart index */
1673 if (cmd->state.index_size != index_size)
1674 tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
1675
1676 assert(buf->size >= offset);
1677
1678 cmd->state.index_va = buf->bo->iova + buf->bo_offset + offset;
1679 cmd->state.max_index_count = (buf->size - offset) >> index_shift;
1680 cmd->state.index_size = index_size;
1681
1682 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1683 }
1684
1685 void
1686 tu_CmdBindDescriptorSets(VkCommandBuffer commandBuffer,
1687 VkPipelineBindPoint pipelineBindPoint,
1688 VkPipelineLayout _layout,
1689 uint32_t firstSet,
1690 uint32_t descriptorSetCount,
1691 const VkDescriptorSet *pDescriptorSets,
1692 uint32_t dynamicOffsetCount,
1693 const uint32_t *pDynamicOffsets)
1694 {
1695 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1696 TU_FROM_HANDLE(tu_pipeline_layout, layout, _layout);
1697 unsigned dyn_idx = 0;
1698
1699 struct tu_descriptor_state *descriptors_state =
1700 tu_get_descriptors_state(cmd, pipelineBindPoint);
1701
1702 for (unsigned i = 0; i < descriptorSetCount; ++i) {
1703 unsigned idx = i + firstSet;
1704 TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
1705
1706 descriptors_state->sets[idx] = set;
1707
1708 for(unsigned j = 0; j < set->layout->dynamic_offset_count; ++j, ++dyn_idx) {
1709 /* update the contents of the dynamic descriptor set */
1710 unsigned src_idx = j;
1711 unsigned dst_idx = j + layout->set[idx].dynamic_offset_start;
1712 assert(dyn_idx < dynamicOffsetCount);
1713
1714 uint32_t *dst =
1715 &descriptors_state->dynamic_descriptors[dst_idx * A6XX_TEX_CONST_DWORDS];
1716 uint32_t *src =
1717 &set->dynamic_descriptors[src_idx * A6XX_TEX_CONST_DWORDS];
1718 uint32_t offset = pDynamicOffsets[dyn_idx];
1719
1720 /* Patch the storage/uniform descriptors right away. */
1721 if (layout->set[idx].layout->dynamic_ubo & (1 << j)) {
1722 /* Note: we can assume here that the addition won't roll over and
1723 * change the SIZE field.
1724 */
1725 uint64_t va = src[0] | ((uint64_t)src[1] << 32);
1726 va += offset;
1727 dst[0] = va;
1728 dst[1] = va >> 32;
1729 } else {
1730 memcpy(dst, src, A6XX_TEX_CONST_DWORDS * 4);
1731 /* Note: A6XX_IBO_5_DEPTH is always 0 */
1732 uint64_t va = dst[4] | ((uint64_t)dst[5] << 32);
1733 va += offset;
1734 dst[4] = va;
1735 dst[5] = va >> 32;
1736 }
1737 }
1738
1739 for (unsigned j = 0; j < set->layout->buffer_count; ++j) {
1740 if (set->buffers[j]) {
1741 tu_bo_list_add(&cmd->bo_list, set->buffers[j],
1742 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
1743 }
1744 }
1745
1746 if (set->size > 0) {
1747 tu_bo_list_add(&cmd->bo_list, &set->pool->bo,
1748 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
1749 }
1750 }
1751 assert(dyn_idx == dynamicOffsetCount);
1752
1753 uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg, hlsq_invalidate_value;
1754 uint64_t addr[MAX_SETS + 1] = {};
1755 struct tu_cs *cs, state_cs;
1756
1757 for (uint32_t i = 0; i < MAX_SETS; i++) {
1758 struct tu_descriptor_set *set = descriptors_state->sets[i];
1759 if (set)
1760 addr[i] = set->va | 3;
1761 }
1762
1763 if (layout->dynamic_offset_count) {
1764 /* allocate and fill out dynamic descriptor set */
1765 struct tu_cs_memory dynamic_desc_set;
1766 VkResult result = tu_cs_alloc(&cmd->sub_cs, layout->dynamic_offset_count,
1767 A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
1768 assert(result == VK_SUCCESS);
1769
1770 memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
1771 layout->dynamic_offset_count * A6XX_TEX_CONST_DWORDS * 4);
1772 addr[MAX_SETS] = dynamic_desc_set.iova | 3;
1773 }
1774
1775 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1776 sp_bindless_base_reg = REG_A6XX_SP_BINDLESS_BASE(0);
1777 hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
1778 hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_GFX_BINDLESS(0x1f);
1779
1780 cmd->state.desc_sets = tu_cs_draw_state(&cmd->sub_cs, &state_cs, 24);
1781 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
1782 cs = &state_cs;
1783 } else {
1784 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE);
1785
1786 sp_bindless_base_reg = REG_A6XX_SP_CS_BINDLESS_BASE(0);
1787 hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
1788 hlsq_invalidate_value = A6XX_HLSQ_INVALIDATE_CMD_CS_BINDLESS(0x1f);
1789
1790 cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
1791 cs = &cmd->cs;
1792 }
1793
1794 tu_cs_emit_pkt4(cs, sp_bindless_base_reg, 10);
1795 tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
1796 tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg, 10);
1797 tu_cs_emit_array(cs, (const uint32_t*) addr, 10);
1798 tu_cs_emit_regs(cs, A6XX_HLSQ_INVALIDATE_CMD(.dword = hlsq_invalidate_value));
1799
1800 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1801 assert(cs->cur == cs->end); /* validate draw state size */
1802 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
1803 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
1804 }
1805 }
1806
1807 void tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
1808 uint32_t firstBinding,
1809 uint32_t bindingCount,
1810 const VkBuffer *pBuffers,
1811 const VkDeviceSize *pOffsets,
1812 const VkDeviceSize *pSizes)
1813 {
1814 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1815 struct tu_cs *cs = &cmd->draw_cs;
1816
1817 /* using COND_REG_EXEC for xfb commands matches the blob behavior
1818 * presumably there isn't any benefit using a draw state when the
1819 * condition is (SYSMEM | BINNING)
1820 */
1821 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1822 CP_COND_REG_EXEC_0_SYSMEM |
1823 CP_COND_REG_EXEC_0_BINNING);
1824
1825 for (uint32_t i = 0; i < bindingCount; i++) {
1826 TU_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
1827 uint64_t iova = buf->bo->iova + pOffsets[i];
1828 uint32_t size = buf->bo->size - pOffsets[i];
1829 uint32_t idx = i + firstBinding;
1830
1831 if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
1832 size = pSizes[i];
1833
1834 /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
1835 uint32_t offset = iova & 0x1f;
1836 iova &= ~(uint64_t) 0x1f;
1837
1838 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
1839 tu_cs_emit_qw(cs, iova);
1840 tu_cs_emit(cs, size + offset);
1841
1842 cmd->state.streamout_offset[idx] = offset;
1843
1844 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1845 }
1846
1847 tu_cond_exec_end(cs);
1848 }
1849
1850 void
1851 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1852 uint32_t firstCounterBuffer,
1853 uint32_t counterBufferCount,
1854 const VkBuffer *pCounterBuffers,
1855 const VkDeviceSize *pCounterBufferOffsets)
1856 {
1857 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1858 struct tu_cs *cs = &cmd->draw_cs;
1859
1860 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1861 CP_COND_REG_EXEC_0_SYSMEM |
1862 CP_COND_REG_EXEC_0_BINNING);
1863
1864 /* TODO: only update offset for active buffers */
1865 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
1866 tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
1867
1868 for (uint32_t i = 0; i < counterBufferCount; i++) {
1869 uint32_t idx = firstCounterBuffer + i;
1870 uint32_t offset = cmd->state.streamout_offset[idx];
1871
1872 if (!pCounterBuffers[i])
1873 continue;
1874
1875 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1876
1877 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
1878
1879 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1880 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1881 CP_MEM_TO_REG_0_UNK31 |
1882 CP_MEM_TO_REG_0_CNT(1));
1883 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1884
1885 if (offset) {
1886 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1887 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
1888 CP_REG_RMW_0_SRC1_ADD);
1889 tu_cs_emit_qw(cs, 0xffffffff);
1890 tu_cs_emit_qw(cs, offset);
1891 }
1892 }
1893
1894 tu_cond_exec_end(cs);
1895 }
1896
1897 void tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
1898 uint32_t firstCounterBuffer,
1899 uint32_t counterBufferCount,
1900 const VkBuffer *pCounterBuffers,
1901 const VkDeviceSize *pCounterBufferOffsets)
1902 {
1903 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1904 struct tu_cs *cs = &cmd->draw_cs;
1905
1906 tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
1907 CP_COND_REG_EXEC_0_SYSMEM |
1908 CP_COND_REG_EXEC_0_BINNING);
1909
1910 /* TODO: only flush buffers that need to be flushed */
1911 for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
1912 /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
1913 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
1914 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[i]));
1915 tu6_emit_event_write(cmd, cs, FLUSH_SO_0 + i);
1916 }
1917
1918 for (uint32_t i = 0; i < counterBufferCount; i++) {
1919 uint32_t idx = firstCounterBuffer + i;
1920 uint32_t offset = cmd->state.streamout_offset[idx];
1921
1922 if (!pCounterBuffers[i])
1923 continue;
1924
1925 TU_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
1926
1927 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_WRITE);
1928
1929 /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
1930 tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1931 tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1932 CP_MEM_TO_REG_0_SHIFT_BY_2 |
1933 0x40000 | /* ??? */
1934 CP_MEM_TO_REG_0_UNK31 |
1935 CP_MEM_TO_REG_0_CNT(1));
1936 tu_cs_emit_qw(cs, global_iova(cmd, flush_base[idx]));
1937
1938 if (offset) {
1939 tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
1940 tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1941 CP_REG_RMW_0_SRC1_ADD);
1942 tu_cs_emit_qw(cs, 0xffffffff);
1943 tu_cs_emit_qw(cs, -offset);
1944 }
1945
1946 tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
1947 tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
1948 CP_REG_TO_MEM_0_CNT(1));
1949 tu_cs_emit_qw(cs, buf->bo->iova + pCounterBufferOffsets[i]);
1950 }
1951
1952 tu_cond_exec_end(cs);
1953
1954 cmd->state.xfb_used = true;
1955 }
1956
1957 void
1958 tu_CmdPushConstants(VkCommandBuffer commandBuffer,
1959 VkPipelineLayout layout,
1960 VkShaderStageFlags stageFlags,
1961 uint32_t offset,
1962 uint32_t size,
1963 const void *pValues)
1964 {
1965 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
1966 memcpy((void*) cmd->push_constants + offset, pValues, size);
1967 cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
1968 }
1969
1970 /* Flush everything which has been made available but we haven't actually
1971 * flushed yet.
