turnip: Configure VPC for geometry shaders
[mesa.git] / src / freedreno / vulkan / tu_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "ir3/ir3_nir.h"
31 #include "main/menums.h"
32 #include "nir/nir.h"
33 #include "nir/nir_builder.h"
34 #include "spirv/nir_spirv.h"
35 #include "util/debug.h"
36 #include "util/mesa-sha1.h"
37 #include "util/u_atomic.h"
38 #include "vk_format.h"
39 #include "vk_util.h"
40
41 #include "tu_cs.h"
42
43 struct tu_pipeline_builder
44 {
45 struct tu_device *device;
46 struct tu_pipeline_cache *cache;
47 struct tu_pipeline_layout *layout;
48 const VkAllocationCallbacks *alloc;
49 const VkGraphicsPipelineCreateInfo *create_info;
50
51 struct tu_shader *shaders[MESA_SHADER_STAGES];
52 uint32_t shader_offsets[MESA_SHADER_STAGES];
53 uint32_t binning_vs_offset;
54 uint32_t shader_total_size;
55
56 bool rasterizer_discard;
57 /* these states are affectd by rasterizer_discard */
58 VkSampleCountFlagBits samples;
59 bool use_depth_stencil_attachment;
60 bool use_color_attachments;
61 uint32_t color_attachment_count;
62 VkFormat color_attachment_formats[MAX_RTS];
63 };
64
65 static enum tu_dynamic_state_bits
66 tu_dynamic_state_bit(VkDynamicState state)
67 {
68 switch (state) {
69 case VK_DYNAMIC_STATE_VIEWPORT:
70 return TU_DYNAMIC_VIEWPORT;
71 case VK_DYNAMIC_STATE_SCISSOR:
72 return TU_DYNAMIC_SCISSOR;
73 case VK_DYNAMIC_STATE_LINE_WIDTH:
74 return TU_DYNAMIC_LINE_WIDTH;
75 case VK_DYNAMIC_STATE_DEPTH_BIAS:
76 return TU_DYNAMIC_DEPTH_BIAS;
77 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
78 return TU_DYNAMIC_BLEND_CONSTANTS;
79 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
80 return TU_DYNAMIC_DEPTH_BOUNDS;
81 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
82 return TU_DYNAMIC_STENCIL_COMPARE_MASK;
83 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
84 return TU_DYNAMIC_STENCIL_WRITE_MASK;
85 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
86 return TU_DYNAMIC_STENCIL_REFERENCE;
87 default:
88 unreachable("invalid dynamic state");
89 return 0;
90 }
91 }
92
93 static gl_shader_stage
94 tu_shader_stage(VkShaderStageFlagBits stage)
95 {
96 switch (stage) {
97 case VK_SHADER_STAGE_VERTEX_BIT:
98 return MESA_SHADER_VERTEX;
99 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
100 return MESA_SHADER_TESS_CTRL;
101 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
102 return MESA_SHADER_TESS_EVAL;
103 case VK_SHADER_STAGE_GEOMETRY_BIT:
104 return MESA_SHADER_GEOMETRY;
105 case VK_SHADER_STAGE_FRAGMENT_BIT:
106 return MESA_SHADER_FRAGMENT;
107 case VK_SHADER_STAGE_COMPUTE_BIT:
108 return MESA_SHADER_COMPUTE;
109 default:
110 unreachable("invalid VkShaderStageFlagBits");
111 return MESA_SHADER_NONE;
112 }
113 }
114
115 static const VkVertexInputAttributeDescription *
116 tu_find_vertex_input_attribute(
117 const VkPipelineVertexInputStateCreateInfo *vi_info, uint32_t slot)
118 {
119 assert(slot >= VERT_ATTRIB_GENERIC0);
120 slot -= VERT_ATTRIB_GENERIC0;
121 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
122 if (vi_info->pVertexAttributeDescriptions[i].location == slot)
123 return &vi_info->pVertexAttributeDescriptions[i];
124 }
125 return NULL;
126 }
127
128 static const VkVertexInputBindingDescription *
129 tu_find_vertex_input_binding(
130 const VkPipelineVertexInputStateCreateInfo *vi_info,
131 const VkVertexInputAttributeDescription *vi_attr)
132 {
133 assert(vi_attr);
134 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
135 if (vi_info->pVertexBindingDescriptions[i].binding == vi_attr->binding)
136 return &vi_info->pVertexBindingDescriptions[i];
137 }
138 return NULL;
139 }
140
141 static bool
142 tu_logic_op_reads_dst(VkLogicOp op)
143 {
144 switch (op) {
145 case VK_LOGIC_OP_CLEAR:
146 case VK_LOGIC_OP_COPY:
147 case VK_LOGIC_OP_COPY_INVERTED:
148 case VK_LOGIC_OP_SET:
149 return false;
150 default:
151 return true;
152 }
153 }
154
155 static VkBlendFactor
156 tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
157 {
158 /* treat dst alpha as 1.0 and avoid reading it */
159 switch (factor) {
160 case VK_BLEND_FACTOR_DST_ALPHA:
161 return VK_BLEND_FACTOR_ONE;
162 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
163 return VK_BLEND_FACTOR_ZERO;
164 default:
165 return factor;
166 }
167 }
168
169 static enum pc_di_primtype
170 tu6_primtype(VkPrimitiveTopology topology)
171 {
172 switch (topology) {
173 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
174 return DI_PT_POINTLIST;
175 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
176 return DI_PT_LINELIST;
177 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
178 return DI_PT_LINESTRIP;
179 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
180 return DI_PT_TRILIST;
181 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
182 return DI_PT_TRISTRIP;
183 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
184 return DI_PT_TRIFAN;
185 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
186 return DI_PT_LINE_ADJ;
187 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
188 return DI_PT_LINESTRIP_ADJ;
189 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
190 return DI_PT_TRI_ADJ;
191 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
192 return DI_PT_TRISTRIP_ADJ;
193 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
194 default:
195 unreachable("invalid primitive topology");
196 return DI_PT_NONE;
197 }
198 }
199
200 static enum adreno_compare_func
201 tu6_compare_func(VkCompareOp op)
202 {
203 switch (op) {
204 case VK_COMPARE_OP_NEVER:
205 return FUNC_NEVER;
206 case VK_COMPARE_OP_LESS:
207 return FUNC_LESS;
208 case VK_COMPARE_OP_EQUAL:
209 return FUNC_EQUAL;
210 case VK_COMPARE_OP_LESS_OR_EQUAL:
211 return FUNC_LEQUAL;
212 case VK_COMPARE_OP_GREATER:
213 return FUNC_GREATER;
214 case VK_COMPARE_OP_NOT_EQUAL:
215 return FUNC_NOTEQUAL;
216 case VK_COMPARE_OP_GREATER_OR_EQUAL:
217 return FUNC_GEQUAL;
218 case VK_COMPARE_OP_ALWAYS:
219 return FUNC_ALWAYS;
220 default:
221 unreachable("invalid VkCompareOp");
222 return FUNC_NEVER;
223 }
224 }
225
226 static enum adreno_stencil_op
227 tu6_stencil_op(VkStencilOp op)
228 {
229 switch (op) {
230 case VK_STENCIL_OP_KEEP:
231 return STENCIL_KEEP;
232 case VK_STENCIL_OP_ZERO:
233 return STENCIL_ZERO;
234 case VK_STENCIL_OP_REPLACE:
235 return STENCIL_REPLACE;
236 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
237 return STENCIL_INCR_CLAMP;
238 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
239 return STENCIL_DECR_CLAMP;
240 case VK_STENCIL_OP_INVERT:
241 return STENCIL_INVERT;
242 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
243 return STENCIL_INCR_WRAP;
244 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
245 return STENCIL_DECR_WRAP;
246 default:
247 unreachable("invalid VkStencilOp");
248 return STENCIL_KEEP;
249 }
250 }
251
252 static enum a3xx_rop_code
253 tu6_rop(VkLogicOp op)
254 {
255 switch (op) {
256 case VK_LOGIC_OP_CLEAR:
257 return ROP_CLEAR;
258 case VK_LOGIC_OP_AND:
259 return ROP_AND;
260 case VK_LOGIC_OP_AND_REVERSE:
261 return ROP_AND_REVERSE;
262 case VK_LOGIC_OP_COPY:
263 return ROP_COPY;
264 case VK_LOGIC_OP_AND_INVERTED:
265 return ROP_AND_INVERTED;
266 case VK_LOGIC_OP_NO_OP:
267 return ROP_NOOP;
268 case VK_LOGIC_OP_XOR:
269 return ROP_XOR;
270 case VK_LOGIC_OP_OR:
271 return ROP_OR;
272 case VK_LOGIC_OP_NOR:
273 return ROP_NOR;
274 case VK_LOGIC_OP_EQUIVALENT:
275 return ROP_EQUIV;
276 case VK_LOGIC_OP_INVERT:
277 return ROP_INVERT;
278 case VK_LOGIC_OP_OR_REVERSE:
279 return ROP_OR_REVERSE;
280 case VK_LOGIC_OP_COPY_INVERTED:
281 return ROP_COPY_INVERTED;
282 case VK_LOGIC_OP_OR_INVERTED:
283 return ROP_OR_INVERTED;
284 case VK_LOGIC_OP_NAND:
285 return ROP_NAND;
286 case VK_LOGIC_OP_SET:
287 return ROP_SET;
288 default:
289 unreachable("invalid VkLogicOp");
290 return ROP_NOOP;
291 }
292 }
293
294 static enum adreno_rb_blend_factor
295 tu6_blend_factor(VkBlendFactor factor)
296 {
297 switch (factor) {
298 case VK_BLEND_FACTOR_ZERO:
299 return FACTOR_ZERO;
300 case VK_BLEND_FACTOR_ONE:
301 return FACTOR_ONE;
302 case VK_BLEND_FACTOR_SRC_COLOR:
303 return FACTOR_SRC_COLOR;
304 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
305 return FACTOR_ONE_MINUS_SRC_COLOR;
306 case VK_BLEND_FACTOR_DST_COLOR:
307 return FACTOR_DST_COLOR;
308 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
309 return FACTOR_ONE_MINUS_DST_COLOR;
310 case VK_BLEND_FACTOR_SRC_ALPHA:
311 return FACTOR_SRC_ALPHA;
312 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
313 return FACTOR_ONE_MINUS_SRC_ALPHA;
314 case VK_BLEND_FACTOR_DST_ALPHA:
315 return FACTOR_DST_ALPHA;
316 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
317 return FACTOR_ONE_MINUS_DST_ALPHA;
318 case VK_BLEND_FACTOR_CONSTANT_COLOR:
319 return FACTOR_CONSTANT_COLOR;
320 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
321 return FACTOR_ONE_MINUS_CONSTANT_COLOR;
322 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
323 return FACTOR_CONSTANT_ALPHA;
324 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
325 return FACTOR_ONE_MINUS_CONSTANT_ALPHA;
326 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
327 return FACTOR_SRC_ALPHA_SATURATE;
328 case VK_BLEND_FACTOR_SRC1_COLOR:
329 return FACTOR_SRC1_COLOR;
330 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
331 return FACTOR_ONE_MINUS_SRC1_COLOR;
332 case VK_BLEND_FACTOR_SRC1_ALPHA:
333 return FACTOR_SRC1_ALPHA;
334 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
335 return FACTOR_ONE_MINUS_SRC1_ALPHA;
336 default:
337 unreachable("invalid VkBlendFactor");
338 return FACTOR_ZERO;
339 }
340 }
341
342 static enum a3xx_rb_blend_opcode
343 tu6_blend_op(VkBlendOp op)
344 {
345 switch (op) {
346 case VK_BLEND_OP_ADD:
347 return BLEND_DST_PLUS_SRC;
348 case VK_BLEND_OP_SUBTRACT:
349 return BLEND_SRC_MINUS_DST;
350 case VK_BLEND_OP_REVERSE_SUBTRACT:
351 return BLEND_DST_MINUS_SRC;
352 case VK_BLEND_OP_MIN:
353 return BLEND_MIN_DST_SRC;
354 case VK_BLEND_OP_MAX:
355 return BLEND_MAX_DST_SRC;
356 default:
357 unreachable("invalid VkBlendOp");
358 return BLEND_DST_PLUS_SRC;
359 }
360 }
361
362 static unsigned
363 tu_shader_nibo(const struct tu_shader *shader)
364 {
365 /* Don't use ir3_shader_nibo(), because that would include declared but
366 * unused storage images and SSBOs.
