turnip: use global bo for clear blit shaders
[mesa.git] / src / freedreno / vulkan / tu_private.h
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #ifndef TU_PRIVATE_H
29 #define TU_PRIVATE_H
30
31 #include <assert.h>
32 #include <pthread.h>
33 #include <stdbool.h>
34 #include <stdint.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #ifdef HAVE_VALGRIND
39 #include <memcheck.h>
40 #include <valgrind.h>
41 #define VG(x) x
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "c11/threads.h"
47 #include "main/macros.h"
48 #include "util/list.h"
49 #include "util/macros.h"
50 #include "util/u_atomic.h"
51 #include "vk_alloc.h"
52 #include "vk_debug_report.h"
53 #include "wsi_common.h"
54
55 #include "drm-uapi/msm_drm.h"
56 #include "ir3/ir3_compiler.h"
57 #include "ir3/ir3_shader.h"
58
59 #include "adreno_common.xml.h"
60 #include "adreno_pm4.xml.h"
61 #include "a6xx.xml.h"
62 #include "fdl/freedreno_layout.h"
63
64 #include "tu_descriptor_set.h"
65 #include "tu_extensions.h"
66 #include "tu_util.h"
67
68 /* Pre-declarations needed for WSI entrypoints */
69 struct wl_surface;
70 struct wl_display;
71 typedef struct xcb_connection_t xcb_connection_t;
72 typedef uint32_t xcb_visualid_t;
73 typedef uint32_t xcb_window_t;
74
75 #include <vulkan/vk_android_native_buffer.h>
76 #include <vulkan/vk_icd.h>
77 #include <vulkan/vulkan.h>
78 #include <vulkan/vulkan_intel.h>
79
80 #include "tu_entrypoints.h"
81
82 #include "vk_format.h"
83
84 #define MAX_VBS 32
85 #define MAX_VERTEX_ATTRIBS 32
86 #define MAX_RTS 8
87 #define MAX_VSC_PIPES 32
88 #define MAX_VIEWPORTS 1
89 #define MAX_SCISSORS 16
90 #define MAX_DISCARD_RECTANGLES 4
91 #define MAX_PUSH_CONSTANTS_SIZE 128
92 #define MAX_PUSH_DESCRIPTORS 32
93 #define MAX_DYNAMIC_UNIFORM_BUFFERS 16
94 #define MAX_DYNAMIC_STORAGE_BUFFERS 8
95 #define MAX_DYNAMIC_BUFFERS \
96 (MAX_DYNAMIC_UNIFORM_BUFFERS + MAX_DYNAMIC_STORAGE_BUFFERS)
97 #define TU_MAX_DRM_DEVICES 8
98 #define MAX_VIEWS 8
99 #define MAX_BIND_POINTS 2 /* compute + graphics */
100 /* The Qualcomm driver exposes 0x20000058 */
101 #define MAX_STORAGE_BUFFER_RANGE 0x20000000
102 /* We use ldc for uniform buffer loads, just like the Qualcomm driver, so
103 * expose the same maximum range.
104 * TODO: The SIZE bitfield is 15 bits, and in 4-dword units, so the actual
105 * range might be higher.
106 */
107 #define MAX_UNIFORM_BUFFER_RANGE 0x10000
108
109 #define A6XX_TEX_CONST_DWORDS 16
110 #define A6XX_TEX_SAMP_DWORDS 4
111
112 #define tu_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
113
114 static inline uint32_t
115 tu_minify(uint32_t n, uint32_t levels)
116 {
117 if (unlikely(n == 0))
118 return 0;
119 else
120 return MAX2(n >> levels, 1);
121 }
122
123 #define for_each_bit(b, dword) \
124 for (uint32_t __dword = (dword); \
125 (b) = __builtin_ffs(__dword) - 1, __dword; __dword &= ~(1 << (b)))
126
127 #define typed_memcpy(dest, src, count) \
128 ({ \
129 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
130 memcpy((dest), (src), (count) * sizeof(*(src))); \
131 })
132
133 #define COND(bool, val) ((bool) ? (val) : 0)
134 #define BIT(bit) (1u << (bit))
135
136 /* Whenever we generate an error, pass it through this function. Useful for
137 * debugging, where we can break on it. Only call at error site, not when
138 * propagating errors. Might be useful to plug in a stack trace here.
139 */
140
141 struct tu_instance;
142
143 VkResult
144 __vk_errorf(struct tu_instance *instance,
145 VkResult error,
146 const char *file,
147 int line,
148 const char *format,
149 ...);
150
151 #define vk_error(instance, error) \
152 __vk_errorf(instance, error, __FILE__, __LINE__, NULL);
153 #define vk_errorf(instance, error, format, ...) \
154 __vk_errorf(instance, error, __FILE__, __LINE__, format, ##__VA_ARGS__);
155
156 void
157 __tu_finishme(const char *file, int line, const char *format, ...)
158 tu_printflike(3, 4);
159 void
160 tu_loge(const char *format, ...) tu_printflike(1, 2);
161 void
162 tu_logi(const char *format, ...) tu_printflike(1, 2);
163
164 /**
165 * Print a FINISHME message, including its source location.
166 */
167 #define tu_finishme(format, ...) \
168 do { \
169 static bool reported = false; \
170 if (!reported) { \
171 __tu_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \
172 reported = true; \
173 } \
174 } while (0)
175
176 #define tu_stub() \
177 do { \
178 tu_finishme("stub %s", __func__); \
179 } while (0)
180
181 void *
182 tu_lookup_entrypoint_unchecked(const char *name);
183 void *
184 tu_lookup_entrypoint_checked(
185 const char *name,
186 uint32_t core_version,
187 const struct tu_instance_extension_table *instance,
188 const struct tu_device_extension_table *device);
189
190 struct tu_physical_device
191 {
192 VK_LOADER_DATA _loader_data;
193
194 struct tu_instance *instance;
195
196 char path[20];
197 char name[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];
198 uint8_t driver_uuid[VK_UUID_SIZE];
199 uint8_t device_uuid[VK_UUID_SIZE];
200 uint8_t cache_uuid[VK_UUID_SIZE];
201
202 struct wsi_device wsi_device;
203
204 int local_fd;
205 int master_fd;
206
207 unsigned gpu_id;
208 uint32_t gmem_size;
209 uint64_t gmem_base;
210 uint32_t ccu_offset_gmem;
211 uint32_t ccu_offset_bypass;
212 /* alignment for size of tiles */
213 uint32_t tile_align_w;
214 #define TILE_ALIGN_H 16
215 /* gmem store/load granularity */
216 #define GMEM_ALIGN_W 16
217 #define GMEM_ALIGN_H 4
218
219 struct {
220 uint32_t PC_UNKNOWN_9805;
221 uint32_t SP_UNKNOWN_A0F8;
222 } magic;
223
224 int msm_major_version;
225 int msm_minor_version;
226
227 /* This is the drivers on-disk cache used as a fallback as opposed to
228 * the pipeline cache defined by apps.
