turnip: Port krh's packing macros from freedreno to tu.
[mesa.git] / src / freedreno / vulkan / tu_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "main/menums.h"
31 #include "nir/nir.h"
32 #include "nir/nir_builder.h"
33 #include "spirv/nir_spirv.h"
34 #include "util/debug.h"
35 #include "util/mesa-sha1.h"
36 #include "util/u_atomic.h"
37 #include "vk_format.h"
38 #include "vk_util.h"
39
40 #include "tu_cs.h"
41
42 struct tu_pipeline_builder
43 {
44 struct tu_device *device;
45 struct tu_pipeline_cache *cache;
46 struct tu_pipeline_layout *layout;
47 const VkAllocationCallbacks *alloc;
48 const VkGraphicsPipelineCreateInfo *create_info;
49
50 struct tu_shader *shaders[MESA_SHADER_STAGES];
51 uint32_t shader_offsets[MESA_SHADER_STAGES];
52 uint32_t binning_vs_offset;
53 uint32_t shader_total_size;
54
55 bool rasterizer_discard;
56 /* these states are affectd by rasterizer_discard */
57 VkSampleCountFlagBits samples;
58 bool use_depth_stencil_attachment;
59 bool use_color_attachments;
60 uint32_t color_attachment_count;
61 VkFormat color_attachment_formats[MAX_RTS];
62 };
63
64 static enum tu_dynamic_state_bits
65 tu_dynamic_state_bit(VkDynamicState state)
66 {
67 switch (state) {
68 case VK_DYNAMIC_STATE_VIEWPORT:
69 return TU_DYNAMIC_VIEWPORT;
70 case VK_DYNAMIC_STATE_SCISSOR:
71 return TU_DYNAMIC_SCISSOR;
72 case VK_DYNAMIC_STATE_LINE_WIDTH:
73 return TU_DYNAMIC_LINE_WIDTH;
74 case VK_DYNAMIC_STATE_DEPTH_BIAS:
75 return TU_DYNAMIC_DEPTH_BIAS;
76 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
77 return TU_DYNAMIC_BLEND_CONSTANTS;
78 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
79 return TU_DYNAMIC_DEPTH_BOUNDS;
80 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
81 return TU_DYNAMIC_STENCIL_COMPARE_MASK;
82 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
83 return TU_DYNAMIC_STENCIL_WRITE_MASK;
84 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
85 return TU_DYNAMIC_STENCIL_REFERENCE;
86 default:
87 unreachable("invalid dynamic state");
88 return 0;
89 }
90 }
91
92 static gl_shader_stage
93 tu_shader_stage(VkShaderStageFlagBits stage)
94 {
95 switch (stage) {
96 case VK_SHADER_STAGE_VERTEX_BIT:
97 return MESA_SHADER_VERTEX;
98 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
99 return MESA_SHADER_TESS_CTRL;
100 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
101 return MESA_SHADER_TESS_EVAL;
102 case VK_SHADER_STAGE_GEOMETRY_BIT:
103 return MESA_SHADER_GEOMETRY;
104 case VK_SHADER_STAGE_FRAGMENT_BIT:
105 return MESA_SHADER_FRAGMENT;
106 case VK_SHADER_STAGE_COMPUTE_BIT:
107 return MESA_SHADER_COMPUTE;
108 default:
109 unreachable("invalid VkShaderStageFlagBits");
110 return MESA_SHADER_NONE;
111 }
112 }
113
114 static const VkVertexInputAttributeDescription *
115 tu_find_vertex_input_attribute(
116 const VkPipelineVertexInputStateCreateInfo *vi_info, uint32_t slot)
117 {
118 assert(slot >= VERT_ATTRIB_GENERIC0);
119 slot -= VERT_ATTRIB_GENERIC0;
120 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
121 if (vi_info->pVertexAttributeDescriptions[i].location == slot)
122 return &vi_info->pVertexAttributeDescriptions[i];
123 }
124 return NULL;
125 }
126
127 static const VkVertexInputBindingDescription *
128 tu_find_vertex_input_binding(
129 const VkPipelineVertexInputStateCreateInfo *vi_info,
130 const VkVertexInputAttributeDescription *vi_attr)
131 {
132 assert(vi_attr);
133 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
134 if (vi_info->pVertexBindingDescriptions[i].binding == vi_attr->binding)
135 return &vi_info->pVertexBindingDescriptions[i];
136 }
137 return NULL;
138 }
139
140 static bool
141 tu_logic_op_reads_dst(VkLogicOp op)
142 {
143 switch (op) {
144 case VK_LOGIC_OP_CLEAR:
145 case VK_LOGIC_OP_COPY:
146 case VK_LOGIC_OP_COPY_INVERTED:
147 case VK_LOGIC_OP_SET:
148 return false;
149 default:
150 return true;
151 }
152 }
153
154 static VkBlendFactor
155 tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
156 {
157 /* treat dst alpha as 1.0 and avoid reading it */
158 switch (factor) {
159 case VK_BLEND_FACTOR_DST_ALPHA:
160 return VK_BLEND_FACTOR_ONE;
161 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
162 return VK_BLEND_FACTOR_ZERO;
163 default:
164 return factor;
165 }
166 }
167
168 static enum pc_di_primtype
169 tu6_primtype(VkPrimitiveTopology topology)
170 {
171 switch (topology) {
172 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
173 return DI_PT_POINTLIST;
174 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
175 return DI_PT_LINELIST;
176 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
177 return DI_PT_LINESTRIP;
178 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
179 return DI_PT_TRILIST;
180 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
181 return DI_PT_TRISTRIP;
182 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
183 return DI_PT_TRIFAN;
184 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
185 return DI_PT_LINE_ADJ;
186 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
187 return DI_PT_LINESTRIP_ADJ;
188 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
189 return DI_PT_TRI_ADJ;
190 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
191 return DI_PT_TRISTRIP_ADJ;
192 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
193 default:
194 unreachable("invalid primitive topology");
195 return DI_PT_NONE;
196 }
197 }
198
199 static enum adreno_compare_func
200 tu6_compare_func(VkCompareOp op)
201 {
202 switch (op) {
203 case VK_COMPARE_OP_NEVER:
204 return FUNC_NEVER;
205 case VK_COMPARE_OP_LESS:
206 return FUNC_LESS;
207 case VK_COMPARE_OP_EQUAL:
208 return FUNC_EQUAL;
209 case VK_COMPARE_OP_LESS_OR_EQUAL:
210 return FUNC_LEQUAL;
211 case VK_COMPARE_OP_GREATER:
212 return FUNC_GREATER;
213 case VK_COMPARE_OP_NOT_EQUAL:
214 return FUNC_NOTEQUAL;
215 case VK_COMPARE_OP_GREATER_OR_EQUAL:
216 return FUNC_GEQUAL;
217 case VK_COMPARE_OP_ALWAYS:
218 return FUNC_ALWAYS;
219 default:
220 unreachable("invalid VkCompareOp");
221 return FUNC_NEVER;
222 }
223 }
224
225 static enum adreno_stencil_op
226 tu6_stencil_op(VkStencilOp op)
227 {
228 switch (op) {
229 case VK_STENCIL_OP_KEEP:
230 return STENCIL_KEEP;
231 case VK_STENCIL_OP_ZERO:
232 return STENCIL_ZERO;
233 case VK_STENCIL_OP_REPLACE:
234 return STENCIL_REPLACE;
235 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
236 return STENCIL_INCR_CLAMP;
237 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
238 return STENCIL_DECR_CLAMP;
239 case VK_STENCIL_OP_INVERT:
240 return STENCIL_INVERT;
241 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
242 return STENCIL_INCR_WRAP;
243 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
244 return STENCIL_DECR_WRAP;
245 default:
246 unreachable("invalid VkStencilOp");
247 return STENCIL_KEEP;
248 }
249 }
250
251 static enum a3xx_rop_code
252 tu6_rop(VkLogicOp op)
253 {
254 switch (op) {
255 case VK_LOGIC_OP_CLEAR:
256 return ROP_CLEAR;
257 case VK_LOGIC_OP_AND:
258 return ROP_AND;
259 case VK_LOGIC_OP_AND_REVERSE:
260 return ROP_AND_REVERSE;
261 case VK_LOGIC_OP_COPY:
262 return ROP_COPY;
263 case VK_LOGIC_OP_AND_INVERTED:
264 return ROP_AND_INVERTED;
265 case VK_LOGIC_OP_NO_OP:
266 return ROP_NOOP;
267 case VK_LOGIC_OP_XOR:
268 return ROP_XOR;
269 case VK_LOGIC_OP_OR:
270 return ROP_OR;
271 case VK_LOGIC_OP_NOR:
272 return ROP_NOR;
273 case VK_LOGIC_OP_EQUIVALENT:
274 return ROP_EQUIV;
275 case VK_LOGIC_OP_INVERT:
276 return ROP_INVERT;
277 case VK_LOGIC_OP_OR_REVERSE:
278 return ROP_OR_REVERSE;
279 case VK_LOGIC_OP_COPY_INVERTED:
280 return ROP_COPY_INVERTED;
281 case VK_LOGIC_OP_OR_INVERTED:
282 return ROP_OR_INVERTED;
283 case VK_LOGIC_OP_NAND:
284 return ROP_NAND;
285 case VK_LOGIC_OP_SET:
286 return ROP_SET;
287 default:
288 unreachable("invalid VkLogicOp");
289 return ROP_NOOP;
290 }
291 }
292
293 static enum adreno_rb_blend_factor
294 tu6_blend_factor(VkBlendFactor factor)
295 {
296 switch (factor) {
297 case VK_BLEND_FACTOR_ZERO:
298 return FACTOR_ZERO;
299 case VK_BLEND_FACTOR_ONE:
300 return FACTOR_ONE;
301 case VK_BLEND_FACTOR_SRC_COLOR:
302 return FACTOR_SRC_COLOR;
303 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
304 return FACTOR_ONE_MINUS_SRC_COLOR;
305 case VK_BLEND_FACTOR_DST_COLOR:
306 return FACTOR_DST_COLOR;
307 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
308 return FACTOR_ONE_MINUS_DST_COLOR;
309 case VK_BLEND_FACTOR_SRC_ALPHA:
310 return FACTOR_SRC_ALPHA;
311 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
312 return FACTOR_ONE_MINUS_SRC_ALPHA;
313 case VK_BLEND_FACTOR_DST_ALPHA:
314 return FACTOR_DST_ALPHA;
315 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
316 return FACTOR_ONE_MINUS_DST_ALPHA;
317 case VK_BLEND_FACTOR_CONSTANT_COLOR:
318 return FACTOR_CONSTANT_COLOR;
319 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
320 return FACTOR_ONE_MINUS_CONSTANT_COLOR;
321 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
322 return FACTOR_CONSTANT_ALPHA;
323 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
324 return FACTOR_ONE_MINUS_CONSTANT_ALPHA;
325 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
326 return FACTOR_SRC_ALPHA_SATURATE;
327 case VK_BLEND_FACTOR_SRC1_COLOR:
328 return FACTOR_SRC1_COLOR;
329 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
330 return FACTOR_ONE_MINUS_SRC1_COLOR;
331 case VK_BLEND_FACTOR_SRC1_ALPHA:
332 return FACTOR_SRC1_ALPHA;
333 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
334 return FACTOR_ONE_MINUS_SRC1_ALPHA;
335 default:
336 unreachable("invalid VkBlendFactor");
337 return FACTOR_ZERO;
338 }
339 }
340
341 static enum a3xx_rb_blend_opcode
342 tu6_blend_op(VkBlendOp op)
343 {
344 switch (op) {
345 case VK_BLEND_OP_ADD:
346 return BLEND_DST_PLUS_SRC;
347 case VK_BLEND_OP_SUBTRACT:
348 return BLEND_SRC_MINUS_DST;
349 case VK_BLEND_OP_REVERSE_SUBTRACT:
350 return BLEND_DST_MINUS_SRC;
351 case VK_BLEND_OP_MIN:
352 return BLEND_MIN_DST_SRC;
353 case VK_BLEND_OP_MAX:
354 return BLEND_MAX_DST_SRC;
355 default:
356 unreachable("invalid VkBlendOp");
357 return BLEND_DST_PLUS_SRC;
358 }
359 }
360
361 static unsigned
362 tu_shader_nibo(const struct tu_shader *shader)
363 {
364 /* Don't use ir3_shader_nibo(), because that would include declared but
365 * unused storage images and SSBOs.