367 */
368 return shader->ssbo_map.num_desc + shader->image_map.num_desc;
369 }
370
371 static void
372 tu6_emit_vs_config(struct tu_cs *cs, struct tu_shader *shader,
373 const struct ir3_shader_variant *vs)
374 {
375 uint32_t sp_vs_ctrl =
376 A6XX_SP_VS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
377 A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(vs->info.max_reg + 1) |
378 A6XX_SP_VS_CTRL_REG0_MERGEDREGS |
379 A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(vs->branchstack);
380 if (vs->need_pixlod)
381 sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_PIXLODENABLE;
382 if (vs->need_fine_derivatives)
383 sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_DIFF_FINE;
384
385 uint32_t sp_vs_config = A6XX_SP_VS_CONFIG_NTEX(shader->texture_map.num_desc) |
386 A6XX_SP_VS_CONFIG_NSAMP(shader->sampler_map.num_desc);
387 if (vs->instrlen)
388 sp_vs_config |= A6XX_SP_VS_CONFIG_ENABLED;
389
390 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CTRL_REG0, 1);
391 tu_cs_emit(cs, sp_vs_ctrl);
392
393 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CONFIG, 2);
394 tu_cs_emit(cs, sp_vs_config);
395 tu_cs_emit(cs, vs->instrlen);
396
397 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_VS_CNTL, 1);
398 tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(align(vs->constlen, 4)) |
399 A6XX_HLSQ_VS_CNTL_ENABLED);
400 }
401
402 static void
403 tu6_emit_hs_config(struct tu_cs *cs, struct tu_shader *shader,
404 const struct ir3_shader_variant *hs)
405 {
406 uint32_t sp_hs_config = 0;
407 if (hs->instrlen)
408 sp_hs_config |= A6XX_SP_HS_CONFIG_ENABLED;
409
410 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
411 tu_cs_emit(cs, 0);
412
413 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_CONFIG, 2);
414 tu_cs_emit(cs, sp_hs_config);
415 tu_cs_emit(cs, hs->instrlen);
416
417 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_HS_CNTL, 1);
418 tu_cs_emit(cs, A6XX_HLSQ_HS_CNTL_CONSTLEN(align(hs->constlen, 4)));
419 }
420
421 static void
422 tu6_emit_ds_config(struct tu_cs *cs, struct tu_shader *shader,
423 const struct ir3_shader_variant *ds)
424 {
425 uint32_t sp_ds_config = 0;
426 if (ds->instrlen)
427 sp_ds_config |= A6XX_SP_DS_CONFIG_ENABLED;
428
429 tu_cs_emit_pkt4(cs, REG_A6XX_SP_DS_CONFIG, 2);
430 tu_cs_emit(cs, sp_ds_config);
431 tu_cs_emit(cs, ds->instrlen);
432
433 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_DS_CNTL, 1);
434 tu_cs_emit(cs, A6XX_HLSQ_DS_CNTL_CONSTLEN(align(ds->constlen, 4)));
435 }
436
437 static void
438 tu6_emit_gs_config(struct tu_cs *cs, struct tu_shader *shader,
439 const struct ir3_shader_variant *gs)
440 {
441 uint32_t sp_gs_config = 0;
442 if (gs->instrlen)
443 sp_gs_config |= A6XX_SP_GS_CONFIG_ENABLED;
444
445 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_UNKNOWN_A871, 1);
446 tu_cs_emit(cs, 0);
447
448 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_CONFIG, 2);
449 tu_cs_emit(cs, sp_gs_config);
450 tu_cs_emit(cs, gs->instrlen);
451
452 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_GS_CNTL, 1);
453 tu_cs_emit(cs, A6XX_HLSQ_GS_CNTL_CONSTLEN(align(gs->constlen, 4)));
454 }
455
456 static void
457 tu6_emit_fs_config(struct tu_cs *cs, struct tu_shader *shader,
458 const struct ir3_shader_variant *fs)
459 {
460 uint32_t sp_fs_ctrl =
461 A6XX_SP_FS_CTRL_REG0_THREADSIZE(FOUR_QUADS) | 0x1000000 |
462 A6XX_SP_FS_CTRL_REG0_FULLREGFOOTPRINT(fs->info.max_reg + 1) |
463 A6XX_SP_FS_CTRL_REG0_MERGEDREGS |
464 A6XX_SP_FS_CTRL_REG0_BRANCHSTACK(fs->branchstack);
465 if (fs->total_in > 0)
466 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_VARYING;
467 if (fs->need_pixlod)
468 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_PIXLODENABLE;
469 if (fs->need_fine_derivatives)
470 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_DIFF_FINE;
471
472 uint32_t sp_fs_config = 0;
473 unsigned shader_nibo = 0;
474 if (shader) {
475 shader_nibo = tu_shader_nibo(shader);
476 sp_fs_config = A6XX_SP_FS_CONFIG_NTEX(shader->texture_map.num_desc) |
477 A6XX_SP_FS_CONFIG_NSAMP(shader->sampler_map.num_desc) |
478 A6XX_SP_FS_CONFIG_NIBO(shader_nibo);
479 }
480
481 if (fs->instrlen)
482 sp_fs_config |= A6XX_SP_FS_CONFIG_ENABLED;
483
484 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CTRL_REG0, 1);
485 tu_cs_emit(cs, sp_fs_ctrl);
486
487 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CONFIG, 2);
488 tu_cs_emit(cs, sp_fs_config);
489 tu_cs_emit(cs, fs->instrlen);
490
491 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_FS_CNTL, 1);
492 tu_cs_emit(cs, A6XX_HLSQ_FS_CNTL_CONSTLEN(align(fs->constlen, 4)) |
493 A6XX_HLSQ_FS_CNTL_ENABLED);
494
495 tu_cs_emit_pkt4(cs, REG_A6XX_SP_IBO_COUNT, 1);
496 tu_cs_emit(cs, shader_nibo);
497 }
498
499 static void
500 tu6_emit_cs_config(struct tu_cs *cs, const struct tu_shader *shader,
501 const struct ir3_shader_variant *v)
502 {
503 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
504 tu_cs_emit(cs, 0xff);
505
506 unsigned constlen = align(v->constlen, 4);
507 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL, 1);
508 tu_cs_emit(cs, A6XX_HLSQ_CS_CNTL_CONSTLEN(constlen) |
509 A6XX_HLSQ_CS_CNTL_ENABLED);
510
511 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CONFIG, 2);
512 tu_cs_emit(cs, A6XX_SP_CS_CONFIG_ENABLED |
513 A6XX_SP_CS_CONFIG_NIBO(tu_shader_nibo(shader)) |
514 A6XX_SP_CS_CONFIG_NTEX(shader->texture_map.num_desc) |
515 A6XX_SP_CS_CONFIG_NSAMP(shader->sampler_map.num_desc));
516 tu_cs_emit(cs, v->instrlen);
517
518 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CTRL_REG0, 1);
519 tu_cs_emit(cs, A6XX_SP_CS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
520 A6XX_SP_CS_CTRL_REG0_FULLREGFOOTPRINT(v->info.max_reg + 1) |
521 A6XX_SP_CS_CTRL_REG0_MERGEDREGS |
522 A6XX_SP_CS_CTRL_REG0_BRANCHSTACK(v->branchstack) |
523 COND(v->need_pixlod, A6XX_SP_CS_CTRL_REG0_PIXLODENABLE) |
524 COND(v->need_fine_derivatives, A6XX_SP_CS_CTRL_REG0_DIFF_FINE));
525
526 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
527 tu_cs_emit(cs, 0x41);
528
529 uint32_t local_invocation_id =
530 ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
531 uint32_t work_group_id =
532 ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID);
533
534 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL_0, 2);
535 tu_cs_emit(cs,
536 A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
537 A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) |
538 A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) |
539 A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
540 tu_cs_emit(cs, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */
541
542 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_IBO_COUNT, 1);
543 tu_cs_emit(cs, tu_shader_nibo(shader));
544 }
545
546 static void
547 tu6_emit_vs_system_values(struct tu_cs *cs,
548 const struct ir3_shader_variant *vs)
549 {
550 const uint32_t vertexid_regid =
551 ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID);
552 const uint32_t instanceid_regid =
553 ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
554
555 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
556 tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
557 A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
558 0xfcfc0000);
559 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_2 */
560 tu_cs_emit(cs, 0xfcfcfcfc); /* VFD_CONTROL_3 */
561 tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
562 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_5 */
563 tu_cs_emit(cs, 0x00000000); /* VFD_CONTROL_6 */
564 }
565
566 /* Add any missing varyings needed for stream-out. Otherwise varyings not
567 * used by fragment shader will be stripped out.
568 */
569 static void
570 tu6_link_streamout(struct ir3_shader_linkage *l,
571 const struct ir3_shader_variant *v)
572 {
573 const struct ir3_stream_output_info *info = &v->shader->stream_output;
574
575 /*
576 * First, any stream-out varyings not already in linkage map (ie. also
577 * consumed by frag shader) need to be added:
578 */
579 for (unsigned i = 0; i < info->num_outputs; i++) {
580 const struct ir3_stream_output *out = &info->output[i];
581 unsigned compmask =
582 (1 << (out->num_components + out->start_component)) - 1;
583 unsigned k = out->register_index;
584 unsigned idx, nextloc = 0;
585
586 /* psize/pos need to be the last entries in linkage map, and will
587 * get added link_stream_out, so skip over them:
588 */
589 if (v->outputs[k].slot == VARYING_SLOT_PSIZ ||
590 v->outputs[k].slot == VARYING_SLOT_POS)
591 continue;
592
593 for (idx = 0; idx < l->cnt; idx++) {
594 if (l->var[idx].regid == v->outputs[k].regid)
595 break;
596 nextloc = MAX2(nextloc, l->var[idx].loc + 4);
597 }
598
599 /* add if not already in linkage map: */
600 if (idx == l->cnt)
601 ir3_link_add(l, v->outputs[k].regid, compmask, nextloc);
602
603 /* expand component-mask if needed, ie streaming out all components
604 * but frag shader doesn't consume all components:
605 */
606 if (compmask & ~l->var[idx].compmask) {
607 l->var[idx].compmask |= compmask;
608 l->max_loc = MAX2(l->max_loc, l->var[idx].loc +
609 util_last_bit(l->var[idx].compmask));
610 }
611 }
612 }
613
614 static void
615 tu6_setup_streamout(const struct ir3_shader_variant *v,
616 struct ir3_shader_linkage *l, struct tu_streamout_state *tf)
617 {
618 const struct ir3_stream_output_info *info = &v->shader->stream_output;
619
620 memset(tf, 0, sizeof(*tf));
621
622 tf->prog_count = align(l->max_loc, 2) / 2;
623
624 debug_assert(tf->prog_count < ARRAY_SIZE(tf->prog));
625
626 /* set stride info to the streamout state */
627 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++)
628 tf->stride[i] = info->stride[i];
629
630 for (unsigned i = 0; i < info->num_outputs; i++) {
631 const struct ir3_stream_output *out = &info->output[i];
632 unsigned k = out->register_index;
633 unsigned idx;
634
635 tf->ncomp[out->output_buffer] += out->num_components;
636
637 /* linkage map sorted by order frag shader wants things, so
638 * a bit less ideal here..
