turnip: Add limited support for storage images.
[mesa.git] / src / freedreno / vulkan / tu_pipeline.c
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #include "tu_private.h"
29
30 #include "main/menums.h"
31 #include "nir/nir.h"
32 #include "nir/nir_builder.h"
33 #include "spirv/nir_spirv.h"
34 #include "util/debug.h"
35 #include "util/mesa-sha1.h"
36 #include "util/u_atomic.h"
37 #include "vk_format.h"
38 #include "vk_util.h"
39
40 #include "tu_cs.h"
41
42 struct tu_pipeline_builder
43 {
44 struct tu_device *device;
45 struct tu_pipeline_cache *cache;
46 struct tu_pipeline_layout *layout;
47 const VkAllocationCallbacks *alloc;
48 const VkGraphicsPipelineCreateInfo *create_info;
49
50 struct tu_shader *shaders[MESA_SHADER_STAGES];
51 uint32_t shader_offsets[MESA_SHADER_STAGES];
52 uint32_t binning_vs_offset;
53 uint32_t shader_total_size;
54
55 bool rasterizer_discard;
56 /* these states are affectd by rasterizer_discard */
57 VkSampleCountFlagBits samples;
58 bool use_depth_stencil_attachment;
59 bool use_color_attachments;
60 uint32_t color_attachment_count;
61 VkFormat color_attachment_formats[MAX_RTS];
62 };
63
64 static enum tu_dynamic_state_bits
65 tu_dynamic_state_bit(VkDynamicState state)
66 {
67 switch (state) {
68 case VK_DYNAMIC_STATE_VIEWPORT:
69 return TU_DYNAMIC_VIEWPORT;
70 case VK_DYNAMIC_STATE_SCISSOR:
71 return TU_DYNAMIC_SCISSOR;
72 case VK_DYNAMIC_STATE_LINE_WIDTH:
73 return TU_DYNAMIC_LINE_WIDTH;
74 case VK_DYNAMIC_STATE_DEPTH_BIAS:
75 return TU_DYNAMIC_DEPTH_BIAS;
76 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
77 return TU_DYNAMIC_BLEND_CONSTANTS;
78 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
79 return TU_DYNAMIC_DEPTH_BOUNDS;
80 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
81 return TU_DYNAMIC_STENCIL_COMPARE_MASK;
82 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
83 return TU_DYNAMIC_STENCIL_WRITE_MASK;
84 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
85 return TU_DYNAMIC_STENCIL_REFERENCE;
86 default:
87 unreachable("invalid dynamic state");
88 return 0;
89 }
90 }
91
92 static gl_shader_stage
93 tu_shader_stage(VkShaderStageFlagBits stage)
94 {
95 switch (stage) {
96 case VK_SHADER_STAGE_VERTEX_BIT:
97 return MESA_SHADER_VERTEX;
98 case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
99 return MESA_SHADER_TESS_CTRL;
100 case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
101 return MESA_SHADER_TESS_EVAL;
102 case VK_SHADER_STAGE_GEOMETRY_BIT:
103 return MESA_SHADER_GEOMETRY;
104 case VK_SHADER_STAGE_FRAGMENT_BIT:
105 return MESA_SHADER_FRAGMENT;
106 case VK_SHADER_STAGE_COMPUTE_BIT:
107 return MESA_SHADER_COMPUTE;
108 default:
109 unreachable("invalid VkShaderStageFlagBits");
110 return MESA_SHADER_NONE;
111 }
112 }
113
114 static const VkVertexInputAttributeDescription *
115 tu_find_vertex_input_attribute(
116 const VkPipelineVertexInputStateCreateInfo *vi_info, uint32_t slot)
117 {
118 assert(slot >= VERT_ATTRIB_GENERIC0);
119 slot -= VERT_ATTRIB_GENERIC0;
120 for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
121 if (vi_info->pVertexAttributeDescriptions[i].location == slot)
122 return &vi_info->pVertexAttributeDescriptions[i];
123 }
124 return NULL;
125 }
126
127 static const VkVertexInputBindingDescription *
128 tu_find_vertex_input_binding(
129 const VkPipelineVertexInputStateCreateInfo *vi_info,
130 const VkVertexInputAttributeDescription *vi_attr)
131 {
132 assert(vi_attr);
133 for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
134 if (vi_info->pVertexBindingDescriptions[i].binding == vi_attr->binding)
135 return &vi_info->pVertexBindingDescriptions[i];
136 }
137 return NULL;
138 }
139
140 static bool
141 tu_logic_op_reads_dst(VkLogicOp op)
142 {
143 switch (op) {
144 case VK_LOGIC_OP_CLEAR:
145 case VK_LOGIC_OP_COPY:
146 case VK_LOGIC_OP_COPY_INVERTED:
147 case VK_LOGIC_OP_SET:
148 return false;
149 default:
150 return true;
151 }
152 }
153
154 static VkBlendFactor
155 tu_blend_factor_no_dst_alpha(VkBlendFactor factor)
156 {
157 /* treat dst alpha as 1.0 and avoid reading it */
158 switch (factor) {
159 case VK_BLEND_FACTOR_DST_ALPHA:
160 return VK_BLEND_FACTOR_ONE;
161 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
162 return VK_BLEND_FACTOR_ZERO;
163 default:
164 return factor;
165 }
166 }
167
168 static enum pc_di_primtype
169 tu6_primtype(VkPrimitiveTopology topology)
170 {
171 switch (topology) {
172 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
173 return DI_PT_POINTLIST;
174 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
175 return DI_PT_LINELIST;
176 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
177 return DI_PT_LINESTRIP;
178 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
179 return DI_PT_TRILIST;
180 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
181 return DI_PT_TRISTRIP;
182 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
183 return DI_PT_TRIFAN;
184 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
185 return DI_PT_LINE_ADJ;
186 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
187 return DI_PT_LINESTRIP_ADJ;
188 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
189 return DI_PT_TRI_ADJ;
190 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
191 return DI_PT_TRISTRIP_ADJ;
192 case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
193 default:
194 unreachable("invalid primitive topology");
195 return DI_PT_NONE;
196 }
197 }
198
199 static enum adreno_compare_func
200 tu6_compare_func(VkCompareOp op)
201 {
202 switch (op) {
203 case VK_COMPARE_OP_NEVER:
204 return FUNC_NEVER;
205 case VK_COMPARE_OP_LESS:
206 return FUNC_LESS;
207 case VK_COMPARE_OP_EQUAL:
208 return FUNC_EQUAL;
209 case VK_COMPARE_OP_LESS_OR_EQUAL:
210 return FUNC_LEQUAL;
211 case VK_COMPARE_OP_GREATER:
212 return FUNC_GREATER;
213 case VK_COMPARE_OP_NOT_EQUAL:
214 return FUNC_NOTEQUAL;
215 case VK_COMPARE_OP_GREATER_OR_EQUAL:
216 return FUNC_GEQUAL;
217 case VK_COMPARE_OP_ALWAYS:
218 return FUNC_ALWAYS;
219 default:
220 unreachable("invalid VkCompareOp");
221 return FUNC_NEVER;
222 }
223 }
224
225 static enum adreno_stencil_op
226 tu6_stencil_op(VkStencilOp op)
227 {
228 switch (op) {
229 case VK_STENCIL_OP_KEEP:
230 return STENCIL_KEEP;
231 case VK_STENCIL_OP_ZERO:
232 return STENCIL_ZERO;
233 case VK_STENCIL_OP_REPLACE:
234 return STENCIL_REPLACE;
235 case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
236 return STENCIL_INCR_CLAMP;
237 case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
238 return STENCIL_DECR_CLAMP;
239 case VK_STENCIL_OP_INVERT:
240 return STENCIL_INVERT;
241 case VK_STENCIL_OP_INCREMENT_AND_WRAP:
242 return STENCIL_INCR_WRAP;
243 case VK_STENCIL_OP_DECREMENT_AND_WRAP:
244 return STENCIL_DECR_WRAP;
245 default:
246 unreachable("invalid VkStencilOp");
247 return STENCIL_KEEP;
248 }
249 }
250
251 static enum a3xx_rop_code
252 tu6_rop(VkLogicOp op)
253 {
254 switch (op) {
255 case VK_LOGIC_OP_CLEAR:
256 return ROP_CLEAR;
257 case VK_LOGIC_OP_AND:
258 return ROP_AND;
259 case VK_LOGIC_OP_AND_REVERSE:
260 return ROP_AND_REVERSE;
261 case VK_LOGIC_OP_COPY:
262 return ROP_COPY;
263 case VK_LOGIC_OP_AND_INVERTED:
264 return ROP_AND_INVERTED;
265 case VK_LOGIC_OP_NO_OP:
266 return ROP_NOOP;
267 case VK_LOGIC_OP_XOR:
268 return ROP_XOR;
269 case VK_LOGIC_OP_OR:
270 return ROP_OR;
271 case VK_LOGIC_OP_NOR:
272 return ROP_NOR;
273 case VK_LOGIC_OP_EQUIVALENT:
274 return ROP_EQUIV;
275 case VK_LOGIC_OP_INVERT:
276 return ROP_INVERT;
277 case VK_LOGIC_OP_OR_REVERSE:
278 return ROP_OR_REVERSE;
279 case VK_LOGIC_OP_COPY_INVERTED:
280 return ROP_COPY_INVERTED;
281 case VK_LOGIC_OP_OR_INVERTED:
282 return ROP_OR_INVERTED;
283 case VK_LOGIC_OP_NAND:
284 return ROP_NAND;
285 case VK_LOGIC_OP_SET:
286 return ROP_SET;
287 default:
288 unreachable("invalid VkLogicOp");
289 return ROP_NOOP;
290 }
291 }
292
293 static enum adreno_rb_blend_factor
294 tu6_blend_factor(VkBlendFactor factor)
295 {
296 switch (factor) {
297 case VK_BLEND_FACTOR_ZERO:
298 return FACTOR_ZERO;
299 case VK_BLEND_FACTOR_ONE:
300 return FACTOR_ONE;
301 case VK_BLEND_FACTOR_SRC_COLOR:
302 return FACTOR_SRC_COLOR;
303 case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
304 return FACTOR_ONE_MINUS_SRC_COLOR;
305 case VK_BLEND_FACTOR_DST_COLOR:
306 return FACTOR_DST_COLOR;
307 case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
308 return FACTOR_ONE_MINUS_DST_COLOR;
309 case VK_BLEND_FACTOR_SRC_ALPHA:
310 return FACTOR_SRC_ALPHA;
311 case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
312 return FACTOR_ONE_MINUS_SRC_ALPHA;
313 case VK_BLEND_FACTOR_DST_ALPHA:
314 return FACTOR_DST_ALPHA;
315 case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
316 return FACTOR_ONE_MINUS_DST_ALPHA;
317 case VK_BLEND_FACTOR_CONSTANT_COLOR:
318 return FACTOR_CONSTANT_COLOR;
319 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
320 return FACTOR_ONE_MINUS_CONSTANT_COLOR;
321 case VK_BLEND_FACTOR_CONSTANT_ALPHA:
322 return FACTOR_CONSTANT_ALPHA;
323 case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
324 return FACTOR_ONE_MINUS_CONSTANT_ALPHA;
325 case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
326 return FACTOR_SRC_ALPHA_SATURATE;
327 case VK_BLEND_FACTOR_SRC1_COLOR:
328 return FACTOR_SRC1_COLOR;
329 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
330 return FACTOR_ONE_MINUS_SRC1_COLOR;
331 case VK_BLEND_FACTOR_SRC1_ALPHA:
332 return FACTOR_SRC1_ALPHA;
333 case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
334 return FACTOR_ONE_MINUS_SRC1_ALPHA;
335 default:
336 unreachable("invalid VkBlendFactor");
337 return FACTOR_ZERO;
338 }
339 }
340
341 static enum a3xx_rb_blend_opcode
342 tu6_blend_op(VkBlendOp op)
343 {
344 switch (op) {
345 case VK_BLEND_OP_ADD:
346 return BLEND_DST_PLUS_SRC;
347 case VK_BLEND_OP_SUBTRACT:
348 return BLEND_SRC_MINUS_DST;
349 case VK_BLEND_OP_REVERSE_SUBTRACT:
350 return BLEND_DST_MINUS_SRC;
351 case VK_BLEND_OP_MIN:
352 return BLEND_MIN_DST_SRC;
353 case VK_BLEND_OP_MAX:
354 return BLEND_MAX_DST_SRC;
355 default:
356 unreachable("invalid VkBlendOp");
357 return BLEND_DST_PLUS_SRC;
358 }
359 }
360
361 static unsigned
362 tu_shader_nibo(const struct tu_shader *shader)
363 {
364 /* Don't use ir3_shader_nibo(), because that would include declared but
365 * unused storage images and SSBOs.