229 */
230 struct disk_cache *disk_cache;
231
232 struct tu_device_extension_table supported_extensions;
233 };
234
235 enum tu_debug_flags
236 {
237 TU_DEBUG_STARTUP = 1 << 0,
238 TU_DEBUG_NIR = 1 << 1,
239 TU_DEBUG_IR3 = 1 << 2,
240 TU_DEBUG_NOBIN = 1 << 3,
241 TU_DEBUG_SYSMEM = 1 << 4,
242 TU_DEBUG_FORCEBIN = 1 << 5,
243 TU_DEBUG_NOUBWC = 1 << 6,
244 };
245
246 struct tu_instance
247 {
248 VK_LOADER_DATA _loader_data;
249
250 VkAllocationCallbacks alloc;
251
252 uint32_t api_version;
253 int physical_device_count;
254 struct tu_physical_device physical_devices[TU_MAX_DRM_DEVICES];
255
256 enum tu_debug_flags debug_flags;
257
258 struct vk_debug_report_instance debug_report_callbacks;
259
260 struct tu_instance_extension_table enabled_extensions;
261 };
262
263 VkResult
264 tu_wsi_init(struct tu_physical_device *physical_device);
265 void
266 tu_wsi_finish(struct tu_physical_device *physical_device);
267
268 bool
269 tu_instance_extension_supported(const char *name);
270 uint32_t
271 tu_physical_device_api_version(struct tu_physical_device *dev);
272 bool
273 tu_physical_device_extension_supported(struct tu_physical_device *dev,
274 const char *name);
275
276 struct cache_entry;
277
278 struct tu_pipeline_cache
279 {
280 struct tu_device *device;
281 pthread_mutex_t mutex;
282
283 uint32_t total_size;
284 uint32_t table_size;
285 uint32_t kernel_count;
286 struct cache_entry **hash_table;
287 bool modified;
288
289 VkAllocationCallbacks alloc;
290 };
291
292 struct tu_pipeline_key
293 {
294 };
295
296
297 /* queue types */
298 #define TU_QUEUE_GENERAL 0
299
300 #define TU_MAX_QUEUE_FAMILIES 1
301
302 struct tu_fence
303 {
304 struct wsi_fence *fence_wsi;
305 bool signaled;
306 int fd;
307 };
308
309 void
310 tu_fence_init(struct tu_fence *fence, bool signaled);
311 void
312 tu_fence_finish(struct tu_fence *fence);
313 void
314 tu_fence_update_fd(struct tu_fence *fence, int fd);
315 void
316 tu_fence_copy(struct tu_fence *fence, const struct tu_fence *src);
317 void
318 tu_fence_signal(struct tu_fence *fence);
319 void
320 tu_fence_wait_idle(struct tu_fence *fence);
321
322 struct tu_queue
323 {
324 VK_LOADER_DATA _loader_data;
325 struct tu_device *device;
326 uint32_t queue_family_index;
327 int queue_idx;
328 VkDeviceQueueCreateFlags flags;
329
330 uint32_t msm_queue_id;
331 struct tu_fence submit_fence;
332 };
333
334 struct tu_bo
335 {
336 uint32_t gem_handle;
337 uint64_t size;
338 uint64_t iova;
339 void *map;
340 };
341
342 enum global_shader {
343 GLOBAL_SH_VS,
344 GLOBAL_SH_VS_LAYER,
345 GLOBAL_SH_GS_LAYER,
346 GLOBAL_SH_FS_BLIT,
347 GLOBAL_SH_FS_CLEAR0,
348 GLOBAL_SH_FS_CLEAR_MAX = GLOBAL_SH_FS_CLEAR0 + MAX_RTS,
349 GLOBAL_SH_COUNT,
350 };
351
352 /* This struct defines the layout of the global_bo */
353 struct tu6_global
354 {
355 /* 6 bcolor_entry entries, one for each VK_BORDER_COLOR */
356 uint8_t border_color[128 * 6];
357
358 /* clear/blit shaders, all <= 16 instrs (16 instr = 1 instrlen unit) */
359 instr_t shaders[GLOBAL_SH_COUNT][16];
360
361 uint32_t seqno_dummy; /* dummy seqno for CP_EVENT_WRITE */
362 uint32_t _pad0;
363 volatile uint32_t vsc_draw_overflow;
364 uint32_t _pad1;
365 volatile uint32_t vsc_prim_overflow;
366 uint32_t _pad2[3];
367
368 /* scratch space for VPC_SO[i].FLUSH_BASE_LO/HI, start on 32 byte boundary. */
369 struct {
370 uint32_t offset;
371 uint32_t pad[7];
372 } flush_base[4];
373 };
374 #define gb_offset(member) offsetof(struct tu6_global, member)
375 #define global_iova(cmd, member) ((cmd)->device->global_bo.iova + gb_offset(member))
376
377 void tu_init_clear_blit_shaders(struct tu6_global *global);
378
379 /* extra space in vsc draw/prim streams */
380 #define VSC_PAD 0x40
381
382 struct tu_device
383 {
384 VK_LOADER_DATA _loader_data;
385
386 VkAllocationCallbacks alloc;
387
388 struct tu_instance *instance;
389
390 struct tu_queue *queues[TU_MAX_QUEUE_FAMILIES];
391 int queue_count[TU_MAX_QUEUE_FAMILIES];
392
393 struct tu_physical_device *physical_device;
394 int _lost;
395
396 struct ir3_compiler *compiler;
397
398 /* Backup in-memory cache to be used if the app doesn't provide one */
399 struct tu_pipeline_cache *mem_cache;
400
401 #define MIN_SCRATCH_BO_SIZE_LOG2 12 /* A page */
402
403 /* Currently the kernel driver uses a 32-bit GPU address space, but it
404 * should be impossible to go beyond 48 bits.