639 */
640 for (idx = 0; idx < l->cnt; idx++)
641 if (l->var[idx].regid == v->outputs[k].regid)
642 break;
643
644 debug_assert(idx < l->cnt);
645
646 for (unsigned j = 0; j < out->num_components; j++) {
647 unsigned c = j + out->start_component;
648 unsigned loc = l->var[idx].loc + c;
649 unsigned off = j + out->dst_offset; /* in dwords */
650
651 if (loc & 1) {
652 tf->prog[loc/2] |= A6XX_VPC_SO_PROG_B_EN |
653 A6XX_VPC_SO_PROG_B_BUF(out->output_buffer) |
654 A6XX_VPC_SO_PROG_B_OFF(off * 4);
655 } else {
656 tf->prog[loc/2] |= A6XX_VPC_SO_PROG_A_EN |
657 A6XX_VPC_SO_PROG_A_BUF(out->output_buffer) |
658 A6XX_VPC_SO_PROG_A_OFF(off * 4);
659 }
660 }
661 }
662
663 tf->vpc_so_buf_cntl = A6XX_VPC_SO_BUF_CNTL_ENABLE |
664 COND(tf->ncomp[0] > 0, A6XX_VPC_SO_BUF_CNTL_BUF0) |
665 COND(tf->ncomp[1] > 0, A6XX_VPC_SO_BUF_CNTL_BUF1) |
666 COND(tf->ncomp[2] > 0, A6XX_VPC_SO_BUF_CNTL_BUF2) |
667 COND(tf->ncomp[3] > 0, A6XX_VPC_SO_BUF_CNTL_BUF3);
668 }
669
670 static void
671 tu6_emit_const(struct tu_cs *cs, uint32_t opcode, uint32_t base,
672 enum a6xx_state_block block, uint32_t offset,
673 uint32_t size, uint32_t *dwords) {
674 assert(size % 4 == 0);
675
676 tu_cs_emit_pkt7(cs, opcode, 3 + size);
677 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
678 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
679 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
680 CP_LOAD_STATE6_0_STATE_BLOCK(block) |
681 CP_LOAD_STATE6_0_NUM_UNIT(size / 4));
682
683 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
684 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
685 dwords = (uint32_t *)&((uint8_t *)dwords)[offset];
686
687 tu_cs_emit_array(cs, dwords, size);
688 }
689
690 static void
691 tu6_emit_link_map(struct tu_cs *cs,
692 const struct ir3_shader_variant *producer,
693 const struct ir3_shader_variant *consumer) {
694 const struct ir3_const_state *const_state = &consumer->shader->const_state;
695 uint32_t base = const_state->offsets.primitive_map;
696 uint32_t patch_locs[MAX_VARYING] = { }, num_loc;
697 num_loc = ir3_link_geometry_stages(producer, consumer, patch_locs);
698 int size = DIV_ROUND_UP(num_loc, 4);
699
700 size = (MIN2(size + base, consumer->constlen) - base) * 4;
701
702 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, base, SB6_GS_SHADER, 0, size,
703 patch_locs);
704 }
705
706 static uint16_t
707 gl_primitive_to_tess(uint16_t primitive) {
708 switch (primitive) {
709 case GL_POINTS:
710 return TESS_POINTS;
711 case GL_LINE_STRIP:
712 return TESS_LINES;
713 case GL_TRIANGLE_STRIP:
714 return TESS_CW_TRIS;
715 default:
716 unreachable("");
717 }
718 }
719
720 static void
721 tu6_emit_vpc(struct tu_cs *cs,
722 const struct ir3_shader_variant *vs,
723 const struct ir3_shader_variant *gs,
724 const struct ir3_shader_variant *fs,
725 bool binning_pass,
726 struct tu_streamout_state *tf)
727 {
728 bool has_gs = gs->type != MESA_SHADER_NONE;
729 const struct ir3_shader_variant *last_shader = has_gs ? gs : vs;
730 struct ir3_shader_linkage linkage = { 0 };
731 ir3_link_shaders(&linkage, last_shader, fs);
732
733 if (last_shader->shader->stream_output.num_outputs)
734 tu6_link_streamout(&linkage, last_shader);
735
736 BITSET_DECLARE(vpc_var_enables, 128) = { 0 };
737 for (uint32_t i = 0; i < linkage.cnt; i++) {
738 const uint32_t comp_count = util_last_bit(linkage.var[i].compmask);
739 for (uint32_t j = 0; j < comp_count; j++)
740 BITSET_SET(vpc_var_enables, linkage.var[i].loc + j);
741 }
742
743 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
744 tu_cs_emit(cs, ~vpc_var_enables[0]);
745 tu_cs_emit(cs, ~vpc_var_enables[1]);
746 tu_cs_emit(cs, ~vpc_var_enables[2]);
747 tu_cs_emit(cs, ~vpc_var_enables[3]);
748
749 /* a6xx finds position/pointsize at the end */
750 const uint32_t position_regid =
751 ir3_find_output_regid(last_shader, VARYING_SLOT_POS);
752 const uint32_t pointsize_regid =
753 ir3_find_output_regid(last_shader, VARYING_SLOT_PSIZ);
754 const uint32_t layer_regid = has_gs ?
755 ir3_find_output_regid(gs, VARYING_SLOT_LAYER) : regid(63, 0);
756
757 uint32_t pointsize_loc = 0xff, position_loc = 0xff, layer_loc = 0xff;
758 if (layer_regid != regid(63, 0)) {
759 layer_loc = linkage.max_loc;
760 ir3_link_add(&linkage, layer_regid, 0x1, linkage.max_loc);
761 }
762 if (position_regid != regid(63, 0)) {
763 position_loc = linkage.max_loc;
764 ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
765 }
766 if (pointsize_regid != regid(63, 0)) {
767 pointsize_loc = linkage.max_loc;
768 ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
769 }
770
771 if (last_shader->shader->stream_output.num_outputs)
772 tu6_setup_streamout(last_shader, &linkage, tf);
773
774 /* map outputs of the last shader to VPC */
775 assert(linkage.cnt <= 32);
776 const uint32_t sp_out_count = DIV_ROUND_UP(linkage.cnt, 2);
777 const uint32_t sp_vpc_dst_count = DIV_ROUND_UP(linkage.cnt, 4);
778 uint32_t sp_out[16];
779 uint32_t sp_vpc_dst[8];
780 for (uint32_t i = 0; i < linkage.cnt; i++) {
781 ((uint16_t *) sp_out)[i] =
782 A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
783 A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
784 ((uint8_t *) sp_vpc_dst)[i] =
785 A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
786 }
787
788 if (has_gs)
789 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_OUT_REG(0), sp_out_count);
790 else
791 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_OUT_REG(0), sp_out_count);
792 tu_cs_emit_array(cs, sp_out, sp_out_count);
793
794 if (has_gs)
795 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_VPC_DST_REG(0), sp_vpc_dst_count);
796 else
797 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_VPC_DST_REG(0), sp_vpc_dst_count);
798 tu_cs_emit_array(cs, sp_vpc_dst, sp_vpc_dst_count);
799
800 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
801 tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs->total_in) |
802 (fs->total_in > 0 ? A6XX_VPC_CNTL_0_VARYING : 0) |
803 0xff00ff00);
804
805 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK, 1);
806 tu_cs_emit(cs, A6XX_VPC_PACK_POSITIONLOC(position_loc) |
807 A6XX_VPC_PACK_PSIZELOC(pointsize_loc) |
808 A6XX_VPC_PACK_STRIDE_IN_VPC(linkage.max_loc));
809
810 if (has_gs) {
811 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_CTRL_REG0, 1);
812 tu_cs_emit(cs, A6XX_SP_GS_CTRL_REG0_THREADSIZE(TWO_QUADS) |
813 A6XX_SP_GS_CTRL_REG0_FULLREGFOOTPRINT(gs->info.max_reg + 1) |
814 A6XX_SP_GS_CTRL_REG0_BRANCHSTACK(gs->branchstack) |
815 COND(gs->need_pixlod, A6XX_SP_GS_CTRL_REG0_PIXLODENABLE));
816
817 tu6_emit_link_map(cs, vs, gs);
818
819 uint32_t primitive_regid =
820 ir3_find_sysval_regid(gs, SYSTEM_VALUE_PRIMITIVE_ID);
821 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK_GS, 1);
822 tu_cs_emit(cs, A6XX_VPC_PACK_GS_POSITIONLOC(position_loc) |
823 A6XX_VPC_PACK_GS_PSIZELOC(pointsize_loc) |
824 A6XX_VPC_PACK_GS_STRIDE_IN_VPC(linkage.max_loc));
825
826 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9105, 1);
827 tu_cs_emit(cs, A6XX_VPC_UNKNOWN_9105_LAYERLOC(layer_loc) | 0xff00);
828
829 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_809C, 1);
830 tu_cs_emit(cs, CONDREG(layer_regid,
831 A6XX_GRAS_UNKNOWN_809C_GS_WRITES_LAYER));
832
833 uint32_t flags_regid = ir3_find_output_regid(gs,
834 VARYING_SLOT_GS_VERTEX_FLAGS_IR3);
835
836 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL_GS, 1);
837 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_GS_GSOUT(linkage.cnt) |
838 A6XX_SP_PRIMITIVE_CNTL_GS_FLAGS_REGID(flags_regid));
839
840 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_2, 1);
841 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_2_STRIDE_IN_VPC(linkage.max_loc) |
842 CONDREG(pointsize_regid, A6XX_PC_PRIMITIVE_CNTL_2_PSIZE) |
843 CONDREG(layer_regid, A6XX_PC_PRIMITIVE_CNTL_2_LAYER) |
844 CONDREG(primitive_regid, A6XX_PC_PRIMITIVE_CNTL_2_PRIMITIVE_ID));
845
846 uint32_t vertices_out = gs->shader->nir->info.gs.vertices_out - 1;
847 uint16_t output =
848 gl_primitive_to_tess(gs->shader->nir->info.gs.output_primitive);
849 uint32_t invocations = gs->shader->nir->info.gs.invocations - 1;
850 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_5, 1);
851 tu_cs_emit(cs,
852 A6XX_PC_PRIMITIVE_CNTL_5_GS_VERTICES_OUT(vertices_out) |
853 A6XX_PC_PRIMITIVE_CNTL_5_GS_OUTPUT(output) |
854 A6XX_PC_PRIMITIVE_CNTL_5_GS_INVOCATIONS(invocations));
855
856 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_3, 1);
857 tu_cs_emit(cs, 0);
858
859 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8003, 1);
860 tu_cs_emit(cs, 0);
861
862 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9100, 1);
863 tu_cs_emit(cs, 0xff);
864
865 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_UNKNOWN_9102, 1);
866 tu_cs_emit(cs, 0xffff00);
867
868 /* Size of per-primitive alloction in ldlw memory in vec4s. */
869 uint32_t vec4_size =
870 gs->shader->nir->info.gs.vertices_in *
871 DIV_ROUND_UP(vs->shader->output_size, 4);
872 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_6, 1);
873 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_6_STRIDE_IN_VPC(vec4_size));
874
875 tu_cs_emit_pkt4(cs, REG_A6XX_PC_UNKNOWN_9B07, 1);
876 tu_cs_emit(cs, 0);
877
878 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_UNKNOWN_A871, 1);
879 tu_cs_emit(cs, vs->shader->output_size);
880 }
881
882 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL, 1);
883 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_VSOUT(linkage.cnt));
884
885 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_1, 1);
886 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_1_STRIDE_IN_VPC(linkage.max_loc) |
887 (last_shader->writes_psize ? A6XX_PC_PRIMITIVE_CNTL_1_PSIZE : 0));
888 }
889
890 static int
891 tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
892 uint32_t index,
893 uint8_t *interp_mode,
894 uint8_t *ps_repl_mode)
895 {
896 enum
897 {
898 INTERP_SMOOTH = 0,
899 INTERP_FLAT = 1,
900 INTERP_ZERO = 2,
901 INTERP_ONE = 3,
902 };
903 enum
904 {
905 PS_REPL_NONE = 0,
906 PS_REPL_S = 1,
907 PS_REPL_T = 2,
908 PS_REPL_ONE_MINUS_T = 3,
909 };
910
911 const uint32_t compmask = fs->inputs[index].compmask;
912
913 /* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
914 * fourth component occupy three consecutive varying slots
915 */
916 int shift = 0;
917 *interp_mode = 0;
918 *ps_repl_mode = 0;
919 if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
920 if (compmask & 0x1) {
921 *ps_repl_mode |= PS_REPL_S << shift;
922 shift += 2;
923 }
924 if (compmask & 0x2) {
925 *ps_repl_mode |= PS_REPL_T << shift;
926 shift += 2;
927 }
928 if (compmask & 0x4) {
929 *interp_mode |= INTERP_ZERO << shift;
930 shift += 2;
931 }
932 if (compmask & 0x8) {
933 *interp_mode |= INTERP_ONE << 6;
934 shift += 2;
935 }
936 } else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
937 fs->inputs[index].rasterflat) {
938 for (int i = 0; i < 4; i++) {
939 if (compmask & (1 << i)) {
940 *interp_mode |= INTERP_FLAT << shift;
941 shift += 2;
942 }
943 }
944 }
945
946 return shift;
947 }
948
949 static void
950 tu6_emit_vpc_varying_modes(struct tu_cs *cs,
