turnip: don't set SP_FS_CTRL_REG0_VARYING if only fragcoord is used
[mesa.git] / src / freedreno / vulkan / tu_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "main/menums.h"
31 #include "nir/nir.h"
32 #include "nir/nir_builder.h"
33 #include "spirv/nir_spirv.h"
34 #include "util/debug.h"
35 #include "util/mesa-sha1.h"
36 #include "util/u_atomic.h"
37 #include "vk_format.h"
38 #include "vk_util.h"
39
40 #include "tu_cs.h"
41
42 struct tu_pipeline_builder
43 {
44 struct tu_device *device;
45 struct tu_pipeline_cache *cache;
46 struct tu_pipeline_layout *layout;
47 const VkAllocationCallbacks *alloc;
48 const VkGraphicsPipelineCreateInfo *create_info;
49
50 struct tu_shader *shaders[MESA_SHADER_STAGES];
51 uint32_t shader_offsets[MESA_SHADER_STAGES];
52 uint32_t binning_vs_offset;
53 uint32_t shader_total_size;
54
55 bool rasterizer_discard;
56 /* these states are affectd by rasterizer_discard */
57 VkSampleCountFlagBits samples;
58 bool use_depth_stencil_attachment;
59 bool use_color_attachments;
60 uint32_t color_attachment_count;
61 VkFormat color_attachment_formats[MAX_RTS];
62 };
63
64 static enum tu_dynamic_state_bits
65 tu_dynamic_state_bit(VkDynamicState state)
66 {
67 switch (state) {
68 case VK_DYNAMIC_STATE_VIEWPORT:
69 return TU_DYNAMIC_VIEWPORT;
70 case VK_DYNAMIC_STATE_SCISSOR:
71 return TU_DYNAMIC_SCISSOR;
72 case VK_DYNAMIC_STATE_LINE_WIDTH:
73 return TU_DYNAMIC_LINE_WIDTH;
74 case VK_DYNAMIC_STATE_DEPTH_BIAS:
75 return TU_DYNAMIC_DEPTH_BIAS;
76 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
77 return TU_DYNAMIC_BLEND_CONSTANTS;
78 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
79 return TU_DYNAMIC_DEPTH_BOUNDS;
80 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
81 return TU_DYNAMIC_STENCIL_COMPARE_MASK;
82 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
83 return TU_DYNAMIC_STENCIL_WRITE_MASK;
84 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
85 return TU_DYNAMIC_STENCIL_REFERENCE;
86 default:
87 unreachable("invalid dynamic state");
88 return 0;
89 }
90 }
91
92 static gl_shader_stage
93 tu_shader_stage(VkShaderStageFlagBits stage)
94 {
95 switch (stage) {
96 case VK_SHADER_STAGE_VERTEX_BIT:
97 return MESA_SHADER_VERTEX;
98 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
99 return MESA_SHADER_TESS_CTRL;
100 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
101 return MESA_SHADER_TESS_EVAL;
102 case VK_SHADER_STAGE_GEOMETRY_BIT:
103 return MESA_SHADER_GEOMETRY;
104 case VK_SHADER_STAGE_FRAGMENT_BIT:
105 return MESA_SHADER_FRAGMENT;
106 case VK_SHADER_STAGE_COMPUTE_BIT:
107 return MESA_SHADER_COMPUTE;
108 default:
109 unreachable("invalid VkShaderStageFlagBits");
110 return MESA_SHADER_NONE;
111 }
112 }
113
114 static const VkVertexInputAttributeDescription *
115 tu_find_vertex_input_attribute(
116 const VkPipelineVertexInputStateCreateInfo *vi_info, uint32_t slot)
117 {
118 assert(slot >= VERT_ATTRIB_GENERIC0);
119 slot -= VERT_ATTRIB_GENERIC0;
120 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
121 if (vi_info->pVertexAttributeDescriptions[i].location == slot)
122 return &vi_info->pVertexAttributeDescriptions[i];
123 }
124 return NULL;
125 }
126
127 static const VkVertexInputBindingDescription *
128 tu_find_vertex_input_binding(
129 const VkPipelineVertexInputStateCreateInfo *vi_info,
130 const VkVertexInputAttributeDescription *vi_attr)
131 {
132 assert(vi_attr);
133 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
134 if (vi_info->pVertexBindingDescriptions[i].binding == vi_attr->binding)
135 return &vi_info->pVertexBindingDescriptions[i];
136 }
137 return NULL;
138 }
139
140 static bool
141 tu_logic_op_reads_dst(VkLogicOp op)
142 {
143 switch (op) {
144 case VK_LOGIC_OP_CLEAR:
145 case VK_LOGIC_OP_COPY:
146 case VK_LOGIC_OP_COPY_INVERTED:
147 case VK_LOGIC_OP_SET:
148 return false;
149 default:
150 return true;
151 }
152 }
153
154 static VkBlendFactor
155 tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
156 {
157 /* treat dst alpha as 1.0 and avoid reading it */
158 switch (factor) {
159 case VK_BLEND_FACTOR_DST_ALPHA:
160 return VK_BLEND_FACTOR_ONE;
161 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
162 return VK_BLEND_FACTOR_ZERO;
163 default:
164 return factor;
165 }
166 }
167
168 static enum pc_di_primtype
169 tu6_primtype(VkPrimitiveTopology topology)
170 {
171 switch (topology) {
172 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
173 return DI_PT_POINTLIST;
174 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
175 return DI_PT_LINELIST;
176 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
177 return DI_PT_LINESTRIP;
178 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
179 return DI_PT_TRILIST;
180 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
181 return DI_PT_TRISTRIP;
182 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
183 return DI_PT_TRIFAN;
184 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
185 return DI_PT_LINE_ADJ;
186 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
187 return DI_PT_LINESTRIP_ADJ;
188 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
189 return DI_PT_TRI_ADJ;
190 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
191 return DI_PT_TRISTRIP_ADJ;
192 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
193 default:
194 unreachable("invalid primitive topology");
195 return DI_PT_NONE;
196 }
197 }
198
199 static enum adreno_compare_func
200 tu6_compare_func(VkCompareOp op)
201 {
202 switch (op) {
203 case VK_COMPARE_OP_NEVER:
204 return FUNC_NEVER;
205 case VK_COMPARE_OP_LESS:
206 return FUNC_LESS;
207 case VK_COMPARE_OP_EQUAL:
208 return FUNC_EQUAL;
209 case VK_COMPARE_OP_LESS_OR_EQUAL:
210 return FUNC_LEQUAL;
211 case VK_COMPARE_OP_GREATER:
212 return FUNC_GREATER;
213 case VK_COMPARE_OP_NOT_EQUAL:
214 return FUNC_NOTEQUAL;
215 case VK_COMPARE_OP_GREATER_OR_EQUAL:
216 return FUNC_GEQUAL;
217 case VK_COMPARE_OP_ALWAYS:
218 return FUNC_ALWAYS;
219 default:
220 unreachable("invalid VkCompareOp");
221 return FUNC_NEVER;
222 }
223 }
224
225 static enum adreno_stencil_op
226 tu6_stencil_op(VkStencilOp op)
227 {
228 switch (op) {
229 case VK_STENCIL_OP_KEEP:
230 return STENCIL_KEEP;
231 case VK_STENCIL_OP_ZERO:
232 return STENCIL_ZERO;
233 case VK_STENCIL_OP_REPLACE:
234 return STENCIL_REPLACE;
235 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
236 return STENCIL_INCR_CLAMP;
237 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
238 return STENCIL_DECR_CLAMP;
239 case VK_STENCIL_OP_INVERT:
240 return STENCIL_INVERT;
241 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
242 return STENCIL_INCR_WRAP;
243 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
244 return STENCIL_DECR_WRAP;
245 default:
246 unreachable("invalid VkStencilOp");
247 return STENCIL_KEEP;
248 }
249 }
250
251 static enum a3xx_rop_code
252 tu6_rop(VkLogicOp op)
253 {
254 switch (op) {
255 case VK_LOGIC_OP_CLEAR:
256 return ROP_CLEAR;
257 case VK_LOGIC_OP_AND:
258 return ROP_AND;
259 case VK_LOGIC_OP_AND_REVERSE:
260 return ROP_AND_REVERSE;
261 case VK_LOGIC_OP_COPY:
262 return ROP_COPY;
263 case VK_LOGIC_OP_AND_INVERTED:
264 return ROP_AND_INVERTED;
265 case VK_LOGIC_OP_NO_OP:
266 return ROP_NOOP;
267 case VK_LOGIC_OP_XOR:
268 return ROP_XOR;
269 case VK_LOGIC_OP_OR:
270 return ROP_OR;
271 case VK_LOGIC_OP_NOR:
272 return ROP_NOR;
273 case VK_LOGIC_OP_EQUIVALENT:
274 return ROP_EQUIV;
275 case VK_LOGIC_OP_INVERT:
276 return ROP_INVERT;
277 case VK_LOGIC_OP_OR_REVERSE:
278 return ROP_OR_REVERSE;
279 case VK_LOGIC_OP_COPY_INVERTED:
280 return ROP_COPY_INVERTED;
281 case VK_LOGIC_OP_OR_INVERTED:
282 return ROP_OR_INVERTED;
283 case VK_LOGIC_OP_NAND:
284 return ROP_NAND;
285 case VK_LOGIC_OP_SET:
286 return ROP_SET;
287 default:
288 unreachable("invalid VkLogicOp");
289 return ROP_NOOP;
290 }
291 }
292
293 static enum adreno_rb_blend_factor
294 tu6_blend_factor(VkBlendFactor factor)
295 {
296 switch (factor) {
297 case VK_BLEND_FACTOR_ZERO:
298 return FACTOR_ZERO;
299 case VK_BLEND_FACTOR_ONE:
300 return FACTOR_ONE;
301 case VK_BLEND_FACTOR_SRC_COLOR:
302 return FACTOR_SRC_COLOR;
303 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
304 return FACTOR_ONE_MINUS_SRC_COLOR;
305 case VK_BLEND_FACTOR_DST_COLOR:
306 return FACTOR_DST_COLOR;
307 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
308 return FACTOR_ONE_MINUS_DST_COLOR;
309 case VK_BLEND_FACTOR_SRC_ALPHA:
310 return FACTOR_SRC_ALPHA;
311 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
312 return FACTOR_ONE_MINUS_SRC_ALPHA;
313 case VK_BLEND_FACTOR_DST_ALPHA:
314 return FACTOR_DST_ALPHA;
315 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
316 return FACTOR_ONE_MINUS_DST_ALPHA;
317 case VK_BLEND_FACTOR_CONSTANT_COLOR:
318 return FACTOR_CONSTANT_COLOR;
319 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
320 return FACTOR_ONE_MINUS_CONSTANT_COLOR;
321 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
322 return FACTOR_CONSTANT_ALPHA;
323 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