405 */
406 struct {
407 struct tu_bo bo;
408 mtx_t construct_mtx;
409 bool initialized;
410 } scratch_bos[48 - MIN_SCRATCH_BO_SIZE_LOG2];
411
412 struct tu_bo global_bo;
413
414 struct tu_device_extension_table enabled_extensions;
415
416 uint32_t vsc_draw_strm_pitch;
417 uint32_t vsc_prim_strm_pitch;
418 mtx_t vsc_pitch_mtx;
419 };
420
421 VkResult _tu_device_set_lost(struct tu_device *device,
422 const char *file, int line,
423 const char *msg, ...) PRINTFLIKE(4, 5);
424 #define tu_device_set_lost(dev, ...) \
425 _tu_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
426
427 static inline bool
428 tu_device_is_lost(struct tu_device *device)
429 {
430 return unlikely(p_atomic_read(&device->_lost));
431 }
432
433 VkResult
434 tu_bo_init_new(struct tu_device *dev, struct tu_bo *bo, uint64_t size);
435 VkResult
436 tu_bo_init_dmabuf(struct tu_device *dev,
437 struct tu_bo *bo,
438 uint64_t size,
439 int fd);
440 int
441 tu_bo_export_dmabuf(struct tu_device *dev, struct tu_bo *bo);
442 void
443 tu_bo_finish(struct tu_device *dev, struct tu_bo *bo);
444 VkResult
445 tu_bo_map(struct tu_device *dev, struct tu_bo *bo);
446
447 /* Get a scratch bo for use inside a command buffer. This will always return
448 * the same bo given the same size or similar sizes, so only one scratch bo
449 * can be used at the same time. It's meant for short-lived things where we
450 * need to write to some piece of memory, read from it, and then immediately
451 * discard it.
452 */
453 VkResult
454 tu_get_scratch_bo(struct tu_device *dev, uint64_t size, struct tu_bo **bo);
455
456 struct tu_cs_entry
457 {
458 /* No ownership */
459 const struct tu_bo *bo;
460
461 uint32_t size;
462 uint32_t offset;
463 };
464
465 struct tu_cs_memory {
466 uint32_t *map;
467 uint64_t iova;
468 };
469
470 struct tu_draw_state {
471 uint64_t iova : 48;
472 uint32_t size : 16;
473 };
474
475 enum tu_dynamic_state
476 {
477 /* re-use VK_DYNAMIC_STATE_ enums for non-extended dynamic states */
478 TU_DYNAMIC_STATE_SAMPLE_LOCATIONS = VK_DYNAMIC_STATE_STENCIL_REFERENCE + 1,
479 TU_DYNAMIC_STATE_COUNT,
480 };
481
482 enum tu_draw_state_group_id
483 {
484 TU_DRAW_STATE_PROGRAM,
485 TU_DRAW_STATE_PROGRAM_BINNING,
486 TU_DRAW_STATE_TESS,
487 TU_DRAW_STATE_VB,
488 TU_DRAW_STATE_VI,
489 TU_DRAW_STATE_VI_BINNING,
490 TU_DRAW_STATE_RAST,
491 TU_DRAW_STATE_DS,
492 TU_DRAW_STATE_BLEND,
493 TU_DRAW_STATE_VS_CONST,
494 TU_DRAW_STATE_HS_CONST,
495 TU_DRAW_STATE_DS_CONST,
496 TU_DRAW_STATE_GS_CONST,
497 TU_DRAW_STATE_FS_CONST,
498 TU_DRAW_STATE_DESC_SETS,
499 TU_DRAW_STATE_DESC_SETS_LOAD,
500 TU_DRAW_STATE_VS_PARAMS,
501 TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
502 TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
503
504 /* dynamic state related draw states */
505 TU_DRAW_STATE_DYNAMIC,
506 TU_DRAW_STATE_COUNT = TU_DRAW_STATE_DYNAMIC + TU_DYNAMIC_STATE_COUNT,
507 };
508
509 enum tu_cs_mode
510 {
511
512 /*
513 * A command stream in TU_CS_MODE_GROW mode grows automatically whenever it
514 * is full. tu_cs_begin must be called before command packet emission and
515 * tu_cs_end must be called after.
516 *
517 * This mode may create multiple entries internally. The entries must be
518 * submitted together.
519 */
520 TU_CS_MODE_GROW,
521
522 /*
523 * A command stream in TU_CS_MODE_EXTERNAL mode wraps an external,
524 * fixed-size buffer. tu_cs_begin and tu_cs_end are optional and have no
525 * effect on it.
526 *
527 * This mode does not create any entry or any BO.
528 */
529 TU_CS_MODE_EXTERNAL,
530
531 /*
532 * A command stream in TU_CS_MODE_SUB_STREAM mode does not support direct
533 * command packet emission. tu_cs_begin_sub_stream must be called to get a
534 * sub-stream to emit comamnd packets to. When done with the sub-stream,
535 * tu_cs_end_sub_stream must be called.
536 *
537 * This mode does not create any entry internally.
538 */
539 TU_CS_MODE_SUB_STREAM,
540 };
541
542 struct tu_cs
543 {
544 uint32_t *start;
545 uint32_t *cur;
546 uint32_t *reserved_end;
547 uint32_t *end;
548
549 struct tu_device *device;
550 enum tu_cs_mode mode;
551 uint32_t next_bo_size;
552
553 struct tu_cs_entry *entries;
554 uint32_t entry_count;
555 uint32_t entry_capacity;
556
557 struct tu_bo **bos;
558 uint32_t bo_count;
559 uint32_t bo_capacity;
560
561 /* state for cond_exec_start/cond_exec_end */
562 uint32_t cond_flags;
563 uint32_t *cond_dwords;
564 };
565
566 struct tu_device_memory
567 {
568 struct tu_bo bo;
569 VkDeviceSize size;
570
571 /* for dedicated allocations */
572 struct tu_image *image;
573 struct tu_buffer *buffer;
574
575 uint32_t type_index;
576 void *map;
577 void *user_ptr;
578 };
579
580 struct tu_descriptor_range
581 {
582 uint64_t va;
583 uint32_t size;
584 };
585
586 struct tu_descriptor_set
587 {
588 const struct tu_descriptor_set_layout *layout;
589 struct tu_descriptor_pool *pool;
590 uint32_t size;
591
592 uint64_t va;
593 uint32_t *mapped_ptr;
594
595 uint32_t *dynamic_descriptors;
596
597 struct tu_bo *buffers[0];
598 };
599
600 struct tu_push_descriptor_set
601 {
602 struct tu_descriptor_set set;
603 uint32_t capacity;
604 };
605
606 struct tu_descriptor_pool_entry
607 {
608 uint32_t offset;
609 uint32_t size;
610 struct tu_descriptor_set *set;
611 };
612
613 struct tu_descriptor_pool
614 {
615 struct tu_bo bo;
616 uint64_t current_offset;
617 uint64_t size;
618
619 uint8_t *host_memory_base;
620 uint8_t *host_memory_ptr;
621 uint8_t *host_memory_end;
622
623 uint32_t entry_count;
624 uint32_t max_entry_count;
625 struct tu_descriptor_pool_entry entries[0];
626 };
627
