turnip: rework format table to support r5g5b5a1_unorm/b5g5r5a1_unorm
[mesa.git] / src / freedreno / vulkan / tu_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "main/menums.h"
31 #include "nir/nir.h"
32 #include "nir/nir_builder.h"
33 #include "spirv/nir_spirv.h"
34 #include "util/debug.h"
35 #include "util/mesa-sha1.h"
36 #include "util/u_atomic.h"
37 #include "vk_format.h"
38 #include "vk_util.h"
39
40 #include "tu_cs.h"
41
42 struct tu_pipeline_builder
43 {
44 struct tu_device *device;
45 struct tu_pipeline_cache *cache;
46 struct tu_pipeline_layout *layout;
47 const VkAllocationCallbacks *alloc;
48 const VkGraphicsPipelineCreateInfo *create_info;
49
50 struct tu_shader *shaders[MESA_SHADER_STAGES];
51 uint32_t shader_offsets[MESA_SHADER_STAGES];
52 uint32_t binning_vs_offset;
53 uint32_t shader_total_size;
54
55 bool rasterizer_discard;
56 /* these states are affectd by rasterizer_discard */
57 VkSampleCountFlagBits samples;
58 bool use_depth_stencil_attachment;
59 bool use_color_attachments;
60 uint32_t color_attachment_count;
61 VkFormat color_attachment_formats[MAX_RTS];
62 };
63
64 static enum tu_dynamic_state_bits
65 tu_dynamic_state_bit(VkDynamicState state)
66 {
67 switch (state) {
68 case VK_DYNAMIC_STATE_VIEWPORT:
69 return TU_DYNAMIC_VIEWPORT;
70 case VK_DYNAMIC_STATE_SCISSOR:
71 return TU_DYNAMIC_SCISSOR;
72 case VK_DYNAMIC_STATE_LINE_WIDTH:
73 return TU_DYNAMIC_LINE_WIDTH;
74 case VK_DYNAMIC_STATE_DEPTH_BIAS:
75 return TU_DYNAMIC_DEPTH_BIAS;
76 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
77 return TU_DYNAMIC_BLEND_CONSTANTS;
78 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
79 return TU_DYNAMIC_DEPTH_BOUNDS;
80 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
81 return TU_DYNAMIC_STENCIL_COMPARE_MASK;
82 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
83 return TU_DYNAMIC_STENCIL_WRITE_MASK;
84 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
85 return TU_DYNAMIC_STENCIL_REFERENCE;
86 default:
87 unreachable("invalid dynamic state");
88 return 0;
89 }
90 }
91
92 static gl_shader_stage
93 tu_shader_stage(VkShaderStageFlagBits stage)
94 {
95 switch (stage) {
96 case VK_SHADER_STAGE_VERTEX_BIT:
97 return MESA_SHADER_VERTEX;
98 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
99 return MESA_SHADER_TESS_CTRL;
100 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
101 return MESA_SHADER_TESS_EVAL;
102 case VK_SHADER_STAGE_GEOMETRY_BIT:
103 return MESA_SHADER_GEOMETRY;
104 case VK_SHADER_STAGE_FRAGMENT_BIT:
105 return MESA_SHADER_FRAGMENT;
106 case VK_SHADER_STAGE_COMPUTE_BIT:
107 return MESA_SHADER_COMPUTE;
108 default:
109 unreachable("invalid VkShaderStageFlagBits");
110 return MESA_SHADER_NONE;
111 }
112 }
113
114 static const VkVertexInputAttributeDescription *
115 tu_find_vertex_input_attribute(
116 const VkPipelineVertexInputStateCreateInfo *vi_info, uint32_t slot)
117 {
118 assert(slot >= VERT_ATTRIB_GENERIC0);
119 slot -= VERT_ATTRIB_GENERIC0;
120 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
121 if (vi_info->pVertexAttributeDescriptions[i].location == slot)
122 return &vi_info->pVertexAttributeDescriptions[i];
123 }
124 return NULL;
125 }
126
127 static const VkVertexInputBindingDescription *
128 tu_find_vertex_input_binding(
129 const VkPipelineVertexInputStateCreateInfo *vi_info,
130 const VkVertexInputAttributeDescription *vi_attr)
131 {
132 assert(vi_attr);
133 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
134 if (vi_info->pVertexBindingDescriptions[i].binding == vi_attr->binding)
135 return &vi_info->pVertexBindingDescriptions[i];
136 }
137 return NULL;
138 }
139
140 static bool
141 tu_logic_op_reads_dst(VkLogicOp op)
142 {
143 switch (op) {
144 case VK_LOGIC_OP_CLEAR:
145 case VK_LOGIC_OP_COPY:
146 case VK_LOGIC_OP_COPY_INVERTED:
147 case VK_LOGIC_OP_SET:
148 return false;
149 default:
150 return true;
151 }
152 }
153
154 static VkBlendFactor
155 tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
156 {
157 /* treat dst alpha as 1.0 and avoid reading it */
158 switch (factor) {
159 case VK_BLEND_FACTOR_DST_ALPHA:
160 return VK_BLEND_FACTOR_ONE;
161 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
162 return VK_BLEND_FACTOR_ZERO;
163 default:
164 return factor;
165 }
166 }
167
168 static enum pc_di_primtype
169 tu6_primtype(VkPrimitiveTopology topology)
170 {
171 switch (topology) {
172 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
173 return DI_PT_POINTLIST;
174 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
175 return DI_PT_LINELIST;
176 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
177 return DI_PT_LINESTRIP;
178 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
179 return DI_PT_TRILIST;
180 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
181 return DI_PT_TRISTRIP;
182 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
183 return DI_PT_TRIFAN;
184 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
185 return DI_PT_LINE_ADJ;
186 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
187 return DI_PT_LINESTRIP_ADJ;
188 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
189 return DI_PT_TRI_ADJ;
190 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
191 return DI_PT_TRISTRIP_ADJ;
192 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
193 default:
194 unreachable("invalid primitive topology");
195 return DI_PT_NONE;
196 }
197 }
198
199 static enum adreno_compare_func
200 tu6_compare_func(VkCompareOp op)
201 {
202 switch (op) {
203 case VK_COMPARE_OP_NEVER:
204 return FUNC_NEVER;
205 case VK_COMPARE_OP_LESS:
206 return FUNC_LESS;
207 case VK_COMPARE_OP_EQUAL:
208 return FUNC_EQUAL;
209 case VK_COMPARE_OP_LESS_OR_EQUAL:
210 return FUNC_LEQUAL;
211 case VK_COMPARE_OP_GREATER:
212 return FUNC_GREATER;
213 case VK_COMPARE_OP_NOT_EQUAL:
214 return FUNC_NOTEQUAL;
215 case VK_COMPARE_OP_GREATER_OR_EQUAL:
216 return FUNC_GEQUAL;
217 case VK_COMPARE_OP_ALWAYS:
218 return FUNC_ALWAYS;
219 default:
220 unreachable("invalid VkCompareOp");
221 return FUNC_NEVER;
222 }
223 }
224
225 static enum adreno_stencil_op
226 tu6_stencil_op(VkStencilOp op)
227 {
228 switch (op) {
229 case VK_STENCIL_OP_KEEP:
230 return STENCIL_KEEP;
231 case VK_STENCIL_OP_ZERO:
232 return STENCIL_ZERO;
233 case VK_STENCIL_OP_REPLACE:
234 return STENCIL_REPLACE;
235 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
236 return STENCIL_INCR_CLAMP;
237 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
238 return STENCIL_DECR_CLAMP;
239 case VK_STENCIL_OP_INVERT:
240 return STENCIL_INVERT;
241 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
242 return STENCIL_INCR_WRAP;
243 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
244 return STENCIL_DECR_WRAP;
245 default:
246 unreachable("invalid VkStencilOp");
247 return STENCIL_KEEP;
248 }
249 }
250
251 static enum a3xx_rop_code
252 tu6_rop(VkLogicOp op)
253 {
254 switch (op) {
255 case VK_LOGIC_OP_CLEAR:
256 return ROP_CLEAR;
257 case VK_LOGIC_OP_AND:
258 return ROP_AND;
259 case VK_LOGIC_OP_AND_REVERSE:
260 return ROP_AND_REVERSE;
261 case VK_LOGIC_OP_COPY:
262 return ROP_COPY;
263 case VK_LOGIC_OP_AND_INVERTED:
264 return ROP_AND_INVERTED;
265 case VK_LOGIC_OP_NO_OP:
266 return ROP_NOOP;
267 case VK_LOGIC_OP_XOR:
268 return ROP_XOR;
269 case VK_LOGIC_OP_OR:
270 return ROP_OR;
271 case VK_LOGIC_OP_NOR:
272 return ROP_NOR;
273 case VK_LOGIC_OP_EQUIVALENT:
274 return ROP_EQUIV;
275 case VK_LOGIC_OP_INVERT:
276 return ROP_INVERT;
277 case VK_LOGIC_OP_OR_REVERSE:
278 return ROP_OR_REVERSE;
279 case VK_LOGIC_OP_COPY_INVERTED:
280 return ROP_COPY_INVERTED;
281 case VK_LOGIC_OP_OR_INVERTED:
282 return ROP_OR_INVERTED;
283 case VK_LOGIC_OP_NAND:
284 return ROP_NAND;
285 case VK_LOGIC_OP_SET:
286 return ROP_SET;
287 default:
288 unreachable("invalid VkLogicOp");
289 return ROP_NOOP;
290 }
291 }
292
293 static enum adreno_rb_blend_factor
294 tu6_blend_factor(VkBlendFactor factor)
295 {
296 switch (factor) {
297 case VK_BLEND_FACTOR_ZERO:
298 return FACTOR_ZERO;
299 case VK_BLEND_FACTOR_ONE:
300 return FACTOR_ONE;
301 case VK_BLEND_FACTOR_SRC_COLOR:
302 return FACTOR_SRC_COLOR;
303 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
304 return FACTOR_ONE_MINUS_SRC_COLOR;
305 case VK_BLEND_FACTOR_DST_COLOR:
306 return FACTOR_DST_COLOR;
307 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
308 return FACTOR_ONE_MINUS_DST_COLOR;
309 case VK_BLEND_FACTOR_SRC_ALPHA:
310 return FACTOR_SRC_ALPHA;
311 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
312 return FACTOR_ONE_MINUS_SRC_ALPHA;
313 case VK_BLEND_FACTOR_DST_ALPHA:
314 return FACTOR_DST_ALPHA;
315 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
316 return FACTOR_ONE_MINUS_DST_ALPHA;
317 case VK_BLEND_FACTOR_CONSTANT_COLOR:
318 return FACTOR_CONSTANT_COLOR;
319 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
320 return FACTOR_ONE_MINUS_CONSTANT_COLOR;
321 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
322 return FACTOR_CONSTANT_ALPHA;
323 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
324 return FACTOR_ONE_MINUS_CONSTANT_ALPHA;
325 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
326 return FACTOR_SRC_ALPHA_SATURATE;
327 case VK_BLEND_FACTOR_SRC1_COLOR:
328 return FACTOR_SRC1_COLOR;
329 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
330 return FACTOR_ONE_MINUS_SRC1_COLOR;
331 case VK_BLEND_FACTOR_SRC1_ALPHA:
332 return FACTOR_SRC1_ALPHA;
333 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
334 return FACTOR_ONE_MINUS_SRC1_ALPHA;
335 default:
336 unreachable("invalid VkBlendFactor");
337 return FACTOR_ZERO;
338 }
339 }
340
341 static enum a3xx_rb_blend_opcode
342 tu6_blend_op(VkBlendOp op)
343 {
344 switch (op) {
345 case VK_BLEND_OP_ADD:
346 return BLEND_DST_PLUS_SRC;
347 case VK_BLEND_OP_SUBTRACT:
348 return BLEND_SRC_MINUS_DST;
349 case VK_BLEND_OP_REVERSE_SUBTRACT:
350 return BLEND_DST_MINUS_SRC;
351 case VK_BLEND_OP_MIN:
352 return BLEND_MIN_DST_SRC;
353 case VK_BLEND_OP_MAX:
354 return BLEND_MAX_DST_SRC;
355 default:
356 unreachable("invalid VkBlendOp");
357 return BLEND_DST_PLUS_SRC;
358 }
359 }
360
361 static unsigned
362 tu_shader_nibo(const struct tu_shader *shader)
363 {
364 /* Don't use ir3_shader_nibo(), because that would include declared but
365 * unused storage images and SSBOs.