324 return FACTOR_ONE_MINUS_CONSTANT_ALPHA;
325 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
326 return FACTOR_SRC_ALPHA_SATURATE;
327 case VK_BLEND_FACTOR_SRC1_COLOR:
328 return FACTOR_SRC1_COLOR;
329 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
330 return FACTOR_ONE_MINUS_SRC1_COLOR;
331 case VK_BLEND_FACTOR_SRC1_ALPHA:
332 return FACTOR_SRC1_ALPHA;
333 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
334 return FACTOR_ONE_MINUS_SRC1_ALPHA;
335 default:
336 unreachable("invalid VkBlendFactor");
337 return FACTOR_ZERO;
338 }
339 }
340
341 static enum a3xx_rb_blend_opcode
342 tu6_blend_op(VkBlendOp op)
343 {
344 switch (op) {
345 case VK_BLEND_OP_ADD:
346 return BLEND_DST_PLUS_SRC;
347 case VK_BLEND_OP_SUBTRACT:
348 return BLEND_SRC_MINUS_DST;
349 case VK_BLEND_OP_REVERSE_SUBTRACT:
350 return BLEND_DST_MINUS_SRC;
351 case VK_BLEND_OP_MIN:
352 return BLEND_MIN_DST_SRC;
353 case VK_BLEND_OP_MAX:
354 return BLEND_MAX_DST_SRC;
355 default:
356 unreachable("invalid VkBlendOp");
357 return BLEND_DST_PLUS_SRC;
358 }
359 }
360
361 static void
362 tu6_emit_vs_config(struct tu_cs *cs, struct tu_shader *shader,
363 const struct ir3_shader_variant *vs)
364 {
365 uint32_t sp_vs_ctrl =
366 A6XX_SP_VS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
367 A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(vs->info.max_reg + 1) |
368 A6XX_SP_VS_CTRL_REG0_MERGEDREGS |
369 A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(vs->branchstack);
370 if (vs->need_pixlod)
371 sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_PIXLODENABLE;
372
373 uint32_t sp_vs_config = A6XX_SP_VS_CONFIG_NTEX(shader->texture_map.num_desc) |
374 A6XX_SP_VS_CONFIG_NSAMP(shader->sampler_map.num_desc);
375 if (vs->instrlen)
376 sp_vs_config |= A6XX_SP_VS_CONFIG_ENABLED;
377
378 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CTRL_REG0, 1);
379 tu_cs_emit(cs, sp_vs_ctrl);
380
381 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CONFIG, 2);
382 tu_cs_emit(cs, sp_vs_config);
383 tu_cs_emit(cs, vs->instrlen);
384
385 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_VS_CNTL, 1);
386 tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(align(vs->constlen, 4)) |
387 A6XX_HLSQ_VS_CNTL_ENABLED);
388 }
389
390 static void
391 tu6_emit_hs_config(struct tu_cs *cs, struct tu_shader *shader,
392 const struct ir3_shader_variant *hs)
393 {
394 uint32_t sp_hs_config = 0;
395 if (hs->instrlen)
396 sp_hs_config |= A6XX_SP_HS_CONFIG_ENABLED;
397
398 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
399 tu_cs_emit(cs, 0);
400
401 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_CONFIG, 2);
402 tu_cs_emit(cs, sp_hs_config);
403 tu_cs_emit(cs, hs->instrlen);
404
405 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_HS_CNTL, 1);
406 tu_cs_emit(cs, A6XX_HLSQ_HS_CNTL_CONSTLEN(align(hs->constlen, 4)));
407 }
408
409 static void
410 tu6_emit_ds_config(struct tu_cs *cs, struct tu_shader *shader,
411 const struct ir3_shader_variant *ds)
412 {
413 uint32_t sp_ds_config = 0;
414 if (ds->instrlen)
415 sp_ds_config |= A6XX_SP_DS_CONFIG_ENABLED;
416
417 tu_cs_emit_pkt4(cs, REG_A6XX_SP_DS_CONFIG, 2);
418 tu_cs_emit(cs, sp_ds_config);
419 tu_cs_emit(cs, ds->instrlen);
420
421 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_DS_CNTL, 1);
422 tu_cs_emit(cs, A6XX_HLSQ_DS_CNTL_CONSTLEN(align(ds->constlen, 4)));
423 }
424
425 static void
426 tu6_emit_gs_config(struct tu_cs *cs, struct tu_shader *shader,
427 const struct ir3_shader_variant *gs)
428 {
429 uint32_t sp_gs_config = 0;
430 if (gs->instrlen)
431 sp_gs_config |= A6XX_SP_GS_CONFIG_ENABLED;
432
433 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_UNKNOWN_A871, 1);
434 tu_cs_emit(cs, 0);
435
436 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_CONFIG, 2);
437 tu_cs_emit(cs, sp_gs_config);
438 tu_cs_emit(cs, gs->instrlen);
439
440 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_GS_CNTL, 1);
441 tu_cs_emit(cs, A6XX_HLSQ_GS_CNTL_CONSTLEN(align(gs->constlen, 4)));
442 }
443
444 static void
445 tu6_emit_fs_config(struct tu_cs *cs, struct tu_shader *shader,
446 const struct ir3_shader_variant *fs)
447 {
448 uint32_t sp_fs_ctrl =
449 A6XX_SP_FS_CTRL_REG0_THREADSIZE(FOUR_QUADS) | 0x1000000 |
450 A6XX_SP_FS_CTRL_REG0_FULLREGFOOTPRINT(fs->info.max_reg + 1) |
451 A6XX_SP_FS_CTRL_REG0_MERGEDREGS |
452 A6XX_SP_FS_CTRL_REG0_BRANCHSTACK(fs->branchstack);
453 if (fs->total_in > 0)
454 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_VARYING;
455 if (fs->need_pixlod)
456 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_PIXLODENABLE;
457
458 uint32_t sp_fs_config = A6XX_SP_FS_CONFIG_NTEX(shader->texture_map.num_desc) |
459 A6XX_SP_FS_CONFIG_NSAMP(shader->sampler_map.num_desc) |
460 A6XX_SP_FS_CONFIG_NIBO(fs->image_mapping.num_ibo);
461 if (fs->instrlen)
462 sp_fs_config |= A6XX_SP_FS_CONFIG_ENABLED;
463
464 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A9A8, 1);
465 tu_cs_emit(cs, 0);
466
467 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_AB00, 1);
468 tu_cs_emit(cs, 0x5);
469
470 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CTRL_REG0, 1);
471 tu_cs_emit(cs, sp_fs_ctrl);
472
473 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CONFIG, 2);
474 tu_cs_emit(cs, sp_fs_config);
475 tu_cs_emit(cs, fs->instrlen);
476
477 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_FS_CNTL, 1);
478 tu_cs_emit(cs, A6XX_HLSQ_FS_CNTL_CONSTLEN(align(fs->constlen, 4)) |
479 A6XX_HLSQ_FS_CNTL_ENABLED);
480
481 tu_cs_emit_pkt4(cs, REG_A6XX_SP_IBO_COUNT, 1);
482 tu_cs_emit(cs, fs->image_mapping.num_ibo);
483 }
484
485 static void
486 tu6_emit_cs_config(struct tu_cs *cs, const struct tu_shader *shader,
487 const struct ir3_shader_variant *v)
488 {
489 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
490 tu_cs_emit(cs, 0xff);
491
492 unsigned constlen = align(v->constlen, 4);
493 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL, 1);
494 tu_cs_emit(cs, A6XX_HLSQ_CS_CNTL_CONSTLEN(constlen) |
495 A6XX_HLSQ_CS_CNTL_ENABLED);
496
497 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CONFIG, 2);
498 tu_cs_emit(cs, A6XX_SP_CS_CONFIG_ENABLED |
499 A6XX_SP_CS_CONFIG_NIBO(v->image_mapping.num_ibo) |
500 A6XX_SP_CS_CONFIG_NTEX(shader->texture_map.num_desc) |
501 A6XX_SP_CS_CONFIG_NSAMP(shader->sampler_map.num_desc));
502 tu_cs_emit(cs, v->instrlen);
503
504 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CTRL_REG0, 1);
505 tu_cs_emit(cs, A6XX_SP_CS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
506 A6XX_SP_CS_CTRL_REG0_FULLREGFOOTPRINT(v->info.max_reg + 1) |
507 A6XX_SP_CS_CTRL_REG0_MERGEDREGS |
508 A6XX_SP_CS_CTRL_REG0_BRANCHSTACK(v->branchstack) |
509 COND(v->need_pixlod, A6XX_SP_CS_CTRL_REG0_PIXLODENABLE));
510
511 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
512 tu_cs_emit(cs, 0x41);
513
514 uint32_t local_invocation_id =
515 ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
516 uint32_t work_group_id =
517 ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID);
518
519 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL_0, 2);
520 tu_cs_emit(cs,
521 A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
522 A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) |
523 A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) |
524 A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
525 tu_cs_emit(cs, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */
526
527 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_IBO_COUNT, 1);
528 tu_cs_emit(cs, v->image_mapping.num_ibo);
529 }
530
531 static void
532 tu6_emit_vs_system_values(struct tu_cs *cs,
533 const struct ir3_shader_variant *vs)
534 {
535 const uint32_t vertexid_regid =
536 ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID);
537 const uint32_t instanceid_regid =
538 ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
539
540 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
541 tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
542 A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
543 0xfcfc0000);
544 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_2 */
545 tu_cs_emit(cs, 0xfcfcfcfc); /* VFD_CONTROL_3 */
546 tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
547 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_5 */
548 tu_cs_emit(cs, 0x00000000); /* VFD_CONTROL_6 */
549 }
550
551 static void
552 tu6_emit_vpc(struct tu_cs *cs,
553 const struct ir3_shader_variant *vs,
554 const struct ir3_shader_variant *fs,
555 bool binning_pass)
556 {
557 struct ir3_shader_linkage linkage = { 0 };
558 ir3_link_shaders(&linkage, vs, fs);
559
560 if (vs->shader->stream_output.num_outputs && !binning_pass)
561 tu_finishme("stream output");
562
563 BITSET_DECLARE(vpc_var_enables, 128) = { 0 };
564 for (uint32_t i = 0; i < linkage.cnt; i++) {
565 const uint32_t comp_count = util_last_bit(linkage.var[i].compmask);
566 for (uint32_t j = 0; j < comp_count; j++)
567 BITSET_SET(vpc_var_enables, linkage.var[i].loc + j);
568 }
569
570 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