366 */
367 return shader->ssbo_map.num_desc + shader->image_map.num_desc;
368 }
369
370 static void
371 tu6_emit_vs_config(struct tu_cs *cs, struct tu_shader *shader,
372 const struct ir3_shader_variant *vs)
373 {
374 uint32_t sp_vs_ctrl =
375 A6XX_SP_VS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
376 A6XX_SP_VS_CTRL_REG0_FULLREGFOOTPRINT(vs->info.max_reg + 1) |
377 A6XX_SP_VS_CTRL_REG0_MERGEDREGS |
378 A6XX_SP_VS_CTRL_REG0_BRANCHSTACK(vs->branchstack);
379 if (vs->need_pixlod)
380 sp_vs_ctrl |= A6XX_SP_VS_CTRL_REG0_PIXLODENABLE;
381
382 uint32_t sp_vs_config = A6XX_SP_VS_CONFIG_NTEX(shader->texture_map.num_desc) |
383 A6XX_SP_VS_CONFIG_NSAMP(shader->sampler_map.num_desc);
384 if (vs->instrlen)
385 sp_vs_config |= A6XX_SP_VS_CONFIG_ENABLED;
386
387 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CTRL_REG0, 1);
388 tu_cs_emit(cs, sp_vs_ctrl);
389
390 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_CONFIG, 2);
391 tu_cs_emit(cs, sp_vs_config);
392 tu_cs_emit(cs, vs->instrlen);
393
394 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_VS_CNTL, 1);
395 tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(align(vs->constlen, 4)) |
396 A6XX_HLSQ_VS_CNTL_ENABLED);
397 }
398
399 static void
400 tu6_emit_hs_config(struct tu_cs *cs, struct tu_shader *shader,
401 const struct ir3_shader_variant *hs)
402 {
403 uint32_t sp_hs_config = 0;
404 if (hs->instrlen)
405 sp_hs_config |= A6XX_SP_HS_CONFIG_ENABLED;
406
407 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_UNKNOWN_A831, 1);
408 tu_cs_emit(cs, 0);
409
410 tu_cs_emit_pkt4(cs, REG_A6XX_SP_HS_CONFIG, 2);
411 tu_cs_emit(cs, sp_hs_config);
412 tu_cs_emit(cs, hs->instrlen);
413
414 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_HS_CNTL, 1);
415 tu_cs_emit(cs, A6XX_HLSQ_HS_CNTL_CONSTLEN(align(hs->constlen, 4)));
416 }
417
418 static void
419 tu6_emit_ds_config(struct tu_cs *cs, struct tu_shader *shader,
420 const struct ir3_shader_variant *ds)
421 {
422 uint32_t sp_ds_config = 0;
423 if (ds->instrlen)
424 sp_ds_config |= A6XX_SP_DS_CONFIG_ENABLED;
425
426 tu_cs_emit_pkt4(cs, REG_A6XX_SP_DS_CONFIG, 2);
427 tu_cs_emit(cs, sp_ds_config);
428 tu_cs_emit(cs, ds->instrlen);
429
430 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_DS_CNTL, 1);
431 tu_cs_emit(cs, A6XX_HLSQ_DS_CNTL_CONSTLEN(align(ds->constlen, 4)));
432 }
433
434 static void
435 tu6_emit_gs_config(struct tu_cs *cs, struct tu_shader *shader,
436 const struct ir3_shader_variant *gs)
437 {
438 uint32_t sp_gs_config = 0;
439 if (gs->instrlen)
440 sp_gs_config |= A6XX_SP_GS_CONFIG_ENABLED;
441
442 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_UNKNOWN_A871, 1);
443 tu_cs_emit(cs, 0);
444
445 tu_cs_emit_pkt4(cs, REG_A6XX_SP_GS_CONFIG, 2);
446 tu_cs_emit(cs, sp_gs_config);
447 tu_cs_emit(cs, gs->instrlen);
448
449 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_GS_CNTL, 1);
450 tu_cs_emit(cs, A6XX_HLSQ_GS_CNTL_CONSTLEN(align(gs->constlen, 4)));
451 }
452
453 static void
454 tu6_emit_fs_config(struct tu_cs *cs, struct tu_shader *shader,
455 const struct ir3_shader_variant *fs)
456 {
457 uint32_t sp_fs_ctrl =
458 A6XX_SP_FS_CTRL_REG0_THREADSIZE(FOUR_QUADS) | 0x1000000 |
459 A6XX_SP_FS_CTRL_REG0_FULLREGFOOTPRINT(fs->info.max_reg + 1) |
460 A6XX_SP_FS_CTRL_REG0_MERGEDREGS |
461 A6XX_SP_FS_CTRL_REG0_BRANCHSTACK(fs->branchstack);
462 if (fs->total_in > 0)
463 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_VARYING;
464 if (fs->need_pixlod)
465 sp_fs_ctrl |= A6XX_SP_FS_CTRL_REG0_PIXLODENABLE;
466
467 uint32_t sp_fs_config = A6XX_SP_FS_CONFIG_NTEX(shader->texture_map.num_desc) |
468 A6XX_SP_FS_CONFIG_NSAMP(shader->sampler_map.num_desc) |
469 A6XX_SP_FS_CONFIG_NIBO(tu_shader_nibo(shader));
470 if (fs->instrlen)
471 sp_fs_config |= A6XX_SP_FS_CONFIG_ENABLED;
472
473 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A9A8, 1);
474 tu_cs_emit(cs, 0);
475
476 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_AB00, 1);
477 tu_cs_emit(cs, 0x5);
478
479 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CTRL_REG0, 1);
480 tu_cs_emit(cs, sp_fs_ctrl);
481
482 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_CONFIG, 2);
483 tu_cs_emit(cs, sp_fs_config);
484 tu_cs_emit(cs, fs->instrlen);
485
486 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_FS_CNTL, 1);
487 tu_cs_emit(cs, A6XX_HLSQ_FS_CNTL_CONSTLEN(align(fs->constlen, 4)) |
488 A6XX_HLSQ_FS_CNTL_ENABLED);
489
490 tu_cs_emit_pkt4(cs, REG_A6XX_SP_IBO_COUNT, 1);
491 tu_cs_emit(cs, tu_shader_nibo(shader));
492 }
493
494 static void
495 tu6_emit_cs_config(struct tu_cs *cs, const struct tu_shader *shader,
496 const struct ir3_shader_variant *v)
497 {
498 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
499 tu_cs_emit(cs, 0xff);
500
501 unsigned constlen = align(v->constlen, 4);
502 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL, 1);
503 tu_cs_emit(cs, A6XX_HLSQ_CS_CNTL_CONSTLEN(constlen) |
504 A6XX_HLSQ_CS_CNTL_ENABLED);
505
506 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CONFIG, 2);
507 tu_cs_emit(cs, A6XX_SP_CS_CONFIG_ENABLED |
508 A6XX_SP_CS_CONFIG_NIBO(tu_shader_nibo(shader)) |
509 A6XX_SP_CS_CONFIG_NTEX(shader->texture_map.num_desc) |
510 A6XX_SP_CS_CONFIG_NSAMP(shader->sampler_map.num_desc));
511 tu_cs_emit(cs, v->instrlen);
512
513 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_CTRL_REG0, 1);
514 tu_cs_emit(cs, A6XX_SP_CS_CTRL_REG0_THREADSIZE(FOUR_QUADS) |
515 A6XX_SP_CS_CTRL_REG0_FULLREGFOOTPRINT(v->info.max_reg + 1) |
516 A6XX_SP_CS_CTRL_REG0_MERGEDREGS |
517 A6XX_SP_CS_CTRL_REG0_BRANCHSTACK(v->branchstack) |
518 COND(v->need_pixlod, A6XX_SP_CS_CTRL_REG0_PIXLODENABLE));
519
520 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_UNKNOWN_A9B1, 1);
521 tu_cs_emit(cs, 0x41);
522
523 uint32_t local_invocation_id =
524 ir3_find_sysval_regid(v, SYSTEM_VALUE_LOCAL_INVOCATION_ID);
525 uint32_t work_group_id =
526 ir3_find_sysval_regid(v, SYSTEM_VALUE_WORK_GROUP_ID);
527
528 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CS_CNTL_0, 2);
529 tu_cs_emit(cs,
530 A6XX_HLSQ_CS_CNTL_0_WGIDCONSTID(work_group_id) |
531 A6XX_HLSQ_CS_CNTL_0_UNK0(regid(63, 0)) |
532 A6XX_HLSQ_CS_CNTL_0_UNK1(regid(63, 0)) |
533 A6XX_HLSQ_CS_CNTL_0_LOCALIDREGID(local_invocation_id));
534 tu_cs_emit(cs, 0x2fc); /* HLSQ_CS_UNKNOWN_B998 */
535
536 tu_cs_emit_pkt4(cs, REG_A6XX_SP_CS_IBO_COUNT, 1);
537 tu_cs_emit(cs, tu_shader_nibo(shader));
538 }
539
540 static void
541 tu6_emit_vs_system_values(struct tu_cs *cs,
542 const struct ir3_shader_variant *vs)
543 {
544 const uint32_t vertexid_regid =
545 ir3_find_sysval_regid(vs, SYSTEM_VALUE_VERTEX_ID);
546 const uint32_t instanceid_regid =
547 ir3_find_sysval_regid(vs, SYSTEM_VALUE_INSTANCE_ID);
548
549 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_1, 6);
550 tu_cs_emit(cs, A6XX_VFD_CONTROL_1_REGID4VTX(vertexid_regid) |
551 A6XX_VFD_CONTROL_1_REGID4INST(instanceid_regid) |
552 0xfcfc0000);
553 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_2 */
554 tu_cs_emit(cs, 0xfcfcfcfc); /* VFD_CONTROL_3 */
555 tu_cs_emit(cs, 0x000000fc); /* VFD_CONTROL_4 */
556 tu_cs_emit(cs, 0x0000fcfc); /* VFD_CONTROL_5 */
557 tu_cs_emit(cs, 0x00000000); /* VFD_CONTROL_6 */
558 }
559
560 static void
561 tu6_emit_vpc(struct tu_cs *cs,
562 const struct ir3_shader_variant *vs,
563 const struct ir3_shader_variant *fs,
564 bool binning_pass)
565 {
566 struct ir3_shader_linkage linkage = { 0 };
567 ir3_link_shaders(&linkage, vs, fs);
568
569 if (vs->shader->stream_output.num_outputs && !binning_pass)
570 tu_finishme("stream output");
571
572 BITSET_DECLARE(vpc_var_enables, 128) = { 0 };
573 for (uint32_t i = 0; i < linkage.cnt; i++) {
574 const uint32_t comp_count = util_last_bit(linkage.var[i].compmask);
575 for (uint32_t j = 0; j < comp_count; j++)
576 BITSET_SET(vpc_var_enables, linkage.var[i].loc + j);
577 }
578
579 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VAR_DISABLE(0), 4);
580 tu_cs_emit(cs, ~vpc_var_enables[0]);
581 tu_cs_emit(cs, ~vpc_var_enables[1]);
582 tu_cs_emit(cs, ~vpc_var_enables[2]);
583 tu_cs_emit(cs, ~vpc_var_enables[3]);
584
585 /* a6xx finds position/pointsize at the end */
586 const uint32_t position_regid =
587 ir3_find_output_regid(vs, VARYING_SLOT_POS);
588 const uint32_t pointsize_regid =
589 ir3_find_output_regid(vs, VARYING_SLOT_PSIZ);
590 uint32_t pointsize_loc = 0xff, position_loc = 0xff;
591 if (position_regid != regid(63, 0)) {
592 position_loc = linkage.max_loc;
593 ir3_link_add(&linkage, position_regid, 0xf, linkage.max_loc);
594 }
595 if (pointsize_regid != regid(63, 0)) {
596 pointsize_loc = linkage.max_loc;
597 ir3_link_add(&linkage, pointsize_regid, 0x1, linkage.max_loc);
598 }
599
600 /* map vs outputs to VPC */
601 assert(linkage.cnt <= 32);
602 const uint32_t sp_vs_out_count = (linkage.cnt + 1) / 2;
603 const uint32_t sp_vs_vpc_dst_count = (linkage.cnt + 3) / 4;
604 uint32_t sp_vs_out[16];
605 uint32_t sp_vs_vpc_dst[8];
606 sp_vs_out[sp_vs_out_count - 1] = 0;
607 sp_vs_vpc_dst[sp_vs_vpc_dst_count - 1] = 0;