628 struct tu_descriptor_update_template_entry
629 {
630 VkDescriptorType descriptor_type;
631
632 /* The number of descriptors to update */
633 uint32_t descriptor_count;
634
635 /* Into mapped_ptr or dynamic_descriptors, in units of the respective array
636 */
637 uint32_t dst_offset;
638
639 /* In dwords. Not valid/used for dynamic descriptors */
640 uint32_t dst_stride;
641
642 uint32_t buffer_offset;
643
644 /* Only valid for combined image samplers and samplers */
645 uint16_t has_sampler;
646
647 /* In bytes */
648 size_t src_offset;
649 size_t src_stride;
650
651 /* For push descriptors */
652 const uint32_t *immutable_samplers;
653 };
654
655 struct tu_descriptor_update_template
656 {
657 uint32_t entry_count;
658 struct tu_descriptor_update_template_entry entry[0];
659 };
660
661 struct tu_buffer
662 {
663 VkDeviceSize size;
664
665 VkBufferUsageFlags usage;
666 VkBufferCreateFlags flags;
667
668 struct tu_bo *bo;
669 VkDeviceSize bo_offset;
670 };
671
672 static inline uint64_t
673 tu_buffer_iova(struct tu_buffer *buffer)
674 {
675 return buffer->bo->iova + buffer->bo_offset;
676 }
677
678 struct tu_vertex_binding
679 {
680 struct tu_buffer *buffer;
681 VkDeviceSize offset;
682 };
683
684 const char *
685 tu_get_debug_option_name(int id);
686
687 const char *
688 tu_get_perftest_option_name(int id);
689
690 struct tu_descriptor_state
691 {
692 struct tu_descriptor_set *sets[MAX_SETS];
693 uint32_t dynamic_descriptors[MAX_DYNAMIC_BUFFERS * A6XX_TEX_CONST_DWORDS];
694 };
695
696 enum tu_cmd_dirty_bits
697 {
698 TU_CMD_DIRTY_COMPUTE_PIPELINE = 1 << 1,
699 TU_CMD_DIRTY_VERTEX_BUFFERS = 1 << 2,
700 TU_CMD_DIRTY_DESCRIPTOR_SETS = 1 << 3,
701 TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS = 1 << 4,
702 TU_CMD_DIRTY_SHADER_CONSTS = 1 << 5,
703 /* all draw states were disabled and need to be re-enabled: */
704 TU_CMD_DIRTY_DRAW_STATE = 1 << 7,
705 };
706
707 /* There are only three cache domains we have to care about: the CCU, or
708 * color cache unit, which is used for color and depth/stencil attachments
709 * and copy/blit destinations, and is split conceptually into color and depth,
710 * and the universal cache or UCHE which is used for pretty much everything
711 * else, except for the CP (uncached) and host. We need to flush whenever data
712 * crosses these boundaries.
713 */
714
715 enum tu_cmd_access_mask {
716 TU_ACCESS_UCHE_READ = 1 << 0,
717 TU_ACCESS_UCHE_WRITE = 1 << 1,
718 TU_ACCESS_CCU_COLOR_READ = 1 << 2,
719 TU_ACCESS_CCU_COLOR_WRITE = 1 << 3,
720 TU_ACCESS_CCU_DEPTH_READ = 1 << 4,
721 TU_ACCESS_CCU_DEPTH_WRITE = 1 << 5,
722
723 /* Experiments have shown that while it's safe to avoid flushing the CCU
724 * after each blit/renderpass, it's not safe to assume that subsequent
725 * lookups with a different attachment state will hit unflushed cache
726 * entries. That is, the CCU needs to be flushed and possibly invalidated
727 * when accessing memory with a different attachment state. Writing to an
728 * attachment under the following conditions after clearing using the
729 * normal 2d engine path is known to have issues:
730 *
731 * - It isn't the 0'th layer.
732 * - There are more than one attachment, and this isn't the 0'th attachment
733 * (this seems to also depend on the cpp of the attachments).
734 *
735 * Our best guess is that the layer/MRT state is used when computing
736 * the location of a cache entry in CCU, to avoid conflicts. We assume that
737 * any access in a renderpass after or before an access by a transfer needs
738 * a flush/invalidate, and use the _INCOHERENT variants to represent access
739 * by a transfer.
740 */
741 TU_ACCESS_CCU_COLOR_INCOHERENT_READ = 1 << 6,
742 TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE = 1 << 7,
743 TU_ACCESS_CCU_DEPTH_INCOHERENT_READ = 1 << 8,
744 TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE = 1 << 9,
745
746 TU_ACCESS_SYSMEM_READ = 1 << 10,
747 TU_ACCESS_SYSMEM_WRITE = 1 << 11,
748
749 /* Set if a WFI is required due to data being read by the CP or the 2D
750 * engine.
751 */
752 TU_ACCESS_WFI_READ = 1 << 12,
753
754 TU_ACCESS_READ =
755 TU_ACCESS_UCHE_READ |
756 TU_ACCESS_CCU_COLOR_READ |
757 TU_ACCESS_CCU_DEPTH_READ |
758 TU_ACCESS_CCU_COLOR_INCOHERENT_READ |
759 TU_ACCESS_CCU_DEPTH_INCOHERENT_READ |
760 TU_ACCESS_SYSMEM_READ,
761
762 TU_ACCESS_WRITE =
763 TU_ACCESS_UCHE_WRITE |
764 TU_ACCESS_CCU_COLOR_WRITE |
765 TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE |
766 TU_ACCESS_CCU_DEPTH_WRITE |
767 TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE |
768 TU_ACCESS_SYSMEM_WRITE,
769
770 TU_ACCESS_ALL =
771 TU_ACCESS_READ |
772 TU_ACCESS_WRITE,
773 };
774
775 enum tu_cmd_flush_bits {
776 TU_CMD_FLAG_CCU_FLUSH_DEPTH = 1 << 0,
777 TU_CMD_FLAG_CCU_FLUSH_COLOR = 1 << 1,
778 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH = 1 << 2,
779 TU_CMD_FLAG_CCU_INVALIDATE_COLOR = 1 << 3,
780 TU_CMD_FLAG_CACHE_FLUSH = 1 << 4,
781 TU_CMD_FLAG_CACHE_INVALIDATE = 1 << 5,
782
783 TU_CMD_FLAG_ALL_FLUSH =
784 TU_CMD_FLAG_CCU_FLUSH_DEPTH |
785 TU_CMD_FLAG_CCU_FLUSH_COLOR |
786 TU_CMD_FLAG_CACHE_FLUSH,
787
788 TU_CMD_FLAG_ALL_INVALIDATE =
789 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
790 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
791 TU_CMD_FLAG_CACHE_INVALIDATE,
792
793 TU_CMD_FLAG_WFI = 1 << 6,
794 };
795
796 /* Changing the CCU from sysmem mode to gmem mode or vice-versa is pretty
797 * heavy, involving a CCU cache flush/invalidate and a WFI in order to change
798 * which part of the gmem is used by the CCU. Here we keep track of what the
799 * state of the CCU.