571 tu_cs_emit(cs, ~vpc_var_enables[0]);
572 tu_cs_emit(cs, ~vpc_var_enables[1]);
573 tu_cs_emit(cs, ~vpc_var_enables[2]);
574 tu_cs_emit(cs, ~vpc_var_enables[3]);
575
576 /* a6xx finds position/pointsize at the end */
577 const uint32_t position_regid =
578 ir3_find_output_regid(vs, VARYING_SLOT_POS);
579 const uint32_t pointsize_regid =
580 ir3_find_output_regid(vs, VARYING_SLOT_PSIZ);
581 uint32_t pointsize_loc = 0xff, position_loc = 0xff;
582 if (position_regid != regid(63, 0)) {
583 position_loc = linkage.max_loc;
584 ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
585 }
586 if (pointsize_regid != regid(63, 0)) {
587 pointsize_loc = linkage.max_loc;
588 ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
589 }
590
591 /* map vs outputs to VPC */
592 assert(linkage.cnt <= 32);
593 const uint32_t sp_vs_out_count = (linkage.cnt + 1) / 2;
594 const uint32_t sp_vs_vpc_dst_count = (linkage.cnt + 3) / 4;
595 uint32_t sp_vs_out[16];
596 uint32_t sp_vs_vpc_dst[8];
597 sp_vs_out[sp_vs_out_count - 1] = 0;
598 sp_vs_vpc_dst[sp_vs_vpc_dst_count - 1] = 0;
599 for (uint32_t i = 0; i < linkage.cnt; i++) {
600 ((uint16_t *) sp_vs_out)[i] =
601 A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
602 A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
603 ((uint8_t *) sp_vs_vpc_dst)[i] =
604 A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
605 }
606
607 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_OUT_REG(0), sp_vs_out_count);
608 tu_cs_emit_array(cs, sp_vs_out, sp_vs_out_count);
609
610 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_VPC_DST_REG(0), sp_vs_vpc_dst_count);
611 tu_cs_emit_array(cs, sp_vs_vpc_dst, sp_vs_vpc_dst_count);
612
613 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
614 tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs->total_in) |
615 (fs->total_in > 0 ? A6XX_VPC_CNTL_0_VARYING : 0) |
616 0xff00ff00);
617
618 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK, 1);
619 tu_cs_emit(cs, A6XX_VPC_PACK_POSITIONLOC(position_loc) |
620 A6XX_VPC_PACK_PSIZELOC(pointsize_loc) |
621 A6XX_VPC_PACK_STRIDE_IN_VPC(linkage.max_loc));
622
623 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_GS_SIV_CNTL, 1);
624 tu_cs_emit(cs, 0x0000ffff); /* XXX */
625
626 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL, 1);
627 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_VSOUT(linkage.cnt));
628
629 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_1, 1);
630 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_1_STRIDE_IN_VPC(linkage.max_loc) |
631 (vs->writes_psize ? A6XX_PC_PRIMITIVE_CNTL_1_PSIZE : 0));
632 }
633
634 static int
635 tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
636 uint32_t index,
637 uint8_t *interp_mode,
638 uint8_t *ps_repl_mode)
639 {
640 enum
641 {
642 INTERP_SMOOTH = 0,
643 INTERP_FLAT = 1,
644 INTERP_ZERO = 2,
645 INTERP_ONE = 3,
646 };
647 enum
648 {
649 PS_REPL_NONE = 0,
650 PS_REPL_S = 1,
651 PS_REPL_T = 2,
652 PS_REPL_ONE_MINUS_T = 3,
653 };
654
655 const uint32_t compmask = fs->inputs[index].compmask;
656
657 /* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
658 * fourth component occupy three consecutive varying slots
659 */
660 int shift = 0;
661 *interp_mode = 0;
662 *ps_repl_mode = 0;
663 if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
664 if (compmask & 0x1) {
665 *ps_repl_mode |= PS_REPL_S << shift;
666 shift += 2;
667 }
668 if (compmask & 0x2) {
669 *ps_repl_mode |= PS_REPL_T << shift;
670 shift += 2;
671 }
672 if (compmask & 0x4) {
673 *interp_mode |= INTERP_ZERO << shift;
674 shift += 2;
675 }
676 if (compmask & 0x8) {
677 *interp_mode |= INTERP_ONE << 6;
678 shift += 2;
679 }
680 } else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
681 fs->inputs[index].rasterflat) {
682 for (int i = 0; i < 4; i++) {
683 if (compmask & (1 << i)) {
684 *interp_mode |= INTERP_FLAT << shift;
685 shift += 2;
686 }
687 }
688 }
689
690 return shift;
691 }
692
693 static void
694 tu6_emit_vpc_varying_modes(struct tu_cs *cs,
695 const struct ir3_shader_variant *fs,
696 bool binning_pass)
697 {
698 uint32_t interp_modes[8] = { 0 };
699 uint32_t ps_repl_modes[8] = { 0 };
700
701 if (!binning_pass) {
702 for (int i = -1;
703 (i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
704
705 /* get the mode for input i */
706 uint8_t interp_mode;
707 uint8_t ps_repl_mode;
708 const int bits =
709 tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
710
711 /* OR the mode into the array */
712 const uint32_t inloc = fs->inputs[i].inloc * 2;
713 uint32_t n = inloc / 32;
714 uint32_t shift = inloc % 32;
715 interp_modes[n] |= interp_mode << shift;
716 ps_repl_modes[n] |= ps_repl_mode << shift;
717 if (shift + bits > 32) {
718 n++;
719 shift = 32 - shift;
720
721 interp_modes[n] |= interp_mode >> shift;
722 ps_repl_modes[n] |= ps_repl_mode >> shift;
723 }
724 }
725 }
726
727 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
728 tu_cs_emit_array(cs, interp_modes, 8);
729
730 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
731 tu_cs_emit_array(cs, ps_repl_modes, 8);
732 }
733
734 static void
735 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
736 {
737 uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid;
738 uint32_t ij_pix_regid, ij_samp_regid, ij_cent_regid, ij_size_regid;
739 uint32_t smask_in_regid;
740
741 bool sample_shading = fs->per_samp; /* TODO | key->sample_shading; */
742 bool enable_varyings = fs->total_in > 0;
743
744 samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
745 smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
746 face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
747 coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
748 zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0);
749 ij_pix_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PIXEL);
750 ij_samp_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_SAMPLE);
751 ij_cent_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_CENTROID);
752 ij_size_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_SIZE);
753
754 if (fs->num_sampler_prefetch > 0) {
755 assert(VALIDREG(ij_pix_regid));
756 /* also, it seems like ij_pix is *required* to be r0.x */
757 assert(ij_pix_regid == regid(0, 0));
758 }
759
760 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch);
761 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) |
762 A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) |
763 0x7000); // XXX);
764 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
765 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
766 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) |
767 A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) |
768 A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) |
769 A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) |
770 A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) |
771 COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) |
772 A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd));
773 }
774
775 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
776 tu_cs_emit(cs, 0x7);
777 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) |
778 A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) |
779 A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) |
780 A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_size_regid));
781 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_PIXEL(ij_pix_regid) |
782 A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_CENTROID(ij_cent_regid) |
783 0xfc00fc00);
784 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) |
785 A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) |
786 A6XX_HLSQ_CONTROL_4_REG_BARY_IJ_PIXEL_PERSAMP(ij_samp_regid) |
787 0x0000fc00);
788 tu_cs_emit(cs, 0xfc);
789
790 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
791 tu_cs_emit(cs, enable_varyings ? 3 : 1);
792
793 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A982, 1);
794 tu_cs_emit(cs, 0); /* XXX */
795
796 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
797 tu_cs_emit(cs, 0xff); /* XXX */
798
799 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
800 tu_cs_emit(cs,
801 CONDREG(ij_pix_regid, A6XX_GRAS_CNTL_VARYING) |
802 CONDREG(ij_cent_regid, A6XX_GRAS_CNTL_CENTROID) |
803 CONDREG(ij_samp_regid, A6XX_GRAS_CNTL_PERSAMP_VARYING) |
804 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_GRAS_CNTL_SIZE) |
805 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_GRAS_CNTL_SIZE_PERSAMP) |
806 COND(fs->frag_coord,
807 A6XX_GRAS_CNTL_SIZE |
808 A6XX_GRAS_CNTL_XCOORD |
809 A6XX_GRAS_CNTL_YCOORD |
810 A6XX_GRAS_CNTL_ZCOORD |
811 A6XX_GRAS_CNTL_WCOORD) |
812 COND(fs->frag_face, A6XX_GRAS_CNTL_SIZE));
813
814 tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
815 tu_cs_emit(cs,
816 CONDREG(ij_pix_regid, A6XX_RB_RENDER_CONTROL0_VARYING) |
817 CONDREG(ij_cent_regid, A6XX_RB_RENDER_CONTROL0_CENTROID) |
818 CONDREG(ij_samp_regid, A6XX_RB_RENDER_CONTROL0_PERSAMP_VARYING) |