366 */
367 return shader->ssbo_map.num_desc + shader->image_map.num_desc;
368 }
369
370 static void
371 tu6_emit_vs_config(struct tu_cs *cs, struct tu_shader *shader,
372 const struct ir3_shader_variant *vs)
373 {
374 uint32_t sp_vs_ctrl =
375 A6XX_SP_VS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
376 A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(vs->info.max_reg + 1) |
377 A6XX_SP_VS_CTRL_REG0_MERGEDREGS |
378 A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(vs->branchstack);
379 if (vs->need_pixlod)
380 sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_PIXLODENABLE;
381 if (vs->need_fine_derivatives)
382 sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_DIFF_FINE;
383
384 uint32_t sp_vs_config = A6XX_SP_VS_CONFIG_NTEX(shader->texture_map.num_desc) |
385 A6XX_SP_VS_CONFIG_NSAMP(shader->sampler_map.num_desc);
386 if (vs->instrlen)
387 sp_vs_config |= A6XX_SP_VS_CONFIG_ENABLED;
388
389 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CTRL_REG0, 1);
390 tu_cs_emit(cs, sp_vs_ctrl);
391
392 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CONFIG, 2);
393 tu_cs_emit(cs, sp_vs_config);
394 tu_cs_emit(cs, vs->instrlen);
395
396 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_VS_CNTL, 1);
397 tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(align(vs->constlen, 4)) |
398 A6XX_HLSQ_VS_CNTL_ENABLED);
399 }
400
401 static void
402 tu6_emit_hs_config(struct tu_cs *cs, struct tu_shader *shader,
403 const struct ir3_shader_variant *hs)
404 {
405 uint32_t sp_hs_config = 0;
406 if (hs->instrlen)
407 sp_hs_config |= A6XX_SP_HS_CONFIG_ENABLED;
408
409 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
410 tu_cs_emit(cs, 0);
411
412 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_CONFIG, 2);
413 tu_cs_emit(cs, sp_hs_config);
414 tu_cs_emit(cs, hs->instrlen);
415
416 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_HS_CNTL, 1);
417 tu_cs_emit(cs, A6XX_HLSQ_HS_CNTL_CONSTLEN(align(hs->constlen, 4)));
418 }
419
420 static void
421 tu6_emit_ds_config(struct tu_cs *cs, struct tu_shader *shader,
422 const struct ir3_shader_variant *ds)
423 {
424 uint32_t sp_ds_config = 0;
425 if (ds->instrlen)
426 sp_ds_config |= A6XX_SP_DS_CONFIG_ENABLED;
427
428 tu_cs_emit_pkt4(cs, REG_A6XX_SP_DS_CONFIG, 2);
429 tu_cs_emit(cs, sp_ds_config);
430 tu_cs_emit(cs, ds->instrlen);
431
432 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_DS_CNTL, 1);
433 tu_cs_emit(cs, A6XX_HLSQ_DS_CNTL_CONSTLEN(align(ds->constlen, 4)));
434 }
435
436 static void
437 tu6_emit_gs_config(struct tu_cs *cs, struct tu_shader *shader,
438 const struct ir3_shader_variant *gs)
439 {
440 uint32_t sp_gs_config = 0;
441 if (gs->instrlen)
442 sp_gs_config |= A6XX_SP_GS_CONFIG_ENABLED;
443
444 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_UNKNOWN_A871, 1);
445 tu_cs_emit(cs, 0);
446
447 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_CONFIG, 2);
448 tu_cs_emit(cs, sp_gs_config);
449 tu_cs_emit(cs, gs->instrlen);
450
451 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_GS_CNTL, 1);
452 tu_cs_emit(cs, A6XX_HLSQ_GS_CNTL_CONSTLEN(align(gs->constlen, 4)));
453 }
454
455 static void
456 tu6_emit_fs_config(struct tu_cs *cs, struct tu_shader *shader,
457 const struct ir3_shader_variant *fs)
458 {
459 uint32_t sp_fs_ctrl =
460 A6XX_SP_FS_CTRL_REG0_THREADSIZE(FOUR_QUADS) | 0x1000000 |
461 A6XX_SP_FS_CTRL_REG0_FULLREGFOOTPRINT(fs->info.max_reg + 1) |
462 A6XX_SP_FS_CTRL_REG0_MERGEDREGS |
463 A6XX_SP_FS_CTRL_REG0_BRANCHSTACK(fs->branchstack);
464 if (fs->total_in > 0)
465 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_VARYING;
466 if (fs->need_pixlod)
467 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_PIXLODENABLE;
468 if (fs->need_fine_derivatives)
469 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_DIFF_FINE;
470
471 uint32_t sp_fs_config = A6XX_SP_FS_CONFIG_NTEX(shader->texture_map.num_desc) |
472 A6XX_SP_FS_CONFIG_NSAMP(shader->sampler_map.num_desc) |
473 A6XX_SP_FS_CONFIG_NIBO(tu_shader_nibo(shader));
474 if (fs->instrlen)
475 sp_fs_config |= A6XX_SP_FS_CONFIG_ENABLED;
476
477 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A9A8, 1);
478 tu_cs_emit(cs, 0);
479
480 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_AB00, 1);
481 tu_cs_emit(cs, 0x5);
482
483 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CTRL_REG0, 1);
484 tu_cs_emit(cs, sp_fs_ctrl);
485
486 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CONFIG, 2);
487 tu_cs_emit(cs, sp_fs_config);
488 tu_cs_emit(cs, fs->instrlen);
489
490 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_FS_CNTL, 1);
491 tu_cs_emit(cs, A6XX_HLSQ_FS_CNTL_CONSTLEN(align(fs->constlen, 4)) |
492 A6XX_HLSQ_FS_CNTL_ENABLED);
493
494 tu_cs_emit_pkt4(cs, REG_A6XX_SP_IBO_COUNT, 1);
495 tu_cs_emit(cs, tu_shader_nibo(shader));
496 }
497
498 static void
499 tu6_emit_cs_config(struct tu_cs *cs, const struct tu_shader *shader,
500 const struct ir3_shader_variant *v)
501 {
502 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
503 tu_cs_emit(cs, 0xff);
504
505 unsigned constlen = align(v->constlen, 4);
506 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL, 1);
507 tu_cs_emit(cs, A6XX_HLSQ_CS_CNTL_CONSTLEN(constlen) |
508 A6XX_HLSQ_CS_CNTL_ENABLED);
509
510 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CONFIG, 2);
511 tu_cs_emit(cs, A6XX_SP_CS_CONFIG_ENABLED |
512 A6XX_SP_CS_CONFIG_NIBO(tu_shader_nibo(shader)) |
513 A6XX_SP_CS_CONFIG_NTEX(shader->texture_map.num_desc) |
514 A6XX_SP_CS_CONFIG_NSAMP(shader->sampler_map.num_desc));
515 tu_cs_emit(cs, v->instrlen);
516
517 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CTRL_REG0, 1);
518 tu_cs_emit(cs, A6XX_SP_CS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
519 A6XX_SP_CS_CTRL_REG0_FULLREGFOOTPRINT(v->info.max_reg + 1) |
520 A6XX_SP_CS_CTRL_REG0_MERGEDREGS |
521 A6XX_SP_CS_CTRL_REG0_BRANCHSTACK(v->branchstack) |
522 COND(v->need_pixlod, A6XX_SP_CS_CTRL_REG0_PIXLODENABLE) |
523 COND(v->need_fine_derivatives, A6XX_SP_CS_CTRL_REG0_DIFF_FINE));
524
525 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
526 tu_cs_emit(cs, 0x41);
527
528 uint32_t local_invocation_id =
529 ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
530 uint32_t work_group_id =
531 ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID);
532
533 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL_0, 2);
534 tu_cs_emit(cs,
535 A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
536 A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) |
537 A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) |
538 A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
539 tu_cs_emit(cs, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */
540
541 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_IBO_COUNT, 1);
542 tu_cs_emit(cs, tu_shader_nibo(shader));
543 }
544
545 static void
546 tu6_emit_vs_system_values(struct tu_cs *cs,
547 const struct ir3_shader_variant *vs)
548 {
549 const uint32_t vertexid_regid =
550 ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID);
551 const uint32_t instanceid_regid =
552 ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
553
554 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
555 tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
556 A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
557 0xfcfc0000);
558 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_2 */
559 tu_cs_emit(cs, 0xfcfcfcfc); /* VFD_CONTROL_3 */
560 tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
561 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_5 */
562 tu_cs_emit(cs, 0x00000000); /* VFD_CONTROL_6 */
563 }
564
565 static void
566 tu6_emit_vpc(struct tu_cs *cs,
567 const struct ir3_shader_variant *vs,
568 const struct ir3_shader_variant *fs,
569 bool binning_pass)
570 {
571 struct ir3_shader_linkage linkage = { 0 };
572 ir3_link_shaders(&linkage, vs, fs);
573
574 if (vs->shader->stream_output.num_outputs && !binning_pass)
575 tu_finishme("stream output");
576
577 BITSET_DECLARE(vpc_var_enables, 128) = { 0 };
578 for (uint32_t i = 0; i < linkage.cnt; i++) {
579 const uint32_t comp_count = util_last_bit(linkage.var[i].compmask);
580 for (uint32_t j = 0; j < comp_count; j++)
581 BITSET_SET(vpc_var_enables, linkage.var[i].loc + j);
582 }
583
584 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
585 tu_cs_emit(cs, ~vpc_var_enables[0]);
586 tu_cs_emit(cs, ~vpc_var_enables[1]);
587 tu_cs_emit(cs, ~vpc_var_enables[2]);
588 tu_cs_emit(cs, ~vpc_var_enables[3]);
589
590 /* a6xx finds position/pointsize at the end */
591 const uint32_t position_regid =
592 ir3_find_output_regid(vs, VARYING_SLOT_POS);
593 const uint32_t pointsize_regid =
594 ir3_find_output_regid(vs, VARYING_SLOT_PSIZ);
595 uint32_t pointsize_loc = 0xff, position_loc = 0xff;
596 if (position_regid != regid(63, 0)) {
597 position_loc = linkage.max_loc;
598 ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
599 }
