turnip: Setup stream-output when linking program
[mesa.git] / src / freedreno / vulkan / tu_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "main/menums.h"
31 #include "nir/nir.h"
32 #include "nir/nir_builder.h"
33 #include "spirv/nir_spirv.h"
34 #include "util/debug.h"
35 #include "util/mesa-sha1.h"
36 #include "util/u_atomic.h"
37 #include "vk_format.h"
38 #include "vk_util.h"
39
40 #include "tu_cs.h"
41
42 struct tu_pipeline_builder
43 {
44 struct tu_device *device;
45 struct tu_pipeline_cache *cache;
46 struct tu_pipeline_layout *layout;
47 const VkAllocationCallbacks *alloc;
48 const VkGraphicsPipelineCreateInfo *create_info;
49
50 struct tu_shader *shaders[MESA_SHADER_STAGES];
51 uint32_t shader_offsets[MESA_SHADER_STAGES];
52 uint32_t binning_vs_offset;
53 uint32_t shader_total_size;
54
55 bool rasterizer_discard;
56 /* these states are affectd by rasterizer_discard */
57 VkSampleCountFlagBits samples;
58 bool use_depth_stencil_attachment;
59 bool use_color_attachments;
60 uint32_t color_attachment_count;
61 VkFormat color_attachment_formats[MAX_RTS];
62 };
63
64 static enum tu_dynamic_state_bits
65 tu_dynamic_state_bit(VkDynamicState state)
66 {
67 switch (state) {
68 case VK_DYNAMIC_STATE_VIEWPORT:
69 return TU_DYNAMIC_VIEWPORT;
70 case VK_DYNAMIC_STATE_SCISSOR:
71 return TU_DYNAMIC_SCISSOR;
72 case VK_DYNAMIC_STATE_LINE_WIDTH:
73 return TU_DYNAMIC_LINE_WIDTH;
74 case VK_DYNAMIC_STATE_DEPTH_BIAS:
75 return TU_DYNAMIC_DEPTH_BIAS;
76 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
77 return TU_DYNAMIC_BLEND_CONSTANTS;
78 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
79 return TU_DYNAMIC_DEPTH_BOUNDS;
80 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
81 return TU_DYNAMIC_STENCIL_COMPARE_MASK;
82 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
83 return TU_DYNAMIC_STENCIL_WRITE_MASK;
84 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
85 return TU_DYNAMIC_STENCIL_REFERENCE;
86 default:
87 unreachable("invalid dynamic state");
88 return 0;
89 }
90 }
91
92 static gl_shader_stage
93 tu_shader_stage(VkShaderStageFlagBits stage)
94 {
95 switch (stage) {
96 case VK_SHADER_STAGE_VERTEX_BIT:
97 return MESA_SHADER_VERTEX;
98 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
99 return MESA_SHADER_TESS_CTRL;
100 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
101 return MESA_SHADER_TESS_EVAL;
102 case VK_SHADER_STAGE_GEOMETRY_BIT:
103 return MESA_SHADER_GEOMETRY;
104 case VK_SHADER_STAGE_FRAGMENT_BIT:
105 return MESA_SHADER_FRAGMENT;
106 case VK_SHADER_STAGE_COMPUTE_BIT:
107 return MESA_SHADER_COMPUTE;
108 default:
109 unreachable("invalid VkShaderStageFlagBits");
110 return MESA_SHADER_NONE;
111 }
112 }
113
114 static const VkVertexInputAttributeDescription *
115 tu_find_vertex_input_attribute(
116 const VkPipelineVertexInputStateCreateInfo *vi_info, uint32_t slot)
117 {
118 assert(slot >= VERT_ATTRIB_GENERIC0);
119 slot -= VERT_ATTRIB_GENERIC0;
120 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
121 if (vi_info->pVertexAttributeDescriptions[i].location == slot)
122 return &vi_info->pVertexAttributeDescriptions[i];
123 }
124 return NULL;
125 }
126
127 static const VkVertexInputBindingDescription *
128 tu_find_vertex_input_binding(
129 const VkPipelineVertexInputStateCreateInfo *vi_info,
130 const VkVertexInputAttributeDescription *vi_attr)
131 {
132 assert(vi_attr);
133 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
134 if (vi_info->pVertexBindingDescriptions[i].binding == vi_attr->binding)
135 return &vi_info->pVertexBindingDescriptions[i];
136 }
137 return NULL;
138 }
139
140 static bool
141 tu_logic_op_reads_dst(VkLogicOp op)
142 {
143 switch (op) {
144 case VK_LOGIC_OP_CLEAR:
145 case VK_LOGIC_OP_COPY:
146 case VK_LOGIC_OP_COPY_INVERTED:
147 case VK_LOGIC_OP_SET:
148 return false;
149 default:
150 return true;
151 }
152 }
153
154 static VkBlendFactor
155 tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
156 {
157 /* treat dst alpha as 1.0 and avoid reading it */
158 switch (factor) {
159 case VK_BLEND_FACTOR_DST_ALPHA:
160 return VK_BLEND_FACTOR_ONE;
161 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
162 return VK_BLEND_FACTOR_ZERO;
163 default:
164 return factor;
165 }
166 }
167
168 static enum pc_di_primtype
169 tu6_primtype(VkPrimitiveTopology topology)
170 {
171 switch (topology) {
172 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
173 return DI_PT_POINTLIST;
174 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
175 return DI_PT_LINELIST;
176 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
177 return DI_PT_LINESTRIP;
178 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
179 return DI_PT_TRILIST;
180 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
181 return DI_PT_TRISTRIP;
182 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
183 return DI_PT_TRIFAN;
184 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
185 return DI_PT_LINE_ADJ;
186 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
187 return DI_PT_LINESTRIP_ADJ;
188 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
189 return DI_PT_TRI_ADJ;
190 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
191 return DI_PT_TRISTRIP_ADJ;
192 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
193 default:
194 unreachable("invalid primitive topology");
195 return DI_PT_NONE;
196 }
197 }
198
199 static enum adreno_compare_func
200 tu6_compare_func(VkCompareOp op)
201 {
202 switch (op) {
203 case VK_COMPARE_OP_NEVER:
204 return FUNC_NEVER;
205 case VK_COMPARE_OP_LESS:
206 return FUNC_LESS;
207 case VK_COMPARE_OP_EQUAL:
208 return FUNC_EQUAL;
209 case VK_COMPARE_OP_LESS_OR_EQUAL:
210 return FUNC_LEQUAL;
211 case VK_COMPARE_OP_GREATER:
212 return FUNC_GREATER;
213 case VK_COMPARE_OP_NOT_EQUAL:
214 return FUNC_NOTEQUAL;
215 case VK_COMPARE_OP_GREATER_OR_EQUAL:
216 return FUNC_GEQUAL;
217 case VK_COMPARE_OP_ALWAYS:
218 return FUNC_ALWAYS;
219 default:
220 unreachable("invalid VkCompareOp");
221 return FUNC_NEVER;
222 }
223 }
224
225 static enum adreno_stencil_op
226 tu6_stencil_op(VkStencilOp op)
227 {
228 switch (op) {
229 case VK_STENCIL_OP_KEEP:
230 return STENCIL_KEEP;
231 case VK_STENCIL_OP_ZERO:
232 return STENCIL_ZERO;
233 case VK_STENCIL_OP_REPLACE:
234 return STENCIL_REPLACE;
235 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
236 return STENCIL_INCR_CLAMP;
237 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
238 return STENCIL_DECR_CLAMP;
239 case VK_STENCIL_OP_INVERT:
240 return STENCIL_INVERT;
241 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
242 return STENCIL_INCR_WRAP;
243 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
244 return STENCIL_DECR_WRAP;
245 default:
246 unreachable("invalid VkStencilOp");
247 return STENCIL_KEEP;
248 }
249 }
250
251 static enum a3xx_rop_code
252 tu6_rop(VkLogicOp op)
253 {
254 switch (op) {
255 case VK_LOGIC_OP_CLEAR:
256 return ROP_CLEAR;
257 case VK_LOGIC_OP_AND:
258 return ROP_AND;
259 case VK_LOGIC_OP_AND_REVERSE:
260 return ROP_AND_REVERSE;
261 case VK_LOGIC_OP_COPY:
262 return ROP_COPY;
263 case VK_LOGIC_OP_AND_INVERTED:
264 return ROP_AND_INVERTED;
265 case VK_LOGIC_OP_NO_OP:
266 return ROP_NOOP;
267 case VK_LOGIC_OP_XOR:
268 return ROP_XOR;
269 case VK_LOGIC_OP_OR:
270 return ROP_OR;
271 case VK_LOGIC_OP_NOR:
272 return ROP_NOR;
273 case VK_LOGIC_OP_EQUIVALENT:
274 return ROP_EQUIV;
275 case VK_LOGIC_OP_INVERT:
276 return ROP_INVERT;
277 case VK_LOGIC_OP_OR_REVERSE:
278 return ROP_OR_REVERSE;
279 case VK_LOGIC_OP_COPY_INVERTED:
280 return ROP_COPY_INVERTED;
281 case VK_LOGIC_OP_OR_INVERTED:
282 return ROP_OR_INVERTED;
283 case VK_LOGIC_OP_NAND:
284 return ROP_NAND;
285 case VK_LOGIC_OP_SET:
286 return ROP_SET;
287 default:
288 unreachable("invalid VkLogicOp");
289 return ROP_NOOP;
290 }
291 }
292
293 static enum adreno_rb_blend_factor
294 tu6_blend_factor(VkBlendFactor factor)
295 {
296 switch (factor) {
297 case VK_BLEND_FACTOR_ZERO:
298 return FACTOR_ZERO;
299 case VK_BLEND_FACTOR_ONE:
300 return FACTOR_ONE;
301 case VK_BLEND_FACTOR_SRC_COLOR:
302 return FACTOR_SRC_COLOR;
303 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
304 return FACTOR_ONE_MINUS_SRC_COLOR;
305 case VK_BLEND_FACTOR_DST_COLOR:
306 return FACTOR_DST_COLOR;
307 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
308 return FACTOR_ONE_MINUS_DST_COLOR;
309 case VK_BLEND_FACTOR_SRC_ALPHA:
310 return FACTOR_SRC_ALPHA;
311 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
312 return FACTOR_ONE_MINUS_SRC_ALPHA;
313 case VK_BLEND_FACTOR_DST_ALPHA:
314 return FACTOR_DST_ALPHA;
315 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
316 return FACTOR_ONE_MINUS_DST_ALPHA;
317 case VK_BLEND_FACTOR_CONSTANT_COLOR:
318 return FACTOR_CONSTANT_COLOR;
319 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
320 return FACTOR_ONE_MINUS_CONSTANT_COLOR;
321 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
322 return FACTOR_CONSTANT_ALPHA;
323 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
324 return FACTOR_ONE_MINUS_CONSTANT_ALPHA;
325 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
326 return FACTOR_SRC_ALPHA_SATURATE;
327 case VK_BLEND_FACTOR_SRC1_COLOR:
328 return FACTOR_SRC1_COLOR;
329 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
330 return FACTOR_ONE_MINUS_SRC1_COLOR;
331 case VK_BLEND_FACTOR_SRC1_ALPHA:
332 return FACTOR_SRC1_ALPHA;
333 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
334 return FACTOR_ONE_MINUS_SRC1_ALPHA;
335 default:
336 unreachable("invalid VkBlendFactor");
337 return FACTOR_ZERO;
338 }
339 }
340
341 static enum a3xx_rb_blend_opcode
342 tu6_blend_op(VkBlendOp op)
343 {
344 switch (op) {
345 case VK_BLEND_OP_ADD:
346 return BLEND_DST_PLUS_SRC;
347 case VK_BLEND_OP_SUBTRACT:
348 return BLEND_SRC_MINUS_DST;
349 case VK_BLEND_OP_REVERSE_SUBTRACT:
350 return BLEND_DST_MINUS_SRC;
351 case VK_BLEND_OP_MIN:
352 return BLEND_MIN_DST_SRC;
353 case VK_BLEND_OP_MAX:
354 return BLEND_MAX_DST_SRC;
355 default:
356 unreachable("invalid VkBlendOp");
357 return BLEND_DST_PLUS_SRC;
358 }
359 }
360
361 static unsigned
362 tu_shader_nibo(const struct tu_shader *shader)
363 {
364 /* Don't use ir3_shader_nibo(), because that would include declared but
365 * unused storage images and SSBOs.