951 const struct ir3_shader_variant *fs,
952 bool binning_pass)
953 {
954 uint32_t interp_modes[8] = { 0 };
955 uint32_t ps_repl_modes[8] = { 0 };
956
957 if (!binning_pass) {
958 for (int i = -1;
959 (i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
960
961 /* get the mode for input i */
962 uint8_t interp_mode;
963 uint8_t ps_repl_mode;
964 const int bits =
965 tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
966
967 /* OR the mode into the array */
968 const uint32_t inloc = fs->inputs[i].inloc * 2;
969 uint32_t n = inloc / 32;
970 uint32_t shift = inloc % 32;
971 interp_modes[n] |= interp_mode << shift;
972 ps_repl_modes[n] |= ps_repl_mode << shift;
973 if (shift + bits > 32) {
974 n++;
975 shift = 32 - shift;
976
977 interp_modes[n] |= interp_mode >> shift;
978 ps_repl_modes[n] |= ps_repl_mode >> shift;
979 }
980 }
981 }
982
983 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
984 tu_cs_emit_array(cs, interp_modes, 8);
985
986 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
987 tu_cs_emit_array(cs, ps_repl_modes, 8);
988 }
989
990 static void
991 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
992 {
993 uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid;
994 uint32_t ij_pix_regid, ij_samp_regid, ij_cent_regid, ij_size_regid;
995 uint32_t smask_in_regid;
996
997 bool sample_shading = fs->per_samp; /* TODO | key->sample_shading; */
998 bool enable_varyings = fs->total_in > 0;
999
1000 samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
1001 smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
1002 face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
1003 coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
1004 zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0);
1005 ij_pix_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL);
1006 ij_samp_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE);
1007 ij_cent_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID);
1008 ij_size_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE);
1009
1010 if (fs->num_sampler_prefetch > 0) {
1011 assert(VALIDREG(ij_pix_regid));
1012 /* also, it seems like ij_pix is *required* to be r0.x */
1013 assert(ij_pix_regid == regid(0, 0));
1014 }
1015
1016 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch);
1017 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) |
1018 A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) |
1019 0x7000); // XXX);
1020 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
1021 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
1022 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) |
1023 A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) |
1024 A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) |
1025 A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) |
1026 A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) |
1027 COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) |
1028 A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd));
1029 }
1030
1031 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
1032 tu_cs_emit(cs, 0x7);
1033 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) |
1034 A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) |
1035 A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) |
1036 A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_size_regid));
1037 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_PIXEL(ij_pix_regid) |
1038 A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_CENTROID(ij_cent_regid) |
1039 0xfc00fc00);
1040 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) |
1041 A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) |
1042 A6XX_HLSQ_CONTROL_4_REG_BARY_IJ_PIXEL_PERSAMP(ij_samp_regid) |
1043 0x0000fc00);
1044 tu_cs_emit(cs, 0xfc);
1045
1046 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
1047 tu_cs_emit(cs, enable_varyings ? 3 : 1);
1048
1049 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
1050 tu_cs_emit(cs, 0xff); /* XXX */
1051
1052 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
1053 tu_cs_emit(cs,
1054 CONDREG(ij_pix_regid, A6XX_GRAS_CNTL_VARYING) |
1055 CONDREG(ij_cent_regid, A6XX_GRAS_CNTL_CENTROID) |
1056 CONDREG(ij_samp_regid, A6XX_GRAS_CNTL_PERSAMP_VARYING) |
1057 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_GRAS_CNTL_SIZE) |
1058 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_GRAS_CNTL_SIZE_PERSAMP) |
1059 COND(fs->frag_coord,
1060 A6XX_GRAS_CNTL_SIZE |
1061 A6XX_GRAS_CNTL_XCOORD |
1062 A6XX_GRAS_CNTL_YCOORD |
1063 A6XX_GRAS_CNTL_ZCOORD |
1064 A6XX_GRAS_CNTL_WCOORD) |
1065 COND(fs->frag_face, A6XX_GRAS_CNTL_SIZE));
1066
1067 tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
1068 tu_cs_emit(cs,
1069 CONDREG(ij_pix_regid, A6XX_RB_RENDER_CONTROL0_VARYING) |
1070 CONDREG(ij_cent_regid, A6XX_RB_RENDER_CONTROL0_CENTROID) |
1071 CONDREG(ij_samp_regid, A6XX_RB_RENDER_CONTROL0_PERSAMP_VARYING) |
1072 COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) |
1073 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE) |
1074 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) |
1075 COND(fs->frag_coord,
1076 A6XX_RB_RENDER_CONTROL0_SIZE |
1077 A6XX_RB_RENDER_CONTROL0_XCOORD |
1078 A6XX_RB_RENDER_CONTROL0_YCOORD |
1079 A6XX_RB_RENDER_CONTROL0_ZCOORD |
1080 A6XX_RB_RENDER_CONTROL0_WCOORD) |
1081 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL0_SIZE));
1082 tu_cs_emit(cs,
1083 CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) |
1084 CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) |
1085 CONDREG(ij_size_regid, A6XX_RB_RENDER_CONTROL1_SIZE) |
1086 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS));
1087
1088 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CNTL, 1);
1089 tu_cs_emit(cs, COND(sample_shading, A6XX_RB_SAMPLE_CNTL_PER_SAMP_MODE));
1090
1091 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8101, 1);
1092 tu_cs_emit(cs, COND(sample_shading, 0x6)); // XXX
1093
1094 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CNTL, 1);
1095 tu_cs_emit(cs, COND(sample_shading, A6XX_GRAS_SAMPLE_CNTL_PER_SAMP_MODE));
1096 }
1097
1098 static void
1099 tu6_emit_fs_outputs(struct tu_cs *cs,
1100 const struct ir3_shader_variant *fs,
1101 uint32_t mrt_count)
1102 {
1103 uint32_t smask_regid, posz_regid;
1104
1105 posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
1106 smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK);
1107
1108 uint32_t fragdata_regid[8];
1109 if (fs->color0_mrt) {
1110 fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
1111 for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
1112 fragdata_regid[i] = fragdata_regid[0];
1113 } else {
1114 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
1115 fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
1116 }
1117
1118 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
1119 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) |
1120 A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) |
1121 0xfc000000);
1122 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
1123
1124 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
1125 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
1126 // TODO we could have a mix of half and full precision outputs,
1127 // we really need to figure out half-precision from IR3_REG_HALF
1128 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
1129 (false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
1130 }
1131
1132 tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
1133 tu_cs_emit(cs, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) |
1134 COND(fs->writes_smask, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK));
1135 tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
1136
1137 uint32_t gras_su_depth_plane_cntl = 0;
1138 uint32_t rb_depth_plane_cntl = 0;
1139 if (fs->no_earlyz || fs->writes_pos) {
1140 gras_su_depth_plane_cntl |= A6XX_GRAS_SU_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
1141 rb_depth_plane_cntl |= A6XX_RB_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
1142 }
1143
1144 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
1145 tu_cs_emit(cs, gras_su_depth_plane_cntl);
1146
1147 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
1148 tu_cs_emit(cs, rb_depth_plane_cntl);
1149 }
1150
1151 static void
1152 tu6_emit_shader_object(struct tu_cs *cs,
1153 gl_shader_stage stage,
1154 const struct ir3_shader_variant *variant,
1155 const struct tu_bo *binary_bo,
1156 uint32_t binary_offset)
1157 {
1158 uint16_t reg;
1159 uint8_t opcode;
1160 enum a6xx_state_block sb;
1161 switch (stage) {
1162 case MESA_SHADER_VERTEX:
1163 reg = REG_A6XX_SP_VS_OBJ_START_LO;
1164 opcode = CP_LOAD_STATE6_GEOM;
1165 sb = SB6_VS_SHADER;
1166 break;
1167 case MESA_SHADER_TESS_CTRL:
1168 reg = REG_A6XX_SP_HS_OBJ_START_LO;
1169 opcode = CP_LOAD_STATE6_GEOM;
1170 sb = SB6_HS_SHADER;
1171 break;
1172 case MESA_SHADER_TESS_EVAL:
1173 reg = REG_A6XX_SP_DS_OBJ_START_LO;
1174 opcode = CP_LOAD_STATE6_GEOM;
1175 sb = SB6_DS_SHADER;
1176 break;
1177 case MESA_SHADER_GEOMETRY:
1178 reg = REG_A6XX_SP_GS_OBJ_START_LO;
1179 opcode = CP_LOAD_STATE6_GEOM;
1180 sb = SB6_GS_SHADER;
1181 break;
1182 case MESA_SHADER_FRAGMENT:
1183 reg = REG_A6XX_SP_FS_OBJ_START_LO;
1184 opcode = CP_LOAD_STATE6_FRAG;
1185 sb = SB6_FS_SHADER;
1186 break;
1187 case MESA_SHADER_COMPUTE:
1188 reg = REG_A6XX_SP_CS_OBJ_START_LO;
1189 opcode = CP_LOAD_STATE6_FRAG;
1190 sb = SB6_CS_SHADER;
1191 break;
1192 default:
1193 unreachable("invalid gl_shader_stage");
1194 opcode = CP_LOAD_STATE6_GEOM;
1195 sb = SB6_VS_SHADER;
1196 break;
1197 }
1198
1199 if (!variant->instrlen) {
1200 tu_cs_emit_pkt4(cs, reg, 2);
1201 tu_cs_emit_qw(cs, 0);
1202 return;
1203 }
1204
1205 assert(variant->type == stage);
1206
1207 const uint64_t binary_iova = binary_bo->iova + binary_offset;
1208 assert((binary_iova & 0xf) == 0);
1209 /* note: it looks like HW might try to read a few instructions beyond the instrlen size
1210 * of the shader. this could be a potential source of problems at some point
1211 * possibly this doesn't happen if shader iova is aligned enough (to 4k for example)
1212 */
1213
1214 tu_cs_emit_pkt4(cs, reg, 2);
1215 tu_cs_emit_qw(cs, binary_iova);
1216
1217 /* always indirect */
1218 const bool indirect = true;
1219 if (indirect) {
1220 tu_cs_emit_pkt7(cs, opcode, 3);
1221 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1222 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
1223 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1224 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
1225 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
1226 tu_cs_emit_qw(cs, binary_iova);
1227 } else {
1228 const void *binary = binary_bo->map + binary_offset;
1229
1230 tu_cs_emit_pkt7(cs, opcode, 3 + variant->info.sizedwords);
1231 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1232 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
1233 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
1234 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