366 */
367 return shader->ssbo_map.num_desc + shader->image_map.num_desc;
368 }
369
370 static void
371 tu6_emit_vs_config(struct tu_cs *cs, struct tu_shader *shader,
372 const struct ir3_shader_variant *vs)
373 {
374 uint32_t sp_vs_ctrl =
375 A6XX_SP_VS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
376 A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(vs->info.max_reg + 1) |
377 A6XX_SP_VS_CTRL_REG0_MERGEDREGS |
378 A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(vs->branchstack);
379 if (vs->need_pixlod)
380 sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_PIXLODENABLE;
381 if (vs->need_fine_derivatives)
382 sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_DIFF_FINE;
383
384 uint32_t sp_vs_config = A6XX_SP_VS_CONFIG_NTEX(shader->texture_map.num_desc) |
385 A6XX_SP_VS_CONFIG_NSAMP(shader->sampler_map.num_desc);
386 if (vs->instrlen)
387 sp_vs_config |= A6XX_SP_VS_CONFIG_ENABLED;
388
389 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CTRL_REG0, 1);
390 tu_cs_emit(cs, sp_vs_ctrl);
391
392 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CONFIG, 2);
393 tu_cs_emit(cs, sp_vs_config);
394 tu_cs_emit(cs, vs->instrlen);
395
396 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_VS_CNTL, 1);
397 tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(align(vs->constlen, 4)) |
398 A6XX_HLSQ_VS_CNTL_ENABLED);
399 }
400
401 static void
402 tu6_emit_hs_config(struct tu_cs *cs, struct tu_shader *shader,
403 const struct ir3_shader_variant *hs)
404 {
405 uint32_t sp_hs_config = 0;
406 if (hs->instrlen)
407 sp_hs_config |= A6XX_SP_HS_CONFIG_ENABLED;
408
409 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
410 tu_cs_emit(cs, 0);
411
412 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_CONFIG, 2);
413 tu_cs_emit(cs, sp_hs_config);
414 tu_cs_emit(cs, hs->instrlen);
415
416 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_HS_CNTL, 1);
417 tu_cs_emit(cs, A6XX_HLSQ_HS_CNTL_CONSTLEN(align(hs->constlen, 4)));
418 }
419
420 static void
421 tu6_emit_ds_config(struct tu_cs *cs, struct tu_shader *shader,
422 const struct ir3_shader_variant *ds)
423 {
424 uint32_t sp_ds_config = 0;
425 if (ds->instrlen)
426 sp_ds_config |= A6XX_SP_DS_CONFIG_ENABLED;
427
428 tu_cs_emit_pkt4(cs, REG_A6XX_SP_DS_CONFIG, 2);
429 tu_cs_emit(cs, sp_ds_config);
430 tu_cs_emit(cs, ds->instrlen);
431
432 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_DS_CNTL, 1);
433 tu_cs_emit(cs, A6XX_HLSQ_DS_CNTL_CONSTLEN(align(ds->constlen, 4)));
434 }
435
436 static void
437 tu6_emit_gs_config(struct tu_cs *cs, struct tu_shader *shader,
438 const struct ir3_shader_variant *gs)
439 {
440 uint32_t sp_gs_config = 0;
441 if (gs->instrlen)
442 sp_gs_config |= A6XX_SP_GS_CONFIG_ENABLED;
443
444 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_UNKNOWN_A871, 1);
445 tu_cs_emit(cs, 0);
446
447 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_CONFIG, 2);
448 tu_cs_emit(cs, sp_gs_config);
449 tu_cs_emit(cs, gs->instrlen);
450
451 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_GS_CNTL, 1);
452 tu_cs_emit(cs, A6XX_HLSQ_GS_CNTL_CONSTLEN(align(gs->constlen, 4)));
453 }
454
455 static void
456 tu6_emit_fs_config(struct tu_cs *cs, struct tu_shader *shader,
457 const struct ir3_shader_variant *fs)
458 {
459 uint32_t sp_fs_ctrl =
460 A6XX_SP_FS_CTRL_REG0_THREADSIZE(FOUR_QUADS) | 0x1000000 |
461 A6XX_SP_FS_CTRL_REG0_FULLREGFOOTPRINT(fs->info.max_reg + 1) |
462 A6XX_SP_FS_CTRL_REG0_MERGEDREGS |
463 A6XX_SP_FS_CTRL_REG0_BRANCHSTACK(fs->branchstack);
464 if (fs->total_in > 0)
465 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_VARYING;
466 if (fs->need_pixlod)
467 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_PIXLODENABLE;
468 if (fs->need_fine_derivatives)
469 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_DIFF_FINE;
470
471 uint32_t sp_fs_config = 0;
472 unsigned shader_nibo = 0;
473 if (shader) {
474 shader_nibo = tu_shader_nibo(shader);
475 sp_fs_config = A6XX_SP_FS_CONFIG_NTEX(shader->texture_map.num_desc) |
476 A6XX_SP_FS_CONFIG_NSAMP(shader->sampler_map.num_desc) |
477 A6XX_SP_FS_CONFIG_NIBO(shader_nibo);
478 }
479
480 if (fs->instrlen)
481 sp_fs_config |= A6XX_SP_FS_CONFIG_ENABLED;
482
483 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A9A8, 1);
484 tu_cs_emit(cs, 0);
485
486 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_AB00, 1);
487 tu_cs_emit(cs, 0x5);
488
489 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CTRL_REG0, 1);
490 tu_cs_emit(cs, sp_fs_ctrl);
491
492 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CONFIG, 2);
493 tu_cs_emit(cs, sp_fs_config);
494 tu_cs_emit(cs, fs->instrlen);
495
496 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_FS_CNTL, 1);
497 tu_cs_emit(cs, A6XX_HLSQ_FS_CNTL_CONSTLEN(align(fs->constlen, 4)) |
498 A6XX_HLSQ_FS_CNTL_ENABLED);
499
500 tu_cs_emit_pkt4(cs, REG_A6XX_SP_IBO_COUNT, 1);
501 tu_cs_emit(cs, shader_nibo);
502 }
503
504 static void
505 tu6_emit_cs_config(struct tu_cs *cs, const struct tu_shader *shader,
506 const struct ir3_shader_variant *v)
507 {
508 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
509 tu_cs_emit(cs, 0xff);
510
511 unsigned constlen = align(v->constlen, 4);
512 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL, 1);
513 tu_cs_emit(cs, A6XX_HLSQ_CS_CNTL_CONSTLEN(constlen) |
514 A6XX_HLSQ_CS_CNTL_ENABLED);
515
516 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CONFIG, 2);
517 tu_cs_emit(cs, A6XX_SP_CS_CONFIG_ENABLED |
518 A6XX_SP_CS_CONFIG_NIBO(tu_shader_nibo(shader)) |
519 A6XX_SP_CS_CONFIG_NTEX(shader->texture_map.num_desc) |
520 A6XX_SP_CS_CONFIG_NSAMP(shader->sampler_map.num_desc));
521 tu_cs_emit(cs, v->instrlen);
522
523 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CTRL_REG0, 1);
524 tu_cs_emit(cs, A6XX_SP_CS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
525 A6XX_SP_CS_CTRL_REG0_FULLREGFOOTPRINT(v->info.max_reg + 1) |
526 A6XX_SP_CS_CTRL_REG0_MERGEDREGS |
527 A6XX_SP_CS_CTRL_REG0_BRANCHSTACK(v->branchstack) |
528 COND(v->need_pixlod, A6XX_SP_CS_CTRL_REG0_PIXLODENABLE) |
529 COND(v->need_fine_derivatives, A6XX_SP_CS_CTRL_REG0_DIFF_FINE));
530
531 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
532 tu_cs_emit(cs, 0x41);
533
534 uint32_t local_invocation_id =
535 ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
536 uint32_t work_group_id =
537 ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID);
538
539 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL_0, 2);
540 tu_cs_emit(cs,
541 A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
542 A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) |
543 A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) |
544 A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
545 tu_cs_emit(cs, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */
546
547 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_IBO_COUNT, 1);
548 tu_cs_emit(cs, tu_shader_nibo(shader));
549 }
550
551 static void
552 tu6_emit_vs_system_values(struct tu_cs *cs,
553 const struct ir3_shader_variant *vs)
554 {
555 const uint32_t vertexid_regid =
556 ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID);
557 const uint32_t instanceid_regid =
558 ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
559
560 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
561 tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
562 A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
563 0xfcfc0000);
564 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_2 */
565 tu_cs_emit(cs, 0xfcfcfcfc); /* VFD_CONTROL_3 */
566 tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
567 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_5 */
568 tu_cs_emit(cs, 0x00000000); /* VFD_CONTROL_6 */
569 }
570
571 static void
572 tu6_emit_vpc(struct tu_cs *cs,
573 const struct ir3_shader_variant *vs,
574 const struct ir3_shader_variant *fs,
575 bool binning_pass)
576 {
577 struct ir3_shader_linkage linkage = { 0 };
578 ir3_link_shaders(&linkage, vs, fs);
579
580 if (vs->shader->stream_output.num_outputs && !binning_pass)
581 tu_finishme("stream output");
582
583 BITSET_DECLARE(vpc_var_enables, 128) = { 0 };
584 for (uint32_t i = 0; i < linkage.cnt; i++) {
585 const uint32_t comp_count = util_last_bit(linkage.var[i].compmask);
586 for (uint32_t j = 0; j < comp_count; j++)
587 BITSET_SET(vpc_var_enables, linkage.var[i].loc + j);
588 }
589
590 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
591 tu_cs_emit(cs, ~vpc_var_enables[0]);
592 tu_cs_emit(cs, ~vpc_var_enables[1]);
593 tu_cs_emit(cs, ~vpc_var_enables[2]);
594 tu_cs_emit(cs, ~vpc_var_enables[3]);
595
596 /* a6xx finds position/pointsize at the end */
597 const uint32_t position_regid =
598 ir3_find_output_regid(vs, VARYING_SLOT_POS);
599 const uint32_t pointsize_regid =
600 ir3_find_output_regid(vs, VARYING_SLOT_PSIZ);
601 uint32_t pointsize_loc = 0xff, position_loc = 0xff;
602 if (position_regid != regid(63, 0)) {
603 position_loc = linkage.max_loc;