366 */
367 return shader->ssbo_map.num_desc + shader->image_map.num_desc;
368 }
369
370 static void
371 tu6_emit_vs_config(struct tu_cs *cs, struct tu_shader *shader,
372 const struct ir3_shader_variant *vs)
373 {
374 uint32_t sp_vs_ctrl =
375 A6XX_SP_VS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
376 A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(vs->info.max_reg + 1) |
377 A6XX_SP_VS_CTRL_REG0_MERGEDREGS |
378 A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(vs->branchstack);
379 if (vs->need_pixlod)
380 sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_PIXLODENABLE;
381 if (vs->need_fine_derivatives)
382 sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_DIFF_FINE;
383
384 uint32_t sp_vs_config = A6XX_SP_VS_CONFIG_NTEX(shader->texture_map.num_desc) |
385 A6XX_SP_VS_CONFIG_NSAMP(shader->sampler_map.num_desc);
386 if (vs->instrlen)
387 sp_vs_config |= A6XX_SP_VS_CONFIG_ENABLED;
388
389 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CTRL_REG0, 1);
390 tu_cs_emit(cs, sp_vs_ctrl);
391
392 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CONFIG, 2);
393 tu_cs_emit(cs, sp_vs_config);
394 tu_cs_emit(cs, vs->instrlen);
395
396 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_VS_CNTL, 1);
397 tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(align(vs->constlen, 4)) |
398 A6XX_HLSQ_VS_CNTL_ENABLED);
399 }
400
401 static void
402 tu6_emit_hs_config(struct tu_cs *cs, struct tu_shader *shader,
403 const struct ir3_shader_variant *hs)
404 {
405 uint32_t sp_hs_config = 0;
406 if (hs->instrlen)
407 sp_hs_config |= A6XX_SP_HS_CONFIG_ENABLED;
408
409 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
410 tu_cs_emit(cs, 0);
411
412 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_CONFIG, 2);
413 tu_cs_emit(cs, sp_hs_config);
414 tu_cs_emit(cs, hs->instrlen);
415
416 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_HS_CNTL, 1);
417 tu_cs_emit(cs, A6XX_HLSQ_HS_CNTL_CONSTLEN(align(hs->constlen, 4)));
418 }
419
420 static void
421 tu6_emit_ds_config(struct tu_cs *cs, struct tu_shader *shader,
422 const struct ir3_shader_variant *ds)
423 {
424 uint32_t sp_ds_config = 0;
425 if (ds->instrlen)
426 sp_ds_config |= A6XX_SP_DS_CONFIG_ENABLED;
427
428 tu_cs_emit_pkt4(cs, REG_A6XX_SP_DS_CONFIG, 2);
429 tu_cs_emit(cs, sp_ds_config);
430 tu_cs_emit(cs, ds->instrlen);
431
432 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_DS_CNTL, 1);
433 tu_cs_emit(cs, A6XX_HLSQ_DS_CNTL_CONSTLEN(align(ds->constlen, 4)));
434 }
435
436 static void
437 tu6_emit_gs_config(struct tu_cs *cs, struct tu_shader *shader,
438 const struct ir3_shader_variant *gs)
439 {
440 uint32_t sp_gs_config = 0;
441 if (gs->instrlen)
442 sp_gs_config |= A6XX_SP_GS_CONFIG_ENABLED;
443
444 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_UNKNOWN_A871, 1);
445 tu_cs_emit(cs, 0);
446
447 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_CONFIG, 2);
448 tu_cs_emit(cs, sp_gs_config);
449 tu_cs_emit(cs, gs->instrlen);
450
451 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_GS_CNTL, 1);
452 tu_cs_emit(cs, A6XX_HLSQ_GS_CNTL_CONSTLEN(align(gs->constlen, 4)));
453 }
454
455 static void
456 tu6_emit_fs_config(struct tu_cs *cs, struct tu_shader *shader,
457 const struct ir3_shader_variant *fs)
458 {
459 uint32_t sp_fs_ctrl =
460 A6XX_SP_FS_CTRL_REG0_THREADSIZE(FOUR_QUADS) | 0x1000000 |
461 A6XX_SP_FS_CTRL_REG0_FULLREGFOOTPRINT(fs->info.max_reg + 1) |
462 A6XX_SP_FS_CTRL_REG0_MERGEDREGS |
463 A6XX_SP_FS_CTRL_REG0_BRANCHSTACK(fs->branchstack);
464 if (fs->total_in > 0)
465 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_VARYING;
466 if (fs->need_pixlod)
467 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_PIXLODENABLE;
468 if (fs->need_fine_derivatives)
469 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_DIFF_FINE;
470
471 uint32_t sp_fs_config = 0;
472 unsigned shader_nibo = 0;
473 if (shader) {
474 shader_nibo = tu_shader_nibo(shader);
475 sp_fs_config = A6XX_SP_FS_CONFIG_NTEX(shader->texture_map.num_desc) |
476 A6XX_SP_FS_CONFIG_NSAMP(shader->sampler_map.num_desc) |
477 A6XX_SP_FS_CONFIG_NIBO(shader_nibo);
478 }
479
480 if (fs->instrlen)
481 sp_fs_config |= A6XX_SP_FS_CONFIG_ENABLED;
482
483 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CTRL_REG0, 1);
484 tu_cs_emit(cs, sp_fs_ctrl);
485
486 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CONFIG, 2);
487 tu_cs_emit(cs, sp_fs_config);
488 tu_cs_emit(cs, fs->instrlen);
489
490 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_FS_CNTL, 1);
491 tu_cs_emit(cs, A6XX_HLSQ_FS_CNTL_CONSTLEN(align(fs->constlen, 4)) |
492 A6XX_HLSQ_FS_CNTL_ENABLED);
493
494 tu_cs_emit_pkt4(cs, REG_A6XX_SP_IBO_COUNT, 1);
495 tu_cs_emit(cs, shader_nibo);
496 }
497
498 static void
499 tu6_emit_cs_config(struct tu_cs *cs, const struct tu_shader *shader,
500 const struct ir3_shader_variant *v)
501 {
502 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
503 tu_cs_emit(cs, 0xff);
504
505 unsigned constlen = align(v->constlen, 4);
506 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL, 1);
507 tu_cs_emit(cs, A6XX_HLSQ_CS_CNTL_CONSTLEN(constlen) |
508 A6XX_HLSQ_CS_CNTL_ENABLED);
509
510 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CONFIG, 2);
511 tu_cs_emit(cs, A6XX_SP_CS_CONFIG_ENABLED |
512 A6XX_SP_CS_CONFIG_NIBO(tu_shader_nibo(shader)) |
513 A6XX_SP_CS_CONFIG_NTEX(shader->texture_map.num_desc) |
514 A6XX_SP_CS_CONFIG_NSAMP(shader->sampler_map.num_desc));
515 tu_cs_emit(cs, v->instrlen);
516
517 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CTRL_REG0, 1);
518 tu_cs_emit(cs, A6XX_SP_CS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
519 A6XX_SP_CS_CTRL_REG0_FULLREGFOOTPRINT(v->info.max_reg + 1) |
520 A6XX_SP_CS_CTRL_REG0_MERGEDREGS |
521 A6XX_SP_CS_CTRL_REG0_BRANCHSTACK(v->branchstack) |
522 COND(v->need_pixlod, A6XX_SP_CS_CTRL_REG0_PIXLODENABLE) |
523 COND(v->need_fine_derivatives, A6XX_SP_CS_CTRL_REG0_DIFF_FINE));
524
525 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
526 tu_cs_emit(cs, 0x41);
527
528 uint32_t local_invocation_id =
529 ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
530 uint32_t work_group_id =
531 ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID);
532
533 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL_0, 2);
534 tu_cs_emit(cs,
535 A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
536 A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) |
537 A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) |
538 A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
539 tu_cs_emit(cs, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */
540
541 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_IBO_COUNT, 1);
542 tu_cs_emit(cs, tu_shader_nibo(shader));
543 }
544
545 static void
546 tu6_emit_vs_system_values(struct tu_cs *cs,
547 const struct ir3_shader_variant *vs)
548 {
549 const uint32_t vertexid_regid =
550 ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID);
551 const uint32_t instanceid_regid =
552 ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
553
554 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
555 tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
556 A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
557 0xfcfc0000);
558 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_2 */
559 tu_cs_emit(cs, 0xfcfcfcfc); /* VFD_CONTROL_3 */
560 tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
561 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_5 */
562 tu_cs_emit(cs, 0x00000000); /* VFD_CONTROL_6 */
563 }
564
565 /* Add any missing varyings needed for stream-out. Otherwise varyings not
566 * used by fragment shader will be stripped out.