1972 */
1973 static void
1974 tu_flush_all_pending(struct tu_cache_state *cache)
1975 {
1976 cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
1977 cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_FLUSH;
1978 }
1979
1980 VkResult
1981 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
1982 {
1983 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
1984
1985 /* We currently flush CCU at the end of the command buffer, like
1986 * what the blob does. There's implicit synchronization around every
1987 * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
1988 * know yet if this command buffer will be the last in the submit so we
1989 * have to defensively flush everything else.
1990 *
1991 * TODO: We could definitely do better than this, since these flushes
1992 * aren't required by Vulkan, but we'd need kernel support to do that.
1993 * Ideally, we'd like the kernel to flush everything afterwards, so that we
1994 * wouldn't have to do any flushes here, and when submitting multiple
1995 * command buffers there wouldn't be any unnecessary flushes in between.
1996 */
1997 if (cmd_buffer->state.pass) {
1998 tu_flush_all_pending(&cmd_buffer->state.renderpass_cache);
1999 tu_emit_cache_flush_renderpass(cmd_buffer, &cmd_buffer->draw_cs);
2000 } else {
2001 tu_flush_all_pending(&cmd_buffer->state.cache);
2002 cmd_buffer->state.cache.flush_bits |=
2003 TU_CMD_FLAG_CCU_FLUSH_COLOR |
2004 TU_CMD_FLAG_CCU_FLUSH_DEPTH;
2005 tu_emit_cache_flush(cmd_buffer, &cmd_buffer->cs);
2006 }
2007
2008 tu_bo_list_add(&cmd_buffer->bo_list, &cmd_buffer->device->global_bo,
2009 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2010
2011 for (uint32_t i = 0; i < cmd_buffer->draw_cs.bo_count; i++) {
2012 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_cs.bos[i],
2013 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2014 }
2015
2016 for (uint32_t i = 0; i < cmd_buffer->draw_epilogue_cs.bo_count; i++) {
2017 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->draw_epilogue_cs.bos[i],
2018 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2019 }
2020
2021 for (uint32_t i = 0; i < cmd_buffer->sub_cs.bo_count; i++) {
2022 tu_bo_list_add(&cmd_buffer->bo_list, cmd_buffer->sub_cs.bos[i],
2023 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2024 }
2025
2026 tu_cs_end(&cmd_buffer->cs);
2027 tu_cs_end(&cmd_buffer->draw_cs);
2028 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
2029
2030 cmd_buffer->status = TU_CMD_BUFFER_STATUS_EXECUTABLE;
2031
2032 return cmd_buffer->record_result;
2033 }
2034
2035 static struct tu_cs
2036 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
2037 {
2038 struct tu_cs cs;
2039
2040 assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2041 cmd->state.dynamic_state[id] = tu_cs_draw_state(&cmd->sub_cs, &cs, size);
2042
2043 tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2044 tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2045
2046 return cs;
2047 }
2048
2049 void
2050 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
2051 VkPipelineBindPoint pipelineBindPoint,
2052 VkPipeline _pipeline)
2053 {
2054 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2055 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2056
2057 for (uint32_t i = 0; i < pipeline->cs.bo_count; i++) {
2058 tu_bo_list_add(&cmd->bo_list, pipeline->cs.bos[i],
2059 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2060 }
2061
2062 if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2063 cmd->state.compute_pipeline = pipeline;
2064 tu_cs_emit_state_ib(&cmd->cs, pipeline->program.state);
2065 return;
2066 }
2067
2068 assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2069
2070 cmd->state.pipeline = pipeline;
2071 cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS_LOAD | TU_CMD_DIRTY_SHADER_CONSTS;
2072
2073 struct tu_cs *cs = &cmd->draw_cs;
2074 uint32_t mask = ~pipeline->dynamic_state_mask & BITFIELD_MASK(TU_DYNAMIC_STATE_COUNT);
2075 uint32_t i;
2076
2077 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (7 + util_bitcount(mask)));
2078 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
2079 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
2080 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
2081 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
2082 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
2083 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
2084 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
2085 for_each_bit(i, mask)
2086 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
2087
2088 /* If the new pipeline requires more VBs than we had previously set up, we
2089 * need to re-emit them in SDS. If it requires the same set or fewer, we
2090 * can just re-use the old SDS.
2091 */
2092 if (pipeline->vi.bindings_used & ~cmd->vertex_bindings_set)
2093 cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2094
2095 /* dynamic linewidth state depends pipeline state's gras_su_cntl
2096 * so the dynamic state ib must be updated when pipeline changes
2097 */
2098 if (pipeline->dynamic_state_mask & BIT(VK_DYNAMIC_STATE_LINE_WIDTH)) {
2099 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2100
2101 cmd->state.dynamic_gras_su_cntl &= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2102 cmd->state.dynamic_gras_su_cntl |= pipeline->gras_su_cntl;
2103
2104 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2105 }
2106 }
2107
2108 void
2109 tu_CmdSetViewport(VkCommandBuffer commandBuffer,
2110 uint32_t firstViewport,
2111 uint32_t viewportCount,
2112 const VkViewport *pViewports)
2113 {
2114 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2115 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_VIEWPORT, 18);
2116
2117 assert(firstViewport == 0 && viewportCount == 1);
2118
2119 tu6_emit_viewport(&cs, pViewports);
2120 }
2121
2122 void
2123 tu_CmdSetScissor(VkCommandBuffer commandBuffer,
2124 uint32_t firstScissor,
2125 uint32_t scissorCount,
2126 const VkRect2D *pScissors)
2127 {
2128 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2129 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_SCISSOR, 3);
2130
2131 assert(firstScissor == 0 && scissorCount == 1);
2132
2133 tu6_emit_scissor(&cs, pScissors);
2134 }
2135
2136 void
2137 tu_CmdSetLineWidth(VkCommandBuffer commandBuffer, float lineWidth)
2138 {
2139 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2140 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_LINE_WIDTH, 2);
2141
2142 cmd->state.dynamic_gras_su_cntl &= ~A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK;
2143 cmd->state.dynamic_gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(lineWidth / 2.0f);
2144
2145 tu_cs_emit_regs(&cs, A6XX_GRAS_SU_CNTL(.dword = cmd->state.dynamic_gras_su_cntl));
2146 }
2147
2148 void
2149 tu_CmdSetDepthBias(VkCommandBuffer commandBuffer,
2150 float depthBiasConstantFactor,
2151 float depthBiasClamp,
2152 float depthBiasSlopeFactor)
2153 {
2154 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2155 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BIAS, 4);
2156
2157 tu6_emit_depth_bias(&cs, depthBiasConstantFactor, depthBiasClamp, depthBiasSlopeFactor);
2158 }
2159
2160 void
2161 tu_CmdSetBlendConstants(VkCommandBuffer commandBuffer,
2162 const float blendConstants[4])
2163 {
2164 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2165 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_BLEND_CONSTANTS, 5);
2166
2167 tu_cs_emit_pkt4(&cs, REG_A6XX_RB_BLEND_RED_F32, 4);
2168 tu_cs_emit_array(&cs, (const uint32_t *) blendConstants, 4);
2169 }
2170
2171 void
2172 tu_CmdSetDepthBounds(VkCommandBuffer commandBuffer,
2173 float minDepthBounds,
2174 float maxDepthBounds)
2175 {
2176 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2177 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_DEPTH_BOUNDS, 3);
2178
2179 tu_cs_emit_regs(&cs,
2180 A6XX_RB_Z_BOUNDS_MIN(minDepthBounds),
2181 A6XX_RB_Z_BOUNDS_MAX(maxDepthBounds));
2182 }
2183
2184 static void
2185 update_stencil_mask(uint32_t *value, VkStencilFaceFlags face, uint32_t mask)
2186 {
2187 if (face & VK_STENCIL_FACE_FRONT_BIT)
2188 *value = (*value & 0xff00) | (mask & 0xff);
2189 if (face & VK_STENCIL_FACE_BACK_BIT)
2190 *value = (*value & 0xff) | (mask & 0xff) << 8;
2191 }
2192
2193 void
2194 tu_CmdSetStencilCompareMask(VkCommandBuffer commandBuffer,
2195 VkStencilFaceFlags faceMask,
2196 uint32_t compareMask)
2197 {
2198 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2199 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, 2);
2200
2201 update_stencil_mask(&cmd->state.dynamic_stencil_mask, faceMask, compareMask);
2202
2203 tu_cs_emit_regs(&cs, A6XX_RB_STENCILMASK(.dword = cmd->state.dynamic_stencil_mask));
2204 }
2205
2206 void
2207 tu_CmdSetStencilWriteMask(VkCommandBuffer commandBuffer,
2208 VkStencilFaceFlags faceMask,
2209 uint32_t writeMask)
2210 {
2211 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2212 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, 2);
2213
2214 update_stencil_mask(&cmd->state.dynamic_stencil_wrmask, faceMask, writeMask);
2215
2216 tu_cs_emit_regs(&cs, A6XX_RB_STENCILWRMASK(.dword = cmd->state.dynamic_stencil_wrmask));
2217 }
2218
2219 void
2220 tu_CmdSetStencilReference(VkCommandBuffer commandBuffer,
2221 VkStencilFaceFlags faceMask,
2222 uint32_t reference)
2223 {
2224 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2225 struct tu_cs cs = tu_cmd_dynamic_state(cmd, VK_DYNAMIC_STATE_STENCIL_REFERENCE, 2);
2226
2227 update_stencil_mask(&cmd->state.dynamic_stencil_ref, faceMask, reference);
2228
2229 tu_cs_emit_regs(&cs, A6XX_RB_STENCILREF(.dword = cmd->state.dynamic_stencil_ref));
2230 }
2231
2232 void
2233 tu_CmdSetSampleLocationsEXT(VkCommandBuffer commandBuffer,
2234 const VkSampleLocationsInfoEXT* pSampleLocationsInfo)
2235 {
2236 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2237 struct tu_cs cs = tu_cmd_dynamic_state(cmd, TU_DYNAMIC_STATE_SAMPLE_LOCATIONS, 9);
2238
2239 assert(pSampleLocationsInfo);
2240
2241 tu6_emit_sample_locations(&cs, pSampleLocationsInfo);
2242 }
2243
2244 static void
2245 tu_flush_for_access(struct tu_cache_state *cache,
2246 enum tu_cmd_access_mask src_mask,
2247 enum tu_cmd_access_mask dst_mask)
2248 {
2249 enum tu_cmd_flush_bits flush_bits = 0;
2250
2251 if (src_mask & TU_ACCESS_HOST_WRITE) {
2252 /* Host writes are always visible to CP, so only invalidate GPU caches */
2253 cache->pending_flush_bits |= TU_CMD_FLAG_GPU_INVALIDATE;
2254 }
2255
2256 if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
2257 /* Invalidate CP and 2D engine (make it do WFI + WFM if necessary) as
2258 * well.