604 ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
605 }
606 if (pointsize_regid != regid(63, 0)) {
607 pointsize_loc = linkage.max_loc;
608 ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
609 }
610
611 /* map vs outputs to VPC */
612 assert(linkage.cnt <= 32);
613 const uint32_t sp_vs_out_count = (linkage.cnt + 1) / 2;
614 const uint32_t sp_vs_vpc_dst_count = (linkage.cnt + 3) / 4;
615 uint32_t sp_vs_out[16];
616 uint32_t sp_vs_vpc_dst[8];
617 sp_vs_out[sp_vs_out_count - 1] = 0;
618 sp_vs_vpc_dst[sp_vs_vpc_dst_count - 1] = 0;
619 for (uint32_t i = 0; i < linkage.cnt; i++) {
620 ((uint16_t *) sp_vs_out)[i] =
621 A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
622 A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
623 ((uint8_t *) sp_vs_vpc_dst)[i] =
624 A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
625 }
626
627 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_OUT_REG(0), sp_vs_out_count);
628 tu_cs_emit_array(cs, sp_vs_out, sp_vs_out_count);
629
630 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_VPC_DST_REG(0), sp_vs_vpc_dst_count);
631 tu_cs_emit_array(cs, sp_vs_vpc_dst, sp_vs_vpc_dst_count);
632
633 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
634 tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs->total_in) |
635 (fs->total_in > 0 ? A6XX_VPC_CNTL_0_VARYING : 0) |
636 0xff00ff00);
637
638 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK, 1);
639 tu_cs_emit(cs, A6XX_VPC_PACK_POSITIONLOC(position_loc) |
640 A6XX_VPC_PACK_PSIZELOC(pointsize_loc) |
641 A6XX_VPC_PACK_STRIDE_IN_VPC(linkage.max_loc));
642
643 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_GS_SIV_CNTL, 1);
644 tu_cs_emit(cs, 0x0000ffff); /* XXX */
645
646 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL, 1);
647 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_VSOUT(linkage.cnt));
648
649 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_1, 1);
650 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_1_STRIDE_IN_VPC(linkage.max_loc) |
651 (vs->writes_psize ? A6XX_PC_PRIMITIVE_CNTL_1_PSIZE : 0));
652 }
653
654 static int
655 tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
656 uint32_t index,
657 uint8_t *interp_mode,
658 uint8_t *ps_repl_mode)
659 {
660 enum
661 {
662 INTERP_SMOOTH = 0,
663 INTERP_FLAT = 1,
664 INTERP_ZERO = 2,
665 INTERP_ONE = 3,
666 };
667 enum
668 {
669 PS_REPL_NONE = 0,
670 PS_REPL_S = 1,
671 PS_REPL_T = 2,
672 PS_REPL_ONE_MINUS_T = 3,
673 };
674
675 const uint32_t compmask = fs->inputs[index].compmask;
676
677 /* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
678 * fourth component occupy three consecutive varying slots
679 */
680 int shift = 0;
681 *interp_mode = 0;
682 *ps_repl_mode = 0;
683 if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
684 if (compmask & 0x1) {
685 *ps_repl_mode |= PS_REPL_S << shift;
686 shift += 2;
687 }
688 if (compmask & 0x2) {
689 *ps_repl_mode |= PS_REPL_T << shift;
690 shift += 2;
691 }
692 if (compmask & 0x4) {
693 *interp_mode |= INTERP_ZERO << shift;
694 shift += 2;
695 }
696 if (compmask & 0x8) {
697 *interp_mode |= INTERP_ONE << 6;
698 shift += 2;
699 }
700 } else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
701 fs->inputs[index].rasterflat) {
702 for (int i = 0; i < 4; i++) {
703 if (compmask & (1 << i)) {
704 *interp_mode |= INTERP_FLAT << shift;
705 shift += 2;
706 }
707 }
708 }
709
710 return shift;
711 }
712
713 static void
714 tu6_emit_vpc_varying_modes(struct tu_cs *cs,
715 const struct ir3_shader_variant *fs,
716 bool binning_pass)
717 {
718 uint32_t interp_modes[8] = { 0 };
719 uint32_t ps_repl_modes[8] = { 0 };
720
721 if (!binning_pass) {
722 for (int i = -1;
723 (i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
724
725 /* get the mode for input i */
726 uint8_t interp_mode;
727 uint8_t ps_repl_mode;
728 const int bits =
729 tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
730
731 /* OR the mode into the array */
732 const uint32_t inloc = fs->inputs[i].inloc * 2;
733 uint32_t n = inloc / 32;
734 uint32_t shift = inloc % 32;
735 interp_modes[n] |= interp_mode << shift;
736 ps_repl_modes[n] |= ps_repl_mode << shift;
737 if (shift + bits > 32) {
738 n++;
739 shift = 32 - shift;
740
741 interp_modes[n] |= interp_mode >> shift;
742 ps_repl_modes[n] |= ps_repl_mode >> shift;
743 }
744 }
745 }
746
747 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
748 tu_cs_emit_array(cs, interp_modes, 8);
749
750 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
751 tu_cs_emit_array(cs, ps_repl_modes, 8);
752 }
753
754 static void
755 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
756 {
757 uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid;
758 uint32_t ij_pix_regid, ij_samp_regid, ij_cent_regid, ij_size_regid;
759 uint32_t smask_in_regid;
760
761 bool sample_shading = fs->per_samp; /* TODO | key->sample_shading; */
762 bool enable_varyings = fs->total_in > 0;
763
764 samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
765 smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
766 face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
767 coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
768 zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0);
769 ij_pix_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL);
770 ij_samp_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE);
771 ij_cent_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID);
772 ij_size_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE);
773
774 if (fs->num_sampler_prefetch > 0) {
775 assert(VALIDREG(ij_pix_regid));
776 /* also, it seems like ij_pix is *required* to be r0.x */
777 assert(ij_pix_regid == regid(0, 0));
778 }
779
780 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch);
781 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) |
782 A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) |
783 0x7000); // XXX);
784 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
785 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
786 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) |
787 A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) |
788 A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) |
789 A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) |
790 A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) |
791 COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) |
792 A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd));
793 }
794
795 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
796 tu_cs_emit(cs, 0x7);
797 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) |
798 A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) |
799 A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) |
800 A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_size_regid));
801 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_PIXEL(ij_pix_regid) |
802 A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_CENTROID(ij_cent_regid) |
803 0xfc00fc00);
804 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) |
805 A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) |
806 A6XX_HLSQ_CONTROL_4_REG_BARY_IJ_PIXEL_PERSAMP(ij_samp_regid) |
807 0x0000fc00);
808 tu_cs_emit(cs, 0xfc);
809
810 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
811 tu_cs_emit(cs, enable_varyings ? 3 : 1);
812
813 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A982, 1);
814 tu_cs_emit(cs, 0); /* XXX */
815
816 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
817 tu_cs_emit(cs, 0xff); /* XXX */
818
819 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
820 tu_cs_emit(cs,
821 CONDREG(ij_pix_regid, A6XX_GRAS_CNTL_VARYING) |
822 CONDREG(ij_cent_regid, A6XX_GRAS_CNTL_CENTROID) |
823 CONDREG(ij_samp_regid, A6XX_GRAS_CNTL_PERSAMP_VARYING) |
824 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_GRAS_CNTL_SIZE) |
825 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_GRAS_CNTL_SIZE_PERSAMP) |
826 COND(fs->frag_coord,
827 A6XX_GRAS_CNTL_SIZE |
828 A6XX_GRAS_CNTL_XCOORD |
829 A6XX_GRAS_CNTL_YCOORD |
830 A6XX_GRAS_CNTL_ZCOORD |
831 A6XX_GRAS_CNTL_WCOORD) |
832 COND(fs->frag_face, A6XX_GRAS_CNTL_SIZE));
833
834 tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
835 tu_cs_emit(cs,
836 CONDREG(ij_pix_regid, A6XX_RB_RENDER_CONTROL0_VARYING) |
837 CONDREG(ij_cent_regid, A6XX_RB_RENDER_CONTROL0_CENTROID) |
838 CONDREG(ij_samp_regid, A6XX_RB_RENDER_CONTROL0_PERSAMP_VARYING) |
839 COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) |
840 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE) |
841 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) |
842 COND(fs->frag_coord,
843 A6XX_RB_RENDER_CONTROL0_SIZE |
844 A6XX_RB_RENDER_CONTROL0_XCOORD |
845 A6XX_RB_RENDER_CONTROL0_YCOORD |
846 A6XX_RB_RENDER_CONTROL0_ZCOORD |
847 A6XX_RB_RENDER_CONTROL0_WCOORD) |
848 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL0_SIZE));
849 tu_cs_emit(cs,
850 CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) |