600 if (pointsize_regid != regid(63, 0)) {
601 pointsize_loc = linkage.max_loc;
602 ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
603 }
604
605 /* map vs outputs to VPC */
606 assert(linkage.cnt <= 32);
607 const uint32_t sp_vs_out_count = (linkage.cnt + 1) / 2;
608 const uint32_t sp_vs_vpc_dst_count = (linkage.cnt + 3) / 4;
609 uint32_t sp_vs_out[16];
610 uint32_t sp_vs_vpc_dst[8];
611 sp_vs_out[sp_vs_out_count - 1] = 0;
612 sp_vs_vpc_dst[sp_vs_vpc_dst_count - 1] = 0;
613 for (uint32_t i = 0; i < linkage.cnt; i++) {
614 ((uint16_t *) sp_vs_out)[i] =
615 A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
616 A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
617 ((uint8_t *) sp_vs_vpc_dst)[i] =
618 A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
619 }
620
621 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_OUT_REG(0), sp_vs_out_count);
622 tu_cs_emit_array(cs, sp_vs_out, sp_vs_out_count);
623
624 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_VPC_DST_REG(0), sp_vs_vpc_dst_count);
625 tu_cs_emit_array(cs, sp_vs_vpc_dst, sp_vs_vpc_dst_count);
626
627 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
628 tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs->total_in) |
629 (fs->total_in > 0 ? A6XX_VPC_CNTL_0_VARYING : 0) |
630 0xff00ff00);
631
632 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK, 1);
633 tu_cs_emit(cs, A6XX_VPC_PACK_POSITIONLOC(position_loc) |
634 A6XX_VPC_PACK_PSIZELOC(pointsize_loc) |
635 A6XX_VPC_PACK_STRIDE_IN_VPC(linkage.max_loc));
636
637 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_GS_SIV_CNTL, 1);
638 tu_cs_emit(cs, 0x0000ffff); /* XXX */
639
640 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL, 1);
641 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_VSOUT(linkage.cnt));
642
643 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_1, 1);
644 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_1_STRIDE_IN_VPC(linkage.max_loc) |
645 (vs->writes_psize ? A6XX_PC_PRIMITIVE_CNTL_1_PSIZE : 0));
646 }
647
648 static int
649 tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
650 uint32_t index,
651 uint8_t *interp_mode,
652 uint8_t *ps_repl_mode)
653 {
654 enum
655 {
656 INTERP_SMOOTH = 0,
657 INTERP_FLAT = 1,
658 INTERP_ZERO = 2,
659 INTERP_ONE = 3,
660 };
661 enum
662 {
663 PS_REPL_NONE = 0,
664 PS_REPL_S = 1,
665 PS_REPL_T = 2,
666 PS_REPL_ONE_MINUS_T = 3,
667 };
668
669 const uint32_t compmask = fs->inputs[index].compmask;
670
671 /* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
672 * fourth component occupy three consecutive varying slots
673 */
674 int shift = 0;
675 *interp_mode = 0;
676 *ps_repl_mode = 0;
677 if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
678 if (compmask & 0x1) {
679 *ps_repl_mode |= PS_REPL_S << shift;
680 shift += 2;
681 }
682 if (compmask & 0x2) {
683 *ps_repl_mode |= PS_REPL_T << shift;
684 shift += 2;
685 }
686 if (compmask & 0x4) {
687 *interp_mode |= INTERP_ZERO << shift;
688 shift += 2;
689 }
690 if (compmask & 0x8) {
691 *interp_mode |= INTERP_ONE << 6;
692 shift += 2;
693 }
694 } else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
695 fs->inputs[index].rasterflat) {
696 for (int i = 0; i < 4; i++) {
697 if (compmask & (1 << i)) {
698 *interp_mode |= INTERP_FLAT << shift;
699 shift += 2;
700 }
701 }
702 }
703
704 return shift;
705 }
706
707 static void
708 tu6_emit_vpc_varying_modes(struct tu_cs *cs,
709 const struct ir3_shader_variant *fs,
710 bool binning_pass)
711 {
712 uint32_t interp_modes[8] = { 0 };
713 uint32_t ps_repl_modes[8] = { 0 };
714
715 if (!binning_pass) {
716 for (int i = -1;
717 (i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
718
719 /* get the mode for input i */
720 uint8_t interp_mode;
721 uint8_t ps_repl_mode;
722 const int bits =
723 tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
724
725 /* OR the mode into the array */
726 const uint32_t inloc = fs->inputs[i].inloc * 2;
727 uint32_t n = inloc / 32;
728 uint32_t shift = inloc % 32;
729 interp_modes[n] |= interp_mode << shift;
730 ps_repl_modes[n] |= ps_repl_mode << shift;
731 if (shift + bits > 32) {
732 n++;
733 shift = 32 - shift;
734
735 interp_modes[n] |= interp_mode >> shift;
736 ps_repl_modes[n] |= ps_repl_mode >> shift;
737 }
738 }
739 }
740
741 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
742 tu_cs_emit_array(cs, interp_modes, 8);
743
744 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
745 tu_cs_emit_array(cs, ps_repl_modes, 8);
746 }
747
748 static void
749 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
750 {
751 uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid;
752 uint32_t ij_pix_regid, ij_samp_regid, ij_cent_regid, ij_size_regid;
753 uint32_t smask_in_regid;
754
755 bool sample_shading = fs->per_samp; /* TODO | key->sample_shading; */
756 bool enable_varyings = fs->total_in > 0;
757
758 samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
759 smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
760 face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
761 coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
762 zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0);
763 ij_pix_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PIXEL);
764 ij_samp_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_SAMPLE);
765 ij_cent_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_CENTROID);
766 ij_size_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_SIZE);
767
768 if (fs->num_sampler_prefetch > 0) {
769 assert(VALIDREG(ij_pix_regid));
770 /* also, it seems like ij_pix is *required* to be r0.x */
771 assert(ij_pix_regid == regid(0, 0));
772 }
773
774 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch);
775 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) |
776 A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) |
777 0x7000); // XXX);
778 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
779 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
780 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) |
781 A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) |
782 A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) |
783 A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) |
784 A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) |
785 COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) |
786 A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd));
787 }
788
789 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
790 tu_cs_emit(cs, 0x7);
791 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) |
792 A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) |
793 A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) |
794 A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_size_regid));
795 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_PIXEL(ij_pix_regid) |
796 A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_CENTROID(ij_cent_regid) |
797 0xfc00fc00);
798 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) |
799 A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) |
800 A6XX_HLSQ_CONTROL_4_REG_BARY_IJ_PIXEL_PERSAMP(ij_samp_regid) |
801 0x0000fc00);
802 tu_cs_emit(cs, 0xfc);
803
804 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
805 tu_cs_emit(cs, enable_varyings ? 3 : 1);
806
807 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A982, 1);
808 tu_cs_emit(cs, 0); /* XXX */
809
810 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
811 tu_cs_emit(cs, 0xff); /* XXX */
812
813 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
814 tu_cs_emit(cs,
815 CONDREG(ij_pix_regid, A6XX_GRAS_CNTL_VARYING) |
816 CONDREG(ij_cent_regid, A6XX_GRAS_CNTL_CENTROID) |
817 CONDREG(ij_samp_regid, A6XX_GRAS_CNTL_PERSAMP_VARYING) |
818 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_GRAS_CNTL_SIZE) |
819 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_GRAS_CNTL_SIZE_PERSAMP) |
820 COND(fs->frag_coord,
821 A6XX_GRAS_CNTL_SIZE |
822 A6XX_GRAS_CNTL_XCOORD |
823 A6XX_GRAS_CNTL_YCOORD |
824 A6XX_GRAS_CNTL_ZCOORD |
825 A6XX_GRAS_CNTL_WCOORD) |
826 COND(fs->frag_face, A6XX_GRAS_CNTL_SIZE));
827
828 tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
829 tu_cs_emit(cs,
830 CONDREG(ij_pix_regid, A6XX_RB_RENDER_CONTROL0_VARYING) |
831 CONDREG(ij_cent_regid, A6XX_RB_RENDER_CONTROL0_CENTROID) |
832 CONDREG(ij_samp_regid, A6XX_RB_RENDER_CONTROL0_PERSAMP_VARYING) |
833 COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) |
834 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE) |
835 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) |
836 COND(fs->frag_coord,
837 A6XX_RB_RENDER_CONTROL0_SIZE |
838 A6XX_RB_RENDER_CONTROL0_XCOORD |
839 A6XX_RB_RENDER_CONTROL0_YCOORD |
840 A6XX_RB_RENDER_CONTROL0_ZCOORD |
841 A6XX_RB_RENDER_CONTROL0_WCOORD) |
842 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL0_SIZE));
843 tu_cs_emit(cs,
844 CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) |