1235 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
1236 tu_cs_emit_qw(cs, 0);
1237 tu_cs_emit_array(cs, binary, variant->info.sizedwords);
1238 }
1239 }
1240
1241 static void
1242 tu6_emit_immediates(struct tu_cs *cs, const struct ir3_shader_variant *v,
1243 uint32_t opcode, enum a6xx_state_block block)
1244 {
1245 /* dummy variant */
1246 if (!v->shader)
1247 return;
1248
1249 const struct ir3_const_state *const_state = &v->shader->const_state;
1250 uint32_t base = const_state->offsets.immediate;
1251 int size = const_state->immediates_count;
1252
1253 /* truncate size to avoid writing constants that shader
1254 * does not use:
1255 */
1256 size = MIN2(size + base, v->constlen) - base;
1257
1258 if (size <= 0)
1259 return;
1260
1261 tu_cs_emit_pkt7(cs, opcode, 3 + size * 4);
1262 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
1263 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1264 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
1265 CP_LOAD_STATE6_0_STATE_BLOCK(block) |
1266 CP_LOAD_STATE6_0_NUM_UNIT(size));
1267 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
1268 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
1269
1270 for (unsigned i = 0; i < size; i++) {
1271 tu_cs_emit(cs, const_state->immediates[i].val[0]);
1272 tu_cs_emit(cs, const_state->immediates[i].val[1]);
1273 tu_cs_emit(cs, const_state->immediates[i].val[2]);
1274 tu_cs_emit(cs, const_state->immediates[i].val[3]);
1275 }
1276 }
1277
1278 static void
1279 tu6_emit_geometry_consts(struct tu_cs *cs,
1280 const struct ir3_shader_variant *vs,
1281 const struct ir3_shader_variant *gs) {
1282 unsigned num_vertices = gs->shader->nir->info.gs.vertices_in;
1283
1284 uint32_t params[4] = {
1285 vs->shader->output_size * num_vertices * 4, /* primitive stride */
1286 vs->shader->output_size * 4, /* vertex stride */
1287 0,
1288 0,
1289 };
1290 uint32_t vs_base = vs->shader->const_state.offsets.primitive_param;
1291 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, vs_base, SB6_VS_SHADER, 0,
1292 ARRAY_SIZE(params), params);
1293
1294 uint32_t gs_base = gs->shader->const_state.offsets.primitive_param;
1295 tu6_emit_const(cs, CP_LOAD_STATE6_GEOM, gs_base, SB6_GS_SHADER, 0,
1296 ARRAY_SIZE(params), params);
1297 }
1298
1299 static void
1300 tu6_emit_program(struct tu_cs *cs,
1301 const struct tu_pipeline_builder *builder,
1302 const struct tu_bo *binary_bo,
1303 bool binning_pass,
1304 struct tu_streamout_state *tf)
1305 {
1306 static const struct ir3_shader_variant dummy_variant = {
1307 .type = MESA_SHADER_NONE
1308 };
1309 assert(builder->shaders[MESA_SHADER_VERTEX]);
1310 const struct ir3_shader_variant *vs =
1311 &builder->shaders[MESA_SHADER_VERTEX]->variants[0];
1312 const struct ir3_shader_variant *hs =
1313 builder->shaders[MESA_SHADER_TESS_CTRL]
1314 ? &builder->shaders[MESA_SHADER_TESS_CTRL]->variants[0]
1315 : &dummy_variant;
1316 const struct ir3_shader_variant *ds =
1317 builder->shaders[MESA_SHADER_TESS_EVAL]
1318 ? &builder->shaders[MESA_SHADER_TESS_EVAL]->variants[0]
1319 : &dummy_variant;
1320 const struct ir3_shader_variant *gs =
1321 builder->shaders[MESA_SHADER_GEOMETRY]
1322 ? &builder->shaders[MESA_SHADER_GEOMETRY]->variants[0]
1323 : &dummy_variant;
1324 const struct ir3_shader_variant *fs =
1325 builder->shaders[MESA_SHADER_FRAGMENT]
1326 ? &builder->shaders[MESA_SHADER_FRAGMENT]->variants[0]
1327 : &dummy_variant;
1328 bool has_gs = gs->type != MESA_SHADER_NONE;
1329
1330 if (binning_pass) {
1331 /* if we have streamout, use full VS in binning pass, as the
1332 * binning pass VS will have outputs on other than position/psize
1333 * stripped out:
1334 */
1335 if (vs->shader->stream_output.num_outputs == 0)
1336 vs = &builder->shaders[MESA_SHADER_VERTEX]->variants[1];
1337 fs = &dummy_variant;
1338 }
1339
1340 tu6_emit_vs_config(cs, builder->shaders[MESA_SHADER_VERTEX], vs);
1341 tu6_emit_hs_config(cs, builder->shaders[MESA_SHADER_TESS_CTRL], hs);
1342 tu6_emit_ds_config(cs, builder->shaders[MESA_SHADER_TESS_EVAL], ds);
1343 tu6_emit_gs_config(cs, builder->shaders[MESA_SHADER_GEOMETRY], gs);
1344 tu6_emit_fs_config(cs, builder->shaders[MESA_SHADER_FRAGMENT], fs);
1345
1346 tu6_emit_vs_system_values(cs, vs);
1347 tu6_emit_vpc(cs, vs, gs, fs, binning_pass, tf);
1348 tu6_emit_vpc_varying_modes(cs, fs, binning_pass);
1349 tu6_emit_fs_inputs(cs, fs);
1350 tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count);
1351
1352 tu6_emit_shader_object(cs, MESA_SHADER_VERTEX, vs, binary_bo,
1353 binning_pass ? builder->binning_vs_offset : builder->shader_offsets[MESA_SHADER_VERTEX]);
1354 if (has_gs)
1355 tu6_emit_shader_object(cs, MESA_SHADER_GEOMETRY, gs, binary_bo,
1356 builder->shader_offsets[MESA_SHADER_GEOMETRY]);
1357 tu6_emit_shader_object(cs, MESA_SHADER_FRAGMENT, fs, binary_bo,
1358 builder->shader_offsets[MESA_SHADER_FRAGMENT]);
1359
1360 tu6_emit_immediates(cs, vs, CP_LOAD_STATE6_GEOM, SB6_VS_SHADER);
1361 if (has_gs) {
1362 tu6_emit_immediates(cs, gs, CP_LOAD_STATE6_GEOM, SB6_GS_SHADER);
1363 tu6_emit_geometry_consts(cs, vs, gs);
1364 }
1365 if (!binning_pass)
1366 tu6_emit_immediates(cs, fs, CP_LOAD_STATE6_FRAG, SB6_FS_SHADER);
1367 }
1368
1369 static void
1370 tu6_emit_vertex_input(struct tu_cs *cs,
1371 const struct ir3_shader_variant *vs,
1372 const VkPipelineVertexInputStateCreateInfo *vi_info,
1373 uint8_t bindings[MAX_VERTEX_ATTRIBS],
1374 uint16_t strides[MAX_VERTEX_ATTRIBS],
1375 uint16_t offsets[MAX_VERTEX_ATTRIBS],
1376 uint32_t *count)
1377 {
1378 uint32_t vfd_decode_idx = 0;
1379
1380 for (uint32_t i = 0; i < vs->inputs_count; i++) {
1381 if (vs->inputs[i].sysval || !vs->inputs[i].compmask)
1382 continue;
1383
1384 const VkVertexInputAttributeDescription *vi_attr =
1385 tu_find_vertex_input_attribute(vi_info, vs->inputs[i].slot);
1386 const VkVertexInputBindingDescription *vi_binding =
1387 tu_find_vertex_input_binding(vi_info, vi_attr);
1388 assert(vi_attr && vi_binding);
1389
1390 const struct tu_native_format format = tu6_format_vtx(vi_attr->format);
1391
1392 uint32_t vfd_decode = A6XX_VFD_DECODE_INSTR_IDX(vfd_decode_idx) |
1393 A6XX_VFD_DECODE_INSTR_FORMAT(format.fmt) |
1394 A6XX_VFD_DECODE_INSTR_SWAP(format.swap) |
1395 A6XX_VFD_DECODE_INSTR_UNK30;
1396 if (vi_binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
1397 vfd_decode |= A6XX_VFD_DECODE_INSTR_INSTANCED;
1398 if (!vk_format_is_int(vi_attr->format))
1399 vfd_decode |= A6XX_VFD_DECODE_INSTR_FLOAT;
1400
1401 const uint32_t vfd_decode_step_rate = 1;
1402
1403 const uint32_t vfd_dest_cntl =
1404 A6XX_VFD_DEST_CNTL_INSTR_WRITEMASK(vs->inputs[i].compmask) |
1405 A6XX_VFD_DEST_CNTL_INSTR_REGID(vs->inputs[i].regid);
1406
1407 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DECODE(vfd_decode_idx), 2);
1408 tu_cs_emit(cs, vfd_decode);
1409 tu_cs_emit(cs, vfd_decode_step_rate);
1410
1411 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DEST_CNTL(vfd_decode_idx), 1);
1412 tu_cs_emit(cs, vfd_dest_cntl);
1413
1414 bindings[vfd_decode_idx] = vi_binding->binding;
1415 strides[vfd_decode_idx] = vi_binding->stride;
1416 offsets[vfd_decode_idx] = vi_attr->offset;
1417
1418 vfd_decode_idx++;
1419 assert(vfd_decode_idx <= MAX_VERTEX_ATTRIBS);
1420 }
1421
1422 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_0, 1);
1423 tu_cs_emit(
1424 cs, A6XX_VFD_CONTROL_0_VTXCNT(vfd_decode_idx) | (vfd_decode_idx << 8));
1425
1426 *count = vfd_decode_idx;
1427 }
1428
1429 static uint32_t
1430 tu6_guardband_adj(uint32_t v)
1431 {
1432 if (v > 256)
1433 return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0));
1434 else
1435 return 511;
1436 }
1437
1438 void
1439 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
1440 {
1441 float offsets[3];
1442 float scales[3];
1443 scales[0] = viewport->width / 2.0f;
1444 scales[1] = viewport->height / 2.0f;
1445 scales[2] = viewport->maxDepth - viewport->minDepth;
1446 offsets[0] = viewport->x + scales[0];
1447 offsets[1] = viewport->y + scales[1];
1448 offsets[2] = viewport->minDepth;
1449
1450 VkOffset2D min;
1451 VkOffset2D max;
1452 min.x = (int32_t) viewport->x;
1453 max.x = (int32_t) ceilf(viewport->x + viewport->width);
1454 if (viewport->height >= 0.0f) {
1455 min.y = (int32_t) viewport->y;
1456 max.y = (int32_t) ceilf(viewport->y + viewport->height);
1457 } else {
1458 min.y = (int32_t)(viewport->y + viewport->height);
1459 max.y = (int32_t) ceilf(viewport->y);
1460 }
1461 /* the spec allows viewport->height to be 0.0f */
1462 if (min.y == max.y)
1463 max.y++;
1464 assert(min.x >= 0 && min.x < max.x);
1465 assert(min.y >= 0 && min.y < max.y);
1466
1467 VkExtent2D guardband_adj;
1468 guardband_adj.width = tu6_guardband_adj(max.x - min.x);
1469 guardband_adj.height = tu6_guardband_adj(max.y - min.y);
1470
1471 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6);
1472 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XOFFSET_0(offsets[0]).value);
1473 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XSCALE_0(scales[0]).value);
1474 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YOFFSET_0(offsets[1]).value);
1475 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YSCALE_0(scales[1]).value);
1476 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZOFFSET_0(offsets[2]).value);
1477 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZSCALE_0(scales[2]).value);
1478
1479 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2);
1480 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(min.x) |
1481 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(min.y));
1482 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(max.x - 1) |
1483 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(max.y - 1));
1484
1485 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
1486 tu_cs_emit(cs,
1487 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
1488 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
1489
1490 float z_clamp_min = MIN2(viewport->minDepth, viewport->maxDepth);
1491 float z_clamp_max = MAX2(viewport->minDepth, viewport->maxDepth);
1492
1493 tu_cs_emit_regs(cs,
1494 A6XX_GRAS_CL_Z_CLAMP_MIN(z_clamp_min),
1495 A6XX_GRAS_CL_Z_CLAMP_MAX(z_clamp_max));
1496
1497 tu_cs_emit_regs(cs,
1498 A6XX_RB_Z_CLAMP_MIN(z_clamp_min),
1499 A6XX_RB_Z_CLAMP_MAX(z_clamp_max));
1500 }
1501
1502 void
1503 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
1504 {
1505 const VkOffset2D min = scissor->offset;
1506 const VkOffset2D max = {
1507 scissor->offset.x + scissor->extent.width,
1508 scissor->offset.y + scissor->extent.height,
1509 };
1510
1511 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0, 2);
1512 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(min.x) |
1513 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(min.y));
1514 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(max.x - 1) |
1515 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(max.y - 1));
1516 }
1517
1518 static void
1519 tu6_emit_gras_unknowns(struct tu_cs *cs)
1520 {
1521 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8001, 1);
1522 tu_cs_emit(cs, 0x0);