800 */
801 enum tu_cmd_ccu_state {
802 TU_CMD_CCU_SYSMEM,
803 TU_CMD_CCU_GMEM,
804 TU_CMD_CCU_UNKNOWN,
805 };
806
807 struct tu_cache_state {
808 /* Caches which must be made available (flushed) eventually if there are
809 * any users outside that cache domain, and caches which must be
810 * invalidated eventually if there are any reads.
811 */
812 enum tu_cmd_flush_bits pending_flush_bits;
813 /* Pending flushes */
814 enum tu_cmd_flush_bits flush_bits;
815 };
816
817 struct tu_cmd_state
818 {
819 uint32_t dirty;
820
821 struct tu_pipeline *pipeline;
822 struct tu_pipeline *compute_pipeline;
823
824 /* Vertex buffers */
825 struct
826 {
827 struct tu_buffer *buffers[MAX_VBS];
828 VkDeviceSize offsets[MAX_VBS];
829 } vb;
830
831 /* for dynamic states that can't be emitted directly */
832 uint32_t dynamic_stencil_mask;
833 uint32_t dynamic_stencil_wrmask;
834 uint32_t dynamic_stencil_ref;
835 uint32_t dynamic_gras_su_cntl;
836
837 /* saved states to re-emit in TU_CMD_DIRTY_DRAW_STATE case */
838 struct tu_draw_state dynamic_state[TU_DYNAMIC_STATE_COUNT];
839 struct tu_cs_entry vertex_buffers_ib;
840 struct tu_cs_entry shader_const_ib[MESA_SHADER_STAGES];
841 struct tu_cs_entry desc_sets_ib, desc_sets_load_ib;
842 struct tu_cs_entry ia_gmem_ib, ia_sysmem_ib;
843
844 struct tu_draw_state vs_params;
845
846 /* Index buffer */
847 uint64_t index_va;
848 uint32_t max_index_count;
849 uint8_t index_size;
850
851 /* because streamout base has to be 32-byte aligned
852 * there is an extra offset to deal with when it is
853 * unaligned
854 */
855 uint8_t streamout_offset[IR3_MAX_SO_BUFFERS];
856
857 /* Renderpasses are tricky, because we may need to flush differently if
858 * using sysmem vs. gmem and therefore we have to delay any flushing that
859 * happens before a renderpass. So we have to have two copies of the flush
860 * state, one for intra-renderpass flushes (i.e. renderpass dependencies)
861 * and one for outside a renderpass.
862 */
863 struct tu_cache_state cache;
864 struct tu_cache_state renderpass_cache;
865
866 enum tu_cmd_ccu_state ccu_state;
867
868 const struct tu_render_pass *pass;
869 const struct tu_subpass *subpass;
870 const struct tu_framebuffer *framebuffer;
871 VkRect2D render_area;
872
873 struct tu_cs_entry tile_store_ib;
874
875 bool xfb_used;
876 };
877
878 struct tu_cmd_pool
879 {
880 VkAllocationCallbacks alloc;
881 struct list_head cmd_buffers;
882 struct list_head free_cmd_buffers;
883 uint32_t queue_family_index;
884 };
885
886 struct tu_cmd_buffer_upload
887 {
888 uint8_t *map;
889 unsigned offset;
890 uint64_t size;
891 struct list_head list;
892 };
893
894 enum tu_cmd_buffer_status
895 {
896 TU_CMD_BUFFER_STATUS_INVALID,
897 TU_CMD_BUFFER_STATUS_INITIAL,
898 TU_CMD_BUFFER_STATUS_RECORDING,
899 TU_CMD_BUFFER_STATUS_EXECUTABLE,
900 TU_CMD_BUFFER_STATUS_PENDING,
901 };
902
903 struct tu_bo_list
904 {
905 uint32_t count;
906 uint32_t capacity;
907 struct drm_msm_gem_submit_bo *bo_infos;
908 };
909
910 #define TU_BO_LIST_FAILED (~0)
911
912 void
913 tu_bo_list_init(struct tu_bo_list *list);
914 void
915 tu_bo_list_destroy(struct tu_bo_list *list);
916 void
917 tu_bo_list_reset(struct tu_bo_list *list);
918 uint32_t
919 tu_bo_list_add(struct tu_bo_list *list,
920 const struct tu_bo *bo,
921 uint32_t flags);
922 VkResult
923 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other);
924
925 struct tu_cmd_buffer
926 {
927 VK_LOADER_DATA _loader_data;
928
929 struct tu_device *device;
930
931 struct tu_cmd_pool *pool;
932 struct list_head pool_link;
933
934 VkCommandBufferUsageFlags usage_flags;
935 VkCommandBufferLevel level;
936 enum tu_cmd_buffer_status status;
937
938 struct tu_cmd_state state;
939 struct tu_vertex_binding vertex_bindings[MAX_VBS];
940 uint32_t vertex_bindings_set;
941 uint32_t queue_family_index;
942
943 uint32_t push_constants[MAX_PUSH_CONSTANTS_SIZE / 4];
944 VkShaderStageFlags push_constant_stages;
945 struct tu_descriptor_set meta_push_descriptors;
946
947 struct tu_descriptor_state descriptors[MAX_BIND_POINTS];
948
949 struct tu_cmd_buffer_upload upload;
950
951 VkResult record_result;
952
953 struct tu_bo_list bo_list;
954 struct tu_cs cs;
955 struct tu_cs draw_cs;
956 struct tu_cs draw_epilogue_cs;
957 struct tu_cs sub_cs;
958
959 bool has_tess;
960
961 uint32_t vsc_draw_strm_pitch;
962 uint32_t vsc_prim_strm_pitch;
963 };
964
965 /* Temporary struct for tracking a register state to be written, used by
966 * a6xx-pack.h and tu_cs_emit_regs()
967 */
968 struct tu_reg_value {
969 uint32_t reg;
970 uint64_t value;
971 bool is_address;
972 struct tu_bo *bo;
973 bool bo_write;
974 uint32_t bo_offset;
975 uint32_t bo_shift;
976 };
977
978
979 void tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
980 struct tu_cs *cs);
981
982 void tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
983 struct tu_cs *cs,
984 enum tu_cmd_ccu_state ccu_state);
985
986 void
987 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
988 struct tu_cs *cs,
989 enum vgt_event_type event);
990
991 static inline struct tu_descriptor_state *
992 tu_get_descriptors_state(struct tu_cmd_buffer *cmd_buffer,
993 VkPipelineBindPoint bind_point)
994 {
995 return &cmd_buffer->descriptors[bind_point];
996 }
997
998 struct tu_event
999 {
1000 struct tu_bo bo;
1001 };
1002
1003 struct tu_shader_module
1004 {
1005 unsigned char sha1[20];
1006
1007 uint32_t code_size;
1008 const uint32_t *code[0];
1009 };
1010
1011 struct tu_push_constant_range