2259 */
2260 cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
2261 }
2262
2263 if (src_mask & TU_ACCESS_CP_WRITE) {
2264 /* Flush the CP write queue. However a WFI shouldn't be necessary as
2265 * WAIT_MEM_WRITES should cover it.
2266 */
2267 cache->pending_flush_bits |=
2268 TU_CMD_FLAG_WAIT_MEM_WRITES |
2269 TU_CMD_FLAG_GPU_INVALIDATE |
2270 TU_CMD_FLAG_WAIT_FOR_ME;
2271 }
2272
2273 #define SRC_FLUSH(domain, flush, invalidate) \
2274 if (src_mask & TU_ACCESS_##domain##_WRITE) { \
2275 cache->pending_flush_bits |= TU_CMD_FLAG_##flush | \
2276 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2277 }
2278
2279 SRC_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2280 SRC_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2281 SRC_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2282
2283 #undef SRC_FLUSH
2284
2285 #define SRC_INCOHERENT_FLUSH(domain, flush, invalidate) \
2286 if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) { \
2287 flush_bits |= TU_CMD_FLAG_##flush; \
2288 cache->pending_flush_bits |= \
2289 (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate); \
2290 }
2291
2292 SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2293 SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2294
2295 #undef SRC_INCOHERENT_FLUSH
2296
2297 /* Treat host & sysmem write accesses the same, since the kernel implicitly
2298 * drains the queue before signalling completion to the host.
2299 */
2300 if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE |
2301 TU_ACCESS_HOST_READ | TU_ACCESS_HOST_WRITE)) {
2302 flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_FLUSH;
2303 }
2304
2305 #define DST_FLUSH(domain, flush, invalidate) \
2306 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2307 TU_ACCESS_##domain##_WRITE)) { \
2308 flush_bits |= cache->pending_flush_bits & \
2309 (TU_CMD_FLAG_##invalidate | \
2310 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2311 }
2312
2313 DST_FLUSH(UCHE, CACHE_FLUSH, CACHE_INVALIDATE)
2314 DST_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2315 DST_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2316
2317 #undef DST_FLUSH
2318
2319 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
2320 if (dst_mask & (TU_ACCESS_##domain##_READ | \
2321 TU_ACCESS_##domain##_WRITE)) { \
2322 flush_bits |= TU_CMD_FLAG_##invalidate | \
2323 (cache->pending_flush_bits & \
2324 (TU_CMD_FLAG_ALL_FLUSH & ~TU_CMD_FLAG_##flush)); \
2325 }
2326
2327 DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_FLUSH_COLOR, CCU_INVALIDATE_COLOR)
2328 DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_FLUSH_DEPTH, CCU_INVALIDATE_DEPTH)
2329
2330 #undef DST_INCOHERENT_FLUSH
2331
2332 if (dst_mask & TU_ACCESS_WFI_READ) {
2333 flush_bits |= cache->pending_flush_bits &
2334 (TU_CMD_FLAG_ALL_FLUSH | TU_CMD_FLAG_WAIT_FOR_IDLE);
2335 }
2336
2337 if (dst_mask & TU_ACCESS_WFM_READ) {
2338 flush_bits |= cache->pending_flush_bits &
2339 (TU_CMD_FLAG_ALL_FLUSH | TU_CMD_FLAG_WAIT_FOR_ME);
2340 }
2341
2342 cache->flush_bits |= flush_bits;
2343 cache->pending_flush_bits &= ~flush_bits;
2344 }
2345
2346 static enum tu_cmd_access_mask
2347 vk2tu_access(VkAccessFlags flags, bool gmem)
2348 {
2349 enum tu_cmd_access_mask mask = 0;
2350
2351 /* If the GPU writes a buffer that is then read by an indirect draw
2352 * command, we theoretically need to emit a WFI to wait for any cache
2353 * flushes, and then a WAIT_FOR_ME to wait on the CP for the WFI to
2354 * complete. Waiting for the WFI to complete is performed as part of the
2355 * draw by the firmware, so we just need to execute the WFI.
2356 *
2357 * Transform feedback counters are read via CP_MEM_TO_REG, which implicitly
2358 * does CP_WAIT_FOR_ME, but we still need a WFI if the GPU writes it.
2359 */
2360 if (flags &
2361 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
2362 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT |
2363 VK_ACCESS_MEMORY_READ_BIT)) {
2364 mask |= TU_ACCESS_WFI_READ;
2365 }
2366
2367 if (flags &
2368 (VK_ACCESS_INDIRECT_COMMAND_READ_BIT | /* Read performed by CP */
2369 VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT | /* Read performed by CP */
2370 VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT | /* Read performed by CP */
2371 VK_ACCESS_MEMORY_READ_BIT)) {
2372 mask |= TU_ACCESS_SYSMEM_READ;
2373 }
2374
2375 if (flags &
2376 (VK_ACCESS_TRANSFORM_FEEDBACK_COUNTER_WRITE_BIT_EXT |
2377 VK_ACCESS_MEMORY_WRITE_BIT)) {
2378 mask |= TU_ACCESS_CP_WRITE;
2379 }
2380
2381 if (flags &
2382 (VK_ACCESS_HOST_READ_BIT |
2383 VK_ACCESS_MEMORY_WRITE_BIT)) {
2384 mask |= TU_ACCESS_HOST_READ;
2385 }
2386
2387 if (flags &
2388 (VK_ACCESS_HOST_WRITE_BIT |
2389 VK_ACCESS_MEMORY_WRITE_BIT)) {
2390 mask |= TU_ACCESS_HOST_WRITE;
2391 }
2392
2393 if (flags &
2394 (VK_ACCESS_INDEX_READ_BIT | /* Read performed by PC, I think */
2395 VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | /* Read performed by VFD */
2396 VK_ACCESS_UNIFORM_READ_BIT | /* Read performed by SP */
2397 /* TODO: Is there a no-cache bit for textures so that we can ignore
2398 * these?
2399 */
2400 VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | /* Read performed by TP */
2401 VK_ACCESS_SHADER_READ_BIT | /* Read perfomed by SP/TP */
2402 VK_ACCESS_MEMORY_READ_BIT)) {
2403 mask |= TU_ACCESS_UCHE_READ;
2404 }
2405
2406 if (flags &
2407 (VK_ACCESS_SHADER_WRITE_BIT | /* Write performed by SP */
2408 VK_ACCESS_TRANSFORM_FEEDBACK_WRITE_BIT_EXT | /* Write performed by VPC */
2409 VK_ACCESS_MEMORY_WRITE_BIT)) {
2410 mask |= TU_ACCESS_UCHE_WRITE;
2411 }
2412
2413 /* When using GMEM, the CCU is always flushed automatically to GMEM, and
2414 * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
2415 * previous writes in sysmem mode when transitioning to GMEM. Therefore we
2416 * can ignore CCU and pretend that color attachments and transfers use
2417 * sysmem directly.
2418 */
2419
2420 if (flags &
2421 (VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
2422 VK_ACCESS_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
2423 VK_ACCESS_MEMORY_READ_BIT)) {
2424 if (gmem)
2425 mask |= TU_ACCESS_SYSMEM_READ;
2426 else
2427 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
2428 }
2429
2430 if (flags &
2431 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
2432 VK_ACCESS_MEMORY_READ_BIT)) {
2433 if (gmem)
2434 mask |= TU_ACCESS_SYSMEM_READ;
2435 else
2436 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
2437 }
2438
2439 if (flags &
2440 (VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
2441 VK_ACCESS_MEMORY_WRITE_BIT)) {
2442 if (gmem) {
2443 mask |= TU_ACCESS_SYSMEM_WRITE;
2444 } else {
2445 mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2446 }
2447 }
2448
2449 if (flags &
2450 (VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
2451 VK_ACCESS_MEMORY_WRITE_BIT)) {
2452 if (gmem) {
2453 mask |= TU_ACCESS_SYSMEM_WRITE;
2454 } else {
2455 mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2456 }
2457 }
2458
2459 /* When the dst access is a transfer read/write, it seems we sometimes need
2460 * to insert a WFI after any flushes, to guarantee that the flushes finish
2461 * before the 2D engine starts. However the opposite (i.e. a WFI after
2462 * CP_BLIT and before any subsequent flush) does not seem to be needed, and
2463 * the blob doesn't emit such a WFI.