1523 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_LAYER_CNTL, 1);
1524 tu_cs_emit(cs, 0x0);
1525 }
1526
1527 static void
1528 tu6_emit_point_size(struct tu_cs *cs)
1529 {
1530 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POINT_MINMAX, 2);
1531 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_MINMAX_MIN(1.0f / 16.0f) |
1532 A6XX_GRAS_SU_POINT_MINMAX_MAX(4092.0f));
1533 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_SIZE(1.0f).value);
1534 }
1535
1536 static uint32_t
1537 tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
1538 VkSampleCountFlagBits samples)
1539 {
1540 uint32_t gras_su_cntl = 0;
1541
1542 if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
1543 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
1544 if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
1545 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
1546
1547 if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
1548 gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
1549
1550 /* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
1551
1552 if (rast_info->depthBiasEnable)
1553 gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
1554
1555 if (samples > VK_SAMPLE_COUNT_1_BIT)
1556 gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
1557
1558 return gras_su_cntl;
1559 }
1560
1561 void
1562 tu6_emit_gras_su_cntl(struct tu_cs *cs,
1563 uint32_t gras_su_cntl,
1564 float line_width)
1565 {
1566 assert((gras_su_cntl & A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK) == 0);
1567 gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(line_width / 2.0f);
1568
1569 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_CNTL, 1);
1570 tu_cs_emit(cs, gras_su_cntl);
1571 }
1572
1573 void
1574 tu6_emit_depth_bias(struct tu_cs *cs,
1575 float constant_factor,
1576 float clamp,
1577 float slope_factor)
1578 {
1579 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
1580 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor).value);
1581 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor).value);
1582 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp).value);
1583 }
1584
1585 static void
1586 tu6_emit_alpha_control_disable(struct tu_cs *cs)
1587 {
1588 tu_cs_emit_pkt4(cs, REG_A6XX_RB_ALPHA_CONTROL, 1);
1589 tu_cs_emit(cs, 0);
1590 }
1591
1592 static void
1593 tu6_emit_depth_control(struct tu_cs *cs,
1594 const VkPipelineDepthStencilStateCreateInfo *ds_info,
1595 const VkPipelineRasterizationStateCreateInfo *rast_info)
1596 {
1597 assert(!ds_info->depthBoundsTestEnable);
1598
1599 uint32_t rb_depth_cntl = 0;
1600 if (ds_info->depthTestEnable) {
1601 rb_depth_cntl |=
1602 A6XX_RB_DEPTH_CNTL_Z_ENABLE |
1603 A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
1604 A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
1605
1606 if (rast_info->depthClampEnable)
1607 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_CLAMP_ENABLE;
1608
1609 if (ds_info->depthWriteEnable)
1610 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
1611 }
1612
1613 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
1614 tu_cs_emit(cs, rb_depth_cntl);
1615 }
1616
1617 static void
1618 tu6_emit_stencil_control(struct tu_cs *cs,
1619 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1620 {
1621 uint32_t rb_stencil_control = 0;
1622 if (ds_info->stencilTestEnable) {
1623 const VkStencilOpState *front = &ds_info->front;
1624 const VkStencilOpState *back = &ds_info->back;
1625 rb_stencil_control |=
1626 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
1627 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
1628 A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
1629 A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
1630 A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
1631 A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
1632 A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
1633 A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
1634 A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
1635 A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
1636 A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
1637 }
1638
1639 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
1640 tu_cs_emit(cs, rb_stencil_control);
1641 }
1642
1643 void
1644 tu6_emit_stencil_compare_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1645 {
1646 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILMASK, 1);
1647 tu_cs_emit(
1648 cs, A6XX_RB_STENCILMASK_MASK(front) | A6XX_RB_STENCILMASK_BFMASK(back));
1649 }
1650
1651 void
1652 tu6_emit_stencil_write_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1653 {
1654 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILWRMASK, 1);
1655 tu_cs_emit(cs, A6XX_RB_STENCILWRMASK_WRMASK(front) |
1656 A6XX_RB_STENCILWRMASK_BFWRMASK(back));
1657 }
1658
1659 void
1660 tu6_emit_stencil_reference(struct tu_cs *cs, uint32_t front, uint32_t back)
1661 {
1662 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILREF, 1);
1663 tu_cs_emit(cs,
1664 A6XX_RB_STENCILREF_REF(front) | A6XX_RB_STENCILREF_BFREF(back));
1665 }
1666
1667 static uint32_t
1668 tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
1669 bool has_alpha)
1670 {
1671 const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
1672 const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
1673 has_alpha ? att->srcColorBlendFactor
1674 : tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
1675 const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
1676 has_alpha ? att->dstColorBlendFactor
1677 : tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
1678 const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
1679 const enum adreno_rb_blend_factor src_alpha_factor =
1680 tu6_blend_factor(att->srcAlphaBlendFactor);
1681 const enum adreno_rb_blend_factor dst_alpha_factor =
1682 tu6_blend_factor(att->dstAlphaBlendFactor);
1683
1684 return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
1685 A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
1686 A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
1687 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
1688 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
1689 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
1690 }
1691
1692 static uint32_t
1693 tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
1694 uint32_t rb_mrt_control_rop,
1695 bool is_int,
1696 bool has_alpha)
1697 {
1698 uint32_t rb_mrt_control =
1699 A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
1700
1701 /* ignore blending and logic op for integer attachments */
1702 if (is_int) {
1703 rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
1704 return rb_mrt_control;
1705 }
1706
1707 rb_mrt_control |= rb_mrt_control_rop;
1708
1709 if (att->blendEnable) {
1710 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
1711
1712 if (has_alpha)
1713 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
1714 }
1715
1716 return rb_mrt_control;
1717 }
1718
1719 static void
1720 tu6_emit_rb_mrt_controls(struct tu_cs *cs,
1721 const VkPipelineColorBlendStateCreateInfo *blend_info,
1722 const VkFormat attachment_formats[MAX_RTS],
1723 uint32_t *blend_enable_mask)
1724 {
1725 *blend_enable_mask = 0;
1726
1727 bool rop_reads_dst = false;
1728 uint32_t rb_mrt_control_rop = 0;
1729 if (blend_info->logicOpEnable) {
1730 rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
1731 rb_mrt_control_rop =
1732 A6XX_RB_MRT_CONTROL_ROP_ENABLE |
1733 A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
1734 }
1735
1736 for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
1737 const VkPipelineColorBlendAttachmentState *att =
1738 &blend_info->pAttachments[i];
1739 const VkFormat format = attachment_formats[i];
1740
1741 uint32_t rb_mrt_control = 0;
1742 uint32_t rb_mrt_blend_control = 0;
1743 if (format != VK_FORMAT_UNDEFINED) {
1744 const bool is_int = vk_format_is_int(format);
1745 const bool has_alpha = vk_format_has_alpha(format);
1746
1747 rb_mrt_control =
1748 tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
1749 rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
1750
1751 if (att->blendEnable || rop_reads_dst)
1752 *blend_enable_mask |= 1 << i;
1753 }
1754
1755 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1756 tu_cs_emit(cs, rb_mrt_control);
1757 tu_cs_emit(cs, rb_mrt_blend_control);
1758 }
1759 }
1760
1761 static void
1762 tu6_emit_blend_control(struct tu_cs *cs,
1763 uint32_t blend_enable_mask,
1764 const VkPipelineMultisampleStateCreateInfo *msaa_info)
1765 {
1766 assert(!msaa_info->alphaToOneEnable);
1767
1768 uint32_t sp_blend_cntl = A6XX_SP_BLEND_CNTL_UNK8;
1769 if (blend_enable_mask)
1770 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ENABLED;
1771 if (msaa_info->alphaToCoverageEnable)
1772 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ALPHA_TO_COVERAGE;
1773
1774 const uint32_t sample_mask =
1775 msaa_info->pSampleMask ? *msaa_info->pSampleMask
1776 : ((1 << msaa_info->rasterizationSamples) - 1);
1777
1778 /* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
1779 uint32_t rb_blend_cntl =
1780 A6XX_RB_BLEND_CNTL_ENABLE_BLEND(blend_enable_mask) |
1781 A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND |
1782 A6XX_RB_BLEND_CNTL_SAMPLE_MASK(sample_mask);
1783 if (msaa_info->alphaToCoverageEnable)
1784 rb_blend_cntl |= A6XX_RB_BLEND_CNTL_ALPHA_TO_COVERAGE;
1785
1786 tu_cs_emit_pkt4(cs, REG_A6XX_SP_BLEND_CNTL, 1);
1787 tu_cs_emit(cs, sp_blend_cntl);
1788
1789 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_CNTL, 1);
1790 tu_cs_emit(cs, rb_blend_cntl);
1791 }
1792
1793 void
1794 tu6_emit_blend_constants(struct tu_cs *cs, const float constants[4])
1795 {
1796 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_RED_F32, 4);
1797 tu_cs_emit_array(cs, (const uint32_t *) constants, 4);
1798 }
1799
1800 static VkResult
1801 tu_pipeline_create(struct tu_device *dev,
1802 const VkAllocationCallbacks *pAllocator,
1803 struct tu_pipeline **out_pipeline)
1804 {
1805 struct tu_pipeline *pipeline =
1806 vk_zalloc2(&dev->alloc, pAllocator, sizeof(*pipeline), 8,
1807 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1808 if (!pipeline)
1809 return VK_ERROR_OUT_OF_HOST_MEMORY;
1810
1811 tu_cs_init(&pipeline->cs, dev, TU_CS_MODE_SUB_STREAM, 2048);
1812
1813 /* reserve the space now such that tu_cs_begin_sub_stream never fails */
1814 VkResult result = tu_cs_reserve_space(&pipeline->cs, 2048);
1815 if (result != VK_SUCCESS) {
1816 vk_free2(&dev->alloc, pAllocator, pipeline);
1817 return result;
1818 }
1819
1820 *out_pipeline = pipeline;
1821
1822 return VK_SUCCESS;
1823 }
1824
1825 static VkResult
1826 tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder)
1827 {
1828 const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
1829 NULL
1830 };
1831 for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
1832 gl_shader_stage stage =
1833 tu_shader_stage(builder->create_info->pStages[i].stage);
1834 stage_infos[stage] = &builder->create_info->pStages[i];
1835 }
1836
1837 struct tu_shader_compile_options options;