851 CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) |
852 CONDREG(ij_size_regid, A6XX_RB_RENDER_CONTROL1_SIZE) |
853 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS));
854
855 tu_cs_emit_pkt4(cs, REG_A6XX_RB_SAMPLE_CNTL, 1);
856 tu_cs_emit(cs, COND(sample_shading, A6XX_RB_SAMPLE_CNTL_PER_SAMP_MODE));
857
858 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8101, 1);
859 tu_cs_emit(cs, COND(sample_shading, 0x6)); // XXX
860
861 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SAMPLE_CNTL, 1);
862 tu_cs_emit(cs, COND(sample_shading, A6XX_GRAS_SAMPLE_CNTL_PER_SAMP_MODE));
863 }
864
865 static void
866 tu6_emit_fs_outputs(struct tu_cs *cs,
867 const struct ir3_shader_variant *fs,
868 uint32_t mrt_count)
869 {
870 uint32_t smask_regid, posz_regid;
871
872 posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
873 smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK);
874
875 uint32_t fragdata_regid[8];
876 if (fs->color0_mrt) {
877 fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
878 for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
879 fragdata_regid[i] = fragdata_regid[0];
880 } else {
881 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
882 fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
883 }
884
885 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
886 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) |
887 A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) |
888 0xfc000000);
889 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
890
891 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
892 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
893 // TODO we could have a mix of half and full precision outputs,
894 // we really need to figure out half-precision from IR3_REG_HALF
895 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
896 (false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
897 }
898
899 tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
900 tu_cs_emit(cs, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) |
901 COND(fs->writes_smask, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK));
902 tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
903
904 uint32_t gras_su_depth_plane_cntl = 0;
905 uint32_t rb_depth_plane_cntl = 0;
906 if (fs->no_earlyz || fs->writes_pos) {
907 gras_su_depth_plane_cntl |= A6XX_GRAS_SU_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
908 rb_depth_plane_cntl |= A6XX_RB_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
909 }
910
911 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
912 tu_cs_emit(cs, gras_su_depth_plane_cntl);
913
914 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
915 tu_cs_emit(cs, rb_depth_plane_cntl);
916 }
917
918 static void
919 tu6_emit_shader_object(struct tu_cs *cs,
920 gl_shader_stage stage,
921 const struct ir3_shader_variant *variant,
922 const struct tu_bo *binary_bo,
923 uint32_t binary_offset)
924 {
925 uint16_t reg;
926 uint8_t opcode;
927 enum a6xx_state_block sb;
928 switch (stage) {
929 case MESA_SHADER_VERTEX:
930 reg = REG_A6XX_SP_VS_OBJ_START_LO;
931 opcode = CP_LOAD_STATE6_GEOM;
932 sb = SB6_VS_SHADER;
933 break;
934 case MESA_SHADER_TESS_CTRL:
935 reg = REG_A6XX_SP_HS_OBJ_START_LO;
936 opcode = CP_LOAD_STATE6_GEOM;
937 sb = SB6_HS_SHADER;
938 break;
939 case MESA_SHADER_TESS_EVAL:
940 reg = REG_A6XX_SP_DS_OBJ_START_LO;
941 opcode = CP_LOAD_STATE6_GEOM;
942 sb = SB6_DS_SHADER;
943 break;
944 case MESA_SHADER_GEOMETRY:
945 reg = REG_A6XX_SP_GS_OBJ_START_LO;
946 opcode = CP_LOAD_STATE6_GEOM;
947 sb = SB6_GS_SHADER;
948 break;
949 case MESA_SHADER_FRAGMENT:
950 reg = REG_A6XX_SP_FS_OBJ_START_LO;
951 opcode = CP_LOAD_STATE6_FRAG;
952 sb = SB6_FS_SHADER;
953 break;
954 case MESA_SHADER_COMPUTE:
955 reg = REG_A6XX_SP_CS_OBJ_START_LO;
956 opcode = CP_LOAD_STATE6_FRAG;
957 sb = SB6_CS_SHADER;
958 break;
959 default:
960 unreachable("invalid gl_shader_stage");
961 opcode = CP_LOAD_STATE6_GEOM;
962 sb = SB6_VS_SHADER;
963 break;
964 }
965
966 if (!variant->instrlen) {
967 tu_cs_emit_pkt4(cs, reg, 2);
968 tu_cs_emit_qw(cs, 0);
969 return;
970 }
971
972 assert(variant->type == stage);
973
974 const uint64_t binary_iova = binary_bo->iova + binary_offset;
975 assert((binary_iova & 0x3) == 0);
976
977 tu_cs_emit_pkt4(cs, reg, 2);
978 tu_cs_emit_qw(cs, binary_iova);
979
980 /* always indirect */
981 const bool indirect = true;
982 if (indirect) {
983 tu_cs_emit_pkt7(cs, opcode, 3);
984 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
985 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
986 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
987 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
988 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
989 tu_cs_emit_qw(cs, binary_iova);
990 } else {
991 const void *binary = binary_bo->map + binary_offset;
992
993 tu_cs_emit_pkt7(cs, opcode, 3 + variant->info.sizedwords);
994 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
995 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
996 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
997 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
998 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
999 tu_cs_emit_qw(cs, 0);
1000 tu_cs_emit_array(cs, binary, variant->info.sizedwords);
1001 }
1002 }
1003
1004 static void
1005 tu6_emit_immediates(struct tu_cs *cs, const struct ir3_shader_variant *v,
1006 uint32_t opcode, enum a6xx_state_block block)
1007 {
1008 /* dummy variant */
1009 if (!v->shader)
1010 return;
1011
1012 const struct ir3_const_state *const_state = &v->shader->const_state;
1013 uint32_t base = const_state->offsets.immediate;
1014 int size = const_state->immediates_count;
1015
1016 /* truncate size to avoid writing constants that shader
1017 * does not use:
1018 */
1019 size = MIN2(size + base, v->constlen) - base;
1020
1021 if (size <= 0)
1022 return;
1023
1024 tu_cs_emit_pkt7(cs, opcode, 3 + size * 4);
1025 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
1026 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1027 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
1028 CP_LOAD_STATE6_0_STATE_BLOCK(block) |
1029 CP_LOAD_STATE6_0_NUM_UNIT(size));
1030 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
1031 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
1032
1033 for (unsigned i = 0; i < size; i++) {
1034 tu_cs_emit(cs, const_state->immediates[i].val[0]);
1035 tu_cs_emit(cs, const_state->immediates[i].val[1]);
1036 tu_cs_emit(cs, const_state->immediates[i].val[2]);
1037 tu_cs_emit(cs, const_state->immediates[i].val[3]);
1038 }
1039 }
1040
1041 static void
1042 tu6_emit_program(struct tu_cs *cs,
1043 const struct tu_pipeline_builder *builder,
1044 const struct tu_bo *binary_bo,
1045 bool binning_pass)
1046 {
1047 static const struct ir3_shader_variant dummy_variant = {
1048 .type = MESA_SHADER_NONE
1049 };
1050 assert(builder->shaders[MESA_SHADER_VERTEX]);
1051 const struct ir3_shader_variant *vs =
1052 &builder->shaders[MESA_SHADER_VERTEX]->variants[0];
1053 const struct ir3_shader_variant *hs =
1054 builder->shaders[MESA_SHADER_TESS_CTRL]
1055 ? &builder->shaders[MESA_SHADER_TESS_CTRL]->variants[0]
1056 : &dummy_variant;
1057 const struct ir3_shader_variant *ds =
1058 builder->shaders[MESA_SHADER_TESS_EVAL]
1059 ? &builder->shaders[MESA_SHADER_TESS_EVAL]->variants[0]
1060 : &dummy_variant;
1061 const struct ir3_shader_variant *gs =
1062 builder->shaders[MESA_SHADER_GEOMETRY]
1063 ? &builder->shaders[MESA_SHADER_GEOMETRY]->variants[0]
1064 : &dummy_variant;
1065 const struct ir3_shader_variant *fs =
1066 builder->shaders[MESA_SHADER_FRAGMENT]
1067 ? &builder->shaders[MESA_SHADER_FRAGMENT]->variants[0]
1068 : &dummy_variant;
1069
1070 if (binning_pass) {
1071 vs = &builder->shaders[MESA_SHADER_VERTEX]->variants[1];
1072 fs = &dummy_variant;
1073 }
1074
1075 tu6_emit_vs_config(cs, builder->shaders[MESA_SHADER_VERTEX], vs);
1076 tu6_emit_hs_config(cs, builder->shaders[MESA_SHADER_TESS_CTRL], hs);
1077 tu6_emit_ds_config(cs, builder->shaders[MESA_SHADER_TESS_EVAL], ds);
1078 tu6_emit_gs_config(cs, builder->shaders[MESA_SHADER_GEOMETRY], gs);
1079 tu6_emit_fs_config(cs, builder->shaders[MESA_SHADER_FRAGMENT], fs);
1080
1081 tu6_emit_vs_system_values(cs, vs);
1082 tu6_emit_vpc(cs, vs, fs, binning_pass);
1083 tu6_emit_vpc_varying_modes(cs, fs, binning_pass);
1084 tu6_emit_fs_inputs(cs, fs);
1085 tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count);
1086
1087 tu6_emit_shader_object(cs, MESA_SHADER_VERTEX, vs, binary_bo,
1088 binning_pass ? builder->binning_vs_offset : builder->shader_offsets[MESA_SHADER_VERTEX]);
1089
1090 tu6_emit_shader_object(cs, MESA_SHADER_FRAGMENT, fs, binary_bo,
1091 builder->shader_offsets[MESA_SHADER_FRAGMENT]);
1092
1093 tu6_emit_immediates(cs, vs, CP_LOAD_STATE6_GEOM, SB6_VS_SHADER);
1094 if (!binning_pass)
1095 tu6_emit_immediates(cs, fs, CP_LOAD_STATE6_FRAG, SB6_FS_SHADER);
1096 }
1097
1098 static void
1099 tu6_emit_vertex_input(struct tu_cs *cs,