567 */
568 static void
569 tu6_link_streamout(struct ir3_shader_linkage *l,
570 const struct ir3_shader_variant *v)
571 {
572 const struct ir3_stream_output_info *info = &v->shader->stream_output;
573
574 /*
575 * First, any stream-out varyings not already in linkage map (ie. also
576 * consumed by frag shader) need to be added:
577 */
578 for (unsigned i = 0; i < info->num_outputs; i++) {
579 const struct ir3_stream_output *out = &info->output[i];
580 unsigned compmask =
581 (1 << (out->num_components + out->start_component)) - 1;
582 unsigned k = out->register_index;
583 unsigned idx, nextloc = 0;
584
585 /* psize/pos need to be the last entries in linkage map, and will
586 * get added link_stream_out, so skip over them:
587 */
588 if (v->outputs[k].slot == VARYING_SLOT_PSIZ ||
589 v->outputs[k].slot == VARYING_SLOT_POS)
590 continue;
591
592 for (idx = 0; idx < l->cnt; idx++) {
593 if (l->var[idx].regid == v->outputs[k].regid)
594 break;
595 nextloc = MAX2(nextloc, l->var[idx].loc + 4);
596 }
597
598 /* add if not already in linkage map: */
599 if (idx == l->cnt)
600 ir3_link_add(l, v->outputs[k].regid, compmask, nextloc);
601
602 /* expand component-mask if needed, ie streaming out all components
603 * but frag shader doesn't consume all components:
604 */
605 if (compmask & ~l->var[idx].compmask) {
606 l->var[idx].compmask |= compmask;
607 l->max_loc = MAX2(l->max_loc, l->var[idx].loc +
608 util_last_bit(l->var[idx].compmask));
609 }
610 }
611 }
612
613 static void
614 tu6_setup_streamout(const struct ir3_shader_variant *v,
615 struct ir3_shader_linkage *l, struct tu_streamout_state *tf)
616 {
617 const struct ir3_stream_output_info *info = &v->shader->stream_output;
618
619 memset(tf, 0, sizeof(*tf));
620
621 tf->prog_count = align(l->max_loc, 2) / 2;
622
623 debug_assert(tf->prog_count < ARRAY_SIZE(tf->prog));
624
625 /* set stride info to the streamout state */
626 for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++)
627 tf->stride[i] = info->stride[i];
628
629 for (unsigned i = 0; i < info->num_outputs; i++) {
630 const struct ir3_stream_output *out = &info->output[i];
631 unsigned k = out->register_index;
632 unsigned idx;
633
634 tf->ncomp[out->output_buffer] += out->num_components;
635
636 /* linkage map sorted by order frag shader wants things, so
637 * a bit less ideal here..
638 */
639 for (idx = 0; idx < l->cnt; idx++)
640 if (l->var[idx].regid == v->outputs[k].regid)
641 break;
642
643 debug_assert(idx < l->cnt);
644
645 for (unsigned j = 0; j < out->num_components; j++) {
646 unsigned c = j + out->start_component;
647 unsigned loc = l->var[idx].loc + c;
648 unsigned off = j + out->dst_offset; /* in dwords */
649
650 if (loc & 1) {
651 tf->prog[loc/2] |= A6XX_VPC_SO_PROG_B_EN |
652 A6XX_VPC_SO_PROG_B_BUF(out->output_buffer) |
653 A6XX_VPC_SO_PROG_B_OFF(off * 4);
654 } else {
655 tf->prog[loc/2] |= A6XX_VPC_SO_PROG_A_EN |
656 A6XX_VPC_SO_PROG_A_BUF(out->output_buffer) |
657 A6XX_VPC_SO_PROG_A_OFF(off * 4);
658 }
659 }
660 }
661
662 tf->vpc_so_buf_cntl = A6XX_VPC_SO_BUF_CNTL_ENABLE |
663 COND(tf->ncomp[0] > 0, A6XX_VPC_SO_BUF_CNTL_BUF0) |
664 COND(tf->ncomp[1] > 0, A6XX_VPC_SO_BUF_CNTL_BUF1) |
665 COND(tf->ncomp[2] > 0, A6XX_VPC_SO_BUF_CNTL_BUF2) |
666 COND(tf->ncomp[3] > 0, A6XX_VPC_SO_BUF_CNTL_BUF3);
667 }
668
669 static void
670 tu6_emit_vpc(struct tu_cs *cs,
671 const struct ir3_shader_variant *vs,
672 const struct ir3_shader_variant *fs,
673 bool binning_pass,
674 struct tu_streamout_state *tf)
675 {
676 struct ir3_shader_linkage linkage = { 0 };
677 ir3_link_shaders(&linkage, vs, fs);
678
679 if (vs->shader->stream_output.num_outputs)
680 tu6_link_streamout(&linkage, vs);
681
682 BITSET_DECLARE(vpc_var_enables, 128) = { 0 };
683 for (uint32_t i = 0; i < linkage.cnt; i++) {
684 const uint32_t comp_count = util_last_bit(linkage.var[i].compmask);
685 for (uint32_t j = 0; j < comp_count; j++)
686 BITSET_SET(vpc_var_enables, linkage.var[i].loc + j);
687 }
688
689 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
690 tu_cs_emit(cs, ~vpc_var_enables[0]);
691 tu_cs_emit(cs, ~vpc_var_enables[1]);
692 tu_cs_emit(cs, ~vpc_var_enables[2]);
693 tu_cs_emit(cs, ~vpc_var_enables[3]);
694
695 /* a6xx finds position/pointsize at the end */
696 const uint32_t position_regid =
697 ir3_find_output_regid(vs, VARYING_SLOT_POS);
698 const uint32_t pointsize_regid =
699 ir3_find_output_regid(vs, VARYING_SLOT_PSIZ);
700 uint32_t pointsize_loc = 0xff, position_loc = 0xff;
701 if (position_regid != regid(63, 0)) {
702 position_loc = linkage.max_loc;
703 ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
704 }
705 if (pointsize_regid != regid(63, 0)) {
706 pointsize_loc = linkage.max_loc;
707 ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
708 }
709
710 if (vs->shader->stream_output.num_outputs)
711 tu6_setup_streamout(vs, &linkage, tf);
712
713 /* map vs outputs to VPC */
714 assert(linkage.cnt <= 32);
715 const uint32_t sp_vs_out_count = (linkage.cnt + 1) / 2;
716 const uint32_t sp_vs_vpc_dst_count = (linkage.cnt + 3) / 4;
717 uint32_t sp_vs_out[16];
718 uint32_t sp_vs_vpc_dst[8];
719 sp_vs_out[sp_vs_out_count - 1] = 0;
720 sp_vs_vpc_dst[sp_vs_vpc_dst_count - 1] = 0;
721 for (uint32_t i = 0; i < linkage.cnt; i++) {
722 ((uint16_t *) sp_vs_out)[i] =
723 A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
724 A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
725 ((uint8_t *) sp_vs_vpc_dst)[i] =
726 A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
727 }
728
729 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_OUT_REG(0), sp_vs_out_count);
730 tu_cs_emit_array(cs, sp_vs_out, sp_vs_out_count);
731
732 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_VPC_DST_REG(0), sp_vs_vpc_dst_count);
733 tu_cs_emit_array(cs, sp_vs_vpc_dst, sp_vs_vpc_dst_count);
734
735 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
736 tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs->total_in) |
737 (fs->total_in > 0 ? A6XX_VPC_CNTL_0_VARYING : 0) |
738 0xff00ff00);
739
740 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK, 1);
741 tu_cs_emit(cs, A6XX_VPC_PACK_POSITIONLOC(position_loc) |
742 A6XX_VPC_PACK_PSIZELOC(pointsize_loc) |
743 A6XX_VPC_PACK_STRIDE_IN_VPC(linkage.max_loc));
744
745 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL, 1);
746 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_VSOUT(linkage.cnt));
747
748 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_1, 1);
749 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_1_STRIDE_IN_VPC(linkage.max_loc) |
750 (vs->writes_psize ? A6XX_PC_PRIMITIVE_CNTL_1_PSIZE : 0));
751 }
752
753 static int
754 tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
755 uint32_t index,
756 uint8_t *interp_mode,
757 uint8_t *ps_repl_mode)
758 {
759 enum
760 {
761 INTERP_SMOOTH = 0,
762 INTERP_FLAT = 1,
763 INTERP_ZERO = 2,
764 INTERP_ONE = 3,
765 };
766 enum
767 {
768 PS_REPL_NONE = 0,
769 PS_REPL_S = 1,
770 PS_REPL_T = 2,
771 PS_REPL_ONE_MINUS_T = 3,
772 };
773
774 const uint32_t compmask = fs->inputs[index].compmask;
775
776 /* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
777 * fourth component occupy three consecutive varying slots
778 */
779 int shift = 0;
780 *interp_mode = 0;
781 *ps_repl_mode = 0;
782 if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
783 if (compmask & 0x1) {
784 *ps_repl_mode |= PS_REPL_S << shift;
785 shift += 2;
786 }
787 if (compmask & 0x2) {
788 *ps_repl_mode |= PS_REPL_T << shift;
789 shift += 2;
790 }
791 if (compmask & 0x4) {
792 *interp_mode |= INTERP_ZERO << shift;
793 shift += 2;
794 }
795 if (compmask & 0x8) {
796 *interp_mode |= INTERP_ONE << 6;
797 shift += 2;
798 }
799 } else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
800 fs->inputs[index].rasterflat) {
801 for (int i = 0; i < 4; i++) {
802 if (compmask & (1 << i)) {
803 *interp_mode |= INTERP_FLAT << shift;
804 shift += 2;
805 }
806 }
807 }
808
809 return shift;
810 }
811
812 static void
813 tu6_emit_vpc_varying_modes(struct tu_cs *cs,
814 const struct ir3_shader_variant *fs,
815 bool binning_pass)
816 {
817 uint32_t interp_modes[8] = { 0 };
818 uint32_t ps_repl_modes[8] = { 0 };
819
820 if (!binning_pass) {
821 for (int i = -1;
822 (i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
823
824 /* get the mode for input i */
825 uint8_t interp_mode;
826 uint8_t ps_repl_mode;
827 const int bits =
828 tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
829
830 /* OR the mode into the array */
831 const uint32_t inloc = fs->inputs[i].inloc * 2;
832 uint32_t n = inloc / 32;
833 uint32_t shift = inloc % 32;
834 interp_modes[n] |= interp_mode << shift;
835 ps_repl_modes[n] |= ps_repl_mode << shift;
836 if (shift + bits > 32) {
837 n++;
838 shift = 32 - shift;
839
840 interp_modes[n] |= interp_mode >> shift;
841 ps_repl_modes[n] |= ps_repl_mode >> shift;
842 }
843 }
844 }
845
846 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
847 tu_cs_emit_array(cs, interp_modes, 8);
848
849 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
850 tu_cs_emit_array(cs, ps_repl_modes, 8);
851 }
852
853 static void
854 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
855 {
856 uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid;
857 uint32_t ij_pix_regid, ij_samp_regid, ij_cent_regid, ij_size_regid;
858 uint32_t smask_in_regid;
859
860 bool sample_shading = fs->per_samp; /* TODO | key->sample_shading; */
861 bool enable_varyings = fs->total_in > 0;
862
863 samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
864 smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
865 face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
866 coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
867 zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0);
868 ij_pix_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL);
869 ij_samp_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE);
870 ij_cent_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID);
871 ij_size_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE);
872