2464 */
2465
2466 if (flags &
2467 (VK_ACCESS_TRANSFER_WRITE_BIT |
2468 VK_ACCESS_MEMORY_WRITE_BIT)) {
2469 if (gmem) {
2470 mask |= TU_ACCESS_SYSMEM_WRITE;
2471 } else {
2472 mask |= TU_ACCESS_CCU_COLOR_WRITE;
2473 }
2474 mask |= TU_ACCESS_WFI_READ;
2475 }
2476
2477 if (flags &
2478 (VK_ACCESS_TRANSFER_READ_BIT | /* Access performed by TP */
2479 VK_ACCESS_MEMORY_READ_BIT)) {
2480 mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_WFI_READ;
2481 }
2482
2483 return mask;
2484 }
2485
2486
2487 void
2488 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
2489 uint32_t commandBufferCount,
2490 const VkCommandBuffer *pCmdBuffers)
2491 {
2492 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2493 VkResult result;
2494
2495 assert(commandBufferCount > 0);
2496
2497 /* Emit any pending flushes. */
2498 if (cmd->state.pass) {
2499 tu_flush_all_pending(&cmd->state.renderpass_cache);
2500 tu_emit_cache_flush_renderpass(cmd, &cmd->draw_cs);
2501 } else {
2502 tu_flush_all_pending(&cmd->state.cache);
2503 tu_emit_cache_flush(cmd, &cmd->cs);
2504 }
2505
2506 for (uint32_t i = 0; i < commandBufferCount; i++) {
2507 TU_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
2508
2509 result = tu_bo_list_merge(&cmd->bo_list, &secondary->bo_list);
2510 if (result != VK_SUCCESS) {
2511 cmd->record_result = result;
2512 break;
2513 }
2514
2515 if (secondary->usage_flags &
2516 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
2517 assert(tu_cs_is_empty(&secondary->cs));
2518
2519 result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
2520 if (result != VK_SUCCESS) {
2521 cmd->record_result = result;
2522 break;
2523 }
2524
2525 result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
2526 &secondary->draw_epilogue_cs);
2527 if (result != VK_SUCCESS) {
2528 cmd->record_result = result;
2529 break;
2530 }
2531
2532 if (secondary->has_tess)
2533 cmd->has_tess = true;
2534 } else {
2535 assert(tu_cs_is_empty(&secondary->draw_cs));
2536 assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
2537
2538 for (uint32_t j = 0; j < secondary->cs.bo_count; j++) {
2539 tu_bo_list_add(&cmd->bo_list, secondary->cs.bos[j],
2540 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
2541 }
2542
2543 tu_cs_add_entries(&cmd->cs, &secondary->cs);
2544 }
2545
2546 cmd->state.index_size = secondary->state.index_size; /* for restart index update */
2547 }
2548 cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
2549
2550 /* After executing secondary command buffers, there may have been arbitrary
2551 * flushes executed, so when we encounter a pipeline barrier with a
2552 * srcMask, we have to assume that we need to invalidate. Therefore we need
2553 * to re-initialize the cache with all pending invalidate bits set.
2554 */
2555 if (cmd->state.pass) {
2556 tu_cache_init(&cmd->state.renderpass_cache);
2557 } else {
2558 tu_cache_init(&cmd->state.cache);
2559 }
2560 }
2561
2562 VkResult
2563 tu_CreateCommandPool(VkDevice _device,
2564 const VkCommandPoolCreateInfo *pCreateInfo,
2565 const VkAllocationCallbacks *pAllocator,
2566 VkCommandPool *pCmdPool)
2567 {
2568 TU_FROM_HANDLE(tu_device, device, _device);
2569 struct tu_cmd_pool *pool;
2570
2571 pool = vk_object_alloc(&device->vk, pAllocator, sizeof(*pool),
2572 VK_OBJECT_TYPE_COMMAND_POOL);
2573 if (pool == NULL)
2574 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2575
2576 if (pAllocator)
2577 pool->alloc = *pAllocator;
2578 else
2579 pool->alloc = device->vk.alloc;
2580
2581 list_inithead(&pool->cmd_buffers);
2582 list_inithead(&pool->free_cmd_buffers);
2583
2584 pool->queue_family_index = pCreateInfo->queueFamilyIndex;
2585
2586 *pCmdPool = tu_cmd_pool_to_handle(pool);
2587
2588 return VK_SUCCESS;
2589 }
2590
2591 void
2592 tu_DestroyCommandPool(VkDevice _device,
2593 VkCommandPool commandPool,
2594 const VkAllocationCallbacks *pAllocator)
2595 {
2596 TU_FROM_HANDLE(tu_device, device, _device);
2597 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2598
2599 if (!pool)
2600 return;
2601
2602 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2603 &pool->cmd_buffers, pool_link)
2604 {
2605 tu_cmd_buffer_destroy(cmd_buffer);
2606 }
2607
2608 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2609 &pool->free_cmd_buffers, pool_link)
2610 {
2611 tu_cmd_buffer_destroy(cmd_buffer);
2612 }
2613
2614 vk_object_free(&device->vk, pAllocator, pool);
2615 }
2616
2617 VkResult
2618 tu_ResetCommandPool(VkDevice device,
2619 VkCommandPool commandPool,
2620 VkCommandPoolResetFlags flags)
2621 {
2622 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2623 VkResult result;
2624
2625 list_for_each_entry(struct tu_cmd_buffer, cmd_buffer, &pool->cmd_buffers,
2626 pool_link)
2627 {
2628 result = tu_reset_cmd_buffer(cmd_buffer);
2629 if (result != VK_SUCCESS)
2630 return result;
2631 }
2632
2633 return VK_SUCCESS;
2634 }
2635
2636 void
2637 tu_TrimCommandPool(VkDevice device,
2638 VkCommandPool commandPool,
2639 VkCommandPoolTrimFlags flags)
2640 {
2641 TU_FROM_HANDLE(tu_cmd_pool, pool, commandPool);
2642
2643 if (!pool)
2644 return;
2645
2646 list_for_each_entry_safe(struct tu_cmd_buffer, cmd_buffer,
2647 &pool->free_cmd_buffers, pool_link)
2648 {
2649 tu_cmd_buffer_destroy(cmd_buffer);
2650 }
2651 }
2652
2653 static void
2654 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
2655 const struct tu_subpass_barrier *barrier,
2656 bool external)
2657 {
2658 /* Note: we don't know until the end of the subpass whether we'll use
2659 * sysmem, so assume sysmem here to be safe.
2660 */
2661 struct tu_cache_state *cache =
2662 external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
2663 enum tu_cmd_access_mask src_flags =
2664 vk2tu_access(barrier->src_access_mask, false);
2665 enum tu_cmd_access_mask dst_flags =
2666 vk2tu_access(barrier->dst_access_mask, false);
2667
2668 if (barrier->incoherent_ccu_color)
2669 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
2670 if (barrier->incoherent_ccu_depth)
2671 src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
2672
2673 tu_flush_for_access(cache, src_flags, dst_flags);
2674 }
2675
2676 void
2677 tu_CmdBeginRenderPass(VkCommandBuffer commandBuffer,
2678 const VkRenderPassBeginInfo *pRenderPassBegin,
2679 VkSubpassContents contents)
2680 {
2681 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2682 TU_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
2683 TU_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
2684
2685 cmd->state.pass = pass;
2686 cmd->state.subpass = pass->subpasses;
2687 cmd->state.framebuffer = fb;
2688 cmd->state.render_area = pRenderPassBegin->renderArea;
2689
2690 tu_cmd_prepare_tile_store_ib(cmd);
2691
2692 /* Note: because this is external, any flushes will happen before draw_cs
2693 * gets called. However deferred flushes could have to happen later as part
2694 * of the subpass.
2695 */
2696 tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
2697 cmd->state.renderpass_cache.pending_flush_bits =
2698 cmd->state.cache.pending_flush_bits;
2699 cmd->state.renderpass_cache.flush_bits = 0;
2700
2701 tu_emit_renderpass_begin(cmd, pRenderPassBegin);
2702
2703 tu6_emit_zs(cmd, cmd->state.subpass, &cmd->draw_cs);
2704 tu6_emit_mrt(cmd, cmd->state.subpass, &cmd->draw_cs);
2705 tu6_emit_msaa(&cmd->draw_cs, cmd->state.subpass->samples);
2706 tu6_emit_render_cntl(cmd, cmd->state.subpass, &cmd->draw_cs, false);
2707
2708 tu_set_input_attachments(cmd, cmd->state.subpass);
2709
2710 for (uint32_t i = 0; i < fb->attachment_count; ++i) {
2711 const struct tu_image_view *iview = fb->attachments[i].attachment;
2712 tu_bo_list_add(&cmd->bo_list, iview->image->bo,
2713 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2714 }
2715
2716 cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
2717 }
2718
2719 void
2720 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
2721 const VkRenderPassBeginInfo *pRenderPassBeginInfo,
2722 const VkSubpassBeginInfoKHR *pSubpassBeginInfo)
2723 {
2724 tu_CmdBeginRenderPass(commandBuffer, pRenderPassBeginInfo,
2725 pSubpassBeginInfo->contents);
2726 }
2727
2728 void
2729 tu_CmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents)
2730 {
2731 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2732 const struct tu_render_pass *pass = cmd->state.pass;
2733 struct tu_cs *cs = &cmd->draw_cs;
2734
2735 const struct tu_subpass *subpass = cmd->state.subpass++;
2736
2737 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
2738
2739 if (subpass->resolve_attachments) {
2740 tu6_emit_blit_scissor(cmd, cs, true);
2741
2742 for (unsigned i = 0; i < subpass->color_count; i++) {
2743 uint32_t a = subpass->resolve_attachments[i].attachment;
2744 if (a == VK_ATTACHMENT_UNUSED)
2745 continue;
2746
2747 tu_store_gmem_attachment(cmd, cs, a,
2748 subpass->color_attachments[i].attachment);
2749
2750 if (pass->attachments[a].gmem_offset < 0)
2751 continue;
2752
2753 /* TODO:
2754 * check if the resolved attachment is needed by later subpasses,
2755 * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
2756 */
2757 tu_finishme("missing GMEM->GMEM resolve path\n");
2758 tu_load_gmem_attachment(cmd, cs, a, true);
2759 }
2760 }
2761
2762 tu_cond_exec_end(cs);
2763
2764 tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
2765
2766 tu6_emit_sysmem_resolves(cmd, cs, subpass);
2767
2768 tu_cond_exec_end(cs);
2769
2770 /* Handle dependencies for the next subpass */
2771 tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
2772
2773 /* emit mrt/zs/msaa/ubwc state for the subpass that is starting */
2774 tu6_emit_zs(cmd, cmd->state.subpass, cs);
2775 tu6_emit_mrt(cmd, cmd->state.subpass, cs);
2776 tu6_emit_msaa(cs, cmd->state.subpass->samples);
2777 tu6_emit_render_cntl(cmd, cmd->state.subpass, cs, false);
2778
2779 tu_set_input_attachments(cmd, cmd->state.subpass);
2780 }
2781
2782 void
2783 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
2784 const VkSubpassBeginInfoKHR *pSubpassBeginInfo,
2785 const VkSubpassEndInfoKHR *pSubpassEndInfo)
2786 {
2787 tu_CmdNextSubpass(commandBuffer, pSubpassBeginInfo->contents);
2788 }
2789
2790 static void
2791 tu6_emit_user_consts(struct tu_cs *cs, const struct tu_pipeline *pipeline,
2792 struct tu_descriptor_state *descriptors_state,
2793 gl_shader_stage type,
2794 uint32_t *push_constants)
2795 {
2796 const struct tu_program_descriptor_linkage *link =
2797 &pipeline->program.link[type];
2798 const struct ir3_ubo_analysis_state *state = &link->const_state.ubo_state;
2799
2800 if (link->push_consts.count > 0) {
2801 unsigned num_units = link->push_consts.count;
2802 unsigned offset = link->push_consts.lo;
2803 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units * 4);
2804 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
2805 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2806 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2807 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2808 CP_LOAD_STATE6_0_NUM_UNIT(num_units));
2809 tu_cs_emit(cs, 0);
2810 tu_cs_emit(cs, 0);
2811 for (unsigned i = 0; i < num_units * 4; i++)
2812 tu_cs_emit(cs, push_constants[i + offset * 4]);
2813 }
2814
2815 for (uint32_t i = 0; i < state->num_enabled; i++) {
2816 uint32_t size = state->range[i].end - state->range[i].start;
2817 uint32_t offset = state->range[i].start;
2818
2819 /* and even if the start of the const buffer is before
2820 * first_immediate, the end may not be:
2821 */
2822 size = MIN2(size, (16 * link->constlen) - state->range[i].offset);
2823
2824 if (size == 0)
2825 continue;
2826
2827 /* things should be aligned to vec4: */
2828 debug_assert((state->range[i].offset % 16) == 0);
2829 debug_assert((size % 16) == 0);
2830 debug_assert((offset % 16) == 0);
2831
2832 /* Dig out the descriptor from the descriptor state and read the VA from
2833 * it.