608 for (uint32_t i = 0; i < linkage.cnt; i++) {
609 ((uint16_t *) sp_vs_out)[i] =
610 A6XX_SP_VS_OUT_REG_A_REGID(linkage.var[i].regid) |
611 A6XX_SP_VS_OUT_REG_A_COMPMASK(linkage.var[i].compmask);
612 ((uint8_t *) sp_vs_vpc_dst)[i] =
613 A6XX_SP_VS_VPC_DST_REG_OUTLOC0(linkage.var[i].loc);
614 }
615
616 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_OUT_REG(0), sp_vs_out_count);
617 tu_cs_emit_array(cs, sp_vs_out, sp_vs_out_count);
618
619 tu_cs_emit_pkt4(cs, REG_A6XX_SP_VS_VPC_DST_REG(0), sp_vs_vpc_dst_count);
620 tu_cs_emit_array(cs, sp_vs_vpc_dst, sp_vs_vpc_dst_count);
621
622 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_CNTL_0, 1);
623 tu_cs_emit(cs, A6XX_VPC_CNTL_0_NUMNONPOSVAR(fs->total_in) |
624 (fs->total_in > 0 ? A6XX_VPC_CNTL_0_VARYING : 0) |
625 0xff00ff00);
626
627 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_PACK, 1);
628 tu_cs_emit(cs, A6XX_VPC_PACK_POSITIONLOC(position_loc) |
629 A6XX_VPC_PACK_PSIZELOC(pointsize_loc) |
630 A6XX_VPC_PACK_STRIDE_IN_VPC(linkage.max_loc));
631
632 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_GS_SIV_CNTL, 1);
633 tu_cs_emit(cs, 0x0000ffff); /* XXX */
634
635 tu_cs_emit_pkt4(cs, REG_A6XX_SP_PRIMITIVE_CNTL, 1);
636 tu_cs_emit(cs, A6XX_SP_PRIMITIVE_CNTL_VSOUT(linkage.cnt));
637
638 tu_cs_emit_pkt4(cs, REG_A6XX_PC_PRIMITIVE_CNTL_1, 1);
639 tu_cs_emit(cs, A6XX_PC_PRIMITIVE_CNTL_1_STRIDE_IN_VPC(linkage.max_loc) |
640 (vs->writes_psize ? A6XX_PC_PRIMITIVE_CNTL_1_PSIZE : 0));
641 }
642
643 static int
644 tu6_vpc_varying_mode(const struct ir3_shader_variant *fs,
645 uint32_t index,
646 uint8_t *interp_mode,
647 uint8_t *ps_repl_mode)
648 {
649 enum
650 {
651 INTERP_SMOOTH = 0,
652 INTERP_FLAT = 1,
653 INTERP_ZERO = 2,
654 INTERP_ONE = 3,
655 };
656 enum
657 {
658 PS_REPL_NONE = 0,
659 PS_REPL_S = 1,
660 PS_REPL_T = 2,
661 PS_REPL_ONE_MINUS_T = 3,
662 };
663
664 const uint32_t compmask = fs->inputs[index].compmask;
665
666 /* NOTE: varyings are packed, so if compmask is 0xb then first, second, and
667 * fourth component occupy three consecutive varying slots
668 */
669 int shift = 0;
670 *interp_mode = 0;
671 *ps_repl_mode = 0;
672 if (fs->inputs[index].slot == VARYING_SLOT_PNTC) {
673 if (compmask & 0x1) {
674 *ps_repl_mode |= PS_REPL_S << shift;
675 shift += 2;
676 }
677 if (compmask & 0x2) {
678 *ps_repl_mode |= PS_REPL_T << shift;
679 shift += 2;
680 }
681 if (compmask & 0x4) {
682 *interp_mode |= INTERP_ZERO << shift;
683 shift += 2;
684 }
685 if (compmask & 0x8) {
686 *interp_mode |= INTERP_ONE << 6;
687 shift += 2;
688 }
689 } else if ((fs->inputs[index].interpolate == INTERP_MODE_FLAT) ||
690 fs->inputs[index].rasterflat) {
691 for (int i = 0; i < 4; i++) {
692 if (compmask & (1 << i)) {
693 *interp_mode |= INTERP_FLAT << shift;
694 shift += 2;
695 }
696 }
697 }
698
699 return shift;
700 }
701
702 static void
703 tu6_emit_vpc_varying_modes(struct tu_cs *cs,
704 const struct ir3_shader_variant *fs,
705 bool binning_pass)
706 {
707 uint32_t interp_modes[8] = { 0 };
708 uint32_t ps_repl_modes[8] = { 0 };
709
710 if (!binning_pass) {
711 for (int i = -1;
712 (i = ir3_next_varying(fs, i)) < (int) fs->inputs_count;) {
713
714 /* get the mode for input i */
715 uint8_t interp_mode;
716 uint8_t ps_repl_mode;
717 const int bits =
718 tu6_vpc_varying_mode(fs, i, &interp_mode, &ps_repl_mode);
719
720 /* OR the mode into the array */
721 const uint32_t inloc = fs->inputs[i].inloc * 2;
722 uint32_t n = inloc / 32;
723 uint32_t shift = inloc % 32;
724 interp_modes[n] |= interp_mode << shift;
725 ps_repl_modes[n] |= ps_repl_mode << shift;
726 if (shift + bits > 32) {
727 n++;
728 shift = 32 - shift;
729
730 interp_modes[n] |= interp_mode >> shift;
731 ps_repl_modes[n] |= ps_repl_mode >> shift;
732 }
733 }
734 }
735
736 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_INTERP_MODE(0), 8);
737 tu_cs_emit_array(cs, interp_modes, 8);
738
739 tu_cs_emit_pkt4(cs, REG_A6XX_VPC_VARYING_PS_REPL_MODE(0), 8);
740 tu_cs_emit_array(cs, ps_repl_modes, 8);
741 }
742
743 static void
744 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs)
745 {
746 uint32_t face_regid, coord_regid, zwcoord_regid, samp_id_regid;
747 uint32_t ij_pix_regid, ij_samp_regid, ij_cent_regid, ij_size_regid;
748 uint32_t smask_in_regid;
749
750 bool sample_shading = fs->per_samp; /* TODO | key->sample_shading; */
751 bool enable_varyings = fs->total_in > 0;
752
753 samp_id_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_ID);
754 smask_in_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_SAMPLE_MASK_IN);
755 face_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRONT_FACE);
756 coord_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_FRAG_COORD);
757 zwcoord_regid = VALIDREG(coord_regid) ? coord_regid + 2 : regid(63, 0);
758 ij_pix_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_PIXEL);
759 ij_samp_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_SAMPLE);
760 ij_cent_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_CENTROID);
761 ij_size_regid = ir3_find_sysval_regid(fs, SYSTEM_VALUE_BARYCENTRIC_SIZE);
762
763 if (fs->num_sampler_prefetch > 0) {
764 assert(VALIDREG(ij_pix_regid));
765 /* also, it seems like ij_pix is *required* to be r0.x */
766 assert(ij_pix_regid == regid(0, 0));
767 }
768
769 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_PREFETCH_CNTL, 1 + fs->num_sampler_prefetch);
770 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CNTL_COUNT(fs->num_sampler_prefetch) |
771 A6XX_SP_FS_PREFETCH_CNTL_UNK4(regid(63, 0)) |
772 0x7000); // XXX);
773 for (int i = 0; i < fs->num_sampler_prefetch; i++) {
774 const struct ir3_sampler_prefetch *prefetch = &fs->sampler_prefetch[i];
775 tu_cs_emit(cs, A6XX_SP_FS_PREFETCH_CMD_SRC(prefetch->src) |
776 A6XX_SP_FS_PREFETCH_CMD_SAMP_ID(prefetch->samp_id) |
777 A6XX_SP_FS_PREFETCH_CMD_TEX_ID(prefetch->tex_id) |
778 A6XX_SP_FS_PREFETCH_CMD_DST(prefetch->dst) |
779 A6XX_SP_FS_PREFETCH_CMD_WRMASK(prefetch->wrmask) |
780 COND(prefetch->half_precision, A6XX_SP_FS_PREFETCH_CMD_HALF) |
781 A6XX_SP_FS_PREFETCH_CMD_CMD(prefetch->cmd));
782 }
783
784 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_CONTROL_1_REG, 5);
785 tu_cs_emit(cs, 0x7);
786 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_2_REG_FACEREGID(face_regid) |
787 A6XX_HLSQ_CONTROL_2_REG_SAMPLEID(samp_id_regid) |
788 A6XX_HLSQ_CONTROL_2_REG_SAMPLEMASK(smask_in_regid) |
789 A6XX_HLSQ_CONTROL_2_REG_SIZE(ij_size_regid));
790 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_PIXEL(ij_pix_regid) |
791 A6XX_HLSQ_CONTROL_3_REG_BARY_IJ_CENTROID(ij_cent_regid) |
792 0xfc00fc00);
793 tu_cs_emit(cs, A6XX_HLSQ_CONTROL_4_REG_XYCOORDREGID(coord_regid) |
794 A6XX_HLSQ_CONTROL_4_REG_ZWCOORDREGID(zwcoord_regid) |
795 A6XX_HLSQ_CONTROL_4_REG_BARY_IJ_PIXEL_PERSAMP(ij_samp_regid) |
796 0x0000fc00);
797 tu_cs_emit(cs, 0xfc);
798
799 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UNKNOWN_B980, 1);
800 tu_cs_emit(cs, enable_varyings ? 3 : 1);
801
802 tu_cs_emit_pkt4(cs, REG_A6XX_SP_UNKNOWN_A982, 1);
803 tu_cs_emit(cs, 0); /* XXX */
804
805 tu_cs_emit_pkt4(cs, REG_A6XX_HLSQ_UPDATE_CNTL, 1);
806 tu_cs_emit(cs, 0xff); /* XXX */
807
808 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CNTL, 1);
809 tu_cs_emit(cs,
810 CONDREG(ij_pix_regid, A6XX_GRAS_CNTL_VARYING) |
811 CONDREG(ij_cent_regid, A6XX_GRAS_CNTL_CENTROID) |
812 CONDREG(ij_samp_regid, A6XX_GRAS_CNTL_PERSAMP_VARYING) |
813 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_GRAS_CNTL_SIZE) |
814 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_GRAS_CNTL_SIZE_PERSAMP) |
815 COND(fs->frag_coord,
816 A6XX_GRAS_CNTL_SIZE |
817 A6XX_GRAS_CNTL_XCOORD |
818 A6XX_GRAS_CNTL_YCOORD |
819 A6XX_GRAS_CNTL_ZCOORD |
820 A6XX_GRAS_CNTL_WCOORD) |
821 COND(fs->frag_face, A6XX_GRAS_CNTL_SIZE));
822
823 tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CONTROL0, 2);
824 tu_cs_emit(cs,
825 CONDREG(ij_pix_regid, A6XX_RB_RENDER_CONTROL0_VARYING) |
826 CONDREG(ij_cent_regid, A6XX_RB_RENDER_CONTROL0_CENTROID) |
827 CONDREG(ij_samp_regid, A6XX_RB_RENDER_CONTROL0_PERSAMP_VARYING) |
828 COND(enable_varyings, A6XX_RB_RENDER_CONTROL0_UNK10) |
829 COND(VALIDREG(ij_size_regid) && !sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE) |
830 COND(VALIDREG(ij_size_regid) && sample_shading, A6XX_RB_RENDER_CONTROL0_SIZE_PERSAMP) |
831 COND(fs->frag_coord,
832 A6XX_RB_RENDER_CONTROL0_SIZE |
833 A6XX_RB_RENDER_CONTROL0_XCOORD |
834 A6XX_RB_RENDER_CONTROL0_YCOORD |
835 A6XX_RB_RENDER_CONTROL0_ZCOORD |
836 A6XX_RB_RENDER_CONTROL0_WCOORD) |
837 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL0_SIZE));
838 tu_cs_emit(cs,
839 CONDREG(smask_in_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEMASK) |
840 CONDREG(samp_id_regid, A6XX_RB_RENDER_CONTROL1_SAMPLEID) |
841 CONDREG(ij_size_regid, A6XX_RB_RENDER_CONTROL1_SIZE) |
842 COND(fs->frag_face, A6XX_RB_RENDER_CONTROL1_FACENESS));
843 }
844
845 static void
846 tu6_emit_fs_outputs(struct tu_cs *cs,
847 const struct ir3_shader_variant *fs,
848 uint32_t mrt_count)
849 {