819 COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) |
820 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE) |
821 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) |
822 COND(fs->frag_coord,
823 A6XX_RB_RENDER_CONTROL0_SIZE |
824 A6XX_RB_RENDER_CONTROL0_XCOORD |
825 A6XX_RB_RENDER_CONTROL0_YCOORD |
826 A6XX_RB_RENDER_CONTROL0_ZCOORD |
827 A6XX_RB_RENDER_CONTROL0_WCOORD) |
828 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL0_SIZE));
829 tu_cs_emit(cs,
830 CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) |
831 CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) |
832 CONDREG(ij_size_regid, A6XX_RB_RENDER_CONTROL1_SIZE) |
833 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS));
834 }
835
836 static void
837 tu6_emit_fs_outputs(struct tu_cs *cs,
838 const struct ir3_shader_variant *fs,
839 uint32_t mrt_count)
840 {
841 uint32_t smask_regid, posz_regid;
842
843 posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
844 smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK);
845
846 uint32_t fragdata_regid[8];
847 if (fs->color0_mrt) {
848 fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
849 for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
850 fragdata_regid[i] = fragdata_regid[0];
851 } else {
852 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
853 fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
854 }
855
856 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
857 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) |
858 A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) |
859 0xfc000000);
860 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
861
862 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
863 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
864 // TODO we could have a mix of half and full precision outputs,
865 // we really need to figure out half-precision from IR3_REG_HALF
866 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
867 (false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
868 }
869
870 tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
871 tu_cs_emit(cs, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) |
872 COND(fs->writes_smask, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK));
873 tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
874
875 uint32_t gras_su_depth_plane_cntl = 0;
876 uint32_t rb_depth_plane_cntl = 0;
877 if (fs->no_earlyz | fs->writes_pos) {
878 gras_su_depth_plane_cntl |= A6XX_GRAS_SU_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
879 rb_depth_plane_cntl |= A6XX_RB_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
880 }
881
882 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
883 tu_cs_emit(cs, gras_su_depth_plane_cntl);
884
885 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
886 tu_cs_emit(cs, rb_depth_plane_cntl);
887 }
888
889 static void
890 tu6_emit_shader_object(struct tu_cs *cs,
891 gl_shader_stage stage,
892 const struct ir3_shader_variant *variant,
893 const struct tu_bo *binary_bo,
894 uint32_t binary_offset)
895 {
896 uint16_t reg;
897 uint8_t opcode;
898 enum a6xx_state_block sb;
899 switch (stage) {
900 case MESA_SHADER_VERTEX:
901 reg = REG_A6XX_SP_VS_OBJ_START_LO;
902 opcode = CP_LOAD_STATE6_GEOM;
903 sb = SB6_VS_SHADER;
904 break;
905 case MESA_SHADER_TESS_CTRL:
906 reg = REG_A6XX_SP_HS_OBJ_START_LO;
907 opcode = CP_LOAD_STATE6_GEOM;
908 sb = SB6_HS_SHADER;
909 break;
910 case MESA_SHADER_TESS_EVAL:
911 reg = REG_A6XX_SP_DS_OBJ_START_LO;
912 opcode = CP_LOAD_STATE6_GEOM;
913 sb = SB6_DS_SHADER;
914 break;
915 case MESA_SHADER_GEOMETRY:
916 reg = REG_A6XX_SP_GS_OBJ_START_LO;
917 opcode = CP_LOAD_STATE6_GEOM;
918 sb = SB6_GS_SHADER;
919 break;
920 case MESA_SHADER_FRAGMENT:
921 reg = REG_A6XX_SP_FS_OBJ_START_LO;
922 opcode = CP_LOAD_STATE6_FRAG;
923 sb = SB6_FS_SHADER;
924 break;
925 case MESA_SHADER_COMPUTE:
926 reg = REG_A6XX_SP_CS_OBJ_START_LO;
927 opcode = CP_LOAD_STATE6_FRAG;
928 sb = SB6_CS_SHADER;
929 break;
930 default:
931 unreachable("invalid gl_shader_stage");
932 opcode = CP_LOAD_STATE6_GEOM;
933 sb = SB6_VS_SHADER;
934 break;
935 }
936
937 if (!variant->instrlen) {
938 tu_cs_emit_pkt4(cs, reg, 2);
939 tu_cs_emit_qw(cs, 0);
940 return;
941 }
942
943 assert(variant->type == stage);
944
945 const uint64_t binary_iova = binary_bo->iova + binary_offset;
946 assert((binary_iova & 0x3) == 0);
947
948 tu_cs_emit_pkt4(cs, reg, 2);
949 tu_cs_emit_qw(cs, binary_iova);
950
951 /* always indirect */
952 const bool indirect = true;
953 if (indirect) {
954 tu_cs_emit_pkt7(cs, opcode, 3);
955 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
956 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
957 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
958 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
959 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
960 tu_cs_emit_qw(cs, binary_iova);
961 } else {
962 const void *binary = binary_bo->map + binary_offset;
963
964 tu_cs_emit_pkt7(cs, opcode, 3 + variant->info.sizedwords);
965 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
966 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
967 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
968 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
969 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
970 tu_cs_emit_qw(cs, 0);
971 tu_cs_emit_array(cs, binary, variant->info.sizedwords);
972 }
973 }
974
975 static void
976 tu6_emit_immediates(struct tu_cs *cs, const struct ir3_shader_variant *v,
977 uint32_t opcode, enum a6xx_state_block block)
978 {
979 /* dummy variant */
980 if (!v->shader)
981 return;
982
983 const struct ir3_const_state *const_state = &v->shader->const_state;
984 uint32_t base = const_state->offsets.immediate;
985 int size = const_state->immediates_count;
986
987 /* truncate size to avoid writing constants that shader
988 * does not use:
989 */
990 size = MIN2(size + base, v->constlen) - base;
991
992 if (size <= 0)
993 return;
994
995 tu_cs_emit_pkt7(cs, opcode, 3 + size * 4);
996 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
997 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
998 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
999 CP_LOAD_STATE6_0_STATE_BLOCK(block) |
1000 CP_LOAD_STATE6_0_NUM_UNIT(size));
1001 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
1002 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
1003
1004 for (unsigned i = 0; i < size; i++) {
1005 tu_cs_emit(cs, const_state->immediates[i].val[0]);
1006 tu_cs_emit(cs, const_state->immediates[i].val[1]);
1007 tu_cs_emit(cs, const_state->immediates[i].val[2]);
1008 tu_cs_emit(cs, const_state->immediates[i].val[3]);
1009 }
1010 }
1011
1012 static void
1013 tu6_emit_program(struct tu_cs *cs,
1014 const struct tu_pipeline_builder *builder,
1015 const struct tu_bo *binary_bo,
1016 bool binning_pass)
1017 {
1018 static const struct ir3_shader_variant dummy_variant = {
1019 .type = MESA_SHADER_NONE
1020 };
1021 assert(builder->shaders[MESA_SHADER_VERTEX]);
1022 const struct ir3_shader_variant *vs =
1023 &builder->shaders[MESA_SHADER_VERTEX]->variants[0];
1024 const struct ir3_shader_variant *hs =
1025 builder->shaders[MESA_SHADER_TESS_CTRL]
1026 ? &builder->shaders[MESA_SHADER_TESS_CTRL]->variants[0]
1027 : &dummy_variant;
1028 const struct ir3_shader_variant *ds =
1029 builder->shaders[MESA_SHADER_TESS_EVAL]
1030 ? &builder->shaders[MESA_SHADER_TESS_EVAL]->variants[0]
1031 : &dummy_variant;
1032 const struct ir3_shader_variant *gs =
1033 builder->shaders[MESA_SHADER_GEOMETRY]
1034 ? &builder->shaders[MESA_SHADER_GEOMETRY]->variants[0]
1035 : &dummy_variant;
1036 const struct ir3_shader_variant *fs =
1037 builder->shaders[MESA_SHADER_FRAGMENT]
1038 ? &builder->shaders[MESA_SHADER_FRAGMENT]->variants[0]
1039 : &dummy_variant;
1040
1041 if (binning_pass) {
1042 vs = &builder->shaders[MESA_SHADER_VERTEX]->variants[1];
1043 fs = &dummy_variant;
1044 }
1045
1046 tu6_emit_vs_config(cs, builder->shaders[MESA_SHADER_VERTEX], vs);
1047 tu6_emit_hs_config(cs, builder->shaders[MESA_SHADER_TESS_CTRL], hs);
1048 tu6_emit_ds_config(cs, builder->shaders[MESA_SHADER_TESS_EVAL], ds);
1049 tu6_emit_gs_config(cs, builder->shaders[MESA_SHADER_GEOMETRY], gs);
1050 tu6_emit_fs_config(cs, builder->shaders[MESA_SHADER_FRAGMENT], fs);
1051
1052 tu6_emit_vs_system_values(cs, vs);
1053 tu6_emit_vpc(cs, vs, fs, binning_pass);
1054 tu6_emit_vpc_varying_modes(cs, fs, binning_pass);
1055 tu6_emit_fs_inputs(cs, fs);
1056 tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count);
1057
1058 tu6_emit_shader_object(cs, MESA_SHADER_VERTEX, vs, binary_bo,
1059 binning_pass ? builder->binning_vs_offset : builder->shader_offsets[MESA_SHADER_VERTEX]);
1060
1061 tu6_emit_shader_object(cs, MESA_SHADER_FRAGMENT, fs, binary_bo,
1062 builder->shader_offsets[MESA_SHADER_FRAGMENT]);
1063
1064 tu6_emit_immediates(cs, vs, CP_LOAD_STATE6_GEOM, SB6_VS_SHADER);
1065 if (!binning_pass)
1066 tu6_emit_immediates(cs, fs, CP_LOAD_STATE6_FRAG, SB6_FS_SHADER);
1067 }
1068