845 CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) |
846 CONDREG(ij_size_regid, A6XX_RB_RENDER_CONTROL1_SIZE) |
847 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS));
848 }
849
850 static void
851 tu6_emit_fs_outputs(struct tu_cs *cs,
852 const struct ir3_shader_variant *fs,
853 uint32_t mrt_count)
854 {
855 uint32_t smask_regid, posz_regid;
856
857 posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
858 smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK);
859
860 uint32_t fragdata_regid[8];
861 if (fs->color0_mrt) {
862 fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
863 for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
864 fragdata_regid[i] = fragdata_regid[0];
865 } else {
866 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
867 fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
868 }
869
870 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
871 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) |
872 A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) |
873 0xfc000000);
874 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
875
876 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
877 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
878 // TODO we could have a mix of half and full precision outputs,
879 // we really need to figure out half-precision from IR3_REG_HALF
880 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
881 (false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
882 }
883
884 tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
885 tu_cs_emit(cs, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) |
886 COND(fs->writes_smask, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK));
887 tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
888
889 uint32_t gras_su_depth_plane_cntl = 0;
890 uint32_t rb_depth_plane_cntl = 0;
891 if (fs->no_earlyz || fs->writes_pos) {
892 gras_su_depth_plane_cntl |= A6XX_GRAS_SU_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
893 rb_depth_plane_cntl |= A6XX_RB_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
894 }
895
896 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
897 tu_cs_emit(cs, gras_su_depth_plane_cntl);
898
899 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
900 tu_cs_emit(cs, rb_depth_plane_cntl);
901 }
902
903 static void
904 tu6_emit_shader_object(struct tu_cs *cs,
905 gl_shader_stage stage,
906 const struct ir3_shader_variant *variant,
907 const struct tu_bo *binary_bo,
908 uint32_t binary_offset)
909 {
910 uint16_t reg;
911 uint8_t opcode;
912 enum a6xx_state_block sb;
913 switch (stage) {
914 case MESA_SHADER_VERTEX:
915 reg = REG_A6XX_SP_VS_OBJ_START_LO;
916 opcode = CP_LOAD_STATE6_GEOM;
917 sb = SB6_VS_SHADER;
918 break;
919 case MESA_SHADER_TESS_CTRL:
920 reg = REG_A6XX_SP_HS_OBJ_START_LO;
921 opcode = CP_LOAD_STATE6_GEOM;
922 sb = SB6_HS_SHADER;
923 break;
924 case MESA_SHADER_TESS_EVAL:
925 reg = REG_A6XX_SP_DS_OBJ_START_LO;
926 opcode = CP_LOAD_STATE6_GEOM;
927 sb = SB6_DS_SHADER;
928 break;
929 case MESA_SHADER_GEOMETRY:
930 reg = REG_A6XX_SP_GS_OBJ_START_LO;
931 opcode = CP_LOAD_STATE6_GEOM;
932 sb = SB6_GS_SHADER;
933 break;
934 case MESA_SHADER_FRAGMENT:
935 reg = REG_A6XX_SP_FS_OBJ_START_LO;
936 opcode = CP_LOAD_STATE6_FRAG;
937 sb = SB6_FS_SHADER;
938 break;
939 case MESA_SHADER_COMPUTE:
940 reg = REG_A6XX_SP_CS_OBJ_START_LO;
941 opcode = CP_LOAD_STATE6_FRAG;
942 sb = SB6_CS_SHADER;
943 break;
944 default:
945 unreachable("invalid gl_shader_stage");
946 opcode = CP_LOAD_STATE6_GEOM;
947 sb = SB6_VS_SHADER;
948 break;
949 }
950
951 if (!variant->instrlen) {
952 tu_cs_emit_pkt4(cs, reg, 2);
953 tu_cs_emit_qw(cs, 0);
954 return;
955 }
956
957 assert(variant->type == stage);
958
959 const uint64_t binary_iova = binary_bo->iova + binary_offset;
960 assert((binary_iova & 0x3) == 0);
961
962 tu_cs_emit_pkt4(cs, reg, 2);
963 tu_cs_emit_qw(cs, binary_iova);
964
965 /* always indirect */
966 const bool indirect = true;
967 if (indirect) {
968 tu_cs_emit_pkt7(cs, opcode, 3);
969 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
970 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
971 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
972 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
973 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
974 tu_cs_emit_qw(cs, binary_iova);
975 } else {
976 const void *binary = binary_bo->map + binary_offset;
977
978 tu_cs_emit_pkt7(cs, opcode, 3 + variant->info.sizedwords);
979 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
980 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
981 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
982 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
983 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
984 tu_cs_emit_qw(cs, 0);
985 tu_cs_emit_array(cs, binary, variant->info.sizedwords);
986 }
987 }
988
989 static void
990 tu6_emit_immediates(struct tu_cs *cs, const struct ir3_shader_variant *v,
991 uint32_t opcode, enum a6xx_state_block block)
992 {
993 /* dummy variant */
994 if (!v->shader)
995 return;
996
997 const struct ir3_const_state *const_state = &v->shader->const_state;
998 uint32_t base = const_state->offsets.immediate;
999 int size = const_state->immediates_count;
1000
1001 /* truncate size to avoid writing constants that shader
1002 * does not use:
1003 */
1004 size = MIN2(size + base, v->constlen) - base;
1005
1006 if (size <= 0)
1007 return;
1008
1009 tu_cs_emit_pkt7(cs, opcode, 3 + size * 4);
1010 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
1011 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1012 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
1013 CP_LOAD_STATE6_0_STATE_BLOCK(block) |
1014 CP_LOAD_STATE6_0_NUM_UNIT(size));
1015 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
1016 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
1017
1018 for (unsigned i = 0; i < size; i++) {
1019 tu_cs_emit(cs, const_state->immediates[i].val[0]);
1020 tu_cs_emit(cs, const_state->immediates[i].val[1]);
1021 tu_cs_emit(cs, const_state->immediates[i].val[2]);
1022 tu_cs_emit(cs, const_state->immediates[i].val[3]);
1023 }
1024 }
1025
1026 static void
1027 tu6_emit_program(struct tu_cs *cs,
1028 const struct tu_pipeline_builder *builder,
1029 const struct tu_bo *binary_bo,
1030 bool binning_pass)
1031 {
1032 static const struct ir3_shader_variant dummy_variant = {
1033 .type = MESA_SHADER_NONE
1034 };
1035 assert(builder->shaders[MESA_SHADER_VERTEX]);
1036 const struct ir3_shader_variant *vs =
1037 &builder->shaders[MESA_SHADER_VERTEX]->variants[0];
1038 const struct ir3_shader_variant *hs =
1039 builder->shaders[MESA_SHADER_TESS_CTRL]
1040 ? &builder->shaders[MESA_SHADER_TESS_CTRL]->variants[0]
1041 : &dummy_variant;
1042 const struct ir3_shader_variant *ds =
1043 builder->shaders[MESA_SHADER_TESS_EVAL]
1044 ? &builder->shaders[MESA_SHADER_TESS_EVAL]->variants[0]
1045 : &dummy_variant;
1046 const struct ir3_shader_variant *gs =
1047 builder->shaders[MESA_SHADER_GEOMETRY]
1048 ? &builder->shaders[MESA_SHADER_GEOMETRY]->variants[0]
1049 : &dummy_variant;
1050 const struct ir3_shader_variant *fs =
1051 builder->shaders[MESA_SHADER_FRAGMENT]
1052 ? &builder->shaders[MESA_SHADER_FRAGMENT]->variants[0]
1053 : &dummy_variant;
1054
1055 if (binning_pass) {
1056 vs = &builder->shaders[MESA_SHADER_VERTEX]->variants[1];
1057 fs = &dummy_variant;
1058 }
1059
1060 tu6_emit_vs_config(cs, builder->shaders[MESA_SHADER_VERTEX], vs);
1061 tu6_emit_hs_config(cs, builder->shaders[MESA_SHADER_TESS_CTRL], hs);
1062 tu6_emit_ds_config(cs, builder->shaders[MESA_SHADER_TESS_EVAL], ds);
1063 tu6_emit_gs_config(cs, builder->shaders[MESA_SHADER_GEOMETRY], gs);
1064 tu6_emit_fs_config(cs, builder->shaders[MESA_SHADER_FRAGMENT], fs);
1065
1066 tu6_emit_vs_system_values(cs, vs);
1067 tu6_emit_vpc(cs, vs, fs, binning_pass);
1068 tu6_emit_vpc_varying_modes(cs, fs, binning_pass);
1069 tu6_emit_fs_inputs(cs, fs);
1070 tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count);
1071
1072 tu6_emit_shader_object(cs, MESA_SHADER_VERTEX, vs, binary_bo,
1073 binning_pass ? builder->binning_vs_offset : builder->shader_offsets[MESA_SHADER_VERTEX]);
1074
1075 tu6_emit_shader_object(cs, MESA_SHADER_FRAGMENT, fs, binary_bo,
1076 builder->shader_offsets[MESA_SHADER_FRAGMENT]);
1077
1078 tu6_emit_immediates(cs, vs, CP_LOAD_STATE6_GEOM, SB6_VS_SHADER);
1079 if (!binning_pass)
1080 tu6_emit_immediates(cs, fs, CP_LOAD_STATE6_FRAG, SB6_FS_SHADER);
1081 }
1082
1083 static void
1084 tu6_emit_vertex_input(struct tu_cs *cs,
1085 const struct ir3_shader_variant *vs,
1086 const VkPipelineVertexInputStateCreateInfo *vi_info,
1087 uint8_t bindings[MAX_VERTEX_ATTRIBS],
1088 uint16_t strides[MAX_VERTEX_ATTRIBS],
1089 uint16_t offsets[MAX_VERTEX_ATTRIBS],
1090 uint32_t *count)
1091 {
1092 uint32_t vfd_decode_idx = 0;
1093
1094 for (uint32_t i = 0; i < vs->inputs_count; i++) {