1012 {
1013 uint32_t lo;
1014 uint32_t count;
1015 };
1016
1017 struct tu_shader
1018 {
1019 struct ir3_shader *ir3_shader;
1020
1021 struct tu_push_constant_range push_consts;
1022 uint8_t active_desc_sets;
1023 };
1024
1025 struct tu_shader *
1026 tu_shader_create(struct tu_device *dev,
1027 gl_shader_stage stage,
1028 const VkPipelineShaderStageCreateInfo *stage_info,
1029 struct tu_pipeline_layout *layout,
1030 const VkAllocationCallbacks *alloc);
1031
1032 void
1033 tu_shader_destroy(struct tu_device *dev,
1034 struct tu_shader *shader,
1035 const VkAllocationCallbacks *alloc);
1036
1037 struct tu_program_descriptor_linkage
1038 {
1039 struct ir3_const_state const_state;
1040
1041 uint32_t constlen;
1042
1043 struct tu_push_constant_range push_consts;
1044 };
1045
1046 struct tu_pipeline
1047 {
1048 struct tu_cs cs;
1049
1050 struct tu_pipeline_layout *layout;
1051
1052 bool need_indirect_descriptor_sets;
1053 VkShaderStageFlags active_stages;
1054 uint32_t active_desc_sets;
1055
1056 /* mask of enabled dynamic states
1057 * if BIT(i) is set, pipeline->dynamic_state[i] is *NOT* used
1058 */
1059 uint32_t dynamic_state_mask;
1060 struct tu_draw_state dynamic_state[TU_DYNAMIC_STATE_COUNT];
1061
1062 /* gras_su_cntl without line width, used for dynamic line width state */
1063 uint32_t gras_su_cntl;
1064
1065 struct
1066 {
1067 struct tu_cs_entry state_ib;
1068 struct tu_cs_entry binning_state_ib;
1069
1070 struct tu_program_descriptor_linkage link[MESA_SHADER_STAGES];
1071 } program;
1072
1073 struct
1074 {
1075 struct tu_cs_entry state_ib;
1076 } load_state;
1077
1078 struct
1079 {
1080 struct tu_cs_entry state_ib;
1081 struct tu_cs_entry binning_state_ib;
1082 uint32_t bindings_used;
1083 } vi;
1084
1085 struct
1086 {
1087 enum pc_di_primtype primtype;
1088 bool primitive_restart;
1089 } ia;
1090
1091 struct
1092 {
1093 uint32_t patch_type;
1094 uint32_t param_stride;
1095 uint32_t hs_bo_regid;
1096 uint32_t ds_bo_regid;
1097 bool upper_left_domain_origin;
1098 } tess;
1099
1100 struct
1101 {
1102 struct tu_cs_entry state_ib;
1103 } rast;
1104
1105 struct
1106 {
1107 struct tu_cs_entry state_ib;
1108 } ds;
1109
1110 struct
1111 {
1112 struct tu_cs_entry state_ib;
1113 } blend;
1114
1115 struct
1116 {
1117 uint32_t local_size[3];
1118 } compute;
1119 };
1120
1121 void
1122 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport);
1123
1124 void
1125 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor);
1126
1127 void
1128 tu6_emit_sample_locations(struct tu_cs *cs, const VkSampleLocationsInfoEXT *samp_loc);
1129
1130 void
1131 tu6_emit_depth_bias(struct tu_cs *cs,
1132 float constant_factor,
1133 float clamp,
1134 float slope_factor);
1135
1136 void tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits samples);
1137
1138 void tu6_emit_window_scissor(struct tu_cs *cs, uint32_t x1, uint32_t y1, uint32_t x2, uint32_t y2);
1139
1140 void tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1);
1141
1142 void
1143 tu6_emit_xs_config(struct tu_cs *cs,
1144 gl_shader_stage stage,
1145 const struct ir3_shader_variant *xs,
1146 uint64_t binary_iova);
1147
1148 void
1149 tu6_emit_vpc(struct tu_cs *cs,
1150 const struct ir3_shader_variant *vs,
1151 const struct ir3_shader_variant *hs,
1152 const struct ir3_shader_variant *ds,
1153 const struct ir3_shader_variant *gs,
1154 const struct ir3_shader_variant *fs);
1155
1156 void
1157 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs);
1158
1159 struct tu_image_view;
1160
1161 void
1162 tu_resolve_sysmem(struct tu_cmd_buffer *cmd,
1163 struct tu_cs *cs,
1164 struct tu_image_view *src,
1165 struct tu_image_view *dst,
1166 uint32_t layers,
1167 const VkRect2D *rect);
1168
1169 void
1170 tu_clear_sysmem_attachment(struct tu_cmd_buffer *cmd,
1171 struct tu_cs *cs,
1172 uint32_t a,
1173 const VkRenderPassBeginInfo *info);
1174
1175 void
1176 tu_clear_gmem_attachment(struct tu_cmd_buffer *cmd,
1177 struct tu_cs *cs,
1178 uint32_t a,
1179 const VkRenderPassBeginInfo *info);
1180
1181 void
1182 tu_load_gmem_attachment(struct tu_cmd_buffer *cmd,
1183 struct tu_cs *cs,
1184 uint32_t a,
1185 bool force_load);
1186
1187 /* expose this function to be able to emit load without checking LOAD_OP */
1188 void
1189 tu_emit_load_gmem_attachment(struct tu_cmd_buffer *cmd, struct tu_cs *cs, uint32_t a);
1190
1191 /* note: gmem store can also resolve */
1192 void
1193 tu_store_gmem_attachment(struct tu_cmd_buffer *cmd,
1194 struct tu_cs *cs,
1195 uint32_t a,
1196 uint32_t gmem_a);
1197
1198 enum tu_supported_formats {
1199 FMT_VERTEX = 1,
1200 FMT_TEXTURE = 2,
1201 FMT_COLOR = 4,
1202 };
1203
1204 struct tu_native_format
1205 {
1206 enum a6xx_format fmt : 8;
1207 enum a3xx_color_swap swap : 8;
1208 enum a6xx_tile_mode tile_mode : 8;
1209 enum tu_supported_formats supported : 8;
1210 };
1211
1212 struct tu_native_format tu6_format_vtx(VkFormat format);
1213 struct tu_native_format tu6_format_color(VkFormat format, enum a6xx_tile_mode tile_mode);
1214 struct tu_native_format tu6_format_texture(VkFormat format, enum a6xx_tile_mode tile_mode);
1215
1216 static inline enum a6xx_format
1217 tu6_base_format(VkFormat format)
1218 {
1219 /* note: tu6_format_color doesn't care about tiling for .fmt field */
1220 return tu6_format_color(format, TILE6_LINEAR).fmt;
1221 }
1222
1223 struct tu_image
1224 {
1225 VkImageType type;
1226 /* The original VkFormat provided by the client. This may not match any
1227 * of the actual surface formats.