1838 tu_shader_compile_options_init(&options, builder->create_info);
1839
1840 /* compile shaders in reverse order */
1841 struct tu_shader *next_stage_shader = NULL;
1842 for (gl_shader_stage stage = MESA_SHADER_STAGES - 1;
1843 stage > MESA_SHADER_NONE; stage--) {
1844 const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
1845 if (!stage_info)
1846 continue;
1847
1848 struct tu_shader *shader =
1849 tu_shader_create(builder->device, stage, stage_info, builder->layout,
1850 builder->alloc);
1851 if (!shader)
1852 return VK_ERROR_OUT_OF_HOST_MEMORY;
1853
1854 VkResult result =
1855 tu_shader_compile(builder->device, shader, next_stage_shader,
1856 &options, builder->alloc);
1857 if (result != VK_SUCCESS)
1858 return result;
1859
1860 builder->shaders[stage] = shader;
1861 builder->shader_offsets[stage] = builder->shader_total_size;
1862 builder->shader_total_size +=
1863 sizeof(uint32_t) * shader->variants[0].info.sizedwords;
1864
1865 next_stage_shader = shader;
1866 }
1867
1868 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
1869 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1870 const struct ir3_shader_variant *variant;
1871
1872 if (vs->ir3_shader.stream_output.num_outputs)
1873 variant = &vs->variants[0];
1874 else
1875 variant = &vs->variants[1];
1876
1877 builder->binning_vs_offset = builder->shader_total_size;
1878 builder->shader_total_size +=
1879 sizeof(uint32_t) * variant->info.sizedwords;
1880 }
1881
1882 return VK_SUCCESS;
1883 }
1884
1885 static VkResult
1886 tu_pipeline_builder_upload_shaders(struct tu_pipeline_builder *builder,
1887 struct tu_pipeline *pipeline)
1888 {
1889 struct tu_bo *bo = &pipeline->program.binary_bo;
1890
1891 VkResult result =
1892 tu_bo_init_new(builder->device, bo, builder->shader_total_size);
1893 if (result != VK_SUCCESS)
1894 return result;
1895
1896 result = tu_bo_map(builder->device, bo);
1897 if (result != VK_SUCCESS)
1898 return result;
1899
1900 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
1901 const struct tu_shader *shader = builder->shaders[i];
1902 if (!shader)
1903 continue;
1904
1905 memcpy(bo->map + builder->shader_offsets[i], shader->binary,
1906 sizeof(uint32_t) * shader->variants[0].info.sizedwords);
1907 }
1908
1909 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
1910 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1911 const struct ir3_shader_variant *variant;
1912 void *bin;
1913
1914 if (vs->ir3_shader.stream_output.num_outputs) {
1915 variant = &vs->variants[0];
1916 bin = vs->binary;
1917 } else {
1918 variant = &vs->variants[1];
1919 bin = vs->binning_binary;
1920 }
1921
1922 memcpy(bo->map + builder->binning_vs_offset, bin,
1923 sizeof(uint32_t) * variant->info.sizedwords);
1924 }
1925
1926 return VK_SUCCESS;
1927 }
1928
1929 static void
1930 tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
1931 struct tu_pipeline *pipeline)
1932 {
1933 const VkPipelineDynamicStateCreateInfo *dynamic_info =
1934 builder->create_info->pDynamicState;
1935
1936 if (!dynamic_info)
1937 return;
1938
1939 for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
1940 pipeline->dynamic_state.mask |=
1941 tu_dynamic_state_bit(dynamic_info->pDynamicStates[i]);
1942 }
1943 }
1944
1945 static void
1946 tu_pipeline_set_linkage(struct tu_program_descriptor_linkage *link,
1947 struct tu_shader *shader,
1948 struct ir3_shader_variant *v)
1949 {
1950 link->ubo_state = v->shader->ubo_state;
1951 link->const_state = v->shader->const_state;
1952 link->constlen = v->constlen;
1953 link->texture_map = shader->texture_map;
1954 link->sampler_map = shader->sampler_map;
1955 link->ubo_map = shader->ubo_map;
1956 link->ssbo_map = shader->ssbo_map;
1957 link->image_map = shader->image_map;
1958 }
1959
1960 static void
1961 tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
1962 struct tu_pipeline *pipeline)
1963 {
1964 struct tu_cs prog_cs;
1965 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
1966 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, false, &pipeline->streamout);
1967 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
1968
1969 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
1970 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, true, &pipeline->streamout);
1971 pipeline->program.binning_state_ib =
1972 tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
1973
1974 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1975 if (!builder->shaders[i])
1976 continue;
1977
1978 tu_pipeline_set_linkage(&pipeline->program.link[i],
1979 builder->shaders[i],
1980 &builder->shaders[i]->variants[0]);
1981 }
1982 }
1983
1984 static void
1985 tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
1986 struct tu_pipeline *pipeline)
1987 {
1988 const VkPipelineVertexInputStateCreateInfo *vi_info =
1989 builder->create_info->pVertexInputState;
1990 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1991
1992 struct tu_cs vi_cs;
1993 tu_cs_begin_sub_stream(&pipeline->cs,
1994 MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
1995 tu6_emit_vertex_input(&vi_cs, &vs->variants[0], vi_info,
1996 pipeline->vi.bindings, pipeline->vi.strides,
1997 pipeline->vi.offsets, &pipeline->vi.count);
1998 pipeline->vi.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
1999
2000 if (vs->has_binning_pass) {
2001 tu_cs_begin_sub_stream(&pipeline->cs,
2002 MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
2003 tu6_emit_vertex_input(
2004 &vi_cs, &vs->variants[1], vi_info, pipeline->vi.binning_bindings,
2005 pipeline->vi.binning_strides, pipeline->vi.binning_offsets,
2006 &pipeline->vi.binning_count);
2007 pipeline->vi.binning_state_ib =
2008 tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
2009 }
2010 }
2011
2012 static void
2013 tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
2014 struct tu_pipeline *pipeline)
2015 {
2016 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
2017 builder->create_info->pInputAssemblyState;
2018
2019 pipeline->ia.primtype = tu6_primtype(ia_info->topology);
2020 pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
2021 }
2022
2023 static void
2024 tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
2025 struct tu_pipeline *pipeline)
2026 {
2027 /* The spec says:
2028 *
2029 * pViewportState is a pointer to an instance of the
2030 * VkPipelineViewportStateCreateInfo structure, and is ignored if the
2031 * pipeline has rasterization disabled."
2032 *
2033 * We leave the relevant registers stale in that case.
2034 */
2035 if (builder->rasterizer_discard)
2036 return;
2037
2038 const VkPipelineViewportStateCreateInfo *vp_info =
2039 builder->create_info->pViewportState;
2040
2041 struct tu_cs vp_cs;
2042 tu_cs_begin_sub_stream(&pipeline->cs, 21, &vp_cs);
2043
2044 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_VIEWPORT)) {
2045 assert(vp_info->viewportCount == 1);
2046 tu6_emit_viewport(&vp_cs, vp_info->pViewports);
2047 }
2048
2049 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SCISSOR)) {
2050 assert(vp_info->scissorCount == 1);
2051 tu6_emit_scissor(&vp_cs, vp_info->pScissors);
2052 }
2053
2054 pipeline->vp.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vp_cs);
2055 }
2056
2057 static void
2058 tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
2059 struct tu_pipeline *pipeline)
2060 {
2061 const VkPipelineRasterizationStateCreateInfo *rast_info =
2062 builder->create_info->pRasterizationState;
2063
2064 assert(rast_info->polygonMode == VK_POLYGON_MODE_FILL);
2065
2066 struct tu_cs rast_cs;
2067 tu_cs_begin_sub_stream(&pipeline->cs, 20, &rast_cs);
2068
2069
2070 tu_cs_emit_regs(&rast_cs,
2071 A6XX_GRAS_CL_CNTL(
2072 .znear_clip_disable = rast_info->depthClampEnable,
2073 .zfar_clip_disable = rast_info->depthClampEnable,
2074 .unk5 = rast_info->depthClampEnable,
2075 .zero_gb_scale_z = 1,
2076 .vp_clip_code_ignore = 1));
2077 /* move to hw ctx init? */
2078 tu6_emit_gras_unknowns(&rast_cs);
2079 tu6_emit_point_size(&rast_cs);
2080
2081 const uint32_t gras_su_cntl =
2082 tu6_gras_su_cntl(rast_info, builder->samples);
2083
2084 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_LINE_WIDTH))
2085 tu6_emit_gras_su_cntl(&rast_cs, gras_su_cntl, rast_info->lineWidth);
2086
2087 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_DEPTH_BIAS)) {
2088 tu6_emit_depth_bias(&rast_cs, rast_info->depthBiasConstantFactor,
2089 rast_info->depthBiasClamp,
2090 rast_info->depthBiasSlopeFactor);
2091 }
2092
2093 pipeline->rast.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &rast_cs);
2094
2095 pipeline->rast.gras_su_cntl = gras_su_cntl;
2096 }
2097
2098 static void
2099 tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
2100 struct tu_pipeline *pipeline)
2101 {
2102 /* The spec says:
2103 *
2104 * pDepthStencilState is a pointer to an instance of the
2105 * VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
2106 * the pipeline has rasterization disabled or if the subpass of the
2107 * render pass the pipeline is created against does not use a
2108 * depth/stencil attachment.
2109 *
2110 * We disable both depth and stenil tests in those cases.
2111 */
2112 static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
2113 const VkPipelineDepthStencilStateCreateInfo *ds_info =
2114 builder->use_depth_stencil_attachment
2115 ? builder->create_info->pDepthStencilState
2116 : &dummy_ds_info;
2117
2118 struct tu_cs ds_cs;
2119 tu_cs_begin_sub_stream(&pipeline->cs, 12, &ds_cs);
2120
2121 /* move to hw ctx init? */
2122 tu6_emit_alpha_control_disable(&ds_cs);
2123
2124 tu6_emit_depth_control(&ds_cs, ds_info, builder->create_info->pRasterizationState);
2125 tu6_emit_stencil_control(&ds_cs, ds_info);
2126
2127 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_COMPARE_MASK)) {
2128 tu6_emit_stencil_compare_mask(&ds_cs, ds_info->front.compareMask,
2129 ds_info->back.compareMask);
2130 }
2131 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_WRITE_MASK)) {
2132 tu6_emit_stencil_write_mask(&ds_cs, ds_info->front.writeMask,
2133 ds_info->back.writeMask);
2134 }
2135 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_REFERENCE)) {
2136 tu6_emit_stencil_reference(&ds_cs, ds_info->front.reference,
2137 ds_info->back.reference);
2138 }
2139
2140 pipeline->ds.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &ds_cs);
2141 }
2142
2143 static void
2144 tu_pipeline_builder_parse_multisample_and_color_blend(
2145 struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
2146 {
2147 /* The spec says:
2148 *
2149 * pMultisampleState is a pointer to an instance of the
2150 * VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
2151 * has rasterization disabled.
2152 *
2153 * Also,
2154 *
2155 * pColorBlendState is a pointer to an instance of the
2156 * VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
2157 * pipeline has rasterization disabled or if the subpass of the render
2158 * pass the pipeline is created against does not use any color
2159 * attachments.
2160 *
2161 * We leave the relevant registers stale when rasterization is disabled.