1069 static void
1070 tu6_emit_vertex_input(struct tu_cs *cs,
1071 const struct ir3_shader_variant *vs,
1072 const VkPipelineVertexInputStateCreateInfo *vi_info,
1073 uint8_t bindings[MAX_VERTEX_ATTRIBS],
1074 uint16_t strides[MAX_VERTEX_ATTRIBS],
1075 uint16_t offsets[MAX_VERTEX_ATTRIBS],
1076 uint32_t *count)
1077 {
1078 uint32_t vfd_decode_idx = 0;
1079
1080 for (uint32_t i = 0; i < vs->inputs_count; i++) {
1081 if (vs->inputs[i].sysval || !vs->inputs[i].compmask)
1082 continue;
1083
1084 const VkVertexInputAttributeDescription *vi_attr =
1085 tu_find_vertex_input_attribute(vi_info, vs->inputs[i].slot);
1086 const VkVertexInputBindingDescription *vi_binding =
1087 tu_find_vertex_input_binding(vi_info, vi_attr);
1088 assert(vi_attr && vi_binding);
1089
1090 const struct tu_native_format *format =
1091 tu6_get_native_format(vi_attr->format);
1092 assert(format && format->vtx >= 0);
1093
1094 uint32_t vfd_decode = A6XX_VFD_DECODE_INSTR_IDX(vfd_decode_idx) |
1095 A6XX_VFD_DECODE_INSTR_FORMAT(format->vtx) |
1096 A6XX_VFD_DECODE_INSTR_SWAP(format->swap) |
1097 A6XX_VFD_DECODE_INSTR_UNK30;
1098 if (vi_binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
1099 vfd_decode |= A6XX_VFD_DECODE_INSTR_INSTANCED;
1100 if (!vk_format_is_int(vi_attr->format))
1101 vfd_decode |= A6XX_VFD_DECODE_INSTR_FLOAT;
1102
1103 const uint32_t vfd_decode_step_rate = 1;
1104
1105 const uint32_t vfd_dest_cntl =
1106 A6XX_VFD_DEST_CNTL_INSTR_WRITEMASK(vs->inputs[i].compmask) |
1107 A6XX_VFD_DEST_CNTL_INSTR_REGID(vs->inputs[i].regid);
1108
1109 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DECODE(vfd_decode_idx), 2);
1110 tu_cs_emit(cs, vfd_decode);
1111 tu_cs_emit(cs, vfd_decode_step_rate);
1112
1113 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DEST_CNTL(vfd_decode_idx), 1);
1114 tu_cs_emit(cs, vfd_dest_cntl);
1115
1116 bindings[vfd_decode_idx] = vi_binding->binding;
1117 strides[vfd_decode_idx] = vi_binding->stride;
1118 offsets[vfd_decode_idx] = vi_attr->offset;
1119
1120 vfd_decode_idx++;
1121 assert(vfd_decode_idx <= MAX_VERTEX_ATTRIBS);
1122 }
1123
1124 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_0, 1);
1125 tu_cs_emit(
1126 cs, A6XX_VFD_CONTROL_0_VTXCNT(vfd_decode_idx) | (vfd_decode_idx << 8));
1127
1128 *count = vfd_decode_idx;
1129 }
1130
1131 static uint32_t
1132 tu6_guardband_adj(uint32_t v)
1133 {
1134 if (v > 256)
1135 return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0));
1136 else
1137 return 511;
1138 }
1139
1140 void
1141 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
1142 {
1143 float offsets[3];
1144 float scales[3];
1145 scales[0] = viewport->width / 2.0f;
1146 scales[1] = viewport->height / 2.0f;
1147 scales[2] = viewport->maxDepth - viewport->minDepth;
1148 offsets[0] = viewport->x + scales[0];
1149 offsets[1] = viewport->y + scales[1];
1150 offsets[2] = viewport->minDepth;
1151
1152 VkOffset2D min;
1153 VkOffset2D max;
1154 min.x = (int32_t) viewport->x;
1155 max.x = (int32_t) ceilf(viewport->x + viewport->width);
1156 if (viewport->height >= 0.0f) {
1157 min.y = (int32_t) viewport->y;
1158 max.y = (int32_t) ceilf(viewport->y + viewport->height);
1159 } else {
1160 min.y = (int32_t)(viewport->y + viewport->height);
1161 max.y = (int32_t) ceilf(viewport->y);
1162 }
1163 /* the spec allows viewport->height to be 0.0f */
1164 if (min.y == max.y)
1165 max.y++;
1166 assert(min.x >= 0 && min.x < max.x);
1167 assert(min.y >= 0 && min.y < max.y);
1168
1169 VkExtent2D guardband_adj;
1170 guardband_adj.width = tu6_guardband_adj(max.x - min.x);
1171 guardband_adj.height = tu6_guardband_adj(max.y - min.y);
1172
1173 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6);
1174 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XOFFSET_0(offsets[0]));
1175 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XSCALE_0(scales[0]));
1176 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YOFFSET_0(offsets[1]));
1177 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YSCALE_0(scales[1]));
1178 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZOFFSET_0(offsets[2]));
1179 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZSCALE_0(scales[2]));
1180
1181 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2);
1182 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(min.x) |
1183 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(min.y));
1184 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(max.x - 1) |
1185 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(max.y - 1));
1186
1187 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
1188 tu_cs_emit(cs,
1189 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
1190 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
1191 }
1192
1193 void
1194 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
1195 {
1196 const VkOffset2D min = scissor->offset;
1197 const VkOffset2D max = {
1198 scissor->offset.x + scissor->extent.width,
1199 scissor->offset.y + scissor->extent.height,
1200 };
1201
1202 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0, 2);
1203 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(min.x) |
1204 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(min.y));
1205 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(max.x - 1) |
1206 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(max.y - 1));
1207 }
1208
1209 static void
1210 tu6_emit_gras_unknowns(struct tu_cs *cs)
1211 {
1212 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8000, 1);
1213 tu_cs_emit(cs, 0x80);
1214 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8001, 1);
1215 tu_cs_emit(cs, 0x0);
1216 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_LAYER_CNTL, 1);
1217 tu_cs_emit(cs, 0x0);
1218 }
1219
1220 static void
1221 tu6_emit_point_size(struct tu_cs *cs)
1222 {
1223 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POINT_MINMAX, 2);
1224 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_MINMAX_MIN(1.0f / 16.0f) |
1225 A6XX_GRAS_SU_POINT_MINMAX_MAX(4092.0f));
1226 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_SIZE(1.0f));
1227 }
1228
1229 static uint32_t
1230 tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
1231 VkSampleCountFlagBits samples)
1232 {
1233 uint32_t gras_su_cntl = 0;
1234
1235 if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
1236 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
1237 if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
1238 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
1239
1240 if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
1241 gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
1242
1243 /* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
1244
1245 if (rast_info->depthBiasEnable)
1246 gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
1247
1248 if (samples > VK_SAMPLE_COUNT_1_BIT)
1249 gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
1250
1251 return gras_su_cntl;
1252 }
1253
1254 void
1255 tu6_emit_gras_su_cntl(struct tu_cs *cs,
1256 uint32_t gras_su_cntl,
1257 float line_width)
1258 {
1259 assert((gras_su_cntl & A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK) == 0);
1260 gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(line_width / 2.0f);
1261
1262 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_CNTL, 1);
1263 tu_cs_emit(cs, gras_su_cntl);
1264 }
1265
1266 void
1267 tu6_emit_depth_bias(struct tu_cs *cs,
1268 float constant_factor,
1269 float clamp,
1270 float slope_factor)
1271 {
1272 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
1273 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor));
1274 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor));
1275 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp));
1276 }
1277
1278 static void
1279 tu6_emit_alpha_control_disable(struct tu_cs *cs)
1280 {
1281 tu_cs_emit_pkt4(cs, REG_A6XX_RB_ALPHA_CONTROL, 1);
1282 tu_cs_emit(cs, 0);
1283 }
1284
1285 static void
1286 tu6_emit_depth_control(struct tu_cs *cs,
1287 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1288 {
1289 assert(!ds_info->depthBoundsTestEnable);
1290
1291 uint32_t rb_depth_cntl = 0;
1292 if (ds_info->depthTestEnable) {
1293 rb_depth_cntl |=
1294 A6XX_RB_DEPTH_CNTL_Z_ENABLE |
1295 A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
1296 A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
1297
1298 if (ds_info->depthWriteEnable)
1299 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
1300 }
1301
1302 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
1303 tu_cs_emit(cs, rb_depth_cntl);
1304 }
1305
1306 static void
1307 tu6_emit_stencil_control(struct tu_cs *cs,
1308 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1309 {
1310 uint32_t rb_stencil_control = 0;
1311 if (ds_info->stencilTestEnable) {
1312 const VkStencilOpState *front = &ds_info->front;
1313 const VkStencilOpState *back = &ds_info->back;
1314 rb_stencil_control |=
1315 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
1316 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