850 uint32_t smask_regid, posz_regid;
851
852 posz_regid = ir3_find_output_regid(fs, FRAG_RESULT_DEPTH);
853 smask_regid = ir3_find_output_regid(fs, FRAG_RESULT_SAMPLE_MASK);
854
855 uint32_t fragdata_regid[8];
856 if (fs->color0_mrt) {
857 fragdata_regid[0] = ir3_find_output_regid(fs, FRAG_RESULT_COLOR);
858 for (uint32_t i = 1; i < ARRAY_SIZE(fragdata_regid); i++)
859 fragdata_regid[i] = fragdata_regid[0];
860 } else {
861 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++)
862 fragdata_regid[i] = ir3_find_output_regid(fs, FRAG_RESULT_DATA0 + i);
863 }
864
865 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_CNTL0, 2);
866 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL0_DEPTH_REGID(posz_regid) |
867 A6XX_SP_FS_OUTPUT_CNTL0_SAMPMASK_REGID(smask_regid) |
868 0xfc000000);
869 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_CNTL1_MRT(mrt_count));
870
871 tu_cs_emit_pkt4(cs, REG_A6XX_SP_FS_OUTPUT_REG(0), 8);
872 for (uint32_t i = 0; i < ARRAY_SIZE(fragdata_regid); i++) {
873 // TODO we could have a mix of half and full precision outputs,
874 // we really need to figure out half-precision from IR3_REG_HALF
875 tu_cs_emit(cs, A6XX_SP_FS_OUTPUT_REG_REGID(fragdata_regid[i]) |
876 (false ? A6XX_SP_FS_OUTPUT_REG_HALF_PRECISION : 0));
877 }
878
879 tu_cs_emit_pkt4(cs, REG_A6XX_RB_FS_OUTPUT_CNTL0, 2);
880 tu_cs_emit(cs, COND(fs->writes_pos, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_Z) |
881 COND(fs->writes_smask, A6XX_RB_FS_OUTPUT_CNTL0_FRAG_WRITES_SAMPMASK));
882 tu_cs_emit(cs, A6XX_RB_FS_OUTPUT_CNTL1_MRT(mrt_count));
883
884 uint32_t gras_su_depth_plane_cntl = 0;
885 uint32_t rb_depth_plane_cntl = 0;
886 if (fs->no_earlyz || fs->writes_pos) {
887 gras_su_depth_plane_cntl |= A6XX_GRAS_SU_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
888 rb_depth_plane_cntl |= A6XX_RB_DEPTH_PLANE_CNTL_FRAG_WRITES_Z;
889 }
890
891 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
892 tu_cs_emit(cs, gras_su_depth_plane_cntl);
893
894 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
895 tu_cs_emit(cs, rb_depth_plane_cntl);
896 }
897
898 static void
899 tu6_emit_shader_object(struct tu_cs *cs,
900 gl_shader_stage stage,
901 const struct ir3_shader_variant *variant,
902 const struct tu_bo *binary_bo,
903 uint32_t binary_offset)
904 {
905 uint16_t reg;
906 uint8_t opcode;
907 enum a6xx_state_block sb;
908 switch (stage) {
909 case MESA_SHADER_VERTEX:
910 reg = REG_A6XX_SP_VS_OBJ_START_LO;
911 opcode = CP_LOAD_STATE6_GEOM;
912 sb = SB6_VS_SHADER;
913 break;
914 case MESA_SHADER_TESS_CTRL:
915 reg = REG_A6XX_SP_HS_OBJ_START_LO;
916 opcode = CP_LOAD_STATE6_GEOM;
917 sb = SB6_HS_SHADER;
918 break;
919 case MESA_SHADER_TESS_EVAL:
920 reg = REG_A6XX_SP_DS_OBJ_START_LO;
921 opcode = CP_LOAD_STATE6_GEOM;
922 sb = SB6_DS_SHADER;
923 break;
924 case MESA_SHADER_GEOMETRY:
925 reg = REG_A6XX_SP_GS_OBJ_START_LO;
926 opcode = CP_LOAD_STATE6_GEOM;
927 sb = SB6_GS_SHADER;
928 break;
929 case MESA_SHADER_FRAGMENT:
930 reg = REG_A6XX_SP_FS_OBJ_START_LO;
931 opcode = CP_LOAD_STATE6_FRAG;
932 sb = SB6_FS_SHADER;
933 break;
934 case MESA_SHADER_COMPUTE:
935 reg = REG_A6XX_SP_CS_OBJ_START_LO;
936 opcode = CP_LOAD_STATE6_FRAG;
937 sb = SB6_CS_SHADER;
938 break;
939 default:
940 unreachable("invalid gl_shader_stage");
941 opcode = CP_LOAD_STATE6_GEOM;
942 sb = SB6_VS_SHADER;
943 break;
944 }
945
946 if (!variant->instrlen) {
947 tu_cs_emit_pkt4(cs, reg, 2);
948 tu_cs_emit_qw(cs, 0);
949 return;
950 }
951
952 assert(variant->type == stage);
953
954 const uint64_t binary_iova = binary_bo->iova + binary_offset;
955 assert((binary_iova & 0x3) == 0);
956
957 tu_cs_emit_pkt4(cs, reg, 2);
958 tu_cs_emit_qw(cs, binary_iova);
959
960 /* always indirect */
961 const bool indirect = true;
962 if (indirect) {
963 tu_cs_emit_pkt7(cs, opcode, 3);
964 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
965 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
966 CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
967 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
968 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
969 tu_cs_emit_qw(cs, binary_iova);
970 } else {
971 const void *binary = binary_bo->map + binary_offset;
972
973 tu_cs_emit_pkt7(cs, opcode, 3 + variant->info.sizedwords);
974 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(0) |
975 CP_LOAD_STATE6_0_STATE_TYPE(ST6_SHADER) |
976 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
977 CP_LOAD_STATE6_0_STATE_BLOCK(sb) |
978 CP_LOAD_STATE6_0_NUM_UNIT(variant->instrlen));
979 tu_cs_emit_qw(cs, 0);
980 tu_cs_emit_array(cs, binary, variant->info.sizedwords);
981 }
982 }
983
984 static void
985 tu6_emit_immediates(struct tu_cs *cs, const struct ir3_shader_variant *v,
986 uint32_t opcode, enum a6xx_state_block block)
987 {
988 /* dummy variant */
989 if (!v->shader)
990 return;
991
992 const struct ir3_const_state *const_state = &v->shader->const_state;
993 uint32_t base = const_state->offsets.immediate;
994 int size = const_state->immediates_count;
995
996 /* truncate size to avoid writing constants that shader
997 * does not use:
998 */
999 size = MIN2(size + base, v->constlen) - base;
1000
1001 if (size <= 0)
1002 return;
1003
1004 tu_cs_emit_pkt7(cs, opcode, 3 + size * 4);
1005 tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(base) |
1006 CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1007 CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
1008 CP_LOAD_STATE6_0_STATE_BLOCK(block) |
1009 CP_LOAD_STATE6_0_NUM_UNIT(size));
1010 tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
1011 tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
1012
1013 for (unsigned i = 0; i < size; i++) {
1014 tu_cs_emit(cs, const_state->immediates[i].val[0]);
1015 tu_cs_emit(cs, const_state->immediates[i].val[1]);
1016 tu_cs_emit(cs, const_state->immediates[i].val[2]);
1017 tu_cs_emit(cs, const_state->immediates[i].val[3]);
1018 }
1019 }
1020
1021 static void
1022 tu6_emit_program(struct tu_cs *cs,
1023 const struct tu_pipeline_builder *builder,
1024 const struct tu_bo *binary_bo,
1025 bool binning_pass)
1026 {
1027 static const struct ir3_shader_variant dummy_variant = {
1028 .type = MESA_SHADER_NONE
1029 };
1030 assert(builder->shaders[MESA_SHADER_VERTEX]);
1031 const struct ir3_shader_variant *vs =
1032 &builder->shaders[MESA_SHADER_VERTEX]->variants[0];
1033 const struct ir3_shader_variant *hs =
1034 builder->shaders[MESA_SHADER_TESS_CTRL]
1035 ? &builder->shaders[MESA_SHADER_TESS_CTRL]->variants[0]
1036 : &dummy_variant;
1037 const struct ir3_shader_variant *ds =
1038 builder->shaders[MESA_SHADER_TESS_EVAL]
1039 ? &builder->shaders[MESA_SHADER_TESS_EVAL]->variants[0]
1040 : &dummy_variant;
1041 const struct ir3_shader_variant *gs =
1042 builder->shaders[MESA_SHADER_GEOMETRY]
1043 ? &builder->shaders[MESA_SHADER_GEOMETRY]->variants[0]
1044 : &dummy_variant;
1045 const struct ir3_shader_variant *fs =
1046 builder->shaders[MESA_SHADER_FRAGMENT]
1047 ? &builder->shaders[MESA_SHADER_FRAGMENT]->variants[0]
1048 : &dummy_variant;
1049
1050 if (binning_pass) {
1051 vs = &builder->shaders[MESA_SHADER_VERTEX]->variants[1];
1052 fs = &dummy_variant;
1053 }
1054
1055 tu6_emit_vs_config(cs, builder->shaders[MESA_SHADER_VERTEX], vs);
1056 tu6_emit_hs_config(cs, builder->shaders[MESA_SHADER_TESS_CTRL], hs);
1057 tu6_emit_ds_config(cs, builder->shaders[MESA_SHADER_TESS_EVAL], ds);
1058 tu6_emit_gs_config(cs, builder->shaders[MESA_SHADER_GEOMETRY], gs);
1059 tu6_emit_fs_config(cs, builder->shaders[MESA_SHADER_FRAGMENT], fs);
1060
1061 tu6_emit_vs_system_values(cs, vs);
1062 tu6_emit_vpc(cs, vs, fs, binning_pass);
1063 tu6_emit_vpc_varying_modes(cs, fs, binning_pass);
1064 tu6_emit_fs_inputs(cs, fs);
1065 tu6_emit_fs_outputs(cs, fs, builder->color_attachment_count);
1066
1067 tu6_emit_shader_object(cs, MESA_SHADER_VERTEX, vs, binary_bo,
1068 binning_pass ? builder->binning_vs_offset : builder->shader_offsets[MESA_SHADER_VERTEX]);
1069
1070 tu6_emit_shader_object(cs, MESA_SHADER_FRAGMENT, fs, binary_bo,
1071 builder->shader_offsets[MESA_SHADER_FRAGMENT]);
1072
1073 tu6_emit_immediates(cs, vs, CP_LOAD_STATE6_GEOM, SB6_VS_SHADER);
1074 if (!binning_pass)
1075 tu6_emit_immediates(cs, fs, CP_LOAD_STATE6_FRAG, SB6_FS_SHADER);
1076 }
1077
1078 static void
1079 tu6_emit_vertex_input(struct tu_cs *cs,
1080 const struct ir3_shader_variant *vs,
1081 const VkPipelineVertexInputStateCreateInfo *vi_info,
1082 uint8_t bindings[MAX_VERTEX_ATTRIBS],
1083 uint16_t strides[MAX_VERTEX_ATTRIBS],
1084 uint16_t offsets[MAX_VERTEX_ATTRIBS],
1085 uint32_t *count)
1086 {
1087 uint32_t vfd_decode_idx = 0;
1088
1089 for (uint32_t i = 0; i < vs->inputs_count; i++) {
1090 if (vs->inputs[i].sysval || !vs->inputs[i].compmask)
1091 continue;
1092
1093 const VkVertexInputAttributeDescription *vi_attr =
1094 tu_find_vertex_input_attribute(vi_info, vs->inputs[i].slot);
1095 const VkVertexInputBindingDescription *vi_binding =
1096 tu_find_vertex_input_binding(vi_info, vi_attr);
1097 assert(vi_attr && vi_binding);