1100 const struct ir3_shader_variant *vs,
1101 const VkPipelineVertexInputStateCreateInfo *vi_info,
1102 uint8_t bindings[MAX_VERTEX_ATTRIBS],
1103 uint16_t strides[MAX_VERTEX_ATTRIBS],
1104 uint16_t offsets[MAX_VERTEX_ATTRIBS],
1105 uint32_t *count)
1106 {
1107 uint32_t vfd_decode_idx = 0;
1108
1109 for (uint32_t i = 0; i < vs->inputs_count; i++) {
1110 if (vs->inputs[i].sysval || !vs->inputs[i].compmask)
1111 continue;
1112
1113 const VkVertexInputAttributeDescription *vi_attr =
1114 tu_find_vertex_input_attribute(vi_info, vs->inputs[i].slot);
1115 const VkVertexInputBindingDescription *vi_binding =
1116 tu_find_vertex_input_binding(vi_info, vi_attr);
1117 assert(vi_attr && vi_binding);
1118
1119 const struct tu_native_format format = tu6_format_vtx(vi_attr->format);
1120
1121 uint32_t vfd_decode = A6XX_VFD_DECODE_INSTR_IDX(vfd_decode_idx) |
1122 A6XX_VFD_DECODE_INSTR_FORMAT(format.fmt) |
1123 A6XX_VFD_DECODE_INSTR_SWAP(format.swap) |
1124 A6XX_VFD_DECODE_INSTR_UNK30;
1125 if (vi_binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
1126 vfd_decode |= A6XX_VFD_DECODE_INSTR_INSTANCED;
1127 if (!vk_format_is_int(vi_attr->format))
1128 vfd_decode |= A6XX_VFD_DECODE_INSTR_FLOAT;
1129
1130 const uint32_t vfd_decode_step_rate = 1;
1131
1132 const uint32_t vfd_dest_cntl =
1133 A6XX_VFD_DEST_CNTL_INSTR_WRITEMASK(vs->inputs[i].compmask) |
1134 A6XX_VFD_DEST_CNTL_INSTR_REGID(vs->inputs[i].regid);
1135
1136 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DECODE(vfd_decode_idx), 2);
1137 tu_cs_emit(cs, vfd_decode);
1138 tu_cs_emit(cs, vfd_decode_step_rate);
1139
1140 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DEST_CNTL(vfd_decode_idx), 1);
1141 tu_cs_emit(cs, vfd_dest_cntl);
1142
1143 bindings[vfd_decode_idx] = vi_binding->binding;
1144 strides[vfd_decode_idx] = vi_binding->stride;
1145 offsets[vfd_decode_idx] = vi_attr->offset;
1146
1147 vfd_decode_idx++;
1148 assert(vfd_decode_idx <= MAX_VERTEX_ATTRIBS);
1149 }
1150
1151 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_0, 1);
1152 tu_cs_emit(
1153 cs, A6XX_VFD_CONTROL_0_VTXCNT(vfd_decode_idx) | (vfd_decode_idx << 8));
1154
1155 *count = vfd_decode_idx;
1156 }
1157
1158 static uint32_t
1159 tu6_guardband_adj(uint32_t v)
1160 {
1161 if (v > 256)
1162 return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0));
1163 else
1164 return 511;
1165 }
1166
1167 void
1168 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
1169 {
1170 float offsets[3];
1171 float scales[3];
1172 scales[0] = viewport->width / 2.0f;
1173 scales[1] = viewport->height / 2.0f;
1174 scales[2] = viewport->maxDepth - viewport->minDepth;
1175 offsets[0] = viewport->x + scales[0];
1176 offsets[1] = viewport->y + scales[1];
1177 offsets[2] = viewport->minDepth;
1178
1179 VkOffset2D min;
1180 VkOffset2D max;
1181 min.x = (int32_t) viewport->x;
1182 max.x = (int32_t) ceilf(viewport->x + viewport->width);
1183 if (viewport->height >= 0.0f) {
1184 min.y = (int32_t) viewport->y;
1185 max.y = (int32_t) ceilf(viewport->y + viewport->height);
1186 } else {
1187 min.y = (int32_t)(viewport->y + viewport->height);
1188 max.y = (int32_t) ceilf(viewport->y);
1189 }
1190 /* the spec allows viewport->height to be 0.0f */
1191 if (min.y == max.y)
1192 max.y++;
1193 assert(min.x >= 0 && min.x < max.x);
1194 assert(min.y >= 0 && min.y < max.y);
1195
1196 VkExtent2D guardband_adj;
1197 guardband_adj.width = tu6_guardband_adj(max.x - min.x);
1198 guardband_adj.height = tu6_guardband_adj(max.y - min.y);
1199
1200 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6);
1201 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XOFFSET_0(offsets[0]).value);
1202 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XSCALE_0(scales[0]).value);
1203 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YOFFSET_0(offsets[1]).value);
1204 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YSCALE_0(scales[1]).value);
1205 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZOFFSET_0(offsets[2]).value);
1206 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZSCALE_0(scales[2]).value);
1207
1208 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2);
1209 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(min.x) |
1210 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(min.y));
1211 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(max.x - 1) |
1212 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(max.y - 1));
1213
1214 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
1215 tu_cs_emit(cs,
1216 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
1217 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
1218 }
1219
1220 void
1221 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
1222 {
1223 const VkOffset2D min = scissor->offset;
1224 const VkOffset2D max = {
1225 scissor->offset.x + scissor->extent.width,
1226 scissor->offset.y + scissor->extent.height,
1227 };
1228
1229 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0, 2);
1230 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(min.x) |
1231 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(min.y));
1232 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(max.x - 1) |
1233 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(max.y - 1));
1234 }
1235
1236 static void
1237 tu6_emit_gras_unknowns(struct tu_cs *cs)
1238 {
1239 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_DISABLE_CNTL, 1);
1240 tu_cs_emit(cs, A6XX_GRAS_DISABLE_CNTL_VP_CLIP_CODE_IGNORE);
1241 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8001, 1);
1242 tu_cs_emit(cs, 0x0);
1243 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_LAYER_CNTL, 1);
1244 tu_cs_emit(cs, 0x0);
1245 }
1246
1247 static void
1248 tu6_emit_point_size(struct tu_cs *cs)
1249 {
1250 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POINT_MINMAX, 2);
1251 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_MINMAX_MIN(1.0f / 16.0f) |
1252 A6XX_GRAS_SU_POINT_MINMAX_MAX(4092.0f));
1253 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_SIZE(1.0f).value);
1254 }
1255
1256 static uint32_t
1257 tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
1258 VkSampleCountFlagBits samples)
1259 {
1260 uint32_t gras_su_cntl = 0;
1261
1262 if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
1263 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
1264 if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
1265 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
1266
1267 if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
1268 gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
1269
1270 /* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
1271
1272 if (rast_info->depthBiasEnable)
1273 gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
1274
1275 if (samples > VK_SAMPLE_COUNT_1_BIT)
1276 gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
1277
1278 return gras_su_cntl;
1279 }
1280
1281 void
1282 tu6_emit_gras_su_cntl(struct tu_cs *cs,
1283 uint32_t gras_su_cntl,
1284 float line_width)
1285 {
1286 assert((gras_su_cntl & A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK) == 0);
1287 gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(line_width / 2.0f);
1288
1289 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_CNTL, 1);
1290 tu_cs_emit(cs, gras_su_cntl);
1291 }
1292
1293 void
1294 tu6_emit_depth_bias(struct tu_cs *cs,
1295 float constant_factor,
1296 float clamp,
1297 float slope_factor)
1298 {
1299 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
1300 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor).value);
1301 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor).value);
1302 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp).value);
1303 }
1304
1305 static void
1306 tu6_emit_alpha_control_disable(struct tu_cs *cs)
1307 {
1308 tu_cs_emit_pkt4(cs, REG_A6XX_RB_ALPHA_CONTROL, 1);
1309 tu_cs_emit(cs, 0);
1310 }
1311
1312 static void
1313 tu6_emit_depth_control(struct tu_cs *cs,
1314 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1315 {
1316 assert(!ds_info->depthBoundsTestEnable);
1317
1318 uint32_t rb_depth_cntl = 0;
1319 if (ds_info->depthTestEnable) {
1320 rb_depth_cntl |=
1321 A6XX_RB_DEPTH_CNTL_Z_ENABLE |
1322 A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
1323 A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
1324
1325 if (ds_info->depthWriteEnable)
1326 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
1327 }
1328
1329 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
1330 tu_cs_emit(cs, rb_depth_cntl);
1331 }
1332
1333 static void
1334 tu6_emit_stencil_control(struct tu_cs *cs,
1335 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1336 {
1337 uint32_t rb_stencil_control = 0;
1338 if (ds_info->stencilTestEnable) {
1339 const VkStencilOpState *front = &ds_info->front;
1340 const VkStencilOpState *back = &ds_info->back;
1341 rb_stencil_control |=
1342 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
1343 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