873 if (fs->num_sampler_prefetch > 0) {
874 assert(VALIDREG(ij_pix_regid));
875 /* also, it seems like ij_pix is *required* to be r0.x */
876 assert(ij_pix_regid == regid(0, 0));
877 }
878
879 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch);
880 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) |
881 A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) |
882 0x7000); // XXX);
883 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
884 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
885 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) |
886 A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) |
887 A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) |
888 A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) |
889 A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) |
890 COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) |
891 A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd));
892 }
893
894 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
895 tu_cs_emit(cs, 0x7);
896 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) |
897 A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) |
898 A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) |
899 A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_size_regid));
900 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_PIXEL(ij_pix_regid) |
901 A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_CENTROID(ij_cent_regid) |
902 0xfc00fc00);
903 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) |
904 A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) |
905 A6XX_HLSQ_CONTROL_4_REG_BARY_IJ_PIXEL_PERSAMP(ij_samp_regid) |
906 0x0000fc00);
907 tu_cs_emit(cs, 0xfc);
908
909 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
910 tu_cs_emit(cs, enable_varyings ? 3 : 1);
911
912 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
913 tu_cs_emit(cs, 0xff); /* XXX */
914
915 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
916 tu_cs_emit(cs,
917 CONDREG(ij_pix_regid, A6XX_GRAS_CNTL_VARYING) |
918 CONDREG(ij_cent_regid, A6XX_GRAS_CNTL_CENTROID) |
919 CONDREG(ij_samp_regid, A6XX_GRAS_CNTL_PERSAMP_VARYING) |
920 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_GRAS_CNTL_SIZE) |
921 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_GRAS_CNTL_SIZE_PERSAMP) |
922 COND(fs->frag_coord,
923 A6XX_GRAS_CNTL_SIZE |
924 A6XX_GRAS_CNTL_XCOORD |
925 A6XX_GRAS_CNTL_YCOORD |
926 A6XX_GRAS_CNTL_ZCOORD |
927 A6XX_GRAS_CNTL_WCOORD) |
928 COND(fs->frag_face, A6XX_GRAS_CNTL_SIZE));
929
930 tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
931 tu_cs_emit(cs,
932 CONDREG(ij_pix_regid, A6XX_RB_RENDER_CONTROL0_VARYING) |
933 CONDREG(ij_cent_regid, A6XX_RB_RENDER_CONTROL0_CENTROID) |
934 CONDREG(ij_samp_regid, A6XX_RB_RENDER_CONTROL0_PERSAMP_VARYING) |
935 COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) |
936 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE) |
937 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) |
938 COND(fs->frag_coord,
939 A6XX_RB_RENDER_CONTROL0_SIZE |
940 A6XX_RB_RENDER_CONTROL0_XCOORD |
941 A6XX_RB_RENDER_CONTROL0_YCOORD |
942 A6XX_RB_RENDER_CONTROL0_ZCOORD |
943 A6XX_RB_RENDER_CONTROL0_WCOORD) |
944 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL0_SIZE));
945 tu_cs_emit(cs,
946 CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) |
947 CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) |
948 CONDREG(ij_size_regid, A6XX_RB_RENDER_CONTROL1_SIZE) |
949 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS));
950
951 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CNTL, 1);
952 tu_cs_emit(cs, COND(sample_shading, A6XX_RB_SAMPLE_CNTL_PER_SAMP_MODE));
953
954 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8101, 1);
955 tu_cs_emit(cs, COND(sample_shading, 0x6)); // XXX
956
957 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CNTL, 1);
958 tu_cs_emit(cs, COND(sample_shading, A6XX_GRAS_SAMPLE_CNTL_PER_SAMP_MODE));
959 }
960
961 static void
962 tu6_emit_fs_outputs(struct tu_cs *cs,
963 const struct ir3_shader_variant *fs,
964 uint32_t mrt_count)
965 {
966 uint32_t smask_regid, posz_regid;
967
968 posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
969 smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK);
970
971 uint32_t fragdata_regid[8];
972 if (fs->color0_mrt) {
973 fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
974 for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
975 fragdata_regid[i] = fragdata_regid[0];
976 } else {
977 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
978 fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
979 }
980
981 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
982 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) |
983 A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) |
984 0xfc000000);
985 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
986
987 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
988 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
989 // TODO we could have a mix of half and full precision outputs,
990 // we really need to figure out half-precision from IR3_REG_HALF
991 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
992 (false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
993 }
994
995 tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
996 tu_cs_emit(cs, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) |
997 COND(fs->writes_smask, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK));
998 tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
999
1000 uint32_t gras_su_depth_plane_cntl = 0;
1001 uint32_t rb_depth_plane_cntl = 0;
1002 if (fs->no_earlyz || fs->writes_pos) {
1003 gras_su_depth_plane_cntl |= A6XX_GRAS_SU_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
1004 rb_depth_plane_cntl |= A6XX_RB_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
1005 }
1006
1007 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
1008 tu_cs_emit(cs, gras_su_depth_plane_cntl);
1009
1010 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
1011 tu_cs_emit(cs, rb_depth_plane_cntl);
1012 }
1013
1014 static void
1015 tu6_emit_shader_object(struct tu_cs *cs,
1016 gl_shader_stage stage,
1017 const struct ir3_shader_variant *variant,
1018 const struct tu_bo *binary_bo,
1019 uint32_t binary_offset)
1020 {
1021 uint16_t reg;
1022 uint8_t opcode;
1023 enum a6xx_state_block sb;
1024 switch (stage) {
1025 case MESA_SHADER_VERTEX:
1026 reg = REG_A6XX_SP_VS_OBJ_START_LO;
1027 opcode = CP_LOAD_STATE6_GEOM;
1028 sb = SB6_VS_SHADER;
1029 break;
1030 case MESA_SHADER_TESS_CTRL:
1031 reg = REG_A6XX_SP_HS_OBJ_START_LO;
1032 opcode = CP_LOAD_STATE6_GEOM;
1033 sb = SB6_HS_SHADER;
1034 break;
1035 case MESA_SHADER_TESS_EVAL:
1036 reg = REG_A6XX_SP_DS_OBJ_START_LO;
1037 opcode = CP_LOAD_STATE6_GEOM;
1038 sb = SB6_DS_SHADER;
1039 break;
1040 case MESA_SHADER_GEOMETRY:
1041 reg = REG_A6XX_SP_GS_OBJ_START_LO;
1042 opcode = CP_LOAD_STATE6_GEOM;
1043 sb = SB6_GS_SHADER;
1044 break;
1045 case MESA_SHADER_FRAGMENT:
1046 reg = REG_A6XX_SP_FS_OBJ_START_LO;
1047 opcode = CP_LOAD_STATE6_FRAG;
1048 sb = SB6_FS_SHADER;
1049 break;
1050 case MESA_SHADER_COMPUTE:
1051 reg = REG_A6XX_SP_CS_OBJ_START_LO;
1052 opcode = CP_LOAD_STATE6_FRAG;
1053 sb = SB6_CS_SHADER;
1054 break;
1055 default:
1056 unreachable("invalid gl_shader_stage");
1057 opcode = CP_LOAD_STATE6_GEOM;
1058 sb = SB6_VS_SHADER;
1059 break;
1060 }
1061
1062 if (!variant->instrlen) {
1063 tu_cs_emit_pkt4(cs, reg, 2);
1064 tu_cs_emit_qw(cs, 0);
1065 return;
1066 }
1067
1068 assert(variant->type == stage);
1069
1070 const uint64_t binary_iova = binary_bo->iova + binary_offset;
1071 assert((binary_iova & 0xf) == 0);
1072 /* note: it looks like HW might try to read a few instructions beyond the instrlen size
1073 * of the shader. this could be a potential source of problems at some point
1074 * possibly this doesn't happen if shader iova is aligned enough (to 4k for example)
1075 */
1076
1077 tu_cs_emit_pkt4(cs, reg, 2);
1078 tu_cs_emit_qw(cs, binary_iova);
1079
1080 /* always indirect */
1081 const bool indirect = true;
1082 if (indirect) {
1083 tu_cs_emit_pkt7(cs, opcode, 3);
1084 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1085 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
1086 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1087 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
1088 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
1089 tu_cs_emit_qw(cs, binary_iova);
1090 } else {
1091 const void *binary = binary_bo->map + binary_offset;
1092
1093 tu_cs_emit_pkt7(cs, opcode, 3 + variant->info.sizedwords);
1094 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1095 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
1096 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
1097 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
1098 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
1099 tu_cs_emit_qw(cs, 0);
1100 tu_cs_emit_array(cs, binary, variant->info.sizedwords);
1101 }
1102 }
1103
1104 static void
1105 tu6_emit_immediates(struct tu_cs *cs, const struct ir3_shader_variant *v,
1106 uint32_t opcode, enum a6xx_state_block block)
1107 {
1108 /* dummy variant */
1109 if (!v->shader)
1110 return;
1111
1112 const struct ir3_const_state *const_state = &v->shader->const_state;
1113 uint32_t base = const_state->offsets.immediate;
1114 int size = const_state->immediates_count;
1115
1116 /* truncate size to avoid writing constants that shader
1117 * does not use:
1118 */
1119 size = MIN2(size + base, v->constlen) - base;
1120
1121 if (size <= 0)
1122 return;
1123
1124 tu_cs_emit_pkt7(cs, opcode, 3 + size * 4);
1125 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
1126 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1127 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
1128 CP_LOAD_STATE6_0_STATE_BLOCK(block) |
1129 CP_LOAD_STATE6_0_NUM_UNIT(size));
1130 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
1131 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