1228 */
1229 VkFormat vk_format;
1230 VkImageAspectFlags aspects;
1231 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1232 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
1233 VkImageCreateFlags flags; /** VkImageCreateInfo::flags */
1234 VkExtent3D extent;
1235 uint32_t level_count;
1236 uint32_t layer_count;
1237 VkSampleCountFlagBits samples;
1238
1239 struct fdl_layout layout[3];
1240 uint32_t total_size;
1241
1242 unsigned queue_family_mask;
1243 bool exclusive;
1244 bool shareable;
1245
1246 /* For VK_ANDROID_native_buffer, the WSI image owns the memory, */
1247 VkDeviceMemory owned_memory;
1248
1249 /* Set when bound */
1250 struct tu_bo *bo;
1251 VkDeviceSize bo_offset;
1252 };
1253
1254 static inline uint32_t
1255 tu_get_layerCount(const struct tu_image *image,
1256 const VkImageSubresourceRange *range)
1257 {
1258 return range->layerCount == VK_REMAINING_ARRAY_LAYERS
1259 ? image->layer_count - range->baseArrayLayer
1260 : range->layerCount;
1261 }
1262
1263 static inline uint32_t
1264 tu_get_levelCount(const struct tu_image *image,
1265 const VkImageSubresourceRange *range)
1266 {
1267 return range->levelCount == VK_REMAINING_MIP_LEVELS
1268 ? image->level_count - range->baseMipLevel
1269 : range->levelCount;
1270 }
1271
1272 struct tu_image_view
1273 {
1274 struct tu_image *image; /**< VkImageViewCreateInfo::image */
1275
1276 uint64_t base_addr;
1277 uint64_t ubwc_addr;
1278 uint32_t layer_size;
1279 uint32_t ubwc_layer_size;
1280
1281 /* used to determine if fast gmem store path can be used */
1282 VkExtent2D extent;
1283 bool need_y2_align;
1284
1285 bool ubwc_enabled;
1286
1287 uint32_t descriptor[A6XX_TEX_CONST_DWORDS];
1288
1289 /* Descriptor for use as a storage image as opposed to a sampled image.
1290 * This has a few differences for cube maps (e.g. type).
1291 */
1292 uint32_t storage_descriptor[A6XX_TEX_CONST_DWORDS];
1293
1294 /* pre-filled register values */
1295 uint32_t PITCH;
1296 uint32_t FLAG_BUFFER_PITCH;
1297
1298 uint32_t RB_MRT_BUF_INFO;
1299 uint32_t SP_FS_MRT_REG;
1300
1301 uint32_t SP_PS_2D_SRC_INFO;
1302 uint32_t SP_PS_2D_SRC_SIZE;
1303
1304 uint32_t RB_2D_DST_INFO;
1305
1306 uint32_t RB_BLIT_DST_INFO;
1307 };
1308
1309 struct tu_sampler_ycbcr_conversion {
1310 VkFormat format;
1311 VkSamplerYcbcrModelConversion ycbcr_model;
1312 VkSamplerYcbcrRange ycbcr_range;
1313 VkComponentMapping components;
1314 VkChromaLocation chroma_offsets[2];
1315 VkFilter chroma_filter;
1316 };
1317
1318 struct tu_sampler {
1319 uint32_t descriptor[A6XX_TEX_SAMP_DWORDS];
1320 struct tu_sampler_ycbcr_conversion *ycbcr_sampler;
1321 };
1322
1323 void
1324 tu_cs_image_ref(struct tu_cs *cs, const struct tu_image_view *iview, uint32_t layer);
1325
1326 void
1327 tu_cs_image_ref_2d(struct tu_cs *cs, const struct tu_image_view *iview, uint32_t layer, bool src);
1328
1329 void
1330 tu_cs_image_flag_ref(struct tu_cs *cs, const struct tu_image_view *iview, uint32_t layer);
1331
1332 VkResult
1333 tu_image_create(VkDevice _device,
1334 const VkImageCreateInfo *pCreateInfo,
1335 const VkAllocationCallbacks *alloc,
1336 VkImage *pImage,
1337 uint64_t modifier,
1338 const VkSubresourceLayout *plane_layouts);
1339
1340 VkResult
1341 tu_image_from_gralloc(VkDevice device_h,
1342 const VkImageCreateInfo *base_info,
1343 const VkNativeBufferANDROID *gralloc_info,
1344 const VkAllocationCallbacks *alloc,
1345 VkImage *out_image_h);
1346
1347 void
1348 tu_image_view_init(struct tu_image_view *view,
1349 const VkImageViewCreateInfo *pCreateInfo);
1350
1351 struct tu_buffer_view
1352 {
1353 uint32_t descriptor[A6XX_TEX_CONST_DWORDS];
1354
1355 struct tu_buffer *buffer;
1356 };
1357 void
1358 tu_buffer_view_init(struct tu_buffer_view *view,
1359 struct tu_device *device,
1360 const VkBufferViewCreateInfo *pCreateInfo);
1361
1362 struct tu_attachment_info
1363 {
1364 struct tu_image_view *attachment;
1365 };
1366
1367 struct tu_framebuffer
1368 {
1369 uint32_t width;
1370 uint32_t height;
1371 uint32_t layers;
1372
1373 /* size of the first tile */
1374 VkExtent2D tile0;
1375 /* number of tiles */
1376 VkExtent2D tile_count;
1377
1378 /* size of the first VSC pipe */
1379 VkExtent2D pipe0;
1380 /* number of VSC pipes */
1381 VkExtent2D pipe_count;
1382
1383 /* pipe register values */
1384 uint32_t pipe_config[MAX_VSC_PIPES];
1385 uint32_t pipe_sizes[MAX_VSC_PIPES];
1386
1387 uint32_t attachment_count;
1388 struct tu_attachment_info attachments[0];
1389 };
1390
1391 void
1392 tu_framebuffer_tiling_config(struct tu_framebuffer *fb,
1393 const struct tu_device *device,
1394 const struct tu_render_pass *pass);
1395
1396 struct tu_subpass_barrier {