1098
1099 const struct tu_native_format *format =
1100 tu6_get_native_format(vi_attr->format);
1101 assert(format && format->vtx >= 0);
1102
1103 uint32_t vfd_decode = A6XX_VFD_DECODE_INSTR_IDX(vfd_decode_idx) |
1104 A6XX_VFD_DECODE_INSTR_FORMAT(format->vtx) |
1105 A6XX_VFD_DECODE_INSTR_SWAP(format->swap) |
1106 A6XX_VFD_DECODE_INSTR_UNK30;
1107 if (vi_binding->inputRate == VK_VERTEX_INPUT_RATE_INSTANCE)
1108 vfd_decode |= A6XX_VFD_DECODE_INSTR_INSTANCED;
1109 if (!vk_format_is_int(vi_attr->format))
1110 vfd_decode |= A6XX_VFD_DECODE_INSTR_FLOAT;
1111
1112 const uint32_t vfd_decode_step_rate = 1;
1113
1114 const uint32_t vfd_dest_cntl =
1115 A6XX_VFD_DEST_CNTL_INSTR_WRITEMASK(vs->inputs[i].compmask) |
1116 A6XX_VFD_DEST_CNTL_INSTR_REGID(vs->inputs[i].regid);
1117
1118 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DECODE(vfd_decode_idx), 2);
1119 tu_cs_emit(cs, vfd_decode);
1120 tu_cs_emit(cs, vfd_decode_step_rate);
1121
1122 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_DEST_CNTL(vfd_decode_idx), 1);
1123 tu_cs_emit(cs, vfd_dest_cntl);
1124
1125 bindings[vfd_decode_idx] = vi_binding->binding;
1126 strides[vfd_decode_idx] = vi_binding->stride;
1127 offsets[vfd_decode_idx] = vi_attr->offset;
1128
1129 vfd_decode_idx++;
1130 assert(vfd_decode_idx <= MAX_VERTEX_ATTRIBS);
1131 }
1132
1133 tu_cs_emit_pkt4(cs, REG_A6XX_VFD_CONTROL_0, 1);
1134 tu_cs_emit(
1135 cs, A6XX_VFD_CONTROL_0_VTXCNT(vfd_decode_idx) | (vfd_decode_idx << 8));
1136
1137 *count = vfd_decode_idx;
1138 }
1139
1140 static uint32_t
1141 tu6_guardband_adj(uint32_t v)
1142 {
1143 if (v > 256)
1144 return (uint32_t)(511.0 - 65.0 * (log2(v) - 8.0));
1145 else
1146 return 511;
1147 }
1148
1149 void
1150 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport)
1151 {
1152 float offsets[3];
1153 float scales[3];
1154 scales[0] = viewport->width / 2.0f;
1155 scales[1] = viewport->height / 2.0f;
1156 scales[2] = viewport->maxDepth - viewport->minDepth;
1157 offsets[0] = viewport->x + scales[0];
1158 offsets[1] = viewport->y + scales[1];
1159 offsets[2] = viewport->minDepth;
1160
1161 VkOffset2D min;
1162 VkOffset2D max;
1163 min.x = (int32_t) viewport->x;
1164 max.x = (int32_t) ceilf(viewport->x + viewport->width);
1165 if (viewport->height >= 0.0f) {
1166 min.y = (int32_t) viewport->y;
1167 max.y = (int32_t) ceilf(viewport->y + viewport->height);
1168 } else {
1169 min.y = (int32_t)(viewport->y + viewport->height);
1170 max.y = (int32_t) ceilf(viewport->y);
1171 }
1172 /* the spec allows viewport->height to be 0.0f */
1173 if (min.y == max.y)
1174 max.y++;
1175 assert(min.x >= 0 && min.x < max.x);
1176 assert(min.y >= 0 && min.y < max.y);
1177
1178 VkExtent2D guardband_adj;
1179 guardband_adj.width = tu6_guardband_adj(max.x - min.x);
1180 guardband_adj.height = tu6_guardband_adj(max.y - min.y);
1181
1182 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_VPORT_XOFFSET_0, 6);
1183 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XOFFSET_0(offsets[0]));
1184 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_XSCALE_0(scales[0]));
1185 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YOFFSET_0(offsets[1]));
1186 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_YSCALE_0(scales[1]));
1187 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZOFFSET_0(offsets[2]));
1188 tu_cs_emit(cs, A6XX_GRAS_CL_VPORT_ZSCALE_0(scales[2]));
1189
1190 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0, 2);
1191 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(min.x) |
1192 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(min.y));
1193 tu_cs_emit(cs, A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_X(max.x - 1) |
1194 A6XX_GRAS_SC_VIEWPORT_SCISSOR_TL_0_Y(max.y - 1));
1195
1196 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ, 1);
1197 tu_cs_emit(cs,
1198 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_HORZ(guardband_adj.width) |
1199 A6XX_GRAS_CL_GUARDBAND_CLIP_ADJ_VERT(guardband_adj.height));
1200 }
1201
1202 void
1203 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor)
1204 {
1205 const VkOffset2D min = scissor->offset;
1206 const VkOffset2D max = {
1207 scissor->offset.x + scissor->extent.width,
1208 scissor->offset.y + scissor->extent.height,
1209 };
1210
1211 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0, 2);
1212 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(min.x) |
1213 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(min.y));
1214 tu_cs_emit(cs, A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_X(max.x - 1) |
1215 A6XX_GRAS_SC_SCREEN_SCISSOR_TL_0_Y(max.y - 1));
1216 }
1217
1218 static void
1219 tu6_emit_gras_unknowns(struct tu_cs *cs)
1220 {
1221 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8000, 1);
1222 tu_cs_emit(cs, 0x80);
1223 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_UNKNOWN_8001, 1);
1224 tu_cs_emit(cs, 0x0);
1225 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_LAYER_CNTL, 1);
1226 tu_cs_emit(cs, 0x0);
1227 }
1228
1229 static void
1230 tu6_emit_point_size(struct tu_cs *cs)
1231 {
1232 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POINT_MINMAX, 2);
1233 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_MINMAX_MIN(1.0f / 16.0f) |
1234 A6XX_GRAS_SU_POINT_MINMAX_MAX(4092.0f));
1235 tu_cs_emit(cs, A6XX_GRAS_SU_POINT_SIZE(1.0f));
1236 }
1237
1238 static uint32_t
1239 tu6_gras_su_cntl(const VkPipelineRasterizationStateCreateInfo *rast_info,
1240 VkSampleCountFlagBits samples)
1241 {
1242 uint32_t gras_su_cntl = 0;
1243
1244 if (rast_info->cullMode & VK_CULL_MODE_FRONT_BIT)
1245 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_FRONT;
1246 if (rast_info->cullMode & VK_CULL_MODE_BACK_BIT)
1247 gras_su_cntl |= A6XX_GRAS_SU_CNTL_CULL_BACK;
1248
1249 if (rast_info->frontFace == VK_FRONT_FACE_CLOCKWISE)
1250 gras_su_cntl |= A6XX_GRAS_SU_CNTL_FRONT_CW;
1251
1252 /* don't set A6XX_GRAS_SU_CNTL_LINEHALFWIDTH */
1253
1254 if (rast_info->depthBiasEnable)
1255 gras_su_cntl |= A6XX_GRAS_SU_CNTL_POLY_OFFSET;
1256
1257 if (samples > VK_SAMPLE_COUNT_1_BIT)
1258 gras_su_cntl |= A6XX_GRAS_SU_CNTL_MSAA_ENABLE;
1259
1260 return gras_su_cntl;
1261 }
1262
1263 void
1264 tu6_emit_gras_su_cntl(struct tu_cs *cs,
1265 uint32_t gras_su_cntl,
1266 float line_width)
1267 {
1268 assert((gras_su_cntl & A6XX_GRAS_SU_CNTL_LINEHALFWIDTH__MASK) == 0);
1269 gras_su_cntl |= A6XX_GRAS_SU_CNTL_LINEHALFWIDTH(line_width / 2.0f);
1270
1271 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_CNTL, 1);
1272 tu_cs_emit(cs, gras_su_cntl);
1273 }
1274
1275 void
1276 tu6_emit_depth_bias(struct tu_cs *cs,
1277 float constant_factor,
1278 float clamp,
1279 float slope_factor)
1280 {
1281 tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_POLY_OFFSET_SCALE, 3);
1282 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_SCALE(slope_factor));
1283 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET(constant_factor));
1284 tu_cs_emit(cs, A6XX_GRAS_SU_POLY_OFFSET_OFFSET_CLAMP(clamp));
1285 }
1286
1287 static void
1288 tu6_emit_alpha_control_disable(struct tu_cs *cs)
1289 {
1290 tu_cs_emit_pkt4(cs, REG_A6XX_RB_ALPHA_CONTROL, 1);
1291 tu_cs_emit(cs, 0);
1292 }
1293
1294 static void
1295 tu6_emit_depth_control(struct tu_cs *cs,
1296 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1297 {
1298 assert(!ds_info->depthBoundsTestEnable);
1299
1300 uint32_t rb_depth_cntl = 0;
1301 if (ds_info->depthTestEnable) {
1302 rb_depth_cntl |=
1303 A6XX_RB_DEPTH_CNTL_Z_ENABLE |
1304 A6XX_RB_DEPTH_CNTL_ZFUNC(tu6_compare_func(ds_info->depthCompareOp)) |
1305 A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE;
1306
1307 if (ds_info->depthWriteEnable)
1308 rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_WRITE_ENABLE;
1309 }
1310
1311 tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_CNTL, 1);
1312 tu_cs_emit(cs, rb_depth_cntl);
1313 }
1314
1315 static void
1316 tu6_emit_stencil_control(struct tu_cs *cs,
1317 const VkPipelineDepthStencilStateCreateInfo *ds_info)
1318 {
1319 uint32_t rb_stencil_control = 0;
1320 if (ds_info->stencilTestEnable) {
1321 const VkStencilOpState *front = &ds_info->front;
1322 const VkStencilOpState *back = &ds_info->back;
1323 rb_stencil_control |=
1324 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE |
1325 A6XX_RB_STENCIL_CONTROL_STENCIL_ENABLE_BF |
1326 A6XX_RB_STENCIL_CONTROL_STENCIL_READ |
1327 A6XX_RB_STENCIL_CONTROL_FUNC(tu6_compare_func(front->compareOp)) |
1328 A6XX_RB_STENCIL_CONTROL_FAIL(tu6_stencil_op(front->failOp)) |
1329 A6XX_RB_STENCIL_CONTROL_ZPASS(tu6_stencil_op(front->passOp)) |
1330 A6XX_RB_STENCIL_CONTROL_ZFAIL(tu6_stencil_op(front->depthFailOp)) |
1331 A6XX_RB_STENCIL_CONTROL_FUNC_BF(tu6_compare_func(back->compareOp)) |
1332 A6XX_RB_STENCIL_CONTROL_FAIL_BF(tu6_stencil_op(back->failOp)) |
1333 A6XX_RB_STENCIL_CONTROL_ZPASS_BF(tu6_stencil_op(back->passOp)) |
1334 A6XX_RB_STENCIL_CONTROL_ZFAIL_BF(tu6_stencil_op(back->depthFailOp));
1335 }
1336
1337 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_CONTROL, 1);