1132
1133 for (unsigned i = 0; i < size; i++) {
1134 tu_cs_emit(cs, const_state->immediates[i].val[0]);
1135 tu_cs_emit(cs, const_state->immediates[i].val[1]);
1136 tu_cs_emit(cs, const_state->immediates[i].val[2]);
1137 tu_cs_emit(cs, const_state->immediates[i].val[3]);
1138 }
1139 }
1140
1141 static void
1142 tu6_emit_program(struct tu_cs *cs,
1143 const struct tu_pipeline_builder *builder,
1144 const struct tu_bo *binary_bo,
1145 bool binning_pass,
1146 struct tu_streamout_state *tf)
1147 {
1148 static const struct ir3_shader_variant dummy_variant = {
1149 .type = MESA_SHADER_NONE
1150 };
1151 assert(builder->shaders[MESA_SHADER_VERTEX]);
1152 const struct ir3_shader_variant *vs =
1153 &builder->shaders[MESA_SHADER_VERTEX]->variants[0];
1154 const struct ir3_shader_variant *hs =
1155 builder->shaders[MESA_SHADER_TESS_CTRL]
1156 ? &builder->shaders[MESA_SHADER_TESS_CTRL]->variants[0]
1157 : &dummy_variant;
1158 const struct ir3_shader_variant *ds =
1159 builder->shaders[MESA_SHADER_TESS_EVAL]
1160 ? &builder->shaders[MESA_SHADER_TESS_EVAL]->variants[0]
1161 : &dummy_variant;
1162 const struct ir3_shader_variant *gs =
1163 builder->shaders[MESA_SHADER_GEOMETRY]
1164 ? &builder->shaders[MESA_SHADER_GEOMETRY]->variants[0]
1165 : &dummy_variant;
1166 const struct ir3_shader_variant *fs =
1167 builder->shaders[MESA_SHADER_FRAGMENT]
1168 ? &builder->shaders[MESA_SHADER_FRAGMENT]->variants[0]
1169 : &dummy_variant;
1170
1171 if (binning_pass) {
1172 /* if we have streamout, use full VS in binning pass, as the
1173 * binning pass VS will have outputs on other than position/psize
1174 * stripped out:
1175 */
1176 if (vs->shader->stream_output.num_outputs == 0)
1177 vs = &builder->shaders[MESA_SHADER_VERTEX]->variants[1];
1178 fs = &dummy_variant;
1179 }
1180
1181 tu6_emit_vs_config(cs, builder->shaders[MESA_SHADER_VERTEX], vs);
1182 tu6_emit_hs_config(cs, builder->shaders[MESA_SHADER_TESS_CTRL], hs);
1183 tu6_emit_ds_config(cs, builder->shaders[MESA_SHADER_TESS_EVAL], ds);
1184 tu6_emit_gs_config(cs, builder->shaders[MESA_SHADER_GEOMETRY], gs);
1185 tu6_emit_fs_config(cs, builder->shaders[MESA_SHADER_FRAGMENT], fs);
1186
1187 tu6_emit_vs_system_values(cs, vs);
1188 tu6_emit_vpc(cs, vs, fs, binning_pass, tf);
1189 tu6_emit_vpc_varying_modes(cs, fs, binning_pass);
1190 tu6_emit_fs_inputs(cs, fs);
1191 tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count);
1192
1193 tu6_emit_shader_object(cs, MESA_SHADER_VERTEX, vs, binary_bo,
1194 binning_pass ? builder->binning_vs_offset : builder->shader_offsets[MESA_SHADER_VERTEX]);
1195
1196 tu6_emit_shader_object(cs, MESA_SHADER_FRAGMENT, fs, binary_bo,
1197 builder->shader_offsets[MESA_SHADER_FRAGMENT]);
1198
1199 tu6_emit_immediates(cs, vs, CP_LOAD_STATE6_GEOM, SB6_VS_SHADER);
1200 if (!binning_pass)
1201 tu6_emit_immediates(cs, fs, CP_LOAD_STATE6_FRAG, SB6_FS_SHADER);
1202 }
1203
1204 static void
1205 tu6_emit_vertex_input(struct tu_cs *cs,
1206 const struct ir3_shader_variant *vs,
1207 const VkPipelineVertexInputStateCreateInfo *vi_info,
1208 uint8_t bindings[MAX_VERTEX_ATTRIBS],
1209 uint16_t strides[MAX_VERTEX_ATTRIBS],
1210 uint16_t offsets[MAX_VERTEX_ATTRIBS],
1211 uint32_t *count)
1212 {
1213 uint32_t vfd_decode_idx = 0;
1214
1215 for (uint32_t i = 0; i < vs->inputs_count; i++) {
1216 if (vs->inputs[i].sysval || !vs->inputs[i].compmask)
1217 continue;
1218
1219 const VkVertexInputAttributeDescription *vi_attr =
1220 tu_find_vertex_input_attribute(vi_info, vs->inputs[i].slot);
1221 const VkVertexInputBindingDescription *vi_binding =
1222 tu_find_vertex_input_binding(vi_info, vi_attr);
1223 assert(vi_attr && vi_binding);
1224
1225 const struct tu_native_format format = tu6_format_vtx(vi_attr->format);
1226
1227 uint32_t vfd_decode = A6XX_VFD_DECODE_INSTR_IDX(vfd_decode_idx) |
1228 A6XX_VFD_DECODE_INSTR_FORMAT(format.fmt) |
1229 A6XX_VFD_DECODE_INSTR_SWAP(format.swap) |
1230 A6XX_VFD_DECODE_INSTR_UNK30;
1231 if (vi_binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
1232 vfd_decode |= A6XX_VFD_DECODE_INSTR_INSTANCED;
1233 if (!vk_format_is_int(vi_attr->format))
1234 vfd_decode |= A6XX_VFD_DECODE_INSTR_FLOAT;
1235
1236 const uint32_t vfd_decode_step_rate = 1;
1237
1238 const uint32_t vfd_dest_cntl =
1239 A6XX_VFD_DEST_CNTL_INSTR_WRITEMASK(vs->inputs[i].compmask) |
1240 A6XX_VFD_DEST_CNTL_INSTR_REGID(vs->inputs[i].regid);
1241
1242 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DECODE(vfd_decode_idx), 2);
1243 tu_cs_emit(cs, vfd_decode);
1244 tu_cs_emit(cs, vfd_decode_step_rate);
1245
1246 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DEST_CNTL(vfd_decode_idx), 1);
1247 tu_cs_emit(cs, vfd_dest_cntl);
1248
1249 bindings[vfd_decode_idx] = vi_binding->binding;
1250 strides[vfd_decode_idx] = vi_binding->stride;
1251 offsets[vfd_decode_idx] = vi_attr->offset;
1252
1253 vfd_decode_idx++;
1254 assert(vfd_decode_idx <= MAX_VERTEX_ATTRIBS);
1255 }
1256
1257 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_0, 1);
1258 tu_cs_emit(
1259 cs, A6XX_VFD_CONTROL_0_VTXCNT(vfd_decode_idx) | (vfd_decode_idx << 8));
1260
1261 *count = vfd_decode_idx;
1262 }
1263
1264 static uint32_t
1265 tu6_guardband_adj(uint32_t v)
1266 {
1267 if (v > 256)
1268 return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0));
1269 else
1270 return 511;
1271 }
1272
1273 void
1274 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
1275 {
1276 float offsets[3];
1277 float scales[3];
1278 scales[0] = viewport->width / 2.0f;
1279 scales[1] = viewport->height / 2.0f;
1280 scales[2] = viewport->maxDepth - viewport->minDepth;
1281 offsets[0] = viewport->x + scales[0];
1282 offsets[1] = viewport->y + scales[1];
1283 offsets[2] = viewport->minDepth;
1284
1285 VkOffset2D min;
1286 VkOffset2D max;
1287 min.x = (int32_t) viewport->x;
1288 max.x = (int32_t) ceilf(viewport->x + viewport->width);
1289 if (viewport->height >= 0.0f) {
1290 min.y = (int32_t) viewport->y;
1291 max.y = (int32_t) ceilf(viewport->y + viewport->height);
1292 } else {
1293 min.y = (int32_t)(viewport->y + viewport->height);
1294 max.y = (int32_t) ceilf(viewport->y);
1295 }
1296 /* the spec allows viewport->height to be 0.0f */
1297 if (min.y == max.y)
1298 max.y++;
1299 assert(min.x >= 0 && min.x < max.x);
1300 assert(min.y >= 0 && min.y < max.y);
1301
1302 VkExtent2D guardband_adj;
1303 guardband_adj.width = tu6_guardband_adj(max.x - min.x);
1304 guardband_adj.height = tu6_guardband_adj(max.y - min.y);
1305
1306 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6);
1307 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XOFFSET_0(offsets[0]).value);
1308 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XSCALE_0(scales[0]).value);
1309 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YOFFSET_0(offsets[1]).value);
1310 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YSCALE_0(scales[1]).value);
1311 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZOFFSET_0(offsets[2]).value);
1312 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZSCALE_0(scales[2]).value);
1313
1314 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2);
1315 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(min.x) |
1316 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(min.y));
1317 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(max.x - 1) |
1318 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(max.y - 1));
1319
1320 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
1321 tu_cs_emit(cs,
1322 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
1323 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
1324 }
1325
1326 void
1327 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
1328 {
1329 const VkOffset2D min = scissor->offset;
1330 const VkOffset2D max = {
1331 scissor->offset.x + scissor->extent.width,
1332 scissor->offset.y + scissor->extent.height,
1333 };
1334
1335 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0, 2);
1336 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(min.x) |
1337 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(min.y));
1338 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(max.x - 1) |
1339 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(max.y - 1));
1340 }
1341
1342 static void
1343 tu6_emit_gras_unknowns(struct tu_cs *cs)
1344 {
1345 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_DISABLE_CNTL, 1);
1346 tu_cs_emit(cs, A6XX_GRAS_DISABLE_CNTL_VP_CLIP_CODE_IGNORE);
1347 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8001, 1);
1348 tu_cs_emit(cs, 0x0);
1349 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_LAYER_CNTL, 1);
1350 tu_cs_emit(cs, 0x0);
1351 }
1352
1353 static void
1354 tu6_emit_point_size(struct tu_cs *cs)
1355 {
1356 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POINT_MINMAX, 2);
1357 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_MINMAX_MIN(1.0f / 16.0f) |
1358 A6XX_GRAS_SU_POINT_MINMAX_MAX(4092.0f));
1359 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_SIZE(1.0f).value);
1360 }
1361
1362 static uint32_t
1363 tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
1364 VkSampleCountFlagBits samples)
1365 {
1366 uint32_t gras_su_cntl = 0;
1367
1368 if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
1369 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
1370 if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
1371 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
1372
1373 if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
1374 gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
1375
1376 /* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
1377
1378 if (rast_info->depthBiasEnable)
1379 gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
1380
1381 if (samples > VK_SAMPLE_COUNT_1_BIT)
1382 gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
1383
1384 return gras_su_cntl;
1385 }
1386
1387 void
1388 tu6_emit_gras_su_cntl(struct tu_cs *cs,
1389 uint32_t gras_su_cntl,
1390 float line_width)
1391 {
1392 assert((gras_su_cntl & A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK) == 0);