1397 VkPipelineStageFlags src_stage_mask;
1398 VkAccessFlags src_access_mask;
1399 VkAccessFlags dst_access_mask;
1400 bool incoherent_ccu_color, incoherent_ccu_depth;
1401 };
1402
1403 struct tu_subpass_attachment
1404 {
1405 uint32_t attachment;
1406 };
1407
1408 struct tu_subpass
1409 {
1410 uint32_t input_count;
1411 uint32_t color_count;
1412 struct tu_subpass_attachment *input_attachments;
1413 struct tu_subpass_attachment *color_attachments;
1414 struct tu_subpass_attachment *resolve_attachments;
1415 struct tu_subpass_attachment depth_stencil_attachment;
1416
1417 VkSampleCountFlagBits samples;
1418
1419 uint32_t srgb_cntl;
1420
1421 struct tu_subpass_barrier start_barrier;
1422 };
1423
1424 struct tu_render_pass_attachment
1425 {
1426 VkFormat format;
1427 uint32_t samples;
1428 uint32_t cpp;
1429 VkImageAspectFlags clear_mask;
1430 bool load;
1431 bool store;
1432 int32_t gmem_offset;
1433 };
1434
1435 struct tu_render_pass
1436 {
1437 uint32_t attachment_count;
1438 uint32_t subpass_count;
1439 uint32_t gmem_pixels;
1440 uint32_t tile_align_w;
1441 struct tu_subpass_attachment *subpass_attachments;
1442 struct tu_render_pass_attachment *attachments;
1443 struct tu_subpass_barrier end_barrier;
1444 struct tu_subpass subpasses[0];
1445 };
1446
1447 struct tu_query_pool
1448 {
1449 VkQueryType type;
1450 uint32_t stride;
1451 uint64_t size;
1452 uint32_t pipeline_statistics;
1453 struct tu_bo bo;
1454 };
1455
1456 enum tu_semaphore_kind
1457 {
1458 TU_SEMAPHORE_NONE,
1459 TU_SEMAPHORE_SYNCOBJ,
1460 };
1461
1462 struct tu_semaphore_part
1463 {
1464 enum tu_semaphore_kind kind;
1465 union {
1466 uint32_t syncobj;
1467 };
1468 };
1469
1470 struct tu_semaphore
1471 {
1472 struct tu_semaphore_part permanent;
1473 struct tu_semaphore_part temporary;
1474 };
1475
1476 void
1477 tu_set_descriptor_set(struct tu_cmd_buffer *cmd_buffer,
1478 VkPipelineBindPoint bind_point,
1479 struct tu_descriptor_set *set,
1480 unsigned idx);
1481
1482 void
1483 tu_update_descriptor_sets(struct tu_device *device,
1484 struct tu_cmd_buffer *cmd_buffer,
1485 VkDescriptorSet overrideSet,
1486 uint32_t descriptorWriteCount,
1487 const VkWriteDescriptorSet *pDescriptorWrites,
1488 uint32_t descriptorCopyCount,
1489 const VkCopyDescriptorSet *pDescriptorCopies);
1490
1491 void
1492 tu_update_descriptor_set_with_template(
1493 struct tu_device *device,
1494 struct tu_cmd_buffer *cmd_buffer,
1495 struct tu_descriptor_set *set,
1496 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1497 const void *pData);
1498
1499 int
1500 tu_drm_get_gpu_id(const struct tu_physical_device *dev, uint32_t *id);
1501
1502 int
1503 tu_drm_get_gmem_size(const struct tu_physical_device *dev, uint32_t *size);
1504
1505 int
1506 tu_drm_get_gmem_base(const struct tu_physical_device *dev, uint64_t *base);
1507
1508 int
1509 tu_drm_submitqueue_new(const struct tu_device *dev,
1510 int priority,
1511 uint32_t *queue_id);
1512
1513 void
1514 tu_drm_submitqueue_close(const struct tu_device *dev, uint32_t queue_id);
1515
1516 uint32_t
1517 tu_gem_new(const struct tu_device *dev, uint64_t size, uint32_t flags);
1518 uint32_t
1519 tu_gem_import_dmabuf(const struct tu_device *dev,
1520 int prime_fd,
1521 uint64_t size);
1522 int
1523 tu_gem_export_dmabuf(const struct tu_device *dev, uint32_t gem_handle);
1524 void
1525 tu_gem_close(const struct tu_device *dev, uint32_t gem_handle);
1526 uint64_t
1527 tu_gem_info_offset(const struct tu_device *dev, uint32_t gem_handle);
1528 uint64_t
1529 tu_gem_info_iova(const struct tu_device *dev, uint32_t gem_handle);
1530
1531 #define TU_DEFINE_HANDLE_CASTS(__tu_type, __VkType) \
1532 \
1533 static inline struct __tu_type *__tu_type##_from_handle(__VkType _handle) \
1534 { \
1535 return (struct __tu_type *) _handle; \
1536 } \
1537 \
1538 static inline __VkType __tu_type##_to_handle(struct __tu_type *_obj) \
1539 { \
1540 return (__VkType) _obj; \
1541 }
1542
1543 #define TU_DEFINE_NONDISP_HANDLE_CASTS(__tu_type, __VkType) \
1544 \
1545 static inline struct __tu_type *__tu_type##_from_handle(__VkType _handle) \
1546 { \
1547 return (struct __tu_type *) (uintptr_t) _handle; \
1548 } \
1549 \
1550 static inline __VkType __tu_type##_to_handle(struct __tu_type *_obj) \
1551 { \
1552 return (__VkType)(uintptr_t) _obj; \
1553 }
1554
1555 #define TU_FROM_HANDLE(__tu_type, __name, __handle) \
1556 struct __tu_type *__name = __tu_type##_from_handle(__handle)
1557
1558 TU_DEFINE_HANDLE_CASTS(tu_cmd_buffer, VkCommandBuffer)
1559 TU_DEFINE_HANDLE_CASTS(tu_device, VkDevice)
1560 TU_DEFINE_HANDLE_CASTS(tu_instance, VkInstance)
1561 TU_DEFINE_HANDLE_CASTS(tu_physical_device, VkPhysicalDevice)