2834 */
2835 assert(state->range[i].ubo.bindless);
2836 uint32_t *base = state->range[i].ubo.bindless_base == MAX_SETS ?
2837 descriptors_state->dynamic_descriptors :
2838 descriptors_state->sets[state->range[i].ubo.bindless_base]->mapped_ptr;
2839 unsigned block = state->range[i].ubo.block;
2840 uint32_t *desc = base + block * A6XX_TEX_CONST_DWORDS;
2841 uint64_t va = desc[0] | ((uint64_t)(desc[1] & A6XX_UBO_1_BASE_HI__MASK) << 32);
2842 assert(va);
2843
2844 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
2845 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(state->range[i].offset / 16) |
2846 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2847 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
2848 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
2849 CP_LOAD_STATE6_0_NUM_UNIT(size / 16));
2850 tu_cs_emit_qw(cs, va + offset);
2851 }
2852 }
2853
2854 static struct tu_draw_state
2855 tu6_emit_consts(struct tu_cmd_buffer *cmd,
2856 const struct tu_pipeline *pipeline,
2857 struct tu_descriptor_state *descriptors_state,
2858 gl_shader_stage type)
2859 {
2860 struct tu_cs cs;
2861 tu_cs_begin_sub_stream(&cmd->sub_cs, 512, &cs); /* TODO: maximum size? */
2862
2863 tu6_emit_user_consts(&cs, pipeline, descriptors_state, type, cmd->push_constants);
2864
2865 return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2866 }
2867
2868 static struct tu_draw_state
2869 tu6_emit_vertex_buffers(struct tu_cmd_buffer *cmd,
2870 const struct tu_pipeline *pipeline)
2871 {
2872 struct tu_cs cs;
2873 tu_cs_begin_sub_stream(&cmd->sub_cs, 4 * MAX_VBS, &cs);
2874
2875 int binding;
2876 for_each_bit(binding, pipeline->vi.bindings_used) {
2877 const struct tu_buffer *buf = cmd->state.vb.buffers[binding];
2878 const VkDeviceSize offset = buf->bo_offset +
2879 cmd->state.vb.offsets[binding];
2880
2881 tu_cs_emit_regs(&cs,
2882 A6XX_VFD_FETCH_BASE(binding, .bo = buf->bo, .bo_offset = offset),
2883 A6XX_VFD_FETCH_SIZE(binding, buf->size - offset));
2884
2885 }
2886
2887 cmd->vertex_bindings_set = pipeline->vi.bindings_used;
2888
2889 return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2890 }
2891
2892 static uint64_t
2893 get_tess_param_bo_size(const struct tu_pipeline *pipeline,
2894 uint32_t draw_count)
2895 {
2896 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2897 * Still not sure what to do here, so just allocate a reasonably large
2898 * BO and hope for the best for now. */
2899 if (!draw_count)
2900 draw_count = 2048;
2901
2902 /* the tess param BO is pipeline->tess.param_stride bytes per patch,
2903 * which includes both the per-vertex outputs and per-patch outputs
2904 * build_primitive_map in ir3 calculates this stride
2905 */
2906 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2907 uint32_t num_patches = draw_count / verts_per_patch;
2908 return num_patches * pipeline->tess.param_stride;
2909 }
2910
2911 static uint64_t
2912 get_tess_factor_bo_size(const struct tu_pipeline *pipeline,
2913 uint32_t draw_count)
2914 {
2915 /* TODO: For indirect draws, we can't compute the BO size ahead of time.
2916 * Still not sure what to do here, so just allocate a reasonably large
2917 * BO and hope for the best for now. */
2918 if (!draw_count)
2919 draw_count = 2048;
2920
2921 /* Each distinct patch gets its own tess factor output. */
2922 uint32_t verts_per_patch = pipeline->ia.primtype - DI_PT_PATCHES0;
2923 uint32_t num_patches = draw_count / verts_per_patch;
2924 uint32_t factor_stride;
2925 switch (pipeline->tess.patch_type) {
2926 case IR3_TESS_ISOLINES:
2927 factor_stride = 12;
2928 break;
2929 case IR3_TESS_TRIANGLES:
2930 factor_stride = 20;
2931 break;
2932 case IR3_TESS_QUADS:
2933 factor_stride = 28;
2934 break;
2935 default:
2936 unreachable("bad tessmode");
2937 }
2938 return factor_stride * num_patches;
2939 }
2940
2941 static VkResult
2942 tu6_emit_tess_consts(struct tu_cmd_buffer *cmd,
2943 uint32_t draw_count,
2944 const struct tu_pipeline *pipeline,
2945 struct tu_draw_state *state,
2946 uint64_t *factor_iova)
2947 {
2948 struct tu_cs cs;
2949 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 16, &cs);
2950 if (result != VK_SUCCESS)
2951 return result;
2952
2953 uint64_t tess_factor_size = get_tess_factor_bo_size(pipeline, draw_count);
2954 uint64_t tess_param_size = get_tess_param_bo_size(pipeline, draw_count);
2955 uint64_t tess_bo_size = tess_factor_size + tess_param_size;
2956 if (tess_bo_size > 0) {
2957 struct tu_bo *tess_bo;
2958 result = tu_get_scratch_bo(cmd->device, tess_bo_size, &tess_bo);
2959 if (result != VK_SUCCESS)
2960 return result;
2961
2962 tu_bo_list_add(&cmd->bo_list, tess_bo,
2963 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
2964 uint64_t tess_factor_iova = tess_bo->iova;
2965 uint64_t tess_param_iova = tess_factor_iova + tess_factor_size;
2966
2967 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2968 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.hs_bo_regid) |
2969 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2970 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2971 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_HS_SHADER) |
2972 CP_LOAD_STATE6_0_NUM_UNIT(1));
2973 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2974 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2975 tu_cs_emit_qw(&cs, tess_param_iova);
2976 tu_cs_emit_qw(&cs, tess_factor_iova);
2977
2978 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
2979 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(pipeline->tess.ds_bo_regid) |
2980 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
2981 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
2982 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_DS_SHADER) |
2983 CP_LOAD_STATE6_0_NUM_UNIT(1));
2984 tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
2985 tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
2986 tu_cs_emit_qw(&cs, tess_param_iova);
2987 tu_cs_emit_qw(&cs, tess_factor_iova);
2988
2989 *factor_iova = tess_factor_iova;
2990 }
2991 *state = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
2992 return VK_SUCCESS;
2993 }
2994
2995 static VkResult
2996 tu6_draw_common(struct tu_cmd_buffer *cmd,
2997 struct tu_cs *cs,
2998 bool indexed,
2999 /* note: draw_count is 0 for indirect */
3000 uint32_t draw_count)
3001 {
3002 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3003 VkResult result;
3004
3005 struct tu_descriptor_state *descriptors_state =
3006 &cmd->descriptors[VK_PIPELINE_BIND_POINT_GRAPHICS];
3007
3008 tu_emit_cache_flush_renderpass(cmd, cs);
3009
3010 /* TODO lrz */
3011
3012 tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(
3013 .primitive_restart =
3014 pipeline->ia.primitive_restart && indexed,
3015 .tess_upper_left_domain_origin =
3016 pipeline->tess.upper_left_domain_origin));
3017
3018 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3019 cmd->state.shader_const[MESA_SHADER_VERTEX] =
3020 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_VERTEX);
3021 cmd->state.shader_const[MESA_SHADER_TESS_CTRL] =
3022 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_CTRL);
3023 cmd->state.shader_const[MESA_SHADER_TESS_EVAL] =
3024 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_TESS_EVAL);
3025 cmd->state.shader_const[MESA_SHADER_GEOMETRY] =
3026 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_GEOMETRY);
3027 cmd->state.shader_const[MESA_SHADER_FRAGMENT] =
3028 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_FRAGMENT);
3029 }
3030
3031 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3032 cmd->state.vertex_buffers = tu6_emit_vertex_buffers(cmd, pipeline);
3033
3034 bool has_tess =
3035 pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
3036 struct tu_draw_state tess_consts = {};
3037 if (has_tess) {
3038 uint64_t tess_factor_iova = 0;
3039
3040 cmd->has_tess = true;
3041 result = tu6_emit_tess_consts(cmd, draw_count, pipeline, &tess_consts, &tess_factor_iova);
3042 if (result != VK_SUCCESS)
3043 return result;
3044
3045 /* this sequence matches what the blob does before every tess draw
3046 * PC_TESSFACTOR_ADDR_LO is a non-context register and needs a wfi
3047 * before writing to it
3048 */
3049 tu_cs_emit_wfi(cs);
3050
3051 tu_cs_emit_pkt4(cs, REG_A6XX_PC_TESSFACTOR_ADDR_LO, 2);
3052 tu_cs_emit_qw(cs, tess_factor_iova);
3053
3054 tu_cs_emit_pkt7(cs, CP_SET_SUBDRAW_SIZE, 1);
3055 tu_cs_emit(cs, draw_count);
3056 }
3057
3058 /* for the first draw in a renderpass, re-emit all the draw states
3059 *
3060 * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
3061 * used, then draw states must be re-emitted. note however this only happens
3062 * in the sysmem path, so this can be skipped this for the gmem path (TODO)
3063 *
3064 * the two input attachment states are excluded because secondary command
3065 * buffer doesn't have a state ib to restore it, and not re-emitting them
3066 * is OK since CmdClearAttachments won't disable/overwrite them
3067 */
3068 if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE) {
3069 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
3070
3071 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM, pipeline->program.state);
3072 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_BINNING, pipeline->program.binning_state);
3073 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
3074 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI, pipeline->vi.state);
3075 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VI_BINNING, pipeline->vi.binning_state);
3076 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_RAST, pipeline->rast_state);
3077 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->ds_state);
3078 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_BLEND, pipeline->blend_state);
3079 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
3080 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
3081 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
3082 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
3083 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
3084 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
3085 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
3086 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
3087 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3088
3089 for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
3090 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
3091 ((pipeline->dynamic_state_mask & BIT(i)) ?