1393 gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(line_width / 2.0f);
1394
1395 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_CNTL, 1);
1396 tu_cs_emit(cs, gras_su_cntl);
1397 }
1398
1399 void
1400 tu6_emit_depth_bias(struct tu_cs *cs,
1401 float constant_factor,
1402 float clamp,
1403 float slope_factor)
1404 {
1405 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
1406 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor).value);
1407 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor).value);
1408 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp).value);
1409 }
1410
1411 static void
1412 tu6_emit_alpha_control_disable(struct tu_cs *cs)
1413 {
1414 tu_cs_emit_pkt4(cs, REG_A6XX_RB_ALPHA_CONTROL, 1);
1415 tu_cs_emit(cs, 0);
1416 }
1417
1418 static void
1419 tu6_emit_depth_control(struct tu_cs *cs,
1420 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1421 {
1422 assert(!ds_info->depthBoundsTestEnable);
1423
1424 uint32_t rb_depth_cntl = 0;
1425 if (ds_info->depthTestEnable) {
1426 rb_depth_cntl |=
1427 A6XX_RB_DEPTH_CNTL_Z_ENABLE |
1428 A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
1429 A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
1430
1431 if (ds_info->depthWriteEnable)
1432 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
1433 }
1434
1435 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
1436 tu_cs_emit(cs, rb_depth_cntl);
1437 }
1438
1439 static void
1440 tu6_emit_stencil_control(struct tu_cs *cs,
1441 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1442 {
1443 uint32_t rb_stencil_control = 0;
1444 if (ds_info->stencilTestEnable) {
1445 const VkStencilOpState *front = &ds_info->front;
1446 const VkStencilOpState *back = &ds_info->back;
1447 rb_stencil_control |=
1448 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
1449 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
1450 A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
1451 A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
1452 A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
1453 A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
1454 A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
1455 A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
1456 A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
1457 A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
1458 A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
1459 }
1460
1461 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
1462 tu_cs_emit(cs, rb_stencil_control);
1463 }
1464
1465 void
1466 tu6_emit_stencil_compare_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1467 {
1468 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILMASK, 1);
1469 tu_cs_emit(
1470 cs, A6XX_RB_STENCILMASK_MASK(front) | A6XX_RB_STENCILMASK_BFMASK(back));
1471 }
1472
1473 void
1474 tu6_emit_stencil_write_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1475 {
1476 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILWRMASK, 1);
1477 tu_cs_emit(cs, A6XX_RB_STENCILWRMASK_WRMASK(front) |
1478 A6XX_RB_STENCILWRMASK_BFWRMASK(back));
1479 }
1480
1481 void
1482 tu6_emit_stencil_reference(struct tu_cs *cs, uint32_t front, uint32_t back)
1483 {
1484 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILREF, 1);
1485 tu_cs_emit(cs,
1486 A6XX_RB_STENCILREF_REF(front) | A6XX_RB_STENCILREF_BFREF(back));
1487 }
1488
1489 static uint32_t
1490 tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
1491 bool has_alpha)
1492 {
1493 const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
1494 const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
1495 has_alpha ? att->srcColorBlendFactor
1496 : tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
1497 const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
1498 has_alpha ? att->dstColorBlendFactor
1499 : tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
1500 const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
1501 const enum adreno_rb_blend_factor src_alpha_factor =
1502 tu6_blend_factor(att->srcAlphaBlendFactor);
1503 const enum adreno_rb_blend_factor dst_alpha_factor =
1504 tu6_blend_factor(att->dstAlphaBlendFactor);
1505
1506 return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
1507 A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
1508 A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
1509 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
1510 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
1511 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
1512 }
1513
1514 static uint32_t
1515 tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
1516 uint32_t rb_mrt_control_rop,
1517 bool is_int,
1518 bool has_alpha)
1519 {
1520 uint32_t rb_mrt_control =
1521 A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
1522
1523 /* ignore blending and logic op for integer attachments */
1524 if (is_int) {
1525 rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
1526 return rb_mrt_control;
1527 }
1528
1529 rb_mrt_control |= rb_mrt_control_rop;
1530
1531 if (att->blendEnable) {
1532 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
1533
1534 if (has_alpha)
1535 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
1536 }
1537
1538 return rb_mrt_control;
1539 }
1540
1541 static void
1542 tu6_emit_rb_mrt_controls(struct tu_cs *cs,
1543 const VkPipelineColorBlendStateCreateInfo *blend_info,
1544 const VkFormat attachment_formats[MAX_RTS],
1545 uint32_t *blend_enable_mask)
1546 {
1547 *blend_enable_mask = 0;
1548
1549 bool rop_reads_dst = false;
1550 uint32_t rb_mrt_control_rop = 0;
1551 if (blend_info->logicOpEnable) {
1552 rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
1553 rb_mrt_control_rop =
1554 A6XX_RB_MRT_CONTROL_ROP_ENABLE |
1555 A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
1556 }
1557
1558 for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
1559 const VkPipelineColorBlendAttachmentState *att =
1560 &blend_info->pAttachments[i];
1561 const VkFormat format = attachment_formats[i];
1562
1563 uint32_t rb_mrt_control = 0;
1564 uint32_t rb_mrt_blend_control = 0;
1565 if (format != VK_FORMAT_UNDEFINED) {
1566 const bool is_int = vk_format_is_int(format);
1567 const bool has_alpha = vk_format_has_alpha(format);
1568
1569 rb_mrt_control =
1570 tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
1571 rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
1572
1573 if (att->blendEnable || rop_reads_dst)
1574 *blend_enable_mask |= 1 << i;
1575 }
1576
1577 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1578 tu_cs_emit(cs, rb_mrt_control);
1579 tu_cs_emit(cs, rb_mrt_blend_control);
1580 }
1581 }
1582
1583 static void
1584 tu6_emit_blend_control(struct tu_cs *cs,
1585 uint32_t blend_enable_mask,
1586 const VkPipelineMultisampleStateCreateInfo *msaa_info)
1587 {
1588 assert(!msaa_info->alphaToOneEnable);
1589
1590 uint32_t sp_blend_cntl = A6XX_SP_BLEND_CNTL_UNK8;
1591 if (blend_enable_mask)
1592 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ENABLED;
1593 if (msaa_info->alphaToCoverageEnable)
1594 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ALPHA_TO_COVERAGE;
1595
1596 const uint32_t sample_mask =
1597 msaa_info->pSampleMask ? *msaa_info->pSampleMask
1598 : ((1 << msaa_info->rasterizationSamples) - 1);
1599
1600 /* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
1601 uint32_t rb_blend_cntl =
1602 A6XX_RB_BLEND_CNTL_ENABLE_BLEND(blend_enable_mask) |
1603 A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND |
1604 A6XX_RB_BLEND_CNTL_SAMPLE_MASK(sample_mask);
1605 if (msaa_info->alphaToCoverageEnable)
1606 rb_blend_cntl |= A6XX_RB_BLEND_CNTL_ALPHA_TO_COVERAGE;
1607
1608 tu_cs_emit_pkt4(cs, REG_A6XX_SP_BLEND_CNTL, 1);
1609 tu_cs_emit(cs, sp_blend_cntl);
1610
1611 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_CNTL, 1);
1612 tu_cs_emit(cs, rb_blend_cntl);
1613 }
1614
1615 void
1616 tu6_emit_blend_constants(struct tu_cs *cs, const float constants[4])
1617 {
1618 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_RED_F32, 4);
1619 tu_cs_emit_array(cs, (const uint32_t *) constants, 4);
1620 }
1621
1622 static VkResult
1623 tu_pipeline_create(struct tu_device *dev,
1624 const VkAllocationCallbacks *pAllocator,
1625 struct tu_pipeline **out_pipeline)
1626 {
1627 struct tu_pipeline *pipeline =
1628 vk_zalloc2(&dev->alloc, pAllocator, sizeof(*pipeline), 8,
1629 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1630 if (!pipeline)
1631 return VK_ERROR_OUT_OF_HOST_MEMORY;
1632
1633 tu_cs_init(&pipeline->cs, dev, TU_CS_MODE_SUB_STREAM, 2048);
1634
1635 /* reserve the space now such that tu_cs_begin_sub_stream never fails */
1636 VkResult result = tu_cs_reserve_space(&pipeline->cs, 2048);
1637 if (result != VK_SUCCESS) {
1638 vk_free2(&dev->alloc, pAllocator, pipeline);
1639 return result;
1640 }
1641
1642 *out_pipeline = pipeline;
1643
1644 return VK_SUCCESS;
1645 }
1646
1647 static VkResult
1648 tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder)
1649 {
1650 const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
1651 NULL
1652 };
1653 for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
1654 gl_shader_stage stage =
1655 tu_shader_stage(builder->create_info->pStages[i].stage);
1656 stage_infos[stage] = &builder->create_info->pStages[i];
1657 }
1658
1659 struct tu_shader_compile_options options;
1660 tu_shader_compile_options_init(&options, builder->create_info);
1661
1662 /* compile shaders in reverse order */
1663 struct tu_shader *next_stage_shader = NULL;
1664 for (gl_shader_stage stage = MESA_SHADER_STAGES - 1;
1665 stage > MESA_SHADER_NONE; stage--) {
1666 const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
1667 if (!stage_info)
1668 continue;
1669
1670 struct tu_shader *shader =
1671 tu_shader_create(builder->device, stage, stage_info, builder->layout,
1672 builder->alloc);
1673 if (!shader)
1674 return VK_ERROR_OUT_OF_HOST_MEMORY;
1675
1676 VkResult result =
1677 tu_shader_compile(builder->device, shader, next_stage_shader,
1678 &options, builder->alloc);
1679 if (result != VK_SUCCESS)