1317 A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
1318 A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
1319 A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
1320 A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
1321 A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
1322 A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
1323 A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
1324 A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
1325 A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
1326 }
1327
1328 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
1329 tu_cs_emit(cs, rb_stencil_control);
1330 }
1331
1332 void
1333 tu6_emit_stencil_compare_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1334 {
1335 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILMASK, 1);
1336 tu_cs_emit(
1337 cs, A6XX_RB_STENCILMASK_MASK(front) | A6XX_RB_STENCILMASK_BFMASK(back));
1338 }
1339
1340 void
1341 tu6_emit_stencil_write_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1342 {
1343 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILWRMASK, 1);
1344 tu_cs_emit(cs, A6XX_RB_STENCILWRMASK_WRMASK(front) |
1345 A6XX_RB_STENCILWRMASK_BFWRMASK(back));
1346 }
1347
1348 void
1349 tu6_emit_stencil_reference(struct tu_cs *cs, uint32_t front, uint32_t back)
1350 {
1351 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILREF, 1);
1352 tu_cs_emit(cs,
1353 A6XX_RB_STENCILREF_REF(front) | A6XX_RB_STENCILREF_BFREF(back));
1354 }
1355
1356 static uint32_t
1357 tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
1358 bool has_alpha)
1359 {
1360 const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
1361 const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
1362 has_alpha ? att->srcColorBlendFactor
1363 : tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
1364 const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
1365 has_alpha ? att->dstColorBlendFactor
1366 : tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
1367 const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
1368 const enum adreno_rb_blend_factor src_alpha_factor =
1369 tu6_blend_factor(att->srcAlphaBlendFactor);
1370 const enum adreno_rb_blend_factor dst_alpha_factor =
1371 tu6_blend_factor(att->dstAlphaBlendFactor);
1372
1373 return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
1374 A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
1375 A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
1376 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
1377 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
1378 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
1379 }
1380
1381 static uint32_t
1382 tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
1383 uint32_t rb_mrt_control_rop,
1384 bool is_int,
1385 bool has_alpha)
1386 {
1387 uint32_t rb_mrt_control =
1388 A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
1389
1390 /* ignore blending and logic op for integer attachments */
1391 if (is_int) {
1392 rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
1393 return rb_mrt_control;
1394 }
1395
1396 rb_mrt_control |= rb_mrt_control_rop;
1397
1398 if (att->blendEnable) {
1399 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
1400
1401 if (has_alpha)
1402 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
1403 }
1404
1405 return rb_mrt_control;
1406 }
1407
1408 static void
1409 tu6_emit_rb_mrt_controls(struct tu_cs *cs,
1410 const VkPipelineColorBlendStateCreateInfo *blend_info,
1411 const VkFormat attachment_formats[MAX_RTS],
1412 uint32_t *blend_enable_mask)
1413 {
1414 *blend_enable_mask = 0;
1415
1416 bool rop_reads_dst = false;
1417 uint32_t rb_mrt_control_rop = 0;
1418 if (blend_info->logicOpEnable) {
1419 rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
1420 rb_mrt_control_rop =
1421 A6XX_RB_MRT_CONTROL_ROP_ENABLE |
1422 A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
1423 }
1424
1425 for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
1426 const VkPipelineColorBlendAttachmentState *att =
1427 &blend_info->pAttachments[i];
1428 const VkFormat format = attachment_formats[i];
1429
1430 uint32_t rb_mrt_control = 0;
1431 uint32_t rb_mrt_blend_control = 0;
1432 if (format != VK_FORMAT_UNDEFINED) {
1433 const bool is_int = vk_format_is_int(format);
1434 const bool has_alpha = vk_format_has_alpha(format);
1435
1436 rb_mrt_control =
1437 tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
1438 rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
1439
1440 if (att->blendEnable || rop_reads_dst)
1441 *blend_enable_mask |= 1 << i;
1442 }
1443
1444 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1445 tu_cs_emit(cs, rb_mrt_control);
1446 tu_cs_emit(cs, rb_mrt_blend_control);
1447 }
1448
1449 for (uint32_t i = blend_info->attachmentCount; i < MAX_RTS; i++) {
1450 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1451 tu_cs_emit(cs, 0);
1452 tu_cs_emit(cs, 0);
1453 }
1454 }
1455
1456 static void
1457 tu6_emit_blend_control(struct tu_cs *cs,
1458 uint32_t blend_enable_mask,
1459 const VkPipelineMultisampleStateCreateInfo *msaa_info)
1460 {
1461 assert(!msaa_info->sampleShadingEnable);
1462 assert(!msaa_info->alphaToOneEnable);
1463
1464 uint32_t sp_blend_cntl = A6XX_SP_BLEND_CNTL_UNK8;
1465 if (blend_enable_mask)
1466 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ENABLED;
1467 if (msaa_info->alphaToCoverageEnable)
1468 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ALPHA_TO_COVERAGE;
1469
1470 const uint32_t sample_mask =
1471 msaa_info->pSampleMask ? *msaa_info->pSampleMask
1472 : ((1 << msaa_info->rasterizationSamples) - 1);
1473
1474 /* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
1475 uint32_t rb_blend_cntl =
1476 A6XX_RB_BLEND_CNTL_ENABLE_BLEND(blend_enable_mask) |
1477 A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND |
1478 A6XX_RB_BLEND_CNTL_SAMPLE_MASK(sample_mask);
1479 if (msaa_info->alphaToCoverageEnable)
1480 rb_blend_cntl |= A6XX_RB_BLEND_CNTL_ALPHA_TO_COVERAGE;
1481
1482 tu_cs_emit_pkt4(cs, REG_A6XX_SP_BLEND_CNTL, 1);
1483 tu_cs_emit(cs, sp_blend_cntl);
1484
1485 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_CNTL, 1);
1486 tu_cs_emit(cs, rb_blend_cntl);
1487 }
1488
1489 void
1490 tu6_emit_blend_constants(struct tu_cs *cs, const float constants[4])
1491 {
1492 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_RED_F32, 4);
1493 tu_cs_emit_array(cs, (const uint32_t *) constants, 4);
1494 }
1495
1496 static VkResult
1497 tu_pipeline_create(struct tu_device *dev,
1498 const VkAllocationCallbacks *pAllocator,
1499 struct tu_pipeline **out_pipeline)
1500 {
1501 struct tu_pipeline *pipeline =
1502 vk_zalloc2(&dev->alloc, pAllocator, sizeof(*pipeline), 8,
1503 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1504 if (!pipeline)
1505 return VK_ERROR_OUT_OF_HOST_MEMORY;
1506
1507 tu_cs_init(&pipeline->cs, TU_CS_MODE_SUB_STREAM, 2048);
1508
1509 /* reserve the space now such that tu_cs_begin_sub_stream never fails */
1510 VkResult result = tu_cs_reserve_space(dev, &pipeline->cs, 2048);
1511 if (result != VK_SUCCESS) {
1512 vk_free2(&dev->alloc, pAllocator, pipeline);
1513 return result;
1514 }
1515
1516 *out_pipeline = pipeline;
1517
1518 return VK_SUCCESS;
1519 }
1520
1521 static VkResult
1522 tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder)
1523 {
1524 const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
1525 NULL
1526 };
1527 for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
1528 gl_shader_stage stage =
1529 tu_shader_stage(builder->create_info->pStages[i].stage);
1530 stage_infos[stage] = &builder->create_info->pStages[i];
1531 }
1532
1533 struct tu_shader_compile_options options;
1534 tu_shader_compile_options_init(&options, builder->create_info);
1535
1536 /* compile shaders in reverse order */
1537 struct tu_shader *next_stage_shader = NULL;
1538 for (gl_shader_stage stage = MESA_SHADER_STAGES - 1;
1539 stage > MESA_SHADER_NONE; stage--) {
1540 const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
1541 if (!stage_info)
1542 continue;
1543
1544 struct tu_shader *shader =
1545 tu_shader_create(builder->device, stage, stage_info, builder->layout,
1546 builder->alloc);
1547 if (!shader)
1548 return VK_ERROR_OUT_OF_HOST_MEMORY;
1549
1550 VkResult result =
1551 tu_shader_compile(builder->device, shader, next_stage_shader,
1552 &options, builder->alloc);
1553 if (result != VK_SUCCESS)
1554 return result;
1555
1556 builder->shaders[stage] = shader;
1557 builder->shader_offsets[stage] = builder->shader_total_size;
1558 builder->shader_total_size +=
1559 sizeof(uint32_t) * shader->variants[0].info.sizedwords;
1560
1561 next_stage_shader = shader;
1562 }
1563
1564 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
1565 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1566 builder->binning_vs_offset = builder->shader_total_size;
1567 builder->shader_total_size +=
1568 sizeof(uint32_t) * vs->variants[1].info.sizedwords;
1569 }
1570
1571 return VK_SUCCESS;
1572 }
1573
1574 static VkResult