1095 if (vs->inputs[i].sysval || !vs->inputs[i].compmask)
1096 continue;
1097
1098 const VkVertexInputAttributeDescription *vi_attr =
1099 tu_find_vertex_input_attribute(vi_info, vs->inputs[i].slot);
1100 const VkVertexInputBindingDescription *vi_binding =
1101 tu_find_vertex_input_binding(vi_info, vi_attr);
1102 assert(vi_attr && vi_binding);
1103
1104 const struct tu_native_format *format =
1105 tu6_get_native_format(vi_attr->format);
1106 assert(format && format->vtx >= 0);
1107
1108 uint32_t vfd_decode = A6XX_VFD_DECODE_INSTR_IDX(vfd_decode_idx) |
1109 A6XX_VFD_DECODE_INSTR_FORMAT(format->vtx) |
1110 A6XX_VFD_DECODE_INSTR_SWAP(format->swap) |
1111 A6XX_VFD_DECODE_INSTR_UNK30;
1112 if (vi_binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
1113 vfd_decode |= A6XX_VFD_DECODE_INSTR_INSTANCED;
1114 if (!vk_format_is_int(vi_attr->format))
1115 vfd_decode |= A6XX_VFD_DECODE_INSTR_FLOAT;
1116
1117 const uint32_t vfd_decode_step_rate = 1;
1118
1119 const uint32_t vfd_dest_cntl =
1120 A6XX_VFD_DEST_CNTL_INSTR_WRITEMASK(vs->inputs[i].compmask) |
1121 A6XX_VFD_DEST_CNTL_INSTR_REGID(vs->inputs[i].regid);
1122
1123 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DECODE(vfd_decode_idx), 2);
1124 tu_cs_emit(cs, vfd_decode);
1125 tu_cs_emit(cs, vfd_decode_step_rate);
1126
1127 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DEST_CNTL(vfd_decode_idx), 1);
1128 tu_cs_emit(cs, vfd_dest_cntl);
1129
1130 bindings[vfd_decode_idx] = vi_binding->binding;
1131 strides[vfd_decode_idx] = vi_binding->stride;
1132 offsets[vfd_decode_idx] = vi_attr->offset;
1133
1134 vfd_decode_idx++;
1135 assert(vfd_decode_idx <= MAX_VERTEX_ATTRIBS);
1136 }
1137
1138 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_0, 1);
1139 tu_cs_emit(
1140 cs, A6XX_VFD_CONTROL_0_VTXCNT(vfd_decode_idx) | (vfd_decode_idx << 8));
1141
1142 *count = vfd_decode_idx;
1143 }
1144
1145 static uint32_t
1146 tu6_guardband_adj(uint32_t v)
1147 {
1148 if (v > 256)
1149 return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0));
1150 else
1151 return 511;
1152 }
1153
1154 void
1155 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
1156 {
1157 float offsets[3];
1158 float scales[3];
1159 scales[0] = viewport->width / 2.0f;
1160 scales[1] = viewport->height / 2.0f;
1161 scales[2] = viewport->maxDepth - viewport->minDepth;
1162 offsets[0] = viewport->x + scales[0];
1163 offsets[1] = viewport->y + scales[1];
1164 offsets[2] = viewport->minDepth;
1165
1166 VkOffset2D min;
1167 VkOffset2D max;
1168 min.x = (int32_t) viewport->x;
1169 max.x = (int32_t) ceilf(viewport->x + viewport->width);
1170 if (viewport->height >= 0.0f) {
1171 min.y = (int32_t) viewport->y;
1172 max.y = (int32_t) ceilf(viewport->y + viewport->height);
1173 } else {
1174 min.y = (int32_t)(viewport->y + viewport->height);
1175 max.y = (int32_t) ceilf(viewport->y);
1176 }
1177 /* the spec allows viewport->height to be 0.0f */
1178 if (min.y == max.y)
1179 max.y++;
1180 assert(min.x >= 0 && min.x < max.x);
1181 assert(min.y >= 0 && min.y < max.y);
1182
1183 VkExtent2D guardband_adj;
1184 guardband_adj.width = tu6_guardband_adj(max.x - min.x);
1185 guardband_adj.height = tu6_guardband_adj(max.y - min.y);
1186
1187 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6);
1188 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XOFFSET_0(offsets[0]).value);
1189 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XSCALE_0(scales[0]).value);
1190 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YOFFSET_0(offsets[1]).value);
1191 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YSCALE_0(scales[1]).value);
1192 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZOFFSET_0(offsets[2]).value);
1193 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZSCALE_0(scales[2]).value);
1194
1195 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2);
1196 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(min.x) |
1197 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(min.y));
1198 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(max.x - 1) |
1199 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(max.y - 1));
1200
1201 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
1202 tu_cs_emit(cs,
1203 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
1204 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
1205 }
1206
1207 void
1208 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
1209 {
1210 const VkOffset2D min = scissor->offset;
1211 const VkOffset2D max = {
1212 scissor->offset.x + scissor->extent.width,
1213 scissor->offset.y + scissor->extent.height,
1214 };
1215
1216 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0, 2);
1217 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(min.x) |
1218 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(min.y));
1219 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(max.x - 1) |
1220 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(max.y - 1));
1221 }
1222
1223 static void
1224 tu6_emit_gras_unknowns(struct tu_cs *cs)
1225 {
1226 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8000, 1);
1227 tu_cs_emit(cs, 0x80);
1228 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8001, 1);
1229 tu_cs_emit(cs, 0x0);
1230 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_LAYER_CNTL, 1);
1231 tu_cs_emit(cs, 0x0);
1232 }
1233
1234 static void
1235 tu6_emit_point_size(struct tu_cs *cs)
1236 {
1237 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POINT_MINMAX, 2);
1238 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_MINMAX_MIN(1.0f / 16.0f) |
1239 A6XX_GRAS_SU_POINT_MINMAX_MAX(4092.0f));
1240 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_SIZE(1.0f).value);
1241 }
1242
1243 static uint32_t
1244 tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
1245 VkSampleCountFlagBits samples)
1246 {
1247 uint32_t gras_su_cntl = 0;
1248
1249 if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
1250 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
1251 if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
1252 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
1253
1254 if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
1255 gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
1256
1257 /* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
1258
1259 if (rast_info->depthBiasEnable)
1260 gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
1261
1262 if (samples > VK_SAMPLE_COUNT_1_BIT)
1263 gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
1264
1265 return gras_su_cntl;
1266 }
1267
1268 void
1269 tu6_emit_gras_su_cntl(struct tu_cs *cs,
1270 uint32_t gras_su_cntl,
1271 float line_width)
1272 {
1273 assert((gras_su_cntl & A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK) == 0);
1274 gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(line_width / 2.0f);
1275
1276 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_CNTL, 1);
1277 tu_cs_emit(cs, gras_su_cntl);
1278 }
1279
1280 void
1281 tu6_emit_depth_bias(struct tu_cs *cs,
1282 float constant_factor,
1283 float clamp,
1284 float slope_factor)
1285 {
1286 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
1287 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor).value);
1288 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor).value);
1289 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp).value);
1290 }
1291
1292 static void
1293 tu6_emit_alpha_control_disable(struct tu_cs *cs)
1294 {
1295 tu_cs_emit_pkt4(cs, REG_A6XX_RB_ALPHA_CONTROL, 1);
1296 tu_cs_emit(cs, 0);
1297 }
1298
1299 static void
1300 tu6_emit_depth_control(struct tu_cs *cs,
1301 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1302 {
1303 assert(!ds_info->depthBoundsTestEnable);
1304
1305 uint32_t rb_depth_cntl = 0;
1306 if (ds_info->depthTestEnable) {
1307 rb_depth_cntl |=
1308 A6XX_RB_DEPTH_CNTL_Z_ENABLE |
1309 A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
1310 A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
1311
1312 if (ds_info->depthWriteEnable)
1313 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
1314 }
1315
1316 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
1317 tu_cs_emit(cs, rb_depth_cntl);
1318 }
1319
1320 static void
1321 tu6_emit_stencil_control(struct tu_cs *cs,
1322 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1323 {
1324 uint32_t rb_stencil_control = 0;
1325 if (ds_info->stencilTestEnable) {
1326 const VkStencilOpState *front = &ds_info->front;
1327 const VkStencilOpState *back = &ds_info->back;
1328 rb_stencil_control |=
1329 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
1330 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
1331 A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
1332 A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
1333 A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
1334 A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