3092 cmd->state.dynamic_state[i] :
3093 pipeline->dynamic_state[i]));
3094 }
3095 } else {
3096
3097 /* emit draw states that were just updated
3098 * note we eventually don't want to have to emit anything here
3099 */
3100 uint32_t draw_state_count =
3101 has_tess +
3102 ((cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 5 : 0) +
3103 ((cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD) ? 1 : 0) +
3104 ((cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
3105 1; /* vs_params */
3106
3107 tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
3108
3109 /* We may need to re-emit tess consts if the current draw call is
3110 * sufficiently larger than the last draw call. */
3111 if (has_tess)
3112 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_TESS, tess_consts);
3113 if (cmd->state.dirty & TU_CMD_DIRTY_SHADER_CONSTS) {
3114 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_CONST, cmd->state.shader_const[MESA_SHADER_VERTEX]);
3115 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_CTRL]);
3116 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS_CONST, cmd->state.shader_const[MESA_SHADER_TESS_EVAL]);
3117 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_CONST, cmd->state.shader_const[MESA_SHADER_GEOMETRY]);
3118 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_CONST, cmd->state.shader_const[MESA_SHADER_FRAGMENT]);
3119 }
3120 if (cmd->state.dirty & TU_CMD_DIRTY_DESC_SETS_LOAD)
3121 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, pipeline->load_state);
3122 if (cmd->state.dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
3123 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
3124 tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
3125 }
3126
3127 tu_cs_sanity_check(cs);
3128
3129 /* There are too many graphics dirty bits to list here, so just list the
3130 * bits to preserve instead. The only things not emitted here are
3131 * compute-related state.
3132 */
3133 cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
3134 return VK_SUCCESS;
3135 }
3136
3137 static uint32_t
3138 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
3139 {
3140 const struct tu_pipeline *pipeline = cmd->state.pipeline;
3141 uint32_t initiator =
3142 CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(pipeline->ia.primtype) |
3143 CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
3144 CP_DRAW_INDX_OFFSET_0_INDEX_SIZE(cmd->state.index_size) |
3145 CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
3146
3147 if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT)
3148 initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
3149
3150 switch (pipeline->tess.patch_type) {
3151 case IR3_TESS_TRIANGLES:
3152 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
3153 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3154 break;
3155 case IR3_TESS_ISOLINES:
3156 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
3157 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3158 break;
3159 case IR3_TESS_NONE:
3160 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS);
3161 break;
3162 case IR3_TESS_QUADS:
3163 initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
3164 CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
3165 break;
3166 }
3167 return initiator;
3168 }
3169
3170
3171 static uint32_t
3172 vs_params_offset(struct tu_cmd_buffer *cmd)
3173 {
3174 const struct tu_program_descriptor_linkage *link =
3175 &cmd->state.pipeline->program.link[MESA_SHADER_VERTEX];
3176 const struct ir3_const_state *const_state = &link->const_state;
3177
3178 if (const_state->offsets.driver_param >= link->constlen)
3179 return 0;
3180
3181 /* this layout is required by CP_DRAW_INDIRECT_MULTI */
3182 STATIC_ASSERT(IR3_DP_DRAWID == 0);
3183 STATIC_ASSERT(IR3_DP_VTXID_BASE == 1);
3184 STATIC_ASSERT(IR3_DP_INSTID_BASE == 2);
3185
3186 /* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
3187 assert(const_state->offsets.driver_param != 0);
3188
3189 return const_state->offsets.driver_param;
3190 }
3191
3192 static struct tu_draw_state
3193 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
3194 uint32_t vertex_offset,
3195 uint32_t first_instance)
3196 {
3197 uint32_t offset = vs_params_offset(cmd);
3198
3199 struct tu_cs cs;
3200 VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 8 : 0), &cs);
3201 if (result != VK_SUCCESS) {
3202 cmd->record_result = result;
3203 return (struct tu_draw_state) {};
3204 }
3205
3206 /* TODO: don't make a new draw state when it doesn't change */
3207
3208 tu_cs_emit_regs(&cs,
3209 A6XX_VFD_INDEX_OFFSET(vertex_offset),
3210 A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
3211
3212 if (offset) {
3213 tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3 + 4);
3214 tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3215 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3216 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3217 CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
3218 CP_LOAD_STATE6_0_NUM_UNIT(1));
3219 tu_cs_emit(&cs, 0);
3220 tu_cs_emit(&cs, 0);
3221
3222 tu_cs_emit(&cs, 0);
3223 tu_cs_emit(&cs, vertex_offset);
3224 tu_cs_emit(&cs, first_instance);
3225 tu_cs_emit(&cs, 0);
3226 }
3227
3228 struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
3229 return (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
3230 }
3231
3232 void
3233 tu_CmdDraw(VkCommandBuffer commandBuffer,
3234 uint32_t vertexCount,
3235 uint32_t instanceCount,
3236 uint32_t firstVertex,
3237 uint32_t firstInstance)
3238 {
3239 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3240 struct tu_cs *cs = &cmd->draw_cs;
3241
3242 cmd->state.vs_params = tu6_emit_vs_params(cmd, firstVertex, firstInstance);
3243
3244 tu6_draw_common(cmd, cs, false, vertexCount);
3245
3246 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
3247 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3248 tu_cs_emit(cs, instanceCount);
3249 tu_cs_emit(cs, vertexCount);
3250 }
3251
3252 void
3253 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
3254 uint32_t indexCount,
3255 uint32_t instanceCount,
3256 uint32_t firstIndex,
3257 int32_t vertexOffset,
3258 uint32_t firstInstance)
3259 {
3260 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3261 struct tu_cs *cs = &cmd->draw_cs;
3262
3263 cmd->state.vs_params = tu6_emit_vs_params(cmd, vertexOffset, firstInstance);
3264
3265 tu6_draw_common(cmd, cs, true, indexCount);
3266
3267 tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
3268 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3269 tu_cs_emit(cs, instanceCount);
3270 tu_cs_emit(cs, indexCount);
3271 tu_cs_emit(cs, firstIndex);
3272 tu_cs_emit_qw(cs, cmd->state.index_va);
3273 tu_cs_emit(cs, cmd->state.max_index_count);
3274 }
3275
3276 /* Various firmware bugs/inconsistencies mean that some indirect draw opcodes
3277 * do not wait for WFI's to complete before executing. Add a WAIT_FOR_ME if
3278 * pending for these opcodes. This may result in a few extra WAIT_FOR_ME's
3279 * with these opcodes, but the alternative would add unnecessary WAIT_FOR_ME's
3280 * before draw opcodes that don't need it.
3281 */
3282 static void
3283 draw_wfm(struct tu_cmd_buffer *cmd)
3284 {
3285 cmd->state.renderpass_cache.flush_bits |=
3286 cmd->state.renderpass_cache.pending_flush_bits & TU_CMD_FLAG_WAIT_FOR_ME;
3287 cmd->state.renderpass_cache.pending_flush_bits &= ~TU_CMD_FLAG_WAIT_FOR_ME;
3288 }
3289
3290 void
3291 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
3292 VkBuffer _buffer,
3293 VkDeviceSize offset,
3294 uint32_t drawCount,
3295 uint32_t stride)
3296 {
3297 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3298 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3299 struct tu_cs *cs = &cmd->draw_cs;
3300
3301 cmd->state.vs_params = (struct tu_draw_state) {};
3302
3303 /* The latest known a630_sqe.fw fails to wait for WFI before reading the
3304 * indirect buffer when using CP_DRAW_INDIRECT_MULTI, so we have to fall
3305 * back to CP_WAIT_FOR_ME except for a650 which has a fixed firmware.
3306 *
3307 * TODO: There may be newer a630_sqe.fw released in the future which fixes
3308 * this, if so we should detect it and avoid this workaround.