1575 tu_pipeline_builder_upload_shaders(struct tu_pipeline_builder *builder,
1576 struct tu_pipeline *pipeline)
1577 {
1578 struct tu_bo *bo = &pipeline->program.binary_bo;
1579
1580 VkResult result =
1581 tu_bo_init_new(builder->device, bo, builder->shader_total_size);
1582 if (result != VK_SUCCESS)
1583 return result;
1584
1585 result = tu_bo_map(builder->device, bo);
1586 if (result != VK_SUCCESS)
1587 return result;
1588
1589 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
1590 const struct tu_shader *shader = builder->shaders[i];
1591 if (!shader)
1592 continue;
1593
1594 memcpy(bo->map + builder->shader_offsets[i], shader->binary,
1595 sizeof(uint32_t) * shader->variants[0].info.sizedwords);
1596 }
1597
1598 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
1599 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1600 memcpy(bo->map + builder->binning_vs_offset, vs->binning_binary,
1601 sizeof(uint32_t) * vs->variants[1].info.sizedwords);
1602 }
1603
1604 return VK_SUCCESS;
1605 }
1606
1607 static void
1608 tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
1609 struct tu_pipeline *pipeline)
1610 {
1611 const VkPipelineDynamicStateCreateInfo *dynamic_info =
1612 builder->create_info->pDynamicState;
1613
1614 if (!dynamic_info)
1615 return;
1616
1617 for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
1618 pipeline->dynamic_state.mask |=
1619 tu_dynamic_state_bit(dynamic_info->pDynamicStates[i]);
1620 }
1621 }
1622
1623 static void
1624 tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
1625 struct tu_pipeline *pipeline)
1626 {
1627 struct tu_cs prog_cs;
1628 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 512, &prog_cs);
1629 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, false);
1630 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
1631
1632 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 512, &prog_cs);
1633 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, true);
1634 pipeline->program.binning_state_ib =
1635 tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
1636
1637 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1638 if (!builder->shaders[i])
1639 continue;
1640
1641 struct tu_program_descriptor_linkage *link = &pipeline->program.link[i];
1642 struct ir3_shader *shader = builder->shaders[i]->variants[0].shader;
1643
1644 link->ubo_state = shader->ubo_state;
1645 link->const_state = shader->const_state;
1646 link->constlen = builder->shaders[i]->variants[0].constlen;
1647 link->texture_map = builder->shaders[i]->texture_map;
1648 link->sampler_map = builder->shaders[i]->sampler_map;
1649 link->ubo_map = builder->shaders[i]->ubo_map;
1650 link->ssbo_map = builder->shaders[i]->ssbo_map;
1651 link->image_mapping = builder->shaders[i]->variants[0].image_mapping;
1652 }
1653 }
1654
1655 static void
1656 tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
1657 struct tu_pipeline *pipeline)
1658 {
1659 const VkPipelineVertexInputStateCreateInfo *vi_info =
1660 builder->create_info->pVertexInputState;
1661 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1662
1663 struct tu_cs vi_cs;
1664 tu_cs_begin_sub_stream(builder->device, &pipeline->cs,
1665 MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
1666 tu6_emit_vertex_input(&vi_cs, &vs->variants[0], vi_info,
1667 pipeline->vi.bindings, pipeline->vi.strides,
1668 pipeline->vi.offsets, &pipeline->vi.count);
1669 pipeline->vi.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
1670
1671 if (vs->has_binning_pass) {
1672 tu_cs_begin_sub_stream(builder->device, &pipeline->cs,
1673 MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
1674 tu6_emit_vertex_input(
1675 &vi_cs, &vs->variants[1], vi_info, pipeline->vi.binning_bindings,
1676 pipeline->vi.binning_strides, pipeline->vi.binning_offsets,
1677 &pipeline->vi.binning_count);
1678 pipeline->vi.binning_state_ib =
1679 tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
1680 }
1681 }
1682
1683 static void
1684 tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
1685 struct tu_pipeline *pipeline)
1686 {
1687 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1688 builder->create_info->pInputAssemblyState;
1689
1690 pipeline->ia.primtype = tu6_primtype(ia_info->topology);
1691 pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
1692 }
1693
1694 static void
1695 tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
1696 struct tu_pipeline *pipeline)
1697 {
1698 /* The spec says:
1699 *
1700 * pViewportState is a pointer to an instance of the
1701 * VkPipelineViewportStateCreateInfo structure, and is ignored if the
1702 * pipeline has rasterization disabled."
1703 *
1704 * We leave the relevant registers stale in that case.
1705 */
1706 if (builder->rasterizer_discard)
1707 return;
1708
1709 const VkPipelineViewportStateCreateInfo *vp_info =
1710 builder->create_info->pViewportState;
1711
1712 struct tu_cs vp_cs;
1713 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 15, &vp_cs);
1714
1715 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_VIEWPORT)) {
1716 assert(vp_info->viewportCount == 1);
1717 tu6_emit_viewport(&vp_cs, vp_info->pViewports);
1718 }
1719
1720 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SCISSOR)) {
1721 assert(vp_info->scissorCount == 1);
1722 tu6_emit_scissor(&vp_cs, vp_info->pScissors);
1723 }
1724
1725 pipeline->vp.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vp_cs);
1726 }
1727
1728 static void
1729 tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
1730 struct tu_pipeline *pipeline)
1731 {
1732 const VkPipelineRasterizationStateCreateInfo *rast_info =
1733 builder->create_info->pRasterizationState;
1734
1735 assert(!rast_info->depthClampEnable);
1736 assert(rast_info->polygonMode == VK_POLYGON_MODE_FILL);
1737
1738 struct tu_cs rast_cs;
1739 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 20, &rast_cs);
1740
1741 /* move to hw ctx init? */
1742 tu6_emit_gras_unknowns(&rast_cs);
1743 tu6_emit_point_size(&rast_cs);
1744
1745 const uint32_t gras_su_cntl =
1746 tu6_gras_su_cntl(rast_info, builder->samples);
1747
1748 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_LINE_WIDTH))
1749 tu6_emit_gras_su_cntl(&rast_cs, gras_su_cntl, rast_info->lineWidth);
1750
1751 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_DEPTH_BIAS)) {
1752 tu6_emit_depth_bias(&rast_cs, rast_info->depthBiasConstantFactor,
1753 rast_info->depthBiasClamp,
1754 rast_info->depthBiasSlopeFactor);
1755 }
1756
1757 pipeline->rast.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &rast_cs);
1758
1759 pipeline->rast.gras_su_cntl = gras_su_cntl;
1760 }
1761
1762 static void
1763 tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
1764 struct tu_pipeline *pipeline)
1765 {
1766 /* The spec says:
1767 *
1768 * pDepthStencilState is a pointer to an instance of the
1769 * VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
1770 * the pipeline has rasterization disabled or if the subpass of the
1771 * render pass the pipeline is created against does not use a
1772 * depth/stencil attachment.
1773 *
1774 * We disable both depth and stenil tests in those cases.
1775 */
1776 static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
1777 const VkPipelineDepthStencilStateCreateInfo *ds_info =
1778 builder->use_depth_stencil_attachment
1779 ? builder->create_info->pDepthStencilState
1780 : &dummy_ds_info;
1781
1782 struct tu_cs ds_cs;
1783 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 12, &ds_cs);
1784
1785 /* move to hw ctx init? */
1786 tu6_emit_alpha_control_disable(&ds_cs);
1787
1788 tu6_emit_depth_control(&ds_cs, ds_info);
1789 tu6_emit_stencil_control(&ds_cs, ds_info);
1790
1791 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_COMPARE_MASK)) {
1792 tu6_emit_stencil_compare_mask(&ds_cs, ds_info->front.compareMask,
1793 ds_info->back.compareMask);
1794 }
1795 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_WRITE_MASK)) {
1796 tu6_emit_stencil_write_mask(&ds_cs, ds_info->front.writeMask,
1797 ds_info->back.writeMask);
1798 }
1799 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_REFERENCE)) {
1800 tu6_emit_stencil_reference(&ds_cs, ds_info->front.reference,
1801 ds_info->back.reference);
1802 }
1803
1804 pipeline->ds.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &ds_cs);
1805 }
1806
1807 static void
1808 tu_pipeline_builder_parse_multisample_and_color_blend(
1809 struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
1810 {
1811 /* The spec says:
1812 *
1813 * pMultisampleState is a pointer to an instance of the
1814 * VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
1815 * has rasterization disabled.
1816 *
1817 * Also,
1818 *
1819 * pColorBlendState is a pointer to an instance of the
1820 * VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
1821 * pipeline has rasterization disabled or if the subpass of the render
1822 * pass the pipeline is created against does not use any color
1823 * attachments.
1824 *
1825 * We leave the relevant registers stale when rasterization is disabled.