1335 A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
1336 A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
1337 A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
1338 A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
1339 A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
1340 }
1341
1342 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
1343 tu_cs_emit(cs, rb_stencil_control);
1344 }
1345
1346 void
1347 tu6_emit_stencil_compare_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1348 {
1349 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILMASK, 1);
1350 tu_cs_emit(
1351 cs, A6XX_RB_STENCILMASK_MASK(front) | A6XX_RB_STENCILMASK_BFMASK(back));
1352 }
1353
1354 void
1355 tu6_emit_stencil_write_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1356 {
1357 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILWRMASK, 1);
1358 tu_cs_emit(cs, A6XX_RB_STENCILWRMASK_WRMASK(front) |
1359 A6XX_RB_STENCILWRMASK_BFWRMASK(back));
1360 }
1361
1362 void
1363 tu6_emit_stencil_reference(struct tu_cs *cs, uint32_t front, uint32_t back)
1364 {
1365 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILREF, 1);
1366 tu_cs_emit(cs,
1367 A6XX_RB_STENCILREF_REF(front) | A6XX_RB_STENCILREF_BFREF(back));
1368 }
1369
1370 static uint32_t
1371 tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
1372 bool has_alpha)
1373 {
1374 const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
1375 const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
1376 has_alpha ? att->srcColorBlendFactor
1377 : tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
1378 const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
1379 has_alpha ? att->dstColorBlendFactor
1380 : tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
1381 const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
1382 const enum adreno_rb_blend_factor src_alpha_factor =
1383 tu6_blend_factor(att->srcAlphaBlendFactor);
1384 const enum adreno_rb_blend_factor dst_alpha_factor =
1385 tu6_blend_factor(att->dstAlphaBlendFactor);
1386
1387 return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
1388 A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
1389 A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
1390 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
1391 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
1392 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
1393 }
1394
1395 static uint32_t
1396 tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
1397 uint32_t rb_mrt_control_rop,
1398 bool is_int,
1399 bool has_alpha)
1400 {
1401 uint32_t rb_mrt_control =
1402 A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
1403
1404 /* ignore blending and logic op for integer attachments */
1405 if (is_int) {
1406 rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
1407 return rb_mrt_control;
1408 }
1409
1410 rb_mrt_control |= rb_mrt_control_rop;
1411
1412 if (att->blendEnable) {
1413 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
1414
1415 if (has_alpha)
1416 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
1417 }
1418
1419 return rb_mrt_control;
1420 }
1421
1422 static void
1423 tu6_emit_rb_mrt_controls(struct tu_cs *cs,
1424 const VkPipelineColorBlendStateCreateInfo *blend_info,
1425 const VkFormat attachment_formats[MAX_RTS],
1426 uint32_t *blend_enable_mask)
1427 {
1428 *blend_enable_mask = 0;
1429
1430 bool rop_reads_dst = false;
1431 uint32_t rb_mrt_control_rop = 0;
1432 if (blend_info->logicOpEnable) {
1433 rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
1434 rb_mrt_control_rop =
1435 A6XX_RB_MRT_CONTROL_ROP_ENABLE |
1436 A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
1437 }
1438
1439 for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
1440 const VkPipelineColorBlendAttachmentState *att =
1441 &blend_info->pAttachments[i];
1442 const VkFormat format = attachment_formats[i];
1443
1444 uint32_t rb_mrt_control = 0;
1445 uint32_t rb_mrt_blend_control = 0;
1446 if (format != VK_FORMAT_UNDEFINED) {
1447 const bool is_int = vk_format_is_int(format);
1448 const bool has_alpha = vk_format_has_alpha(format);
1449
1450 rb_mrt_control =
1451 tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
1452 rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
1453
1454 if (att->blendEnable || rop_reads_dst)
1455 *blend_enable_mask |= 1 << i;
1456 }
1457
1458 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1459 tu_cs_emit(cs, rb_mrt_control);
1460 tu_cs_emit(cs, rb_mrt_blend_control);
1461 }
1462
1463 for (uint32_t i = blend_info->attachmentCount; i < MAX_RTS; i++) {
1464 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1465 tu_cs_emit(cs, 0);
1466 tu_cs_emit(cs, 0);
1467 }
1468 }
1469
1470 static void
1471 tu6_emit_blend_control(struct tu_cs *cs,
1472 uint32_t blend_enable_mask,
1473 const VkPipelineMultisampleStateCreateInfo *msaa_info)
1474 {
1475 assert(!msaa_info->sampleShadingEnable);
1476 assert(!msaa_info->alphaToOneEnable);
1477
1478 uint32_t sp_blend_cntl = A6XX_SP_BLEND_CNTL_UNK8;
1479 if (blend_enable_mask)
1480 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ENABLED;
1481 if (msaa_info->alphaToCoverageEnable)
1482 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ALPHA_TO_COVERAGE;
1483
1484 const uint32_t sample_mask =
1485 msaa_info->pSampleMask ? *msaa_info->pSampleMask
1486 : ((1 << msaa_info->rasterizationSamples) - 1);
1487
1488 /* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
1489 uint32_t rb_blend_cntl =
1490 A6XX_RB_BLEND_CNTL_ENABLE_BLEND(blend_enable_mask) |
1491 A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND |
1492 A6XX_RB_BLEND_CNTL_SAMPLE_MASK(sample_mask);
1493 if (msaa_info->alphaToCoverageEnable)
1494 rb_blend_cntl |= A6XX_RB_BLEND_CNTL_ALPHA_TO_COVERAGE;
1495
1496 tu_cs_emit_pkt4(cs, REG_A6XX_SP_BLEND_CNTL, 1);
1497 tu_cs_emit(cs, sp_blend_cntl);
1498
1499 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_CNTL, 1);
1500 tu_cs_emit(cs, rb_blend_cntl);
1501 }
1502
1503 void
1504 tu6_emit_blend_constants(struct tu_cs *cs, const float constants[4])
1505 {
1506 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_RED_F32, 4);
1507 tu_cs_emit_array(cs, (const uint32_t *) constants, 4);
1508 }
1509
1510 static VkResult
1511 tu_pipeline_create(struct tu_device *dev,
1512 const VkAllocationCallbacks *pAllocator,
1513 struct tu_pipeline **out_pipeline)
1514 {
1515 struct tu_pipeline *pipeline =
1516 vk_zalloc2(&dev->alloc, pAllocator, sizeof(*pipeline), 8,
1517 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1518 if (!pipeline)
1519 return VK_ERROR_OUT_OF_HOST_MEMORY;
1520
1521 tu_cs_init(&pipeline->cs, TU_CS_MODE_SUB_STREAM, 2048);
1522
1523 /* reserve the space now such that tu_cs_begin_sub_stream never fails */
1524 VkResult result = tu_cs_reserve_space(dev, &pipeline->cs, 2048);
1525 if (result != VK_SUCCESS) {
1526 vk_free2(&dev->alloc, pAllocator, pipeline);
1527 return result;
1528 }
1529
1530 *out_pipeline = pipeline;
1531
1532 return VK_SUCCESS;
1533 }
1534
1535 static VkResult
1536 tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder)
1537 {
1538 const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
1539 NULL
1540 };
1541 for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
1542 gl_shader_stage stage =
1543 tu_shader_stage(builder->create_info->pStages[i].stage);
1544 stage_infos[stage] = &builder->create_info->pStages[i];
1545 }
1546
1547 struct tu_shader_compile_options options;
1548 tu_shader_compile_options_init(&options, builder->create_info);
1549
1550 /* compile shaders in reverse order */
1551 struct tu_shader *next_stage_shader = NULL;
1552 for (gl_shader_stage stage = MESA_SHADER_STAGES - 1;
1553 stage > MESA_SHADER_NONE; stage--) {
1554 const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
1555 if (!stage_info)
1556 continue;
1557
1558 struct tu_shader *shader =
1559 tu_shader_create(builder->device, stage, stage_info, builder->layout,
1560 builder->alloc);
1561 if (!shader)
1562 return VK_ERROR_OUT_OF_HOST_MEMORY;
1563
1564 VkResult result =
1565 tu_shader_compile(builder->device, shader, next_stage_shader,
1566 &options, builder->alloc);
1567 if (result != VK_SUCCESS)
1568 return result;
1569
1570 builder->shaders[stage] = shader;
1571 builder->shader_offsets[stage] = builder->shader_total_size;
1572 builder->shader_total_size +=
1573 sizeof(uint32_t) * shader->variants[0].info.sizedwords;
1574
1575 next_stage_shader = shader;
1576 }
1577
1578 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
1579 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1580 builder->binning_vs_offset = builder->shader_total_size;
1581 builder->shader_total_size +=
1582 sizeof(uint32_t) * vs->variants[1].info.sizedwords;
1583 }
1584
1585 return VK_SUCCESS;
1586 }
1587
1588 static VkResult
1589 tu_pipeline_builder_upload_shaders(struct tu_pipeline_builder *builder,
1590 struct tu_pipeline *pipeline)
1591 {