3309 */
3310 if (cmd->device->physical_device->gpu_id != 650)
3311 draw_wfm(cmd);
3312
3313 tu6_draw_common(cmd, cs, false, 0);
3314
3315 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
3316 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3317 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
3318 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3319 tu_cs_emit(cs, drawCount);
3320 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3321 tu_cs_emit(cs, stride);
3322
3323 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3324 }
3325
3326 void
3327 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
3328 VkBuffer _buffer,
3329 VkDeviceSize offset,
3330 uint32_t drawCount,
3331 uint32_t stride)
3332 {
3333 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3334 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3335 struct tu_cs *cs = &cmd->draw_cs;
3336
3337 cmd->state.vs_params = (struct tu_draw_state) {};
3338
3339 if (cmd->device->physical_device->gpu_id != 650)
3340 draw_wfm(cmd);
3341
3342 tu6_draw_common(cmd, cs, true, 0);
3343
3344 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
3345 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3346 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
3347 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3348 tu_cs_emit(cs, drawCount);
3349 tu_cs_emit_qw(cs, cmd->state.index_va);
3350 tu_cs_emit(cs, cmd->state.max_index_count);
3351 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3352 tu_cs_emit(cs, stride);
3353
3354 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3355 }
3356
3357 void
3358 tu_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,
3359 VkBuffer _buffer,
3360 VkDeviceSize offset,
3361 VkBuffer countBuffer,
3362 VkDeviceSize countBufferOffset,
3363 uint32_t drawCount,
3364 uint32_t stride)
3365 {
3366 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3367 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3368 TU_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
3369 struct tu_cs *cs = &cmd->draw_cs;
3370
3371 cmd->state.vs_params = (struct tu_draw_state) {};
3372
3373 /* It turns out that the firmware we have for a650 only partially fixed the
3374 * problem with CP_DRAW_INDIRECT_MULTI not waiting for WFI's to complete
3375 * before reading indirect parameters. It waits for WFI's before reading
3376 * the draw parameters, but after reading the indirect count :(.
3377 */
3378 draw_wfm(cmd);
3379
3380 tu6_draw_common(cmd, cs, false, 0);
3381
3382 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 8);
3383 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
3384 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT) |
3385 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3386 tu_cs_emit(cs, drawCount);
3387 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3388 tu_cs_emit_qw(cs, count_buf->bo->iova + count_buf->bo_offset + countBufferOffset);
3389 tu_cs_emit(cs, stride);
3390
3391 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3392 tu_bo_list_add(&cmd->bo_list, count_buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3393 }
3394
3395 void
3396 tu_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,
3397 VkBuffer _buffer,
3398 VkDeviceSize offset,
3399 VkBuffer countBuffer,
3400 VkDeviceSize countBufferOffset,
3401 uint32_t drawCount,
3402 uint32_t stride)
3403 {
3404 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3405 TU_FROM_HANDLE(tu_buffer, buf, _buffer);
3406 TU_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
3407 struct tu_cs *cs = &cmd->draw_cs;
3408
3409 cmd->state.vs_params = (struct tu_draw_state) {};
3410
3411 draw_wfm(cmd);
3412
3413 tu6_draw_common(cmd, cs, true, 0);
3414
3415 tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 11);
3416 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
3417 tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT_INDEXED) |
3418 A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
3419 tu_cs_emit(cs, drawCount);
3420 tu_cs_emit_qw(cs, cmd->state.index_va);
3421 tu_cs_emit(cs, cmd->state.max_index_count);
3422 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + offset);
3423 tu_cs_emit_qw(cs, count_buf->bo->iova + count_buf->bo_offset + countBufferOffset);
3424 tu_cs_emit(cs, stride);
3425
3426 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3427 tu_bo_list_add(&cmd->bo_list, count_buf->bo, MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_DUMP);
3428 }
3429
3430 void tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
3431 uint32_t instanceCount,
3432 uint32_t firstInstance,
3433 VkBuffer _counterBuffer,
3434 VkDeviceSize counterBufferOffset,
3435 uint32_t counterOffset,
3436 uint32_t vertexStride)
3437 {
3438 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3439 TU_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
3440 struct tu_cs *cs = &cmd->draw_cs;
3441
3442 /* All known firmware versions do not wait for WFI's with CP_DRAW_AUTO.
3443 * Plus, for the common case where the counter buffer is written by
3444 * vkCmdEndTransformFeedback, we need to wait for the CP_WAIT_MEM_WRITES to
3445 * complete which means we need a WAIT_FOR_ME anyway.
3446 */
3447 draw_wfm(cmd);
3448
3449 cmd->state.vs_params = tu6_emit_vs_params(cmd, 0, firstInstance);
3450
3451 tu6_draw_common(cmd, cs, false, 0);
3452
3453 tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
3454 tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
3455 tu_cs_emit(cs, instanceCount);
3456 tu_cs_emit_qw(cs, buf->bo->iova + buf->bo_offset + counterBufferOffset);
3457 tu_cs_emit(cs, counterOffset);
3458 tu_cs_emit(cs, vertexStride);
3459
3460 tu_bo_list_add(&cmd->bo_list, buf->bo, MSM_SUBMIT_BO_READ);
3461 }
3462
3463 struct tu_dispatch_info
3464 {
3465 /**
3466 * Determine the layout of the grid (in block units) to be used.
3467 */
3468 uint32_t blocks[3];
3469
3470 /**
3471 * A starting offset for the grid. If unaligned is set, the offset
3472 * must still be aligned.
3473 */
3474 uint32_t offsets[3];
3475 /**
3476 * Whether it's an unaligned compute dispatch.
3477 */
3478 bool unaligned;
3479
3480 /**
3481 * Indirect compute parameters resource.
3482 */
3483 struct tu_buffer *indirect;
3484 uint64_t indirect_offset;
3485 };
3486
3487 static void
3488 tu_emit_compute_driver_params(struct tu_cs *cs, struct tu_pipeline *pipeline,
3489 const struct tu_dispatch_info *info)
3490 {
3491 gl_shader_stage type = MESA_SHADER_COMPUTE;
3492 const struct tu_program_descriptor_linkage *link =
3493 &pipeline->program.link[type];
3494 const struct ir3_const_state *const_state = &link->const_state;
3495 uint32_t offset = const_state->offsets.driver_param;
3496
3497 if (link->constlen <= offset)
3498 return;
3499
3500 if (!info->indirect) {
3501 uint32_t driver_params[IR3_DP_CS_COUNT] = {
3502 [IR3_DP_NUM_WORK_GROUPS_X] = info->blocks[0],
3503 [IR3_DP_NUM_WORK_GROUPS_Y] = info->blocks[1],
3504 [IR3_DP_NUM_WORK_GROUPS_Z] = info->blocks[2],
3505 [IR3_DP_LOCAL_GROUP_SIZE_X] = pipeline->compute.local_size[0],
3506 [IR3_DP_LOCAL_GROUP_SIZE_Y] = pipeline->compute.local_size[1],
3507 [IR3_DP_LOCAL_GROUP_SIZE_Z] = pipeline->compute.local_size[2],
3508 };
3509
3510 uint32_t num_consts = MIN2(const_state->num_driver_params,
3511 (link->constlen - offset) * 4);
3512 /* push constants */
3513 tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
3514 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
3515 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
3516 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
3517 CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
3518 CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
3519 tu_cs_emit(cs, 0);
3520 tu_cs_emit(cs, 0);
3521 uint32_t i;
3522 for (i = 0; i < num_consts; i++)
3523 tu_cs_emit(cs, driver_params[i]);
3524 } else {
3525 tu_finishme("Indirect driver params");
3526 }
3527 }
3528
3529 static void
3530 tu_dispatch(struct tu_cmd_buffer *cmd,
3531 const struct tu_dispatch_info *info)
3532 {
3533 struct tu_cs *cs = &cmd->cs;
3534 struct tu_pipeline *pipeline = cmd->state.compute_pipeline;
3535 struct tu_descriptor_state *descriptors_state =
3536 &cmd->descriptors[VK_PIPELINE_BIND_POINT_COMPUTE];
3537
3538 /* TODO: We could probably flush less if we add a compute_flush_bits
3539 * bitfield.