1680 return result;
1681
1682 builder->shaders[stage] = shader;
1683 builder->shader_offsets[stage] = builder->shader_total_size;
1684 builder->shader_total_size +=
1685 sizeof(uint32_t) * shader->variants[0].info.sizedwords;
1686
1687 next_stage_shader = shader;
1688 }
1689
1690 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
1691 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1692 const struct ir3_shader_variant *variant;
1693
1694 if (vs->ir3_shader.stream_output.num_outputs)
1695 variant = &vs->variants[0];
1696 else
1697 variant = &vs->variants[1];
1698
1699 builder->binning_vs_offset = builder->shader_total_size;
1700 builder->shader_total_size +=
1701 sizeof(uint32_t) * variant->info.sizedwords;
1702 }
1703
1704 return VK_SUCCESS;
1705 }
1706
1707 static VkResult
1708 tu_pipeline_builder_upload_shaders(struct tu_pipeline_builder *builder,
1709 struct tu_pipeline *pipeline)
1710 {
1711 struct tu_bo *bo = &pipeline->program.binary_bo;
1712
1713 VkResult result =
1714 tu_bo_init_new(builder->device, bo, builder->shader_total_size);
1715 if (result != VK_SUCCESS)
1716 return result;
1717
1718 result = tu_bo_map(builder->device, bo);
1719 if (result != VK_SUCCESS)
1720 return result;
1721
1722 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
1723 const struct tu_shader *shader = builder->shaders[i];
1724 if (!shader)
1725 continue;
1726
1727 memcpy(bo->map + builder->shader_offsets[i], shader->binary,
1728 sizeof(uint32_t) * shader->variants[0].info.sizedwords);
1729 }
1730
1731 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
1732 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1733 const struct ir3_shader_variant *variant;
1734 void *bin;
1735
1736 if (vs->ir3_shader.stream_output.num_outputs) {
1737 variant = &vs->variants[0];
1738 bin = vs->binary;
1739 } else {
1740 variant = &vs->variants[1];
1741 bin = vs->binning_binary;
1742 }
1743
1744 memcpy(bo->map + builder->binning_vs_offset, bin,
1745 sizeof(uint32_t) * variant->info.sizedwords);
1746 }
1747
1748 return VK_SUCCESS;
1749 }
1750
1751 static void
1752 tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
1753 struct tu_pipeline *pipeline)
1754 {
1755 const VkPipelineDynamicStateCreateInfo *dynamic_info =
1756 builder->create_info->pDynamicState;
1757
1758 if (!dynamic_info)
1759 return;
1760
1761 for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
1762 pipeline->dynamic_state.mask |=
1763 tu_dynamic_state_bit(dynamic_info->pDynamicStates[i]);
1764 }
1765 }
1766
1767 static void
1768 tu_pipeline_set_linkage(struct tu_program_descriptor_linkage *link,
1769 struct tu_shader *shader,
1770 struct ir3_shader_variant *v)
1771 {
1772 link->ubo_state = v->shader->ubo_state;
1773 link->const_state = v->shader->const_state;
1774 link->constlen = v->constlen;
1775 link->texture_map = shader->texture_map;
1776 link->sampler_map = shader->sampler_map;
1777 link->ubo_map = shader->ubo_map;
1778 link->ssbo_map = shader->ssbo_map;
1779 link->image_map = shader->image_map;
1780 }
1781
1782 static void
1783 tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
1784 struct tu_pipeline *pipeline)
1785 {
1786 struct tu_cs prog_cs;
1787 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
1788 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, false, &pipeline->streamout);
1789 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
1790
1791 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
1792 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, true, &pipeline->streamout);
1793 pipeline->program.binning_state_ib =
1794 tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
1795
1796 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1797 if (!builder->shaders[i])
1798 continue;
1799
1800 tu_pipeline_set_linkage(&pipeline->program.link[i],
1801 builder->shaders[i],
1802 &builder->shaders[i]->variants[0]);
1803 }
1804 }
1805
1806 static void
1807 tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
1808 struct tu_pipeline *pipeline)
1809 {
1810 const VkPipelineVertexInputStateCreateInfo *vi_info =
1811 builder->create_info->pVertexInputState;
1812 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1813
1814 struct tu_cs vi_cs;
1815 tu_cs_begin_sub_stream(&pipeline->cs,
1816 MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
1817 tu6_emit_vertex_input(&vi_cs, &vs->variants[0], vi_info,
1818 pipeline->vi.bindings, pipeline->vi.strides,
1819 pipeline->vi.offsets, &pipeline->vi.count);
1820 pipeline->vi.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
1821
1822 if (vs->has_binning_pass) {
1823 tu_cs_begin_sub_stream(&pipeline->cs,
1824 MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
1825 tu6_emit_vertex_input(
1826 &vi_cs, &vs->variants[1], vi_info, pipeline->vi.binning_bindings,
1827 pipeline->vi.binning_strides, pipeline->vi.binning_offsets,
1828 &pipeline->vi.binning_count);
1829 pipeline->vi.binning_state_ib =
1830 tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
1831 }
1832 }
1833
1834 static void
1835 tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
1836 struct tu_pipeline *pipeline)
1837 {
1838 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1839 builder->create_info->pInputAssemblyState;
1840
1841 pipeline->ia.primtype = tu6_primtype(ia_info->topology);
1842 pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
1843 }
1844
1845 static void
1846 tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
1847 struct tu_pipeline *pipeline)
1848 {
1849 /* The spec says:
1850 *
1851 * pViewportState is a pointer to an instance of the
1852 * VkPipelineViewportStateCreateInfo structure, and is ignored if the
1853 * pipeline has rasterization disabled."
1854 *
1855 * We leave the relevant registers stale in that case.
1856 */
1857 if (builder->rasterizer_discard)
1858 return;
1859
1860 const VkPipelineViewportStateCreateInfo *vp_info =
1861 builder->create_info->pViewportState;
1862
1863 struct tu_cs vp_cs;
1864 tu_cs_begin_sub_stream(&pipeline->cs, 15, &vp_cs);
1865
1866 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_VIEWPORT)) {
1867 assert(vp_info->viewportCount == 1);
1868 tu6_emit_viewport(&vp_cs, vp_info->pViewports);
1869 }
1870
1871 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SCISSOR)) {
1872 assert(vp_info->scissorCount == 1);
1873 tu6_emit_scissor(&vp_cs, vp_info->pScissors);
1874 }
1875
1876 pipeline->vp.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vp_cs);
1877 }
1878
1879 static void
1880 tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
1881 struct tu_pipeline *pipeline)
1882 {
1883 const VkPipelineRasterizationStateCreateInfo *rast_info =
1884 builder->create_info->pRasterizationState;
1885
1886 assert(!rast_info->depthClampEnable);
1887 assert(rast_info->polygonMode == VK_POLYGON_MODE_FILL);
1888
1889 struct tu_cs rast_cs;
1890 tu_cs_begin_sub_stream(&pipeline->cs, 20, &rast_cs);
1891
1892 /* move to hw ctx init? */
1893 tu6_emit_gras_unknowns(&rast_cs);
1894 tu6_emit_point_size(&rast_cs);
1895
1896 const uint32_t gras_su_cntl =
1897 tu6_gras_su_cntl(rast_info, builder->samples);
1898
1899 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_LINE_WIDTH))
1900 tu6_emit_gras_su_cntl(&rast_cs, gras_su_cntl, rast_info->lineWidth);
1901
1902 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_DEPTH_BIAS)) {
1903 tu6_emit_depth_bias(&rast_cs, rast_info->depthBiasConstantFactor,
1904 rast_info->depthBiasClamp,
1905 rast_info->depthBiasSlopeFactor);
1906 }
1907
1908 pipeline->rast.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &rast_cs);
1909
1910 pipeline->rast.gras_su_cntl = gras_su_cntl;
1911 }
1912
1913 static void
1914 tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
1915 struct tu_pipeline *pipeline)
1916 {
1917 /* The spec says:
1918 *
1919 * pDepthStencilState is a pointer to an instance of the
1920 * VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
1921 * the pipeline has rasterization disabled or if the subpass of the
1922 * render pass the pipeline is created against does not use a
1923 * depth/stencil attachment.
1924 *
1925 * We disable both depth and stenil tests in those cases.
1926 */
1927 static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
1928 const VkPipelineDepthStencilStateCreateInfo *ds_info =
1929 builder->use_depth_stencil_attachment
1930 ? builder->create_info->pDepthStencilState
1931 : &dummy_ds_info;
1932
1933 struct tu_cs ds_cs;
1934 tu_cs_begin_sub_stream(&pipeline->cs, 12, &ds_cs);
1935
1936 /* move to hw ctx init? */
1937 tu6_emit_alpha_control_disable(&ds_cs);
1938
1939 tu6_emit_depth_control(&ds_cs, ds_info);
1940 tu6_emit_stencil_control(&ds_cs, ds_info);
1941
1942 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_COMPARE_MASK)) {
1943 tu6_emit_stencil_compare_mask(&ds_cs, ds_info->front.compareMask,
1944 ds_info->back.compareMask);
1945 }
1946 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_WRITE_MASK)) {
1947 tu6_emit_stencil_write_mask(&ds_cs, ds_info->front.writeMask,
1948 ds_info->back.writeMask);
1949 }
1950 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_REFERENCE)) {
1951 tu6_emit_stencil_reference(&ds_cs, ds_info->front.reference,
1952 ds_info->back.reference);
1953 }
1954
1955 pipeline->ds.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &ds_cs);
1956 }
1957
1958 static void
1959 tu_pipeline_builder_parse_multisample_and_color_blend(
1960 struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
1961 {
1962 /* The spec says:
1963 *
1964 * pMultisampleState is a pointer to an instance of the
1965 * VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
1966 * has rasterization disabled.
1967 *
1968 * Also,
1969 *
1970 * pColorBlendState is a pointer to an instance of the
1971 * VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
1972 * pipeline has rasterization disabled or if the subpass of the render
1973 * pass the pipeline is created against does not use any color
1974 * attachments.
1975 *
1976 * We leave the relevant registers stale when rasterization is disabled.