1592 struct tu_bo *bo = &pipeline->program.binary_bo;
1593
1594 VkResult result =
1595 tu_bo_init_new(builder->device, bo, builder->shader_total_size);
1596 if (result != VK_SUCCESS)
1597 return result;
1598
1599 result = tu_bo_map(builder->device, bo);
1600 if (result != VK_SUCCESS)
1601 return result;
1602
1603 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
1604 const struct tu_shader *shader = builder->shaders[i];
1605 if (!shader)
1606 continue;
1607
1608 memcpy(bo->map + builder->shader_offsets[i], shader->binary,
1609 sizeof(uint32_t) * shader->variants[0].info.sizedwords);
1610 }
1611
1612 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
1613 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1614 memcpy(bo->map + builder->binning_vs_offset, vs->binning_binary,
1615 sizeof(uint32_t) * vs->variants[1].info.sizedwords);
1616 }
1617
1618 return VK_SUCCESS;
1619 }
1620
1621 static void
1622 tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
1623 struct tu_pipeline *pipeline)
1624 {
1625 const VkPipelineDynamicStateCreateInfo *dynamic_info =
1626 builder->create_info->pDynamicState;
1627
1628 if (!dynamic_info)
1629 return;
1630
1631 for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
1632 pipeline->dynamic_state.mask |=
1633 tu_dynamic_state_bit(dynamic_info->pDynamicStates[i]);
1634 }
1635 }
1636
1637 static void
1638 tu_pipeline_set_linkage(struct tu_program_descriptor_linkage *link,
1639 struct tu_shader *shader,
1640 struct ir3_shader_variant *v)
1641 {
1642 link->ubo_state = v->shader->ubo_state;
1643 link->const_state = v->shader->const_state;
1644 link->constlen = v->constlen;
1645 link->texture_map = shader->texture_map;
1646 link->sampler_map = shader->sampler_map;
1647 link->ubo_map = shader->ubo_map;
1648 link->ssbo_map = shader->ssbo_map;
1649 link->image_map = shader->image_map;
1650 }
1651
1652 static void
1653 tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
1654 struct tu_pipeline *pipeline)
1655 {
1656 struct tu_cs prog_cs;
1657 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 512, &prog_cs);
1658 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, false);
1659 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
1660
1661 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 512, &prog_cs);
1662 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, true);
1663 pipeline->program.binning_state_ib =
1664 tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
1665
1666 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1667 if (!builder->shaders[i])
1668 continue;
1669
1670 tu_pipeline_set_linkage(&pipeline->program.link[i],
1671 builder->shaders[i],
1672 &builder->shaders[i]->variants[0]);
1673 }
1674 }
1675
1676 static void
1677 tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
1678 struct tu_pipeline *pipeline)
1679 {
1680 const VkPipelineVertexInputStateCreateInfo *vi_info =
1681 builder->create_info->pVertexInputState;
1682 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1683
1684 struct tu_cs vi_cs;
1685 tu_cs_begin_sub_stream(builder->device, &pipeline->cs,
1686 MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
1687 tu6_emit_vertex_input(&vi_cs, &vs->variants[0], vi_info,
1688 pipeline->vi.bindings, pipeline->vi.strides,
1689 pipeline->vi.offsets, &pipeline->vi.count);
1690 pipeline->vi.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
1691
1692 if (vs->has_binning_pass) {
1693 tu_cs_begin_sub_stream(builder->device, &pipeline->cs,
1694 MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
1695 tu6_emit_vertex_input(
1696 &vi_cs, &vs->variants[1], vi_info, pipeline->vi.binning_bindings,
1697 pipeline->vi.binning_strides, pipeline->vi.binning_offsets,
1698 &pipeline->vi.binning_count);
1699 pipeline->vi.binning_state_ib =
1700 tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
1701 }
1702 }
1703
1704 static void
1705 tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
1706 struct tu_pipeline *pipeline)
1707 {
1708 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1709 builder->create_info->pInputAssemblyState;
1710
1711 pipeline->ia.primtype = tu6_primtype(ia_info->topology);
1712 pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
1713 }
1714
1715 static void
1716 tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
1717 struct tu_pipeline *pipeline)
1718 {
1719 /* The spec says:
1720 *
1721 * pViewportState is a pointer to an instance of the
1722 * VkPipelineViewportStateCreateInfo structure, and is ignored if the
1723 * pipeline has rasterization disabled."
1724 *
1725 * We leave the relevant registers stale in that case.
1726 */
1727 if (builder->rasterizer_discard)
1728 return;
1729
1730 const VkPipelineViewportStateCreateInfo *vp_info =
1731 builder->create_info->pViewportState;
1732
1733 struct tu_cs vp_cs;
1734 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 15, &vp_cs);
1735
1736 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_VIEWPORT)) {
1737 assert(vp_info->viewportCount == 1);
1738 tu6_emit_viewport(&vp_cs, vp_info->pViewports);
1739 }
1740
1741 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SCISSOR)) {
1742 assert(vp_info->scissorCount == 1);
1743 tu6_emit_scissor(&vp_cs, vp_info->pScissors);
1744 }
1745
1746 pipeline->vp.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vp_cs);
1747 }
1748
1749 static void
1750 tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
1751 struct tu_pipeline *pipeline)
1752 {
1753 const VkPipelineRasterizationStateCreateInfo *rast_info =
1754 builder->create_info->pRasterizationState;
1755
1756 assert(!rast_info->depthClampEnable);
1757 assert(rast_info->polygonMode == VK_POLYGON_MODE_FILL);
1758
1759 struct tu_cs rast_cs;
1760 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 20, &rast_cs);
1761
1762 /* move to hw ctx init? */
1763 tu6_emit_gras_unknowns(&rast_cs);
1764 tu6_emit_point_size(&rast_cs);
1765
1766 const uint32_t gras_su_cntl =
1767 tu6_gras_su_cntl(rast_info, builder->samples);
1768
1769 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_LINE_WIDTH))
1770 tu6_emit_gras_su_cntl(&rast_cs, gras_su_cntl, rast_info->lineWidth);
1771
1772 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_DEPTH_BIAS)) {
1773 tu6_emit_depth_bias(&rast_cs, rast_info->depthBiasConstantFactor,
1774 rast_info->depthBiasClamp,
1775 rast_info->depthBiasSlopeFactor);
1776 }
1777
1778 pipeline->rast.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &rast_cs);
1779
1780 pipeline->rast.gras_su_cntl = gras_su_cntl;
1781 }
1782
1783 static void
1784 tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
1785 struct tu_pipeline *pipeline)
1786 {
1787 /* The spec says:
1788 *
1789 * pDepthStencilState is a pointer to an instance of the
1790 * VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
1791 * the pipeline has rasterization disabled or if the subpass of the
1792 * render pass the pipeline is created against does not use a
1793 * depth/stencil attachment.
1794 *
1795 * We disable both depth and stenil tests in those cases.
1796 */
1797 static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
1798 const VkPipelineDepthStencilStateCreateInfo *ds_info =
1799 builder->use_depth_stencil_attachment
1800 ? builder->create_info->pDepthStencilState
1801 : &dummy_ds_info;
1802
1803 struct tu_cs ds_cs;
1804 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 12, &ds_cs);
1805
1806 /* move to hw ctx init? */
1807 tu6_emit_alpha_control_disable(&ds_cs);
1808
1809 tu6_emit_depth_control(&ds_cs, ds_info);
1810 tu6_emit_stencil_control(&ds_cs, ds_info);
1811
1812 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_COMPARE_MASK)) {
1813 tu6_emit_stencil_compare_mask(&ds_cs, ds_info->front.compareMask,
1814 ds_info->back.compareMask);
1815 }
1816 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_WRITE_MASK)) {
1817 tu6_emit_stencil_write_mask(&ds_cs, ds_info->front.writeMask,
1818 ds_info->back.writeMask);
1819 }
1820 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_REFERENCE)) {
1821 tu6_emit_stencil_reference(&ds_cs, ds_info->front.reference,
1822 ds_info->back.reference);
1823 }
1824
1825 pipeline->ds.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &ds_cs);
1826 }
1827
1828 static void
1829 tu_pipeline_builder_parse_multisample_and_color_blend(
1830 struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
1831 {
1832 /* The spec says:
1833 *
1834 * pMultisampleState is a pointer to an instance of the
1835 * VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
1836 * has rasterization disabled.
1837 *
1838 * Also,
1839 *
1840 * pColorBlendState is a pointer to an instance of the
1841 * VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
1842 * pipeline has rasterization disabled or if the subpass of the render
1843 * pass the pipeline is created against does not use any color
1844 * attachments.
1845 *
1846 * We leave the relevant registers stale when rasterization is disabled.