1338 tu_cs_emit(cs, rb_stencil_control);
1339 }
1340
1341 void
1342 tu6_emit_stencil_compare_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1343 {
1344 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILMASK, 1);
1345 tu_cs_emit(
1346 cs, A6XX_RB_STENCILMASK_MASK(front) | A6XX_RB_STENCILMASK_BFMASK(back));
1347 }
1348
1349 void
1350 tu6_emit_stencil_write_mask(struct tu_cs *cs, uint32_t front, uint32_t back)
1351 {
1352 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILWRMASK, 1);
1353 tu_cs_emit(cs, A6XX_RB_STENCILWRMASK_WRMASK(front) |
1354 A6XX_RB_STENCILWRMASK_BFWRMASK(back));
1355 }
1356
1357 void
1358 tu6_emit_stencil_reference(struct tu_cs *cs, uint32_t front, uint32_t back)
1359 {
1360 tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCILREF, 1);
1361 tu_cs_emit(cs,
1362 A6XX_RB_STENCILREF_REF(front) | A6XX_RB_STENCILREF_BFREF(back));
1363 }
1364
1365 static uint32_t
1366 tu6_rb_mrt_blend_control(const VkPipelineColorBlendAttachmentState *att,
1367 bool has_alpha)
1368 {
1369 const enum a3xx_rb_blend_opcode color_op = tu6_blend_op(att->colorBlendOp);
1370 const enum adreno_rb_blend_factor src_color_factor = tu6_blend_factor(
1371 has_alpha ? att->srcColorBlendFactor
1372 : tu_blend_factor_no_dst_alpha(att->srcColorBlendFactor));
1373 const enum adreno_rb_blend_factor dst_color_factor = tu6_blend_factor(
1374 has_alpha ? att->dstColorBlendFactor
1375 : tu_blend_factor_no_dst_alpha(att->dstColorBlendFactor));
1376 const enum a3xx_rb_blend_opcode alpha_op = tu6_blend_op(att->alphaBlendOp);
1377 const enum adreno_rb_blend_factor src_alpha_factor =
1378 tu6_blend_factor(att->srcAlphaBlendFactor);
1379 const enum adreno_rb_blend_factor dst_alpha_factor =
1380 tu6_blend_factor(att->dstAlphaBlendFactor);
1381
1382 return A6XX_RB_MRT_BLEND_CONTROL_RGB_SRC_FACTOR(src_color_factor) |
1383 A6XX_RB_MRT_BLEND_CONTROL_RGB_BLEND_OPCODE(color_op) |
1384 A6XX_RB_MRT_BLEND_CONTROL_RGB_DEST_FACTOR(dst_color_factor) |
1385 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_SRC_FACTOR(src_alpha_factor) |
1386 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_BLEND_OPCODE(alpha_op) |
1387 A6XX_RB_MRT_BLEND_CONTROL_ALPHA_DEST_FACTOR(dst_alpha_factor);
1388 }
1389
1390 static uint32_t
1391 tu6_rb_mrt_control(const VkPipelineColorBlendAttachmentState *att,
1392 uint32_t rb_mrt_control_rop,
1393 bool is_int,
1394 bool has_alpha)
1395 {
1396 uint32_t rb_mrt_control =
1397 A6XX_RB_MRT_CONTROL_COMPONENT_ENABLE(att->colorWriteMask);
1398
1399 /* ignore blending and logic op for integer attachments */
1400 if (is_int) {
1401 rb_mrt_control |= A6XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
1402 return rb_mrt_control;
1403 }
1404
1405 rb_mrt_control |= rb_mrt_control_rop;
1406
1407 if (att->blendEnable) {
1408 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND;
1409
1410 if (has_alpha)
1411 rb_mrt_control |= A6XX_RB_MRT_CONTROL_BLEND2;
1412 }
1413
1414 return rb_mrt_control;
1415 }
1416
1417 static void
1418 tu6_emit_rb_mrt_controls(struct tu_cs *cs,
1419 const VkPipelineColorBlendStateCreateInfo *blend_info,
1420 const VkFormat attachment_formats[MAX_RTS],
1421 uint32_t *blend_enable_mask)
1422 {
1423 *blend_enable_mask = 0;
1424
1425 bool rop_reads_dst = false;
1426 uint32_t rb_mrt_control_rop = 0;
1427 if (blend_info->logicOpEnable) {
1428 rop_reads_dst = tu_logic_op_reads_dst(blend_info->logicOp);
1429 rb_mrt_control_rop =
1430 A6XX_RB_MRT_CONTROL_ROP_ENABLE |
1431 A6XX_RB_MRT_CONTROL_ROP_CODE(tu6_rop(blend_info->logicOp));
1432 }
1433
1434 for (uint32_t i = 0; i < blend_info->attachmentCount; i++) {
1435 const VkPipelineColorBlendAttachmentState *att =
1436 &blend_info->pAttachments[i];
1437 const VkFormat format = attachment_formats[i];
1438
1439 uint32_t rb_mrt_control = 0;
1440 uint32_t rb_mrt_blend_control = 0;
1441 if (format != VK_FORMAT_UNDEFINED) {
1442 const bool is_int = vk_format_is_int(format);
1443 const bool has_alpha = vk_format_has_alpha(format);
1444
1445 rb_mrt_control =
1446 tu6_rb_mrt_control(att, rb_mrt_control_rop, is_int, has_alpha);
1447 rb_mrt_blend_control = tu6_rb_mrt_blend_control(att, has_alpha);
1448
1449 if (att->blendEnable || rop_reads_dst)
1450 *blend_enable_mask |= 1 << i;
1451 }
1452
1453 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1454 tu_cs_emit(cs, rb_mrt_control);
1455 tu_cs_emit(cs, rb_mrt_blend_control);
1456 }
1457
1458 for (uint32_t i = blend_info->attachmentCount; i < MAX_RTS; i++) {
1459 tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_CONTROL(i), 2);
1460 tu_cs_emit(cs, 0);
1461 tu_cs_emit(cs, 0);
1462 }
1463 }
1464
1465 static void
1466 tu6_emit_blend_control(struct tu_cs *cs,
1467 uint32_t blend_enable_mask,
1468 const VkPipelineMultisampleStateCreateInfo *msaa_info)
1469 {
1470 assert(!msaa_info->sampleShadingEnable);
1471 assert(!msaa_info->alphaToOneEnable);
1472
1473 uint32_t sp_blend_cntl = A6XX_SP_BLEND_CNTL_UNK8;
1474 if (blend_enable_mask)
1475 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ENABLED;
1476 if (msaa_info->alphaToCoverageEnable)
1477 sp_blend_cntl |= A6XX_SP_BLEND_CNTL_ALPHA_TO_COVERAGE;
1478
1479 const uint32_t sample_mask =
1480 msaa_info->pSampleMask ? *msaa_info->pSampleMask
1481 : ((1 << msaa_info->rasterizationSamples) - 1);
1482
1483 /* set A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND only when enabled? */
1484 uint32_t rb_blend_cntl =
1485 A6XX_RB_BLEND_CNTL_ENABLE_BLEND(blend_enable_mask) |
1486 A6XX_RB_BLEND_CNTL_INDEPENDENT_BLEND |
1487 A6XX_RB_BLEND_CNTL_SAMPLE_MASK(sample_mask);
1488 if (msaa_info->alphaToCoverageEnable)
1489 rb_blend_cntl |= A6XX_RB_BLEND_CNTL_ALPHA_TO_COVERAGE;
1490
1491 tu_cs_emit_pkt4(cs, REG_A6XX_SP_BLEND_CNTL, 1);
1492 tu_cs_emit(cs, sp_blend_cntl);
1493
1494 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_CNTL, 1);
1495 tu_cs_emit(cs, rb_blend_cntl);
1496 }
1497
1498 void
1499 tu6_emit_blend_constants(struct tu_cs *cs, const float constants[4])
1500 {
1501 tu_cs_emit_pkt4(cs, REG_A6XX_RB_BLEND_RED_F32, 4);
1502 tu_cs_emit_array(cs, (const uint32_t *) constants, 4);
1503 }
1504
1505 static VkResult
1506 tu_pipeline_create(struct tu_device *dev,
1507 const VkAllocationCallbacks *pAllocator,
1508 struct tu_pipeline **out_pipeline)
1509 {
1510 struct tu_pipeline *pipeline =
1511 vk_zalloc2(&dev->alloc, pAllocator, sizeof(*pipeline), 8,
1512 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1513 if (!pipeline)
1514 return VK_ERROR_OUT_OF_HOST_MEMORY;
1515
1516 tu_cs_init(&pipeline->cs, TU_CS_MODE_SUB_STREAM, 2048);
1517
1518 /* reserve the space now such that tu_cs_begin_sub_stream never fails */
1519 VkResult result = tu_cs_reserve_space(dev, &pipeline->cs, 2048);
1520 if (result != VK_SUCCESS) {
1521 vk_free2(&dev->alloc, pAllocator, pipeline);
1522 return result;
1523 }
1524
1525 *out_pipeline = pipeline;
1526
1527 return VK_SUCCESS;
1528 }
1529
1530 static VkResult
1531 tu_pipeline_builder_compile_shaders(struct tu_pipeline_builder *builder)
1532 {
1533 const VkPipelineShaderStageCreateInfo *stage_infos[MESA_SHADER_STAGES] = {
1534 NULL
1535 };
1536 for (uint32_t i = 0; i < builder->create_info->stageCount; i++) {
1537 gl_shader_stage stage =
1538 tu_shader_stage(builder->create_info->pStages[i].stage);
1539 stage_infos[stage] = &builder->create_info->pStages[i];
1540 }
1541
1542 struct tu_shader_compile_options options;
1543 tu_shader_compile_options_init(&options, builder->create_info);
1544
1545 /* compile shaders in reverse order */
1546 struct tu_shader *next_stage_shader = NULL;
1547 for (gl_shader_stage stage = MESA_SHADER_STAGES - 1;
1548 stage > MESA_SHADER_NONE; stage--) {
1549 const VkPipelineShaderStageCreateInfo *stage_info = stage_infos[stage];
1550 if (!stage_info)
1551 continue;
1552
1553 struct tu_shader *shader =
1554 tu_shader_create(builder->device, stage, stage_info, builder->layout,
1555 builder->alloc);
1556 if (!shader)
1557 return VK_ERROR_OUT_OF_HOST_MEMORY;
1558
1559 VkResult result =
1560 tu_shader_compile(builder->device, shader, next_stage_shader,
1561 &options, builder->alloc);
1562 if (result != VK_SUCCESS)
1563 return result;
1564
1565 builder->shaders[stage] = shader;
1566 builder->shader_offsets[stage] = builder->shader_total_size;
1567 builder->shader_total_size +=
1568 sizeof(uint32_t) * shader->variants[0].info.sizedwords;
1569
1570 next_stage_shader = shader;
1571 }
1572
1573 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
1574 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1575 builder->binning_vs_offset = builder->shader_total_size;
1576 builder->shader_total_size +=
1577 sizeof(uint32_t) * vs->variants[1].info.sizedwords;
1578 }
1579
1580 return VK_SUCCESS;
1581 }
1582
1583 static VkResult
1584 tu_pipeline_builder_upload_shaders(struct tu_pipeline_builder *builder,
1585 struct tu_pipeline *pipeline)
1586 {
1587 struct tu_bo *bo = &pipeline->program.binary_bo;
1588
1589 VkResult result =
1590 tu_bo_init_new(builder->device, bo, builder->shader_total_size);
1591 if (result != VK_SUCCESS)