1344 A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
1345 A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
1346 A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
1347 A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
1348 A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
1349 A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
1350 A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
1351 A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
1352 A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
1353 }
1354
1355 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
1356 tu_cs_emit(cs, rb_stencil_control);
1357 }
1358
1359 void
1360 tu6_emit_stencil_compare_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1361 {
1362 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILMASK, 1);
1363 tu_cs_emit(
1364 cs, A6XX_RB_STENCILMASK_MASK(front) | A6XX_RB_STENCILMASK_BFMASK(back));
1365 }
1366
1367 void
1368 tu6_emit_stencil_write_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1369 {
1370 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILWRMASK, 1);
1371 tu_cs_emit(cs, A6XX_RB_STENCILWRMASK_WRMASK(front) |
1372 A6XX_RB_STENCILWRMASK_BFWRMASK(back));
1373 }
1374
1375 void
1376 tu6_emit_stencil_reference(struct tu_cs *cs, uint32_t front, uint32_t back)
1377 {
1378 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILREF, 1);
1379 tu_cs_emit(cs,
1380 A6XX_RB_STENCILREF_REF(front) | A6XX_RB_STENCILREF_BFREF(back));
1381 }
1382
1383 static uint32_t
1384 tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
1385 bool has_alpha)
1386 {
1387 const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
1388 const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
1389 has_alpha ? att->srcColorBlendFactor
1390 : tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
1391 const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
1392 has_alpha ? att->dstColorBlendFactor
1393 : tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
1394 const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
1395 const enum adreno_rb_blend_factor src_alpha_factor =
1396 tu6_blend_factor(att->srcAlphaBlendFactor);
1397 const enum adreno_rb_blend_factor dst_alpha_factor =
1398 tu6_blend_factor(att->dstAlphaBlendFactor);
1399
1400 return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
1401 A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
1402 A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
1403 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
1404 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
1405 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
1406 }
1407
1408 static uint32_t
1409 tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
1410 uint32_t rb_mrt_control_rop,
1411 bool is_int,
1412 bool has_alpha)
1413 {
1414 uint32_t rb_mrt_control =
1415 A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
1416
1417 /* ignore blending and logic op for integer attachments */
1418 if (is_int) {
1419 rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
1420 return rb_mrt_control;
1421 }
1422
1423 rb_mrt_control |= rb_mrt_control_rop;
1424
1425 if (att->blendEnable) {
1426 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
1427
1428 if (has_alpha)
1429 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
1430 }
1431
1432 return rb_mrt_control;
1433 }
1434
1435 static void
1436 tu6_emit_rb_mrt_controls(struct tu_cs *cs,
1437 const VkPipelineColorBlendStateCreateInfo *blend_info,
1438 const VkFormat attachment_formats[MAX_RTS],
1439 uint32_t *blend_enable_mask)
1440 {
1441 *blend_enable_mask = 0;
1442
1443 bool rop_reads_dst = false;
1444 uint32_t rb_mrt_control_rop = 0;
1445 if (blend_info->logicOpEnable) {
1446 rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
1447 rb_mrt_control_rop =
1448 A6XX_RB_MRT_CONTROL_ROP_ENABLE |
1449 A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
1450 }
1451
1452 for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
1453 const VkPipelineColorBlendAttachmentState *att =
1454 &blend_info->pAttachments[i];
1455 const VkFormat format = attachment_formats[i];
1456
1457 uint32_t rb_mrt_control = 0;
1458 uint32_t rb_mrt_blend_control = 0;
1459 if (format != VK_FORMAT_UNDEFINED) {
1460 const bool is_int = vk_format_is_int(format);
1461 const bool has_alpha = vk_format_has_alpha(format);
1462
1463 rb_mrt_control =
1464 tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
1465 rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
1466
1467 if (att->blendEnable || rop_reads_dst)
1468 *blend_enable_mask |= 1 << i;
1469 }
1470
1471 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1472 tu_cs_emit(cs, rb_mrt_control);
1473 tu_cs_emit(cs, rb_mrt_blend_control);
1474 }
1475
1476 for (uint32_t i = blend_info->attachmentCount; i < MAX_RTS; i++) {
1477 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1478 tu_cs_emit(cs, 0);
1479 tu_cs_emit(cs, 0);
1480 }
1481 }
1482
1483 static void
1484 tu6_emit_blend_control(struct tu_cs *cs,
1485 uint32_t blend_enable_mask,
1486 const VkPipelineMultisampleStateCreateInfo *msaa_info)
1487 {
1488 assert(!msaa_info->alphaToOneEnable);
1489
1490 uint32_t sp_blend_cntl = A6XX_SP_BLEND_CNTL_UNK8;
1491 if (blend_enable_mask)
1492 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ENABLED;
1493 if (msaa_info->alphaToCoverageEnable)
1494 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ALPHA_TO_COVERAGE;
1495
1496 const uint32_t sample_mask =
1497 msaa_info->pSampleMask ? *msaa_info->pSampleMask
1498 : ((1 << msaa_info->rasterizationSamples) - 1);
1499
1500 /* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
1501 uint32_t rb_blend_cntl =
1502 A6XX_RB_BLEND_CNTL_ENABLE_BLEND(blend_enable_mask) |
1503 A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND |
1504 A6XX_RB_BLEND_CNTL_SAMPLE_MASK(sample_mask);
1505 if (msaa_info->alphaToCoverageEnable)
1506 rb_blend_cntl |= A6XX_RB_BLEND_CNTL_ALPHA_TO_COVERAGE;
1507
1508 tu_cs_emit_pkt4(cs, REG_A6XX_SP_BLEND_CNTL, 1);
1509 tu_cs_emit(cs, sp_blend_cntl);
1510
1511 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_CNTL, 1);
1512 tu_cs_emit(cs, rb_blend_cntl);
1513 }
1514
1515 void
1516 tu6_emit_blend_constants(struct tu_cs *cs, const float constants[4])
1517 {
1518 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_RED_F32, 4);
1519 tu_cs_emit_array(cs, (const uint32_t *) constants, 4);
1520 }
1521
1522 static VkResult
1523 tu_pipeline_create(struct tu_device *dev,
1524 const VkAllocationCallbacks *pAllocator,
1525 struct tu_pipeline **out_pipeline)
1526 {
1527 struct tu_pipeline *pipeline =
1528 vk_zalloc2(&dev->alloc, pAllocator, sizeof(*pipeline), 8,
1529 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1530 if (!pipeline)
1531 return VK_ERROR_OUT_OF_HOST_MEMORY;
1532
1533 tu_cs_init(&pipeline->cs, dev, TU_CS_MODE_SUB_STREAM, 2048);
1534
1535 /* reserve the space now such that tu_cs_begin_sub_stream never fails */
1536 VkResult result = tu_cs_reserve_space(&pipeline->cs, 2048);
1537 if (result != VK_SUCCESS) {
1538 vk_free2(&dev->alloc, pAllocator, pipeline);
1539 return result;
1540 }
1541
1542 *out_pipeline = pipeline;
1543
1544 return VK_SUCCESS;
1545 }
1546
1547 static VkResult
1548 tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder)
1549 {
1550 const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
1551 NULL
1552 };
1553 for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
1554 gl_shader_stage stage =
1555 tu_shader_stage(builder->create_info->pStages[i].stage);
1556 stage_infos[stage] = &builder->create_info->pStages[i];
1557 }
1558
1559 struct tu_shader_compile_options options;
1560 tu_shader_compile_options_init(&options, builder->create_info);
1561
1562 /* compile shaders in reverse order */
1563 struct tu_shader *next_stage_shader = NULL;
1564 for (gl_shader_stage stage = MESA_SHADER_STAGES - 1;
1565 stage > MESA_SHADER_NONE; stage--) {
1566 const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
1567 if (!stage_info)
1568 continue;
1569
1570 struct tu_shader *shader =
1571 tu_shader_create(builder->device, stage, stage_info, builder->layout,
1572 builder->alloc);
1573 if (!shader)
1574 return VK_ERROR_OUT_OF_HOST_MEMORY;
1575
1576 VkResult result =
1577 tu_shader_compile(builder->device, shader, next_stage_shader,
1578 &options, builder->alloc);
1579 if (result != VK_SUCCESS)
1580 return result;
1581
1582 builder->shaders[stage] = shader;
1583 builder->shader_offsets[stage] = builder->shader_total_size;
1584 builder->shader_total_size +=
1585 sizeof(uint32_t) * shader->variants[0].info.sizedwords;
1586
1587 next_stage_shader = shader;
1588 }
1589
1590 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
1591 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1592 builder->binning_vs_offset = builder->shader_total_size;
1593 builder->shader_total_size +=
1594 sizeof(uint32_t) * vs->variants[1].info.sizedwords;
1595 }
1596
1597 return VK_SUCCESS;
1598 }