1847 */
1848 if (builder->rasterizer_discard)
1849 return;
1850
1851 static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
1852 const VkPipelineMultisampleStateCreateInfo *msaa_info =
1853 builder->create_info->pMultisampleState;
1854 const VkPipelineColorBlendStateCreateInfo *blend_info =
1855 builder->use_color_attachments ? builder->create_info->pColorBlendState
1856 : &dummy_blend_info;
1857
1858 struct tu_cs blend_cs;
1859 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, MAX_RTS * 3 + 9,
1860 &blend_cs);
1861
1862 uint32_t blend_enable_mask;
1863 tu6_emit_rb_mrt_controls(&blend_cs, blend_info,
1864 builder->color_attachment_formats,
1865 &blend_enable_mask);
1866
1867 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_BLEND_CONSTANTS))
1868 tu6_emit_blend_constants(&blend_cs, blend_info->blendConstants);
1869
1870 tu6_emit_blend_control(&blend_cs, blend_enable_mask, msaa_info);
1871
1872 pipeline->blend.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &blend_cs);
1873 }
1874
1875 static void
1876 tu_pipeline_finish(struct tu_pipeline *pipeline,
1877 struct tu_device *dev,
1878 const VkAllocationCallbacks *alloc)
1879 {
1880 tu_cs_finish(dev, &pipeline->cs);
1881
1882 if (pipeline->program.binary_bo.gem_handle)
1883 tu_bo_finish(dev, &pipeline->program.binary_bo);
1884 }
1885
1886 static VkResult
1887 tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
1888 struct tu_pipeline **pipeline)
1889 {
1890 VkResult result = tu_pipeline_create(builder->device, builder->alloc,
1891 pipeline);
1892 if (result != VK_SUCCESS)
1893 return result;
1894
1895 /* compile and upload shaders */
1896 result = tu_pipeline_builder_compile_shaders(builder);
1897 if (result == VK_SUCCESS)
1898 result = tu_pipeline_builder_upload_shaders(builder, *pipeline);
1899 if (result != VK_SUCCESS) {
1900 tu_pipeline_finish(*pipeline, builder->device, builder->alloc);
1901 vk_free2(&builder->device->alloc, builder->alloc, *pipeline);
1902 *pipeline = VK_NULL_HANDLE;
1903
1904 return result;
1905 }
1906
1907 tu_pipeline_builder_parse_dynamic(builder, *pipeline);
1908 tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
1909 tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
1910 tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
1911 tu_pipeline_builder_parse_viewport(builder, *pipeline);
1912 tu_pipeline_builder_parse_rasterization(builder, *pipeline);
1913 tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
1914 tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
1915
1916 /* we should have reserved enough space upfront such that the CS never
1917 * grows
1918 */
1919 assert((*pipeline)->cs.bo_count == 1);
1920
1921 return VK_SUCCESS;
1922 }
1923
1924 static void
1925 tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
1926 {
1927 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
1928 if (!builder->shaders[i])
1929 continue;
1930 tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
1931 }
1932 }
1933
1934 static void
1935 tu_pipeline_builder_init_graphics(
1936 struct tu_pipeline_builder *builder,
1937 struct tu_device *dev,
1938 struct tu_pipeline_cache *cache,
1939 const VkGraphicsPipelineCreateInfo *create_info,
1940 const VkAllocationCallbacks *alloc)
1941 {
1942 TU_FROM_HANDLE(tu_pipeline_layout, layout, create_info->layout);
1943
1944 *builder = (struct tu_pipeline_builder) {
1945 .device = dev,
1946 .cache = cache,
1947 .create_info = create_info,
1948 .alloc = alloc,
1949 .layout = layout,
1950 };
1951
1952 builder->rasterizer_discard =
1953 create_info->pRasterizationState->rasterizerDiscardEnable;
1954
1955 if (builder->rasterizer_discard) {
1956 builder->samples = VK_SAMPLE_COUNT_1_BIT;
1957 } else {
1958 builder->samples = create_info->pMultisampleState->rasterizationSamples;
1959
1960 const struct tu_render_pass *pass =
1961 tu_render_pass_from_handle(create_info->renderPass);
1962 const struct tu_subpass *subpass =
1963 &pass->subpasses[create_info->subpass];
1964
1965 builder->use_depth_stencil_attachment =
1966 subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED;
1967
1968 assert(subpass->color_count == 0 ||
1969 !create_info->pColorBlendState ||
1970 subpass->color_count == create_info->pColorBlendState->attachmentCount);
1971 builder->color_attachment_count = subpass->color_count;
1972 for (uint32_t i = 0; i < subpass->color_count; i++) {
1973 const uint32_t a = subpass->color_attachments[i].attachment;
1974 if (a == VK_ATTACHMENT_UNUSED)
1975 continue;
1976
1977 builder->color_attachment_formats[i] = pass->attachments[a].format;
1978 builder->use_color_attachments = true;
1979 }
1980 }
1981 }
1982
1983 static VkResult
1984 tu_graphics_pipeline_create(VkDevice device,
1985 VkPipelineCache pipelineCache,
1986 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1987 const VkAllocationCallbacks *pAllocator,
1988 VkPipeline *pPipeline)
1989 {
1990 TU_FROM_HANDLE(tu_device, dev, device);
1991 TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
1992
1993 struct tu_pipeline_builder builder;
1994 tu_pipeline_builder_init_graphics(&builder, dev, cache,
1995 pCreateInfo, pAllocator);
1996
1997 struct tu_pipeline *pipeline = NULL;
1998 VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
1999 tu_pipeline_builder_finish(&builder);
2000
2001 if (result == VK_SUCCESS)
2002 *pPipeline = tu_pipeline_to_handle(pipeline);
2003 else
2004 *pPipeline = VK_NULL_HANDLE;
2005
2006 return result;
2007 }
2008
2009 VkResult
2010 tu_CreateGraphicsPipelines(VkDevice device,
2011 VkPipelineCache pipelineCache,
2012 uint32_t count,
2013 const VkGraphicsPipelineCreateInfo *pCreateInfos,
2014 const VkAllocationCallbacks *pAllocator,
2015 VkPipeline *pPipelines)
2016 {
2017 VkResult final_result = VK_SUCCESS;
2018
2019 for (uint32_t i = 0; i < count; i++) {
2020 VkResult result = tu_graphics_pipeline_create(device, pipelineCache,
2021 &pCreateInfos[i], pAllocator,
2022 &pPipelines[i]);
2023
2024 if (result != VK_SUCCESS)
2025 final_result = result;
2026 }
2027
2028 return final_result;
2029 }
2030
2031 static void
2032 tu6_emit_compute_program(struct tu_cs *cs,
2033 struct tu_shader *shader,
2034 const struct tu_bo *binary_bo)
2035 {
2036 const struct ir3_shader_variant *v = &shader->variants[0];
2037
2038 tu6_emit_cs_config(cs, shader, v);
2039
2040 /* The compute program is the only one in the pipeline, so 0 offset. */
2041 tu6_emit_shader_object(cs, MESA_SHADER_COMPUTE, v, binary_bo, 0);
2042
2043 tu6_emit_immediates(cs, v, CP_LOAD_STATE6_FRAG, SB6_CS_SHADER);
2044 }
2045
2046 static VkResult
2047 tu_compute_upload_shader(VkDevice device,
2048 struct tu_pipeline *pipeline,
2049 struct tu_shader *shader)
2050 {
2051 TU_FROM_HANDLE(tu_device, dev, device);
2052 struct tu_bo *bo = &pipeline->program.binary_bo;
2053 struct ir3_shader_variant *v = &shader->variants[0];
2054
2055 uint32_t shader_size = sizeof(uint32_t) * v->info.sizedwords;
2056 VkResult result =
2057 tu_bo_init_new(dev, bo, shader_size);
2058 if (result != VK_SUCCESS)
2059 return result;
2060
2061 result = tu_bo_map(dev, bo);
2062 if (result != VK_SUCCESS)
2063 return result;
2064
2065 memcpy(bo->map, shader->binary, shader_size);
2066
2067 return VK_SUCCESS;
2068 }
2069
2070
2071 static VkResult
2072 tu_compute_pipeline_create(VkDevice device,
2073 VkPipelineCache _cache,
2074 const VkComputePipelineCreateInfo *pCreateInfo,
2075 const VkAllocationCallbacks *pAllocator,
2076 VkPipeline *pPipeline)
2077 {
2078 TU_FROM_HANDLE(tu_device, dev, device);
2079 TU_FROM_HANDLE(tu_pipeline_layout, layout, pCreateInfo->layout);
2080 const VkPipelineShaderStageCreateInfo *stage_info = &pCreateInfo->stage;
2081 VkResult result;
2082
2083 struct tu_pipeline *pipeline;
2084
2085 result = tu_pipeline_create(dev, pAllocator, &pipeline);
2086 if (result != VK_SUCCESS)
2087 return result;
2088
2089 pipeline->layout = layout;
2090
2091 struct tu_shader_compile_options options;
2092 tu_shader_compile_options_init(&options, NULL);
2093
2094 struct tu_shader *shader =
2095 tu_shader_create(dev, MESA_SHADER_COMPUTE, stage_info, layout, pAllocator);
2096 if (!shader) {
2097 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2098 goto fail;
2099 }
2100
2101 result = tu_shader_compile(dev, shader, NULL, &options, pAllocator);
2102 if (result != VK_SUCCESS)
2103 return result;
2104
2105 struct ir3_shader_variant *v = &shader->variants[0];
2106
2107 tu_pipeline_set_linkage(&pipeline->program.link[MESA_SHADER_COMPUTE],
2108 shader, v);
2109
2110 result = tu_compute_upload_shader(device, pipeline, shader);
2111 if (result != VK_SUCCESS)
2112 return result;
2113
2114 for (int i = 0; i < 3; i++)
2115 pipeline->compute.local_size[i] = v->shader->nir->info.cs.local_size[i];
2116
2117 struct tu_cs prog_cs;
2118 tu_cs_begin_sub_stream(dev, &pipeline->cs, 512, &prog_cs);
2119 tu6_emit_compute_program(&prog_cs, shader, &pipeline->program.binary_bo);
2120 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2121
2122 *pPipeline = tu_pipeline_to_handle(pipeline);
2123 return VK_SUCCESS;
2124
2125 fail:
2126 tu_shader_destroy(dev, shader, pAllocator);
2127 if (result != VK_SUCCESS) {
2128 tu_pipeline_finish(pipeline, dev, pAllocator);
2129 vk_free2(&dev->alloc, pAllocator, pipeline);
2130 }
2131
2132 return result;
2133 }
2134
2135 VkResult
2136 tu_CreateComputePipelines(VkDevice device,
2137 VkPipelineCache pipelineCache,
2138 uint32_t count,
2139 const VkComputePipelineCreateInfo *pCreateInfos,
2140 const VkAllocationCallbacks *pAllocator,
2141 VkPipeline *pPipelines)
2142 {
2143 VkResult final_result = VK_SUCCESS;
2144
2145 for (uint32_t i = 0; i < count; i++) {
2146 VkResult result = tu_compute_pipeline_create(device, pipelineCache,
2147 &pCreateInfos[i],
2148 pAllocator, &pPipelines[i]);
2149 if (result != VK_SUCCESS)
2150 final_result = result;
2151 }
2152
2153 return final_result;
2154 }
2155
2156 void
2157 tu_DestroyPipeline(VkDevice _device,
2158 VkPipeline _pipeline,
2159 const VkAllocationCallbacks *pAllocator)
2160 {
2161 TU_FROM_HANDLE(tu_device, dev, _device);
2162 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2163
2164 if (!_pipeline)
2165 return;
2166
2167 tu_pipeline_finish(pipeline, dev, pAllocator);
2168 vk_free2(&dev->alloc, pAllocator, pipeline);
2169 }