3540 */
3541 tu_emit_cache_flush(cmd, cs);
3542
3543 /* note: no reason to have this in a separate IB */
3544 tu_cs_emit_state_ib(cs,
3545 tu6_emit_consts(cmd, pipeline, descriptors_state, MESA_SHADER_COMPUTE));
3546
3547 tu_emit_compute_driver_params(cs, pipeline, info);
3548
3549 if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD)
3550 tu_cs_emit_state_ib(cs, pipeline->load_state);
3551
3552 cmd->state.dirty &= ~TU_CMD_DIRTY_COMPUTE_DESC_SETS_LOAD;
3553
3554 tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
3555 tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
3556
3557 const uint32_t *local_size = pipeline->compute.local_size;
3558 const uint32_t *num_groups = info->blocks;
3559 tu_cs_emit_regs(cs,
3560 A6XX_HLSQ_CS_NDRANGE_0(.kerneldim = 3,
3561 .localsizex = local_size[0] - 1,
3562 .localsizey = local_size[1] - 1,
3563 .localsizez = local_size[2] - 1),
3564 A6XX_HLSQ_CS_NDRANGE_1(.globalsize_x = local_size[0] * num_groups[0]),
3565 A6XX_HLSQ_CS_NDRANGE_2(.globaloff_x = 0),
3566 A6XX_HLSQ_CS_NDRANGE_3(.globalsize_y = local_size[1] * num_groups[1]),
3567 A6XX_HLSQ_CS_NDRANGE_4(.globaloff_y = 0),
3568 A6XX_HLSQ_CS_NDRANGE_5(.globalsize_z = local_size[2] * num_groups[2]),
3569 A6XX_HLSQ_CS_NDRANGE_6(.globaloff_z = 0));
3570
3571 tu_cs_emit_regs(cs,
3572 A6XX_HLSQ_CS_KERNEL_GROUP_X(1),
3573 A6XX_HLSQ_CS_KERNEL_GROUP_Y(1),
3574 A6XX_HLSQ_CS_KERNEL_GROUP_Z(1));
3575
3576 if (info->indirect) {
3577 uint64_t iova = tu_buffer_iova(info->indirect) + info->indirect_offset;
3578
3579 tu_bo_list_add(&cmd->bo_list, info->indirect->bo,
3580 MSM_SUBMIT_BO_READ | MSM_SUBMIT_BO_WRITE);
3581
3582 tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
3583 tu_cs_emit(cs, 0x00000000);
3584 tu_cs_emit_qw(cs, iova);
3585 tu_cs_emit(cs,
3586 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
3587 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
3588 A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
3589 } else {
3590 tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
3591 tu_cs_emit(cs, 0x00000000);
3592 tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
3593 tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
3594 tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
3595 }
3596
3597 tu_cs_emit_wfi(cs);
3598 }
3599
3600 void
3601 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
3602 uint32_t base_x,
3603 uint32_t base_y,
3604 uint32_t base_z,
3605 uint32_t x,
3606 uint32_t y,
3607 uint32_t z)
3608 {
3609 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3610 struct tu_dispatch_info info = {};
3611
3612 info.blocks[0] = x;
3613 info.blocks[1] = y;
3614 info.blocks[2] = z;
3615
3616 info.offsets[0] = base_x;
3617 info.offsets[1] = base_y;
3618 info.offsets[2] = base_z;
3619 tu_dispatch(cmd_buffer, &info);
3620 }
3621
3622 void
3623 tu_CmdDispatch(VkCommandBuffer commandBuffer,
3624 uint32_t x,
3625 uint32_t y,
3626 uint32_t z)
3627 {
3628 tu_CmdDispatchBase(commandBuffer, 0, 0, 0, x, y, z);
3629 }
3630
3631 void
3632 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
3633 VkBuffer _buffer,
3634 VkDeviceSize offset)
3635 {
3636 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3637 TU_FROM_HANDLE(tu_buffer, buffer, _buffer);
3638 struct tu_dispatch_info info = {};
3639
3640 info.indirect = buffer;
3641 info.indirect_offset = offset;
3642
3643 tu_dispatch(cmd_buffer, &info);
3644 }
3645
3646 void
3647 tu_CmdEndRenderPass(VkCommandBuffer commandBuffer)
3648 {
3649 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3650
3651 tu_cs_end(&cmd_buffer->draw_cs);
3652 tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3653
3654 if (use_sysmem_rendering(cmd_buffer))
3655 tu_cmd_render_sysmem(cmd_buffer);
3656 else
3657 tu_cmd_render_tiles(cmd_buffer);
3658
3659 /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
3660 rendered */
3661 tu_cs_discard_entries(&cmd_buffer->draw_cs);
3662 tu_cs_begin(&cmd_buffer->draw_cs);
3663 tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
3664 tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
3665
3666 cmd_buffer->state.cache.pending_flush_bits |=
3667 cmd_buffer->state.renderpass_cache.pending_flush_bits;
3668 tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
3669
3670 cmd_buffer->state.pass = NULL;
3671 cmd_buffer->state.subpass = NULL;
3672 cmd_buffer->state.framebuffer = NULL;
3673 }
3674
3675 void
3676 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
3677 const VkSubpassEndInfoKHR *pSubpassEndInfo)
3678 {
3679 tu_CmdEndRenderPass(commandBuffer);
3680 }
3681
3682 struct tu_barrier_info
3683 {
3684 uint32_t eventCount;
3685 const VkEvent *pEvents;
3686 VkPipelineStageFlags srcStageMask;
3687 };
3688
3689 static void
3690 tu_barrier(struct tu_cmd_buffer *cmd,
3691 uint32_t memoryBarrierCount,
3692 const VkMemoryBarrier *pMemoryBarriers,
3693 uint32_t bufferMemoryBarrierCount,
3694 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3695 uint32_t imageMemoryBarrierCount,
3696 const VkImageMemoryBarrier *pImageMemoryBarriers,
3697 const struct tu_barrier_info *info)
3698 {
3699 struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
3700 VkAccessFlags srcAccessMask = 0;
3701 VkAccessFlags dstAccessMask = 0;
3702
3703 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
3704 srcAccessMask |= pMemoryBarriers[i].srcAccessMask;
3705 dstAccessMask |= pMemoryBarriers[i].dstAccessMask;
3706 }
3707
3708 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
3709 srcAccessMask |= pBufferMemoryBarriers[i].srcAccessMask;
3710 dstAccessMask |= pBufferMemoryBarriers[i].dstAccessMask;
3711 }
3712
3713 enum tu_cmd_access_mask src_flags = 0;
3714 enum tu_cmd_access_mask dst_flags = 0;
3715
3716 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
3717 TU_FROM_HANDLE(tu_image, image, pImageMemoryBarriers[i].image);
3718 VkImageLayout old_layout = pImageMemoryBarriers[i].oldLayout;
3719 /* For non-linear images, PREINITIALIZED is the same as UNDEFINED */
3720 if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
3721 (image->tiling != VK_IMAGE_TILING_LINEAR &&
3722 old_layout == VK_IMAGE_LAYOUT_PREINITIALIZED)) {
3723 /* The underlying memory for this image may have been used earlier
3724 * within the same queue submission for a different image, which
3725 * means that there may be old, stale cache entries which are in the
3726 * "wrong" location, which could cause problems later after writing
3727 * to the image. We don't want these entries being flushed later and
3728 * overwriting the actual image, so we need to flush the CCU.
3729 */
3730 src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
3731 }
3732 srcAccessMask |= pImageMemoryBarriers[i].srcAccessMask;
3733 dstAccessMask |= pImageMemoryBarriers[i].dstAccessMask;
3734 }
3735
3736 /* Inside a renderpass, we don't know yet whether we'll be using sysmem
3737 * so we have to use the sysmem flushes.
3738 */
3739 bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
3740 !cmd->state.pass;
3741 src_flags |= vk2tu_access(srcAccessMask, gmem);
3742 dst_flags |= vk2tu_access(dstAccessMask, gmem);
3743
3744 struct tu_cache_state *cache =
3745 cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
3746 tu_flush_for_access(cache, src_flags, dst_flags);
3747
3748 for (uint32_t i = 0; i < info->eventCount; i++) {
3749 TU_FROM_HANDLE(tu_event, event, info->pEvents[i]);
3750
3751 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_READ);
3752
3753 tu_cs_emit_pkt7(cs, CP_WAIT_REG_MEM, 6);
3754 tu_cs_emit(cs, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ) |
3755 CP_WAIT_REG_MEM_0_POLL_MEMORY);
3756 tu_cs_emit_qw(cs, event->bo.iova); /* POLL_ADDR_LO/HI */
3757 tu_cs_emit(cs, CP_WAIT_REG_MEM_3_REF(1));
3758 tu_cs_emit(cs, CP_WAIT_REG_MEM_4_MASK(~0u));
3759 tu_cs_emit(cs, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(20));
3760 }
3761 }
3762
3763 void
3764 tu_CmdPipelineBarrier(VkCommandBuffer commandBuffer,
3765 VkPipelineStageFlags srcStageMask,
3766 VkPipelineStageFlags dstStageMask,
3767 VkDependencyFlags dependencyFlags,
3768 uint32_t memoryBarrierCount,
3769 const VkMemoryBarrier *pMemoryBarriers,
3770 uint32_t bufferMemoryBarrierCount,
3771 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3772 uint32_t imageMemoryBarrierCount,
3773 const VkImageMemoryBarrier *pImageMemoryBarriers)
3774 {
3775 TU_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3776 struct tu_barrier_info info;
3777
3778 info.eventCount = 0;
3779 info.pEvents = NULL;
3780 info.srcStageMask = srcStageMask;
3781
3782 tu_barrier(cmd_buffer, memoryBarrierCount, pMemoryBarriers,
3783 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3784 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3785 }
3786
3787 static void
3788 write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
3789 VkPipelineStageFlags stageMask, unsigned value)
3790 {
3791 struct tu_cs *cs = &cmd->cs;
3792
3793 /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
3794 assert(!cmd->state.pass);
3795
3796 tu_emit_cache_flush(cmd, cs);
3797
3798 tu_bo_list_add(&cmd->bo_list, &event->bo, MSM_SUBMIT_BO_WRITE);
3799
3800 /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
3801 * read by the CP, so the draw indirect stage counts as top-of-pipe too.
3802 */
3803 VkPipelineStageFlags top_of_pipe_flags =
3804 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT |
3805 VK_PIPELINE_STAGE_DRAW_INDIRECT_BIT;
3806
3807 if (!(stageMask & ~top_of_pipe_flags)) {
3808 tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
3809 tu_cs_emit_qw(cs, event->bo.iova); /* ADDR_LO/HI */
3810 tu_cs_emit(cs, value);
3811 } else {
3812 /* Use a RB_DONE_TS event to wait for everything to complete. */
3813 tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
3814 tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
3815 tu_cs_emit_qw(cs, event->bo.iova);
3816 tu_cs_emit(cs, value);
3817 }
3818 }
3819
3820 void
3821 tu_CmdSetEvent(VkCommandBuffer commandBuffer,
3822 VkEvent _event,
3823 VkPipelineStageFlags stageMask)
3824 {
3825 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3826 TU_FROM_HANDLE(tu_event, event, _event);
3827
3828 write_event(cmd, event, stageMask, 1);
3829 }
3830
3831 void
3832 tu_CmdResetEvent(VkCommandBuffer commandBuffer,
3833 VkEvent _event,
3834 VkPipelineStageFlags stageMask)
3835 {
3836 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3837 TU_FROM_HANDLE(tu_event, event, _event);
3838
3839 write_event(cmd, event, stageMask, 0);
3840 }
3841
3842 void
3843 tu_CmdWaitEvents(VkCommandBuffer commandBuffer,
3844 uint32_t eventCount,
3845 const VkEvent *pEvents,
3846 VkPipelineStageFlags srcStageMask,
3847 VkPipelineStageFlags dstStageMask,
3848 uint32_t memoryBarrierCount,
3849 const VkMemoryBarrier *pMemoryBarriers,
3850 uint32_t bufferMemoryBarrierCount,
3851 const VkBufferMemoryBarrier *pBufferMemoryBarriers,
3852 uint32_t imageMemoryBarrierCount,
3853 const VkImageMemoryBarrier *pImageMemoryBarriers)
3854 {
3855 TU_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3856 struct tu_barrier_info info;
3857
3858 info.eventCount = eventCount;
3859 info.pEvents = pEvents;
3860 info.srcStageMask = 0;
3861
3862 tu_barrier(cmd, memoryBarrierCount, pMemoryBarriers,
3863 bufferMemoryBarrierCount, pBufferMemoryBarriers,
3864 imageMemoryBarrierCount, pImageMemoryBarriers, &info);
3865 }
3866
3867 void
3868 tu_CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask)
3869 {
3870 /* No-op */
3871 }