1592 return result;
1593
1594 result = tu_bo_map(builder->device, bo);
1595 if (result != VK_SUCCESS)
1596 return result;
1597
1598 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
1599 const struct tu_shader *shader = builder->shaders[i];
1600 if (!shader)
1601 continue;
1602
1603 memcpy(bo->map + builder->shader_offsets[i], shader->binary,
1604 sizeof(uint32_t) * shader->variants[0].info.sizedwords);
1605 }
1606
1607 if (builder->shaders[MESA_SHADER_VERTEX]->has_binning_pass) {
1608 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1609 memcpy(bo->map + builder->binning_vs_offset, vs->binning_binary,
1610 sizeof(uint32_t) * vs->variants[1].info.sizedwords);
1611 }
1612
1613 return VK_SUCCESS;
1614 }
1615
1616 static void
1617 tu_pipeline_builder_parse_dynamic(struct tu_pipeline_builder *builder,
1618 struct tu_pipeline *pipeline)
1619 {
1620 const VkPipelineDynamicStateCreateInfo *dynamic_info =
1621 builder->create_info->pDynamicState;
1622
1623 if (!dynamic_info)
1624 return;
1625
1626 for (uint32_t i = 0; i < dynamic_info->dynamicStateCount; i++) {
1627 pipeline->dynamic_state.mask |=
1628 tu_dynamic_state_bit(dynamic_info->pDynamicStates[i]);
1629 }
1630 }
1631
1632 static void
1633 tu_pipeline_set_linkage(struct tu_program_descriptor_linkage *link,
1634 struct tu_shader *shader,
1635 struct ir3_shader_variant *v)
1636 {
1637 link->ubo_state = v->shader->ubo_state;
1638 link->const_state = v->shader->const_state;
1639 link->constlen = v->constlen;
1640 link->texture_map = shader->texture_map;
1641 link->sampler_map = shader->sampler_map;
1642 link->ubo_map = shader->ubo_map;
1643 link->ssbo_map = shader->ssbo_map;
1644 link->image_map = shader->image_map;
1645 }
1646
1647 static void
1648 tu_pipeline_builder_parse_shader_stages(struct tu_pipeline_builder *builder,
1649 struct tu_pipeline *pipeline)
1650 {
1651 struct tu_cs prog_cs;
1652 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 512, &prog_cs);
1653 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, false);
1654 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
1655
1656 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 512, &prog_cs);
1657 tu6_emit_program(&prog_cs, builder, &pipeline->program.binary_bo, true);
1658 pipeline->program.binning_state_ib =
1659 tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
1660
1661 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1662 if (!builder->shaders[i])
1663 continue;
1664
1665 tu_pipeline_set_linkage(&pipeline->program.link[i],
1666 builder->shaders[i],
1667 &builder->shaders[i]->variants[0]);
1668 }
1669 }
1670
1671 static void
1672 tu_pipeline_builder_parse_vertex_input(struct tu_pipeline_builder *builder,
1673 struct tu_pipeline *pipeline)
1674 {
1675 const VkPipelineVertexInputStateCreateInfo *vi_info =
1676 builder->create_info->pVertexInputState;
1677 const struct tu_shader *vs = builder->shaders[MESA_SHADER_VERTEX];
1678
1679 struct tu_cs vi_cs;
1680 tu_cs_begin_sub_stream(builder->device, &pipeline->cs,
1681 MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
1682 tu6_emit_vertex_input(&vi_cs, &vs->variants[0], vi_info,
1683 pipeline->vi.bindings, pipeline->vi.strides,
1684 pipeline->vi.offsets, &pipeline->vi.count);
1685 pipeline->vi.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
1686
1687 if (vs->has_binning_pass) {
1688 tu_cs_begin_sub_stream(builder->device, &pipeline->cs,
1689 MAX_VERTEX_ATTRIBS * 5 + 2, &vi_cs);
1690 tu6_emit_vertex_input(
1691 &vi_cs, &vs->variants[1], vi_info, pipeline->vi.binning_bindings,
1692 pipeline->vi.binning_strides, pipeline->vi.binning_offsets,
1693 &pipeline->vi.binning_count);
1694 pipeline->vi.binning_state_ib =
1695 tu_cs_end_sub_stream(&pipeline->cs, &vi_cs);
1696 }
1697 }
1698
1699 static void
1700 tu_pipeline_builder_parse_input_assembly(struct tu_pipeline_builder *builder,
1701 struct tu_pipeline *pipeline)
1702 {
1703 const VkPipelineInputAssemblyStateCreateInfo *ia_info =
1704 builder->create_info->pInputAssemblyState;
1705
1706 pipeline->ia.primtype = tu6_primtype(ia_info->topology);
1707 pipeline->ia.primitive_restart = ia_info->primitiveRestartEnable;
1708 }
1709
1710 static void
1711 tu_pipeline_builder_parse_viewport(struct tu_pipeline_builder *builder,
1712 struct tu_pipeline *pipeline)
1713 {
1714 /* The spec says:
1715 *
1716 * pViewportState is a pointer to an instance of the
1717 * VkPipelineViewportStateCreateInfo structure, and is ignored if the
1718 * pipeline has rasterization disabled."
1719 *
1720 * We leave the relevant registers stale in that case.
1721 */
1722 if (builder->rasterizer_discard)
1723 return;
1724
1725 const VkPipelineViewportStateCreateInfo *vp_info =
1726 builder->create_info->pViewportState;
1727
1728 struct tu_cs vp_cs;
1729 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 15, &vp_cs);
1730
1731 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_VIEWPORT)) {
1732 assert(vp_info->viewportCount == 1);
1733 tu6_emit_viewport(&vp_cs, vp_info->pViewports);
1734 }
1735
1736 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_SCISSOR)) {
1737 assert(vp_info->scissorCount == 1);
1738 tu6_emit_scissor(&vp_cs, vp_info->pScissors);
1739 }
1740
1741 pipeline->vp.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &vp_cs);
1742 }
1743
1744 static void
1745 tu_pipeline_builder_parse_rasterization(struct tu_pipeline_builder *builder,
1746 struct tu_pipeline *pipeline)
1747 {
1748 const VkPipelineRasterizationStateCreateInfo *rast_info =
1749 builder->create_info->pRasterizationState;
1750
1751 assert(!rast_info->depthClampEnable);
1752 assert(rast_info->polygonMode == VK_POLYGON_MODE_FILL);
1753
1754 struct tu_cs rast_cs;
1755 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 20, &rast_cs);
1756
1757 /* move to hw ctx init? */
1758 tu6_emit_gras_unknowns(&rast_cs);
1759 tu6_emit_point_size(&rast_cs);
1760
1761 const uint32_t gras_su_cntl =
1762 tu6_gras_su_cntl(rast_info, builder->samples);
1763
1764 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_LINE_WIDTH))
1765 tu6_emit_gras_su_cntl(&rast_cs, gras_su_cntl, rast_info->lineWidth);
1766
1767 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_DEPTH_BIAS)) {
1768 tu6_emit_depth_bias(&rast_cs, rast_info->depthBiasConstantFactor,
1769 rast_info->depthBiasClamp,
1770 rast_info->depthBiasSlopeFactor);
1771 }
1772
1773 pipeline->rast.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &rast_cs);
1774
1775 pipeline->rast.gras_su_cntl = gras_su_cntl;
1776 }
1777
1778 static void
1779 tu_pipeline_builder_parse_depth_stencil(struct tu_pipeline_builder *builder,
1780 struct tu_pipeline *pipeline)
1781 {
1782 /* The spec says:
1783 *
1784 * pDepthStencilState is a pointer to an instance of the
1785 * VkPipelineDepthStencilStateCreateInfo structure, and is ignored if
1786 * the pipeline has rasterization disabled or if the subpass of the
1787 * render pass the pipeline is created against does not use a
1788 * depth/stencil attachment.
1789 *
1790 * We disable both depth and stenil tests in those cases.
1791 */
1792 static const VkPipelineDepthStencilStateCreateInfo dummy_ds_info;
1793 const VkPipelineDepthStencilStateCreateInfo *ds_info =
1794 builder->use_depth_stencil_attachment
1795 ? builder->create_info->pDepthStencilState
1796 : &dummy_ds_info;
1797
1798 struct tu_cs ds_cs;
1799 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, 12, &ds_cs);
1800
1801 /* move to hw ctx init? */
1802 tu6_emit_alpha_control_disable(&ds_cs);
1803
1804 tu6_emit_depth_control(&ds_cs, ds_info);
1805 tu6_emit_stencil_control(&ds_cs, ds_info);
1806
1807 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_COMPARE_MASK)) {
1808 tu6_emit_stencil_compare_mask(&ds_cs, ds_info->front.compareMask,
1809 ds_info->back.compareMask);
1810 }
1811 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_WRITE_MASK)) {
1812 tu6_emit_stencil_write_mask(&ds_cs, ds_info->front.writeMask,
1813 ds_info->back.writeMask);
1814 }
1815 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_STENCIL_REFERENCE)) {
1816 tu6_emit_stencil_reference(&ds_cs, ds_info->front.reference,
1817 ds_info->back.reference);
1818 }
1819
1820 pipeline->ds.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &ds_cs);
1821 }
1822
1823 static void
1824 tu_pipeline_builder_parse_multisample_and_color_blend(
1825 struct tu_pipeline_builder *builder, struct tu_pipeline *pipeline)
1826 {
1827 /* The spec says:
1828 *
1829 * pMultisampleState is a pointer to an instance of the
1830 * VkPipelineMultisampleStateCreateInfo, and is ignored if the pipeline
1831 * has rasterization disabled.
1832 *
1833 * Also,
1834 *
1835 * pColorBlendState is a pointer to an instance of the
1836 * VkPipelineColorBlendStateCreateInfo structure, and is ignored if the
1837 * pipeline has rasterization disabled or if the subpass of the render
1838 * pass the pipeline is created against does not use any color
1839 * attachments.
1840 *
1841 * We leave the relevant registers stale when rasterization is disabled.