1826 */
1827 if (builder->rasterizer_discard)
1828 return;
1829
1830 static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
1831 const VkPipelineMultisampleStateCreateInfo *msaa_info =
1832 builder->create_info->pMultisampleState;
1833 const VkPipelineColorBlendStateCreateInfo *blend_info =
1834 builder->use_color_attachments ? builder->create_info->pColorBlendState
1835 : &dummy_blend_info;
1836
1837 struct tu_cs blend_cs;
1838 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, MAX_RTS * 3 + 9,
1839 &blend_cs);
1840
1841 uint32_t blend_enable_mask;
1842 tu6_emit_rb_mrt_controls(&blend_cs, blend_info,
1843 builder->color_attachment_formats,
1844 &blend_enable_mask);
1845
1846 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_BLEND_CONSTANTS))
1847 tu6_emit_blend_constants(&blend_cs, blend_info->blendConstants);
1848
1849 tu6_emit_blend_control(&blend_cs, blend_enable_mask, msaa_info);
1850
1851 pipeline->blend.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &blend_cs);
1852 }
1853
1854 static void
1855 tu_pipeline_finish(struct tu_pipeline *pipeline,
1856 struct tu_device *dev,
1857 const VkAllocationCallbacks *alloc)
1858 {
1859 tu_cs_finish(dev, &pipeline->cs);
1860
1861 if (pipeline->program.binary_bo.gem_handle)
1862 tu_bo_finish(dev, &pipeline->program.binary_bo);
1863 }
1864
1865 static VkResult
1866 tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
1867 struct tu_pipeline **pipeline)
1868 {
1869 VkResult result = tu_pipeline_create(builder->device, builder->alloc,
1870 pipeline);
1871 if (result != VK_SUCCESS)
1872 return result;
1873
1874 /* compile and upload shaders */
1875 result = tu_pipeline_builder_compile_shaders(builder);
1876 if (result == VK_SUCCESS)
1877 result = tu_pipeline_builder_upload_shaders(builder, *pipeline);
1878 if (result != VK_SUCCESS) {
1879 tu_pipeline_finish(*pipeline, builder->device, builder->alloc);
1880 vk_free2(&builder->device->alloc, builder->alloc, *pipeline);
1881 *pipeline = VK_NULL_HANDLE;
1882
1883 return result;
1884 }
1885
1886 tu_pipeline_builder_parse_dynamic(builder, *pipeline);
1887 tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
1888 tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
1889 tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
1890 tu_pipeline_builder_parse_viewport(builder, *pipeline);
1891 tu_pipeline_builder_parse_rasterization(builder, *pipeline);
1892 tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
1893 tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
1894
1895 /* we should have reserved enough space upfront such that the CS never
1896 * grows
1897 */
1898 assert((*pipeline)->cs.bo_count == 1);
1899
1900 return VK_SUCCESS;
1901 }
1902
1903 static void
1904 tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
1905 {
1906 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
1907 if (!builder->shaders[i])
1908 continue;
1909 tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
1910 }
1911 }
1912
1913 static void
1914 tu_pipeline_builder_init_graphics(
1915 struct tu_pipeline_builder *builder,
1916 struct tu_device *dev,
1917 struct tu_pipeline_cache *cache,
1918 const VkGraphicsPipelineCreateInfo *create_info,
1919 const VkAllocationCallbacks *alloc)
1920 {
1921 TU_FROM_HANDLE(tu_pipeline_layout, layout, create_info->layout);
1922
1923 *builder = (struct tu_pipeline_builder) {
1924 .device = dev,
1925 .cache = cache,
1926 .create_info = create_info,
1927 .alloc = alloc,
1928 .layout = layout,
1929 };
1930
1931 builder->rasterizer_discard =
1932 create_info->pRasterizationState->rasterizerDiscardEnable;
1933
1934 if (builder->rasterizer_discard) {
1935 builder->samples = VK_SAMPLE_COUNT_1_BIT;
1936 } else {
1937 builder->samples = create_info->pMultisampleState->rasterizationSamples;
1938
1939 const struct tu_render_pass *pass =
1940 tu_render_pass_from_handle(create_info->renderPass);
1941 const struct tu_subpass *subpass =
1942 &pass->subpasses[create_info->subpass];
1943
1944 builder->use_depth_stencil_attachment =
1945 subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED;
1946
1947 assert(subpass->color_count == 0 ||
1948 !create_info->pColorBlendState ||
1949 subpass->color_count == create_info->pColorBlendState->attachmentCount);
1950 builder->color_attachment_count = subpass->color_count;
1951 for (uint32_t i = 0; i < subpass->color_count; i++) {
1952 const uint32_t a = subpass->color_attachments[i].attachment;
1953 if (a == VK_ATTACHMENT_UNUSED)
1954 continue;
1955
1956 builder->color_attachment_formats[i] = pass->attachments[a].format;
1957 builder->use_color_attachments = true;
1958 }
1959 }
1960 }
1961
1962 static VkResult
1963 tu_graphics_pipeline_create(VkDevice device,
1964 VkPipelineCache pipelineCache,
1965 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1966 const VkAllocationCallbacks *pAllocator,
1967 VkPipeline *pPipeline)
1968 {
1969 TU_FROM_HANDLE(tu_device, dev, device);
1970 TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
1971
1972 struct tu_pipeline_builder builder;
1973 tu_pipeline_builder_init_graphics(&builder, dev, cache,
1974 pCreateInfo, pAllocator);
1975
1976 struct tu_pipeline *pipeline = NULL;
1977 VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
1978 tu_pipeline_builder_finish(&builder);
1979
1980 if (result == VK_SUCCESS)
1981 *pPipeline = tu_pipeline_to_handle(pipeline);
1982 else
1983 *pPipeline = NULL;
1984
1985 return result;
1986 }
1987
1988 VkResult
1989 tu_CreateGraphicsPipelines(VkDevice device,
1990 VkPipelineCache pipelineCache,
1991 uint32_t count,
1992 const VkGraphicsPipelineCreateInfo *pCreateInfos,
1993 const VkAllocationCallbacks *pAllocator,
1994 VkPipeline *pPipelines)
1995 {
1996 VkResult final_result = VK_SUCCESS;
1997
1998 for (uint32_t i = 0; i < count; i++) {
1999 VkResult result = tu_graphics_pipeline_create(device, pipelineCache,
2000 &pCreateInfos[i], pAllocator,
2001 &pPipelines[i]);
2002
2003 if (result != VK_SUCCESS)
2004 final_result = result;
2005 }
2006
2007 return final_result;
2008 }
2009
2010 static void
2011 tu6_emit_compute_program(struct tu_cs *cs,
2012 struct tu_shader *shader,
2013 const struct tu_bo *binary_bo)
2014 {
2015 const struct ir3_shader_variant *v = &shader->variants[0];
2016
2017 tu6_emit_cs_config(cs, shader, v);
2018
2019 /* The compute program is the only one in the pipeline, so 0 offset. */
2020 tu6_emit_shader_object(cs, MESA_SHADER_COMPUTE, v, binary_bo, 0);
2021
2022 tu6_emit_immediates(cs, v, CP_LOAD_STATE6_FRAG, SB6_CS_SHADER);
2023 }
2024
2025 static VkResult
2026 tu_compute_upload_shader(VkDevice device,
2027 struct tu_pipeline *pipeline,
2028 struct tu_shader *shader)
2029 {
2030 TU_FROM_HANDLE(tu_device, dev, device);
2031 struct tu_bo *bo = &pipeline->program.binary_bo;
2032 struct ir3_shader_variant *v = &shader->variants[0];
2033
2034 uint32_t shader_size = sizeof(uint32_t) * v->info.sizedwords;
2035 VkResult result =
2036 tu_bo_init_new(dev, bo, shader_size);
2037 if (result != VK_SUCCESS)
2038 return result;
2039
2040 result = tu_bo_map(dev, bo);
2041 if (result != VK_SUCCESS)
2042 return result;
2043
2044 memcpy(bo->map, shader->binary, shader_size);
2045
2046 return VK_SUCCESS;
2047 }
2048
2049
2050 static VkResult
2051 tu_compute_pipeline_create(VkDevice device,
2052 VkPipelineCache _cache,
2053 const VkComputePipelineCreateInfo *pCreateInfo,
2054 const VkAllocationCallbacks *pAllocator,
2055 VkPipeline *pPipeline)
2056 {
2057 TU_FROM_HANDLE(tu_device, dev, device);
2058 TU_FROM_HANDLE(tu_pipeline_layout, layout, pCreateInfo->layout);
2059 const VkPipelineShaderStageCreateInfo *stage_info = &pCreateInfo->stage;
2060 VkResult result;
2061
2062 struct tu_pipeline *pipeline;
2063
2064 result = tu_pipeline_create(dev, pAllocator, &pipeline);
2065 if (result != VK_SUCCESS)
2066 return result;
2067
2068 pipeline->layout = layout;
2069
2070 struct tu_shader_compile_options options;
2071 tu_shader_compile_options_init(&options, NULL);
2072
2073 struct tu_shader *shader =
2074 tu_shader_create(dev, MESA_SHADER_COMPUTE, stage_info, layout, pAllocator);
2075 if (!shader) {
2076 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2077 goto fail;
2078 }
2079
2080 result = tu_shader_compile(dev, shader, NULL, &options, pAllocator);
2081 if (result != VK_SUCCESS)
2082 return result;
2083
2084 struct tu_program_descriptor_linkage *link = &pipeline->program.link[MESA_SHADER_COMPUTE];
2085 struct ir3_shader_variant *v = &shader->variants[0];
2086
2087 link->ubo_state = v->shader->ubo_state;
2088 link->const_state = v->shader->const_state;
2089 link->constlen = v->constlen;
2090 link->texture_map = shader->texture_map;
2091 link->sampler_map = shader->sampler_map;
2092 link->ubo_map = shader->ubo_map;
2093 link->ssbo_map = shader->ssbo_map;
2094 link->image_mapping = v->image_mapping;
2095
2096 result = tu_compute_upload_shader(device, pipeline, shader);
2097 if (result != VK_SUCCESS)
2098 return result;
2099
2100 for (int i = 0; i < 3; i++)
2101 pipeline->compute.local_size[i] = v->shader->nir->info.cs.local_size[i];
2102
2103 struct tu_cs prog_cs;
2104 tu_cs_begin_sub_stream(dev, &pipeline->cs, 512, &prog_cs);
2105 tu6_emit_compute_program(&prog_cs, shader, &pipeline->program.binary_bo);
2106 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2107
2108 *pPipeline = tu_pipeline_to_handle(pipeline);
2109 return VK_SUCCESS;
2110
2111 fail:
2112 tu_shader_destroy(dev, shader, pAllocator);
2113 if (result != VK_SUCCESS) {
2114 tu_pipeline_finish(pipeline, dev, pAllocator);
2115 vk_free2(&dev->alloc, pAllocator, pipeline);
2116 }
2117
2118 return result;
2119 }
2120
2121 VkResult
2122 tu_CreateComputePipelines(VkDevice device,
2123 VkPipelineCache pipelineCache,
2124 uint32_t count,
2125 const VkComputePipelineCreateInfo *pCreateInfos,
2126 const VkAllocationCallbacks *pAllocator,
2127 VkPipeline *pPipelines)
2128 {
2129 VkResult final_result = VK_SUCCESS;
2130
2131 for (uint32_t i = 0; i < count; i++) {
2132 VkResult result = tu_compute_pipeline_create(device, pipelineCache,
2133 &pCreateInfos[i],
2134 pAllocator, &pPipelines[i]);
2135 if (result != VK_SUCCESS)
2136 final_result = result;
2137 }
2138
2139 return final_result;
2140 }
2141
2142 void
2143 tu_DestroyPipeline(VkDevice _device,
2144 VkPipeline _pipeline,
2145 const VkAllocationCallbacks *pAllocator)
2146 {
2147 TU_FROM_HANDLE(tu_device, dev, _device);
2148 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2149
2150 if (!_pipeline)
2151 return;
2152
2153 tu_pipeline_finish(pipeline, dev, pAllocator);
2154 vk_free2(&dev->alloc, pAllocator, pipeline);
2155 }