1977 */
1978 if (builder->rasterizer_discard)
1979 return;
1980
1981 static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
1982 const VkPipelineMultisampleStateCreateInfo *msaa_info =
1983 builder->create_info->pMultisampleState;
1984 const VkPipelineColorBlendStateCreateInfo *blend_info =
1985 builder->use_color_attachments ? builder->create_info->pColorBlendState
1986 : &dummy_blend_info;
1987
1988 struct tu_cs blend_cs;
1989 tu_cs_begin_sub_stream(&pipeline->cs, MAX_RTS * 3 + 9, &blend_cs);
1990
1991 uint32_t blend_enable_mask;
1992 tu6_emit_rb_mrt_controls(&blend_cs, blend_info,
1993 builder->color_attachment_formats,
1994 &blend_enable_mask);
1995
1996 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_BLEND_CONSTANTS))
1997 tu6_emit_blend_constants(&blend_cs, blend_info->blendConstants);
1998
1999 tu6_emit_blend_control(&blend_cs, blend_enable_mask, msaa_info);
2000
2001 pipeline->blend.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &blend_cs);
2002 }
2003
2004 static void
2005 tu_pipeline_finish(struct tu_pipeline *pipeline,
2006 struct tu_device *dev,
2007 const VkAllocationCallbacks *alloc)
2008 {
2009 tu_cs_finish(&pipeline->cs);
2010
2011 if (pipeline->program.binary_bo.gem_handle)
2012 tu_bo_finish(dev, &pipeline->program.binary_bo);
2013 }
2014
2015 static VkResult
2016 tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
2017 struct tu_pipeline **pipeline)
2018 {
2019 VkResult result = tu_pipeline_create(builder->device, builder->alloc,
2020 pipeline);
2021 if (result != VK_SUCCESS)
2022 return result;
2023
2024 /* compile and upload shaders */
2025 result = tu_pipeline_builder_compile_shaders(builder);
2026 if (result == VK_SUCCESS)
2027 result = tu_pipeline_builder_upload_shaders(builder, *pipeline);
2028 if (result != VK_SUCCESS) {
2029 tu_pipeline_finish(*pipeline, builder->device, builder->alloc);
2030 vk_free2(&builder->device->alloc, builder->alloc, *pipeline);
2031 *pipeline = VK_NULL_HANDLE;
2032
2033 return result;
2034 }
2035
2036 tu_pipeline_builder_parse_dynamic(builder, *pipeline);
2037 tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
2038 tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
2039 tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
2040 tu_pipeline_builder_parse_viewport(builder, *pipeline);
2041 tu_pipeline_builder_parse_rasterization(builder, *pipeline);
2042 tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
2043 tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
2044
2045 /* we should have reserved enough space upfront such that the CS never
2046 * grows
2047 */
2048 assert((*pipeline)->cs.bo_count == 1);
2049
2050 return VK_SUCCESS;
2051 }
2052
2053 static void
2054 tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
2055 {
2056 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
2057 if (!builder->shaders[i])
2058 continue;
2059 tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
2060 }
2061 }
2062
2063 static void
2064 tu_pipeline_builder_init_graphics(
2065 struct tu_pipeline_builder *builder,
2066 struct tu_device *dev,
2067 struct tu_pipeline_cache *cache,
2068 const VkGraphicsPipelineCreateInfo *create_info,
2069 const VkAllocationCallbacks *alloc)
2070 {
2071 TU_FROM_HANDLE(tu_pipeline_layout, layout, create_info->layout);
2072
2073 *builder = (struct tu_pipeline_builder) {
2074 .device = dev,
2075 .cache = cache,
2076 .create_info = create_info,
2077 .alloc = alloc,
2078 .layout = layout,
2079 };
2080
2081 builder->rasterizer_discard =
2082 create_info->pRasterizationState->rasterizerDiscardEnable;
2083
2084 if (builder->rasterizer_discard) {
2085 builder->samples = VK_SAMPLE_COUNT_1_BIT;
2086 } else {
2087 builder->samples = create_info->pMultisampleState->rasterizationSamples;
2088
2089 const struct tu_render_pass *pass =
2090 tu_render_pass_from_handle(create_info->renderPass);
2091 const struct tu_subpass *subpass =
2092 &pass->subpasses[create_info->subpass];
2093
2094 builder->use_depth_stencil_attachment =
2095 subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED;
2096
2097 assert(subpass->color_count == 0 ||
2098 !create_info->pColorBlendState ||
2099 subpass->color_count == create_info->pColorBlendState->attachmentCount);
2100 builder->color_attachment_count = subpass->color_count;
2101 for (uint32_t i = 0; i < subpass->color_count; i++) {
2102 const uint32_t a = subpass->color_attachments[i].attachment;
2103 if (a == VK_ATTACHMENT_UNUSED)
2104 continue;
2105
2106 builder->color_attachment_formats[i] = pass->attachments[a].format;
2107 builder->use_color_attachments = true;
2108 }
2109 }
2110 }
2111
2112 static VkResult
2113 tu_graphics_pipeline_create(VkDevice device,
2114 VkPipelineCache pipelineCache,
2115 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2116 const VkAllocationCallbacks *pAllocator,
2117 VkPipeline *pPipeline)
2118 {
2119 TU_FROM_HANDLE(tu_device, dev, device);
2120 TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
2121
2122 struct tu_pipeline_builder builder;
2123 tu_pipeline_builder_init_graphics(&builder, dev, cache,
2124 pCreateInfo, pAllocator);
2125
2126 struct tu_pipeline *pipeline = NULL;
2127 VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
2128 tu_pipeline_builder_finish(&builder);
2129
2130 if (result == VK_SUCCESS)
2131 *pPipeline = tu_pipeline_to_handle(pipeline);
2132 else
2133 *pPipeline = VK_NULL_HANDLE;
2134
2135 return result;
2136 }
2137
2138 VkResult
2139 tu_CreateGraphicsPipelines(VkDevice device,
2140 VkPipelineCache pipelineCache,
2141 uint32_t count,
2142 const VkGraphicsPipelineCreateInfo *pCreateInfos,
2143 const VkAllocationCallbacks *pAllocator,
2144 VkPipeline *pPipelines)
2145 {
2146 VkResult final_result = VK_SUCCESS;
2147
2148 for (uint32_t i = 0; i < count; i++) {
2149 VkResult result = tu_graphics_pipeline_create(device, pipelineCache,
2150 &pCreateInfos[i], pAllocator,
2151 &pPipelines[i]);
2152
2153 if (result != VK_SUCCESS)
2154 final_result = result;
2155 }
2156
2157 return final_result;
2158 }
2159
2160 static void
2161 tu6_emit_compute_program(struct tu_cs *cs,
2162 struct tu_shader *shader,
2163 const struct tu_bo *binary_bo)
2164 {
2165 const struct ir3_shader_variant *v = &shader->variants[0];
2166
2167 tu6_emit_cs_config(cs, shader, v);
2168
2169 /* The compute program is the only one in the pipeline, so 0 offset. */
2170 tu6_emit_shader_object(cs, MESA_SHADER_COMPUTE, v, binary_bo, 0);
2171
2172 tu6_emit_immediates(cs, v, CP_LOAD_STATE6_FRAG, SB6_CS_SHADER);
2173 }
2174
2175 static VkResult
2176 tu_compute_upload_shader(VkDevice device,
2177 struct tu_pipeline *pipeline,
2178 struct tu_shader *shader)
2179 {
2180 TU_FROM_HANDLE(tu_device, dev, device);
2181 struct tu_bo *bo = &pipeline->program.binary_bo;
2182 struct ir3_shader_variant *v = &shader->variants[0];
2183
2184 uint32_t shader_size = sizeof(uint32_t) * v->info.sizedwords;
2185 VkResult result =
2186 tu_bo_init_new(dev, bo, shader_size);
2187 if (result != VK_SUCCESS)
2188 return result;
2189
2190 result = tu_bo_map(dev, bo);
2191 if (result != VK_SUCCESS)
2192 return result;
2193
2194 memcpy(bo->map, shader->binary, shader_size);
2195
2196 return VK_SUCCESS;
2197 }
2198
2199
2200 static VkResult
2201 tu_compute_pipeline_create(VkDevice device,
2202 VkPipelineCache _cache,
2203 const VkComputePipelineCreateInfo *pCreateInfo,
2204 const VkAllocationCallbacks *pAllocator,
2205 VkPipeline *pPipeline)
2206 {
2207 TU_FROM_HANDLE(tu_device, dev, device);
2208 TU_FROM_HANDLE(tu_pipeline_layout, layout, pCreateInfo->layout);
2209 const VkPipelineShaderStageCreateInfo *stage_info = &pCreateInfo->stage;
2210 VkResult result;
2211
2212 struct tu_pipeline *pipeline;
2213
2214 *pPipeline = VK_NULL_HANDLE;
2215
2216 result = tu_pipeline_create(dev, pAllocator, &pipeline);
2217 if (result != VK_SUCCESS)
2218 return result;
2219
2220 pipeline->layout = layout;
2221
2222 struct tu_shader_compile_options options;
2223 tu_shader_compile_options_init(&options, NULL);
2224
2225 struct tu_shader *shader =
2226 tu_shader_create(dev, MESA_SHADER_COMPUTE, stage_info, layout, pAllocator);
2227 if (!shader) {
2228 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2229 goto fail;
2230 }
2231
2232 result = tu_shader_compile(dev, shader, NULL, &options, pAllocator);
2233 if (result != VK_SUCCESS)
2234 goto fail;
2235
2236 struct ir3_shader_variant *v = &shader->variants[0];
2237
2238 tu_pipeline_set_linkage(&pipeline->program.link[MESA_SHADER_COMPUTE],
2239 shader, v);
2240
2241 result = tu_compute_upload_shader(device, pipeline, shader);
2242 if (result != VK_SUCCESS)
2243 goto fail;
2244
2245 for (int i = 0; i < 3; i++)
2246 pipeline->compute.local_size[i] = v->shader->nir->info.cs.local_size[i];
2247
2248 struct tu_cs prog_cs;
2249 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2250 tu6_emit_compute_program(&prog_cs, shader, &pipeline->program.binary_bo);
2251 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2252
2253 *pPipeline = tu_pipeline_to_handle(pipeline);
2254 return VK_SUCCESS;
2255
2256 fail:
2257 if (shader)
2258 tu_shader_destroy(dev, shader, pAllocator);
2259
2260 tu_pipeline_finish(pipeline, dev, pAllocator);
2261 vk_free2(&dev->alloc, pAllocator, pipeline);
2262
2263 return result;
2264 }
2265
2266 VkResult
2267 tu_CreateComputePipelines(VkDevice device,
2268 VkPipelineCache pipelineCache,
2269 uint32_t count,
2270 const VkComputePipelineCreateInfo *pCreateInfos,
2271 const VkAllocationCallbacks *pAllocator,
2272 VkPipeline *pPipelines)
2273 {
2274 VkResult final_result = VK_SUCCESS;
2275
2276 for (uint32_t i = 0; i < count; i++) {
2277 VkResult result = tu_compute_pipeline_create(device, pipelineCache,
2278 &pCreateInfos[i],
2279 pAllocator, &pPipelines[i]);
2280 if (result != VK_SUCCESS)
2281 final_result = result;
2282 }
2283
2284 return final_result;
2285 }
2286
2287 void
2288 tu_DestroyPipeline(VkDevice _device,
2289 VkPipeline _pipeline,
2290 const VkAllocationCallbacks *pAllocator)
2291 {
2292 TU_FROM_HANDLE(tu_device, dev, _device);
2293 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2294
2295 if (!_pipeline)
2296 return;
2297
2298 tu_pipeline_finish(pipeline, dev, pAllocator);
2299 vk_free2(&dev->alloc, pAllocator, pipeline);
2300 }