1842 */
1843 if (builder->rasterizer_discard)
1844 return;
1845
1846 static const VkPipelineColorBlendStateCreateInfo dummy_blend_info;
1847 const VkPipelineMultisampleStateCreateInfo *msaa_info =
1848 builder->create_info->pMultisampleState;
1849 const VkPipelineColorBlendStateCreateInfo *blend_info =
1850 builder->use_color_attachments ? builder->create_info->pColorBlendState
1851 : &dummy_blend_info;
1852
1853 struct tu_cs blend_cs;
1854 tu_cs_begin_sub_stream(builder->device, &pipeline->cs, MAX_RTS * 3 + 9,
1855 &blend_cs);
1856
1857 uint32_t blend_enable_mask;
1858 tu6_emit_rb_mrt_controls(&blend_cs, blend_info,
1859 builder->color_attachment_formats,
1860 &blend_enable_mask);
1861
1862 if (!(pipeline->dynamic_state.mask & TU_DYNAMIC_BLEND_CONSTANTS))
1863 tu6_emit_blend_constants(&blend_cs, blend_info->blendConstants);
1864
1865 tu6_emit_blend_control(&blend_cs, blend_enable_mask, msaa_info);
1866
1867 pipeline->blend.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &blend_cs);
1868 }
1869
1870 static void
1871 tu_pipeline_finish(struct tu_pipeline *pipeline,
1872 struct tu_device *dev,
1873 const VkAllocationCallbacks *alloc)
1874 {
1875 tu_cs_finish(dev, &pipeline->cs);
1876
1877 if (pipeline->program.binary_bo.gem_handle)
1878 tu_bo_finish(dev, &pipeline->program.binary_bo);
1879 }
1880
1881 static VkResult
1882 tu_pipeline_builder_build(struct tu_pipeline_builder *builder,
1883 struct tu_pipeline **pipeline)
1884 {
1885 VkResult result = tu_pipeline_create(builder->device, builder->alloc,
1886 pipeline);
1887 if (result != VK_SUCCESS)
1888 return result;
1889
1890 /* compile and upload shaders */
1891 result = tu_pipeline_builder_compile_shaders(builder);
1892 if (result == VK_SUCCESS)
1893 result = tu_pipeline_builder_upload_shaders(builder, *pipeline);
1894 if (result != VK_SUCCESS) {
1895 tu_pipeline_finish(*pipeline, builder->device, builder->alloc);
1896 vk_free2(&builder->device->alloc, builder->alloc, *pipeline);
1897 *pipeline = VK_NULL_HANDLE;
1898
1899 return result;
1900 }
1901
1902 tu_pipeline_builder_parse_dynamic(builder, *pipeline);
1903 tu_pipeline_builder_parse_shader_stages(builder, *pipeline);
1904 tu_pipeline_builder_parse_vertex_input(builder, *pipeline);
1905 tu_pipeline_builder_parse_input_assembly(builder, *pipeline);
1906 tu_pipeline_builder_parse_viewport(builder, *pipeline);
1907 tu_pipeline_builder_parse_rasterization(builder, *pipeline);
1908 tu_pipeline_builder_parse_depth_stencil(builder, *pipeline);
1909 tu_pipeline_builder_parse_multisample_and_color_blend(builder, *pipeline);
1910
1911 /* we should have reserved enough space upfront such that the CS never
1912 * grows
1913 */
1914 assert((*pipeline)->cs.bo_count == 1);
1915
1916 return VK_SUCCESS;
1917 }
1918
1919 static void
1920 tu_pipeline_builder_finish(struct tu_pipeline_builder *builder)
1921 {
1922 for (uint32_t i = 0; i < MESA_SHADER_STAGES; i++) {
1923 if (!builder->shaders[i])
1924 continue;
1925 tu_shader_destroy(builder->device, builder->shaders[i], builder->alloc);
1926 }
1927 }
1928
1929 static void
1930 tu_pipeline_builder_init_graphics(
1931 struct tu_pipeline_builder *builder,
1932 struct tu_device *dev,
1933 struct tu_pipeline_cache *cache,
1934 const VkGraphicsPipelineCreateInfo *create_info,
1935 const VkAllocationCallbacks *alloc)
1936 {
1937 TU_FROM_HANDLE(tu_pipeline_layout, layout, create_info->layout);
1938
1939 *builder = (struct tu_pipeline_builder) {
1940 .device = dev,
1941 .cache = cache,
1942 .create_info = create_info,
1943 .alloc = alloc,
1944 .layout = layout,
1945 };
1946
1947 builder->rasterizer_discard =
1948 create_info->pRasterizationState->rasterizerDiscardEnable;
1949
1950 if (builder->rasterizer_discard) {
1951 builder->samples = VK_SAMPLE_COUNT_1_BIT;
1952 } else {
1953 builder->samples = create_info->pMultisampleState->rasterizationSamples;
1954
1955 const struct tu_render_pass *pass =
1956 tu_render_pass_from_handle(create_info->renderPass);
1957 const struct tu_subpass *subpass =
1958 &pass->subpasses[create_info->subpass];
1959
1960 builder->use_depth_stencil_attachment =
1961 subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED;
1962
1963 assert(subpass->color_count == 0 ||
1964 !create_info->pColorBlendState ||
1965 subpass->color_count == create_info->pColorBlendState->attachmentCount);
1966 builder->color_attachment_count = subpass->color_count;
1967 for (uint32_t i = 0; i < subpass->color_count; i++) {
1968 const uint32_t a = subpass->color_attachments[i].attachment;
1969 if (a == VK_ATTACHMENT_UNUSED)
1970 continue;
1971
1972 builder->color_attachment_formats[i] = pass->attachments[a].format;
1973 builder->use_color_attachments = true;
1974 }
1975 }
1976 }
1977
1978 static VkResult
1979 tu_graphics_pipeline_create(VkDevice device,
1980 VkPipelineCache pipelineCache,
1981 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1982 const VkAllocationCallbacks *pAllocator,
1983 VkPipeline *pPipeline)
1984 {
1985 TU_FROM_HANDLE(tu_device, dev, device);
1986 TU_FROM_HANDLE(tu_pipeline_cache, cache, pipelineCache);
1987
1988 struct tu_pipeline_builder builder;
1989 tu_pipeline_builder_init_graphics(&builder, dev, cache,
1990 pCreateInfo, pAllocator);
1991
1992 struct tu_pipeline *pipeline = NULL;
1993 VkResult result = tu_pipeline_builder_build(&builder, &pipeline);
1994 tu_pipeline_builder_finish(&builder);
1995
1996 if (result == VK_SUCCESS)
1997 *pPipeline = tu_pipeline_to_handle(pipeline);
1998 else
1999 *pPipeline = VK_NULL_HANDLE;
2000
2001 return result;
2002 }
2003
2004 VkResult
2005 tu_CreateGraphicsPipelines(VkDevice device,
2006 VkPipelineCache pipelineCache,
2007 uint32_t count,
2008 const VkGraphicsPipelineCreateInfo *pCreateInfos,
2009 const VkAllocationCallbacks *pAllocator,
2010 VkPipeline *pPipelines)
2011 {
2012 VkResult final_result = VK_SUCCESS;
2013
2014 for (uint32_t i = 0; i < count; i++) {
2015 VkResult result = tu_graphics_pipeline_create(device, pipelineCache,
2016 &pCreateInfos[i], pAllocator,
2017 &pPipelines[i]);
2018
2019 if (result != VK_SUCCESS)
2020 final_result = result;
2021 }
2022
2023 return final_result;
2024 }
2025
2026 static void
2027 tu6_emit_compute_program(struct tu_cs *cs,
2028 struct tu_shader *shader,
2029 const struct tu_bo *binary_bo)
2030 {
2031 const struct ir3_shader_variant *v = &shader->variants[0];
2032
2033 tu6_emit_cs_config(cs, shader, v);
2034
2035 /* The compute program is the only one in the pipeline, so 0 offset. */
2036 tu6_emit_shader_object(cs, MESA_SHADER_COMPUTE, v, binary_bo, 0);
2037
2038 tu6_emit_immediates(cs, v, CP_LOAD_STATE6_FRAG, SB6_CS_SHADER);
2039 }
2040
2041 static VkResult
2042 tu_compute_upload_shader(VkDevice device,
2043 struct tu_pipeline *pipeline,
2044 struct tu_shader *shader)
2045 {
2046 TU_FROM_HANDLE(tu_device, dev, device);
2047 struct tu_bo *bo = &pipeline->program.binary_bo;
2048 struct ir3_shader_variant *v = &shader->variants[0];
2049
2050 uint32_t shader_size = sizeof(uint32_t) * v->info.sizedwords;
2051 VkResult result =
2052 tu_bo_init_new(dev, bo, shader_size);
2053 if (result != VK_SUCCESS)
2054 return result;
2055
2056 result = tu_bo_map(dev, bo);
2057 if (result != VK_SUCCESS)
2058 return result;
2059
2060 memcpy(bo->map, shader->binary, shader_size);
2061
2062 return VK_SUCCESS;
2063 }
2064
2065
2066 static VkResult
2067 tu_compute_pipeline_create(VkDevice device,
2068 VkPipelineCache _cache,
2069 const VkComputePipelineCreateInfo *pCreateInfo,
2070 const VkAllocationCallbacks *pAllocator,
2071 VkPipeline *pPipeline)
2072 {
2073 TU_FROM_HANDLE(tu_device, dev, device);
2074 TU_FROM_HANDLE(tu_pipeline_layout, layout, pCreateInfo->layout);
2075 const VkPipelineShaderStageCreateInfo *stage_info = &pCreateInfo->stage;
2076 VkResult result;
2077
2078 struct tu_pipeline *pipeline;
2079
2080 result = tu_pipeline_create(dev, pAllocator, &pipeline);
2081 if (result != VK_SUCCESS)
2082 return result;
2083
2084 pipeline->layout = layout;
2085
2086 struct tu_shader_compile_options options;
2087 tu_shader_compile_options_init(&options, NULL);
2088
2089 struct tu_shader *shader =
2090 tu_shader_create(dev, MESA_SHADER_COMPUTE, stage_info, layout, pAllocator);
2091 if (!shader) {
2092 result = VK_ERROR_OUT_OF_HOST_MEMORY;
2093 goto fail;
2094 }
2095
2096 result = tu_shader_compile(dev, shader, NULL, &options, pAllocator);
2097 if (result != VK_SUCCESS)
2098 return result;
2099
2100 struct ir3_shader_variant *v = &shader->variants[0];
2101
2102 tu_pipeline_set_linkage(&pipeline->program.link[MESA_SHADER_COMPUTE],
2103 shader, v);
2104
2105 result = tu_compute_upload_shader(device, pipeline, shader);
2106 if (result != VK_SUCCESS)
2107 return result;
2108
2109 for (int i = 0; i < 3; i++)
2110 pipeline->compute.local_size[i] = v->shader->nir->info.cs.local_size[i];
2111
2112 struct tu_cs prog_cs;
2113 tu_cs_begin_sub_stream(dev, &pipeline->cs, 512, &prog_cs);
2114 tu6_emit_compute_program(&prog_cs, shader, &pipeline->program.binary_bo);
2115 pipeline->program.state_ib = tu_cs_end_sub_stream(&pipeline->cs, &prog_cs);
2116
2117 *pPipeline = tu_pipeline_to_handle(pipeline);
2118 return VK_SUCCESS;
2119
2120 fail:
2121 tu_shader_destroy(dev, shader, pAllocator);
2122 if (result != VK_SUCCESS) {
2123 tu_pipeline_finish(pipeline, dev, pAllocator);
2124 vk_free2(&dev->alloc, pAllocator, pipeline);
2125 }
2126
2127 return result;
2128 }
2129
2130 VkResult
2131 tu_CreateComputePipelines(VkDevice device,
2132 VkPipelineCache pipelineCache,
2133 uint32_t count,
2134 const VkComputePipelineCreateInfo *pCreateInfos,
2135 const VkAllocationCallbacks *pAllocator,
2136 VkPipeline *pPipelines)
2137 {
2138 VkResult final_result = VK_SUCCESS;
2139
2140 for (uint32_t i = 0; i < count; i++) {
2141 VkResult result = tu_compute_pipeline_create(device, pipelineCache,
2142 &pCreateInfos[i],
2143 pAllocator, &pPipelines[i]);
2144 if (result != VK_SUCCESS)
2145 final_result = result;
2146 }
2147
2148 return final_result;
2149 }
2150
2151 void
2152 tu_DestroyPipeline(VkDevice _device,
2153 VkPipeline _pipeline,
2154 const VkAllocationCallbacks *pAllocator)
2155 {
2156 TU_FROM_HANDLE(tu_device, dev, _device);
2157 TU_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
2158
2159 if (!_pipeline)
2160 return;
2161
2162 tu_pipeline_finish(pipeline, dev, pAllocator);
2163 vk_free2(&dev->alloc, pAllocator, pipeline);
2164 }