1599
1600 static VkResult
1601 tu_pipeline_builder_upload_shaders(struct tu_pipeline_builder *builder,
1602 struct tu_pipeline *pipeline)
1603 {
1604 struct tu_bo *bo = &pipeline->program.binary_bo;
1605
1606 VkResult result =
1607 tu_bo_init_new(builder->device, bo, builder->shader_total_size);
1608 if (result != VK_SUCCESS)
1609 return result;
1610
1611 result = tu_bo_map(builder->device, bo);
1612 if (result != VK_SUCCESS)
1613 return result;
1614
1615 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
1616 const struct tu_shader *shader = builder->shaders[i];
1617 if (!shader)
1618 continue;
1619
1620 memcpy(bo->map + builder->shader_offsets[i], shader->binary,
1621 sizeof(uint32_t) * shader->variants[0].info.sizedwords);
1622 }
1623
1624 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
1625 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1626 memcpy(bo->map + builder->binning_vs_offset, vs->binning_binary,
1627 sizeof(uint32_t) * vs->variants[1].info.sizedwords);
1628 }
1629
1630 return VK_SUCCESS;
1631 }
1632
1633 static void
1634 tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
1635 struct tu_pipeline *pipeline)
1636 {
1637 const VkPipelineDynamicStateCreateInfo *dynamic_info =
1638 builder->create_info->pDynamicState;
1639
1640 if (!dynamic_info)
1641 return;
1642
1643 for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
1644 pipeline->dynamic_state.mask |=
1645 tu_dynamic_state_bit(dynamic_info->pDynamicStates[i]);
1646 }
1647 }
1648
1649 static void
1650 tu_pipeline_set_linkage(struct tu_program_descriptor_linkage *link,
1651 struct tu_shader *shader,
1652 struct ir3_shader_variant *v)
1653 {
1654 link->ubo_state = v->shader->ubo_state;
1655 link->const_state = v->shader->const_state;
1656 link->constlen = v->constlen;
1657 link->texture_map = shader->texture_map;
1658 link->sampler_map = shader->sampler_map;
1659 link->ubo_map = shader->ubo_map;
1660 link->ssbo_map = shader->ssbo_map;
1661 link->image_map = shader->image_map;
1662 }
1663
1664 static void
1665 tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
1666 struct tu_pipeline *pipeline)
1667 {
1668 struct tu_cs prog_cs;
1669 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
1670 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, false);
1671 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
1672
1673 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
1674 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, true);
1675 pipeline->program.binning_state_ib =
1676 tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
1677
1678 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1679 if (!builder->shaders[i])
1680 continue;
1681
1682 tu_pipeline_set_linkage(&pipeline->program.link[i],
1683 builder->shaders[i],
1684 &builder->shaders[i]->variants[0]);
1685 }
1686 }
1687
1688 static void
1689 tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
1690 struct tu_pipeline *pipeline)
1691 {
1692 const VkPipelineVertexInputStateCreateInfo *vi_info =
1693 builder->create_info->pVertexInputState;
1694 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1695
1696 struct tu_cs vi_cs;
1697 tu_cs_begin_sub_stream(&pipeline->cs,
1698 MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
1699 tu6_emit_vertex_input(&vi_cs, &vs->variants[0], vi_info,
1700 pipeline->vi.bindings, pipeline->vi.strides,
1701 pipeline->vi.offsets, &pipeline->vi.count);
1702 pipeline->vi.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
1703
1704 if (vs->has_binning_pass) {
1705 tu_cs_begin_sub_stream(&pipeline->cs,
1706 MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
1707 tu6_emit_vertex_input(
1708 &vi_cs, &vs->variants[1], vi_info, pipeline->vi.binning_bindings,
1709 pipeline->vi.binning_strides, pipeline->vi.binning_offsets,
1710 &pipeline->vi.binning_count);
1711 pipeline->vi.binning_state_ib =
1712 tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
1713 }
1714 }
1715
1716 static void
1717 tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
1718 struct tu_pipeline *pipeline)
1719 {
1720 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1721 builder->create_info->pInputAssemblyState;
1722
1723 pipeline->ia.primtype = tu6_primtype(ia_info->topology);
1724 pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
1725 }
1726
1727 static void
1728 tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
1729 struct tu_pipeline *pipeline)
1730 {
1731 /* The spec says:
1732 *
1733 * pViewportState is a pointer to an instance of the
1734 * VkPipelineViewportStateCreateInfo structure, and is ignored if the
1735 * pipeline has rasterization disabled."
1736 *
1737 * We leave the relevant registers stale in that case.
1738 */
1739 if (builder->rasterizer_discard)
1740 return;
1741
1742 const VkPipelineViewportStateCreateInfo *vp_info =
1743 builder->create_info->pViewportState;
1744
1745 struct tu_cs vp_cs;
1746 tu_cs_begin_sub_stream(&pipeline->cs, 15, &vp_cs);
1747
1748 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_VIEWPORT)) {
1749 assert(vp_info->viewportCount == 1);
1750 tu6_emit_viewport(&vp_cs, vp_info->pViewports);
1751 }
1752
1753 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SCISSOR)) {
1754 assert(vp_info->scissorCount == 1);
1755 tu6_emit_scissor(&vp_cs, vp_info->pScissors);
1756 }
1757
1758 pipeline->vp.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vp_cs);
1759 }
1760
1761 static void
1762 tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
1763 struct tu_pipeline *pipeline)
1764 {
1765 const VkPipelineRasterizationStateCreateInfo *rast_info =
1766 builder->create_info->pRasterizationState;
1767
1768 assert(!rast_info->depthClampEnable);
1769 assert(rast_info->polygonMode == VK_POLYGON_MODE_FILL);
1770
1771 struct tu_cs rast_cs;
1772 tu_cs_begin_sub_stream(&pipeline->cs, 20, &rast_cs);
1773
1774 /* move to hw ctx init? */
1775 tu6_emit_gras_unknowns(&rast_cs);
1776 tu6_emit_point_size(&rast_cs);
1777
1778 const uint32_t gras_su_cntl =
1779 tu6_gras_su_cntl(rast_info, builder->samples);
1780
1781 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_LINE_WIDTH))
1782 tu6_emit_gras_su_cntl(&rast_cs, gras_su_cntl, rast_info->lineWidth);
1783
1784 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_DEPTH_BIAS)) {
1785 tu6_emit_depth_bias(&rast_cs, rast_info->depthBiasConstantFactor,
1786 rast_info->depthBiasClamp,
1787 rast_info->depthBiasSlopeFactor);
1788 }
1789
1790 pipeline->rast.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &rast_cs);
1791
1792 pipeline->rast.gras_su_cntl = gras_su_cntl;
1793 }
1794
1795 static void
1796 tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
1797 struct tu_pipeline *pipeline)
1798 {
1799 /* The spec says:
1800 *
1801 * pDepthStencilState is a pointer to an instance of the
1802 * VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
1803 * the pipeline has rasterization disabled or if the subpass of the
1804 * render pass the pipeline is created against does not use a
1805 * depth/stencil attachment.
1806 *
1807 * We disable both depth and stenil tests in those cases.
1808 */
1809 static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
1810 const VkPipelineDepthStencilStateCreateInfo *ds_info =
1811 builder->use_depth_stencil_attachment
1812 ? builder->create_info->pDepthStencilState
1813 : &dummy_ds_info;
1814
1815 struct tu_cs ds_cs;
1816 tu_cs_begin_sub_stream(&pipeline->cs, 12, &ds_cs);
1817
1818 /* move to hw ctx init? */
1819 tu6_emit_alpha_control_disable(&ds_cs);
1820
1821 tu6_emit_depth_control(&ds_cs, ds_info);
1822 tu6_emit_stencil_control(&ds_cs, ds_info);
1823
1824 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_COMPARE_MASK)) {
1825 tu6_emit_stencil_compare_mask(&ds_cs, ds_info->front.compareMask,
1826 ds_info->back.compareMask);
1827 }
1828 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_WRITE_MASK)) {
1829 tu6_emit_stencil_write_mask(&ds_cs, ds_info->front.writeMask,
1830 ds_info->back.writeMask);
1831 }
1832 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_REFERENCE)) {
1833 tu6_emit_stencil_reference(&ds_cs, ds_info->front.reference,
1834 ds_info->back.reference);
1835 }
1836
1837 pipeline->ds.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &ds_cs);
1838 }
1839
1840 static void
1841 tu_pipeline_builder_parse_multisample_and_color_blend(
1842 struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
1843 {
1844 /* The spec says:
1845 *
1846 * pMultisampleState is a pointer to an instance of the
1847 * VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
1848 * has rasterization disabled.
1849 *
1850 * Also,
1851 *
1852 * pColorBlendState is a pointer to an instance of the
1853 * VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
1854 * pipeline has rasterization disabled or if the subpass of the render
1855 * pass the pipeline is created against does not use any color
1856 * attachments.
1857 *
1858 * We leave the relevant registers stale when rasterization is disabled.