2162 */
2163 if (builder->rasterizer_discard)
2164 return;
2165
2166 static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
2167 const VkPipelineMultisampleStateCreateInfo *msaa_info =
2168 builder->create_info->pMultisampleState;
2169 const VkPipelineColorBlendStateCreateInfo *blend_info =
2170 builder->use_color_attachments ? builder->create_info->pColorBlendState
2171 : &dummy_blend_info;
2172
2173 struct tu_cs blend_cs;
2174 tu_cs_begin_sub_stream(&pipeline->cs, MAX_RTS * 3 + 9, &blend_cs);
2175
2176 uint32_t blend_enable_mask;
2177 tu6_emit_rb_mrt_controls(&blend_cs, blend_info,
2178 builder->color_attachment_formats,
2179 &blend_enable_mask);
2180
2181 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_BLEND_CONSTANTS))
2182 tu6_emit_blend_constants(&blend_cs, blend_info->blendConstants);
2183
2184 tu6_emit_blend_control(&blend_cs, blend_enable_mask, msaa_info);
2185
2186 pipeline->blend.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &blend_cs);
2187 }
2188
2189 static void
2190 tu_pipeline_finish(struct tu_pipeline *pipeline,
2191 struct tu_device *dev,
2192 const VkAllocationCallbacks *alloc)
2193 {
2194 tu_cs_finish(&pipeline->cs);
2195
2196 if (pipeline->program.binary_bo.gem_handle)
2197 tu_bo_finish(dev, &pipeline->program.binary_bo);
2198 }
2199
2200 static VkResult
2201 tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
2202 struct tu_pipeline **pipeline)
2203 {
2204 VkResult result = tu_pipeline_create(builder->device, builder->alloc,
2205 pipeline);
2206 if (result != VK_SUCCESS)
2207 return result;
2208
2209 /* compile and upload shaders */
2210 result = tu_pipeline_builder_compile_shaders(builder);
2211 if (result == VK_SUCCESS)
2212 result = tu_pipeline_builder_upload_shaders(builder, *pipeline);
2213 if (result != VK_SUCCESS) {
2214 tu_pipeline_finish(*pipeline, builder->device, builder->alloc);
2215 vk_free2(&builder->device->alloc, builder->alloc, *pipeline);
2216 *pipeline = VK_NULL_HANDLE;
2217
2218 return result;
2219 }
2220
2221 tu_pipeline_builder_parse_dynamic(builder, *pipeline);
2222 tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
2223 tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
2224 tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
2225 tu_pipeline_builder_parse_viewport(builder, *pipeline);
2226 tu_pipeline_builder_parse_rasterization(builder, *pipeline);
2227 tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
2228 tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
2229
2230 /* we should have reserved enough space upfront such that the CS never
2231 * grows
2232 */
2233 assert((*pipeline)->cs.bo_count == 1);
2234
2235 return VK_SUCCESS;
2236 }
2237
2238 static void
2239 tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
2240 {
2241 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
2242 if (!builder->shaders[i])
2243 continue;
2244 tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
2245 }
2246 }
2247
2248 static void
2249 tu_pipeline_builder_init_graphics(
2250 struct tu_pipeline_builder *builder,
2251 struct tu_device *dev,
2252 struct tu_pipeline_cache *cache,
2253 const VkGraphicsPipelineCreateInfo *create_info,
2254 const VkAllocationCallbacks *alloc)
2255 {
2256 TU_FROM_HANDLE(tu_pipeline_layout, layout, create_info->layout);
2257
2258 *builder = (struct tu_pipeline_builder) {
2259 .device = dev,
2260 .cache = cache,
2261 .create_info = create_info,
2262 .alloc = alloc,
2263 .layout = layout,
2264 };
2265
2266 builder->rasterizer_discard =
2267 create_info->pRasterizationState->rasterizerDiscardEnable;
2268
2269 if (builder->rasterizer_discard) {
2270 builder->samples = VK_SAMPLE_COUNT_1_BIT;
2271 } else {
2272 builder->samples = create_info->pMultisampleState->rasterizationSamples;
2273
2274 const struct tu_render_pass *pass =
2275 tu_render_pass_from_handle(create_info->renderPass);
2276 const struct tu_subpass *subpass =
2277 &pass->subpasses[create_info->subpass];
2278
2279 builder->use_depth_stencil_attachment =
2280 subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED;
2281
2282 assert(subpass->color_count == 0 ||
2283 !create_info->pColorBlendState ||
2284 subpass->color_count == create_info->pColorBlendState->attachmentCount);
2285 builder->color_attachment_count = subpass->color_count;
2286 for (uint32_t i = 0; i < subpass->color_count; i++) {
2287 const uint32_t a = subpass->color_attachments[i].attachment;
2288 if (a == VK_ATTACHMENT_UNUSED)
2289 continue;
2290
2291 builder->color_attachment_formats[i] = pass->attachments[a].format;
2292 builder->use_color_attachments = true;
2293 }
2294 }
2295 }
2296
2297 static VkResult
2298 tu_graphics_pipeline_create(VkDevice device,
2299 VkPipelineCache pipelineCache,
2300 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2301 const VkAllocationCallbacks *pAllocator,
2302 VkPipeline *pPipeline)
2303 {
2304 TU_FROM_HANDLE(tu_device, dev, device);
2305 TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
2306
2307 struct tu_pipeline_builder builder;
2308 tu_pipeline_builder_init_graphics(&builder, dev, cache,
2309 pCreateInfo, pAllocator);
2310
2311 struct tu_pipeline *pipeline = NULL;
2312 VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
2313 tu_pipeline_builder_finish(&builder);
2314
2315 if (result == VK_SUCCESS)
2316 *pPipeline = tu_pipeline_to_handle(pipeline);
2317 else
2318 *pPipeline = VK_NULL_HANDLE;
2319
2320 return result;
2321 }
2322
2323 VkResult
2324 tu_CreateGraphicsPipelines(VkDevice device,
2325 VkPipelineCache pipelineCache,
2326 uint32_t count,
2327 const VkGraphicsPipelineCreateInfo *pCreateInfos,
2328 const VkAllocationCallbacks *pAllocator,
2329 VkPipeline *pPipelines)
2330 {
2331 VkResult final_result = VK_SUCCESS;
2332
2333 for (uint32_t i = 0; i < count; i++) {
2334 VkResult result = tu_graphics_pipeline_create(device, pipelineCache,
2335 &pCreateInfos[i], pAllocator,
2336 &pPipelines[i]);
2337
2338 if (result != VK_SUCCESS)
2339 final_result = result;
2340 }
2341
2342 return final_result;
2343 }
2344
2345 static void
2346 tu6_emit_compute_program(struct tu_cs *cs,
2347 struct tu_shader *shader,
2348 const struct tu_bo *binary_bo)
2349 {
2350 const struct ir3_shader_variant *v = &shader->variants[0];
2351
2352 tu6_emit_cs_config(cs, shader, v);
2353
2354 /* The compute program is the only one in the pipeline, so 0 offset. */
2355 tu6_emit_shader_object(cs, MESA_SHADER_COMPUTE, v, binary_bo, 0);
2356
2357 tu6_emit_immediates(cs, v, CP_LOAD_STATE6_FRAG, SB6_CS_SHADER);
2358 }
2359
2360 static VkResult
2361 tu_compute_upload_shader(VkDevice device,
2362 struct tu_pipeline *pipeline,
2363 struct tu_shader *shader)
2364 {
2365 TU_FROM_HANDLE(tu_device, dev, device);
2366 struct tu_bo *bo = &pipeline->program.binary_bo;
2367 struct ir3_shader_variant *v = &shader->variants[0];
2368
2369 uint32_t shader_size = sizeof(uint32_t) * v->info.sizedwords;
2370 VkResult result =
2371 tu_bo_init_new(dev, bo, shader_size);
2372 if (result != VK_SUCCESS)
2373 return result;
2374
2375 result = tu_bo_map(dev, bo);
2376 if (result != VK_SUCCESS)
2377 return result;
2378
2379 memcpy(bo->map, shader->binary, shader_size);
2380
2381 return VK_SUCCESS;
2382 }
2383
2384
2385 static VkResult
2386 tu_compute_pipeline_create(VkDevice device,
2387 VkPipelineCache _cache,
2388 const VkComputePipelineCreateInfo *pCreateInfo,
2389 const VkAllocationCallbacks *pAllocator,
2390 VkPipeline *pPipeline)
2391 {
2392 TU_FROM_HANDLE(tu_device, dev, device);
2393 TU_FROM_HANDLE(tu_pipeline_layout, layout, pCreateInfo->layout);
2394 const VkPipelineShaderStageCreateInfo *stage_info = &pCreateInfo->stage;
2395 VkResult result;
2396
2397 struct tu_pipeline *pipeline;
2398
2399 *pPipeline = VK_NULL_HANDLE;
2400
2401 result = tu_pipeline_create(dev, pAllocator, &pipeline);
2402 if (result != VK_SUCCESS)
2403 return result;
2404
2405 pipeline->layout = layout;
2406
2407 struct tu_shader_compile_options options;
2408 tu_shader_compile_options_init(&options, NULL);
2409
2410 struct tu_shader *shader =
2411 tu_shader_create(dev, MESA_SHADER_COMPUTE, stage_info, layout, pAllocator);
2412 if (!shader) {
2413 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2414 goto fail;
2415 }
2416
2417 result = tu_shader_compile(dev, shader, NULL, &options, pAllocator);
2418 if (result != VK_SUCCESS)
2419 goto fail;
2420
2421 struct ir3_shader_variant *v = &shader->variants[0];
2422
2423 tu_pipeline_set_linkage(&pipeline->program.link[MESA_SHADER_COMPUTE],
2424 shader, v);
2425
2426 result = tu_compute_upload_shader(device, pipeline, shader);
2427 if (result != VK_SUCCESS)
2428 goto fail;
2429
2430 for (int i = 0; i < 3; i++)
2431 pipeline->compute.local_size[i] = v->shader->nir->info.cs.local_size[i];
2432
2433 struct tu_cs prog_cs;
2434 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2435 tu6_emit_compute_program(&prog_cs, shader, &pipeline->program.binary_bo);
2436 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2437
2438 *pPipeline = tu_pipeline_to_handle(pipeline);
2439 return VK_SUCCESS;
2440
2441 fail:
2442 if (shader)
2443 tu_shader_destroy(dev, shader, pAllocator);
2444
2445 tu_pipeline_finish(pipeline, dev, pAllocator);
2446 vk_free2(&dev->alloc, pAllocator, pipeline);
2447
2448 return result;
2449 }
2450
2451 VkResult
2452 tu_CreateComputePipelines(VkDevice device,
2453 VkPipelineCache pipelineCache,
2454 uint32_t count,
2455 const VkComputePipelineCreateInfo *pCreateInfos,
2456 const VkAllocationCallbacks *pAllocator,
2457 VkPipeline *pPipelines)
2458 {
2459 VkResult final_result = VK_SUCCESS;
2460
2461 for (uint32_t i = 0; i < count; i++) {
2462 VkResult result = tu_compute_pipeline_create(device, pipelineCache,
2463 &pCreateInfos[i],
2464 pAllocator, &pPipelines[i]);
2465 if (result != VK_SUCCESS)
2466 final_result = result;
2467 }
2468
2469 return final_result;
2470 }
2471
2472 void
2473 tu_DestroyPipeline(VkDevice _device,
2474 VkPipeline _pipeline,
2475 const VkAllocationCallbacks *pAllocator)
2476 {
2477 TU_FROM_HANDLE(tu_device, dev, _device);
2478 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2479
2480 if (!_pipeline)
2481 return;
2482
2483 tu_pipeline_finish(pipeline, dev, pAllocator);
2484 vk_free2(&dev->alloc, pAllocator, pipeline);
2485 }