1859 */
1860 if (builder->rasterizer_discard)
1861 return;
1862
1863 static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
1864 const VkPipelineMultisampleStateCreateInfo *msaa_info =
1865 builder->create_info->pMultisampleState;
1866 const VkPipelineColorBlendStateCreateInfo *blend_info =
1867 builder->use_color_attachments ? builder->create_info->pColorBlendState
1868 : &dummy_blend_info;
1869
1870 struct tu_cs blend_cs;
1871 tu_cs_begin_sub_stream(&pipeline->cs, MAX_RTS * 3 + 9, &blend_cs);
1872
1873 uint32_t blend_enable_mask;
1874 tu6_emit_rb_mrt_controls(&blend_cs, blend_info,
1875 builder->color_attachment_formats,
1876 &blend_enable_mask);
1877
1878 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_BLEND_CONSTANTS))
1879 tu6_emit_blend_constants(&blend_cs, blend_info->blendConstants);
1880
1881 tu6_emit_blend_control(&blend_cs, blend_enable_mask, msaa_info);
1882
1883 pipeline->blend.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &blend_cs);
1884 }
1885
1886 static void
1887 tu_pipeline_finish(struct tu_pipeline *pipeline,
1888 struct tu_device *dev,
1889 const VkAllocationCallbacks *alloc)
1890 {
1891 tu_cs_finish(&pipeline->cs);
1892
1893 if (pipeline->program.binary_bo.gem_handle)
1894 tu_bo_finish(dev, &pipeline->program.binary_bo);
1895 }
1896
1897 static VkResult
1898 tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
1899 struct tu_pipeline **pipeline)
1900 {
1901 VkResult result = tu_pipeline_create(builder->device, builder->alloc,
1902 pipeline);
1903 if (result != VK_SUCCESS)
1904 return result;
1905
1906 /* compile and upload shaders */
1907 result = tu_pipeline_builder_compile_shaders(builder);
1908 if (result == VK_SUCCESS)
1909 result = tu_pipeline_builder_upload_shaders(builder, *pipeline);
1910 if (result != VK_SUCCESS) {
1911 tu_pipeline_finish(*pipeline, builder->device, builder->alloc);
1912 vk_free2(&builder->device->alloc, builder->alloc, *pipeline);
1913 *pipeline = VK_NULL_HANDLE;
1914
1915 return result;
1916 }
1917
1918 tu_pipeline_builder_parse_dynamic(builder, *pipeline);
1919 tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
1920 tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
1921 tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
1922 tu_pipeline_builder_parse_viewport(builder, *pipeline);
1923 tu_pipeline_builder_parse_rasterization(builder, *pipeline);
1924 tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
1925 tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
1926
1927 /* we should have reserved enough space upfront such that the CS never
1928 * grows
1929 */
1930 assert((*pipeline)->cs.bo_count == 1);
1931
1932 return VK_SUCCESS;
1933 }
1934
1935 static void
1936 tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
1937 {
1938 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
1939 if (!builder->shaders[i])
1940 continue;
1941 tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
1942 }
1943 }
1944
1945 static void
1946 tu_pipeline_builder_init_graphics(
1947 struct tu_pipeline_builder *builder,
1948 struct tu_device *dev,
1949 struct tu_pipeline_cache *cache,
1950 const VkGraphicsPipelineCreateInfo *create_info,
1951 const VkAllocationCallbacks *alloc)
1952 {
1953 TU_FROM_HANDLE(tu_pipeline_layout, layout, create_info->layout);
1954
1955 *builder = (struct tu_pipeline_builder) {
1956 .device = dev,
1957 .cache = cache,
1958 .create_info = create_info,
1959 .alloc = alloc,
1960 .layout = layout,
1961 };
1962
1963 builder->rasterizer_discard =
1964 create_info->pRasterizationState->rasterizerDiscardEnable;
1965
1966 if (builder->rasterizer_discard) {
1967 builder->samples = VK_SAMPLE_COUNT_1_BIT;
1968 } else {
1969 builder->samples = create_info->pMultisampleState->rasterizationSamples;
1970
1971 const struct tu_render_pass *pass =
1972 tu_render_pass_from_handle(create_info->renderPass);
1973 const struct tu_subpass *subpass =
1974 &pass->subpasses[create_info->subpass];
1975
1976 builder->use_depth_stencil_attachment =
1977 subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED;
1978
1979 assert(subpass->color_count == 0 ||
1980 !create_info->pColorBlendState ||
1981 subpass->color_count == create_info->pColorBlendState->attachmentCount);
1982 builder->color_attachment_count = subpass->color_count;
1983 for (uint32_t i = 0; i < subpass->color_count; i++) {
1984 const uint32_t a = subpass->color_attachments[i].attachment;
1985 if (a == VK_ATTACHMENT_UNUSED)
1986 continue;
1987
1988 builder->color_attachment_formats[i] = pass->attachments[a].format;
1989 builder->use_color_attachments = true;
1990 }
1991 }
1992 }
1993
1994 static VkResult
1995 tu_graphics_pipeline_create(VkDevice device,
1996 VkPipelineCache pipelineCache,
1997 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1998 const VkAllocationCallbacks *pAllocator,
1999 VkPipeline *pPipeline)
2000 {
2001 TU_FROM_HANDLE(tu_device, dev, device);
2002 TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
2003
2004 struct tu_pipeline_builder builder;
2005 tu_pipeline_builder_init_graphics(&builder, dev, cache,
2006 pCreateInfo, pAllocator);
2007
2008 struct tu_pipeline *pipeline = NULL;
2009 VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
2010 tu_pipeline_builder_finish(&builder);
2011
2012 if (result == VK_SUCCESS)
2013 *pPipeline = tu_pipeline_to_handle(pipeline);
2014 else
2015 *pPipeline = VK_NULL_HANDLE;
2016
2017 return result;
2018 }
2019
2020 VkResult
2021 tu_CreateGraphicsPipelines(VkDevice device,
2022 VkPipelineCache pipelineCache,
2023 uint32_t count,
2024 const VkGraphicsPipelineCreateInfo *pCreateInfos,
2025 const VkAllocationCallbacks *pAllocator,
2026 VkPipeline *pPipelines)
2027 {
2028 VkResult final_result = VK_SUCCESS;
2029
2030 for (uint32_t i = 0; i < count; i++) {
2031 VkResult result = tu_graphics_pipeline_create(device, pipelineCache,
2032 &pCreateInfos[i], pAllocator,
2033 &pPipelines[i]);
2034
2035 if (result != VK_SUCCESS)
2036 final_result = result;
2037 }
2038
2039 return final_result;
2040 }
2041
2042 static void
2043 tu6_emit_compute_program(struct tu_cs *cs,
2044 struct tu_shader *shader,
2045 const struct tu_bo *binary_bo)
2046 {
2047 const struct ir3_shader_variant *v = &shader->variants[0];
2048
2049 tu6_emit_cs_config(cs, shader, v);
2050
2051 /* The compute program is the only one in the pipeline, so 0 offset. */
2052 tu6_emit_shader_object(cs, MESA_SHADER_COMPUTE, v, binary_bo, 0);
2053
2054 tu6_emit_immediates(cs, v, CP_LOAD_STATE6_FRAG, SB6_CS_SHADER);
2055 }
2056
2057 static VkResult
2058 tu_compute_upload_shader(VkDevice device,
2059 struct tu_pipeline *pipeline,
2060 struct tu_shader *shader)
2061 {
2062 TU_FROM_HANDLE(tu_device, dev, device);
2063 struct tu_bo *bo = &pipeline->program.binary_bo;
2064 struct ir3_shader_variant *v = &shader->variants[0];
2065
2066 uint32_t shader_size = sizeof(uint32_t) * v->info.sizedwords;
2067 VkResult result =
2068 tu_bo_init_new(dev, bo, shader_size);
2069 if (result != VK_SUCCESS)
2070 return result;
2071
2072 result = tu_bo_map(dev, bo);
2073 if (result != VK_SUCCESS)
2074 return result;
2075
2076 memcpy(bo->map, shader->binary, shader_size);
2077
2078 return VK_SUCCESS;
2079 }
2080
2081
2082 static VkResult
2083 tu_compute_pipeline_create(VkDevice device,
2084 VkPipelineCache _cache,
2085 const VkComputePipelineCreateInfo *pCreateInfo,
2086 const VkAllocationCallbacks *pAllocator,
2087 VkPipeline *pPipeline)
2088 {
2089 TU_FROM_HANDLE(tu_device, dev, device);
2090 TU_FROM_HANDLE(tu_pipeline_layout, layout, pCreateInfo->layout);
2091 const VkPipelineShaderStageCreateInfo *stage_info = &pCreateInfo->stage;
2092 VkResult result;
2093
2094 struct tu_pipeline *pipeline;
2095
2096 *pPipeline = VK_NULL_HANDLE;
2097
2098 result = tu_pipeline_create(dev, pAllocator, &pipeline);
2099 if (result != VK_SUCCESS)
2100 return result;
2101
2102 pipeline->layout = layout;
2103
2104 struct tu_shader_compile_options options;
2105 tu_shader_compile_options_init(&options, NULL);
2106
2107 struct tu_shader *shader =
2108 tu_shader_create(dev, MESA_SHADER_COMPUTE, stage_info, layout, pAllocator);
2109 if (!shader) {
2110 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2111 goto fail;
2112 }
2113
2114 result = tu_shader_compile(dev, shader, NULL, &options, pAllocator);
2115 if (result != VK_SUCCESS)
2116 goto fail;
2117
2118 struct ir3_shader_variant *v = &shader->variants[0];
2119
2120 tu_pipeline_set_linkage(&pipeline->program.link[MESA_SHADER_COMPUTE],
2121 shader, v);
2122
2123 result = tu_compute_upload_shader(device, pipeline, shader);
2124 if (result != VK_SUCCESS)
2125 goto fail;
2126
2127 for (int i = 0; i < 3; i++)
2128 pipeline->compute.local_size[i] = v->shader->nir->info.cs.local_size[i];
2129
2130 struct tu_cs prog_cs;
2131 tu_cs_begin_sub_stream(&pipeline->cs, 512, &prog_cs);
2132 tu6_emit_compute_program(&prog_cs, shader, &pipeline->program.binary_bo);
2133 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2134
2135 *pPipeline = tu_pipeline_to_handle(pipeline);
2136 return VK_SUCCESS;
2137
2138 fail:
2139 if (shader)
2140 tu_shader_destroy(dev, shader, pAllocator);
2141
2142 tu_pipeline_finish(pipeline, dev, pAllocator);
2143 vk_free2(&dev->alloc, pAllocator, pipeline);
2144
2145 return result;
2146 }
2147
2148 VkResult
2149 tu_CreateComputePipelines(VkDevice device,
2150 VkPipelineCache pipelineCache,
2151 uint32_t count,
2152 const VkComputePipelineCreateInfo *pCreateInfos,
2153 const VkAllocationCallbacks *pAllocator,
2154 VkPipeline *pPipelines)
2155 {
2156 VkResult final_result = VK_SUCCESS;
2157
2158 for (uint32_t i = 0; i < count; i++) {
2159 VkResult result = tu_compute_pipeline_create(device, pipelineCache,
2160 &pCreateInfos[i],
2161 pAllocator, &pPipelines[i]);
2162 if (result != VK_SUCCESS)
2163 final_result = result;
2164 }
2165
2166 return final_result;
2167 }
2168
2169 void
2170 tu_DestroyPipeline(VkDevice _device,
2171 VkPipeline _pipeline,
2172 const VkAllocationCallbacks *pAllocator)
2173 {
2174 TU_FROM_HANDLE(tu_device, dev, _device);
2175 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2176
2177 if (!_pipeline)
2178 return;
2179
2180 tu_pipeline_finish(pipeline, dev, pAllocator);
2181 vk_free2(&dev->alloc, pAllocator, pipeline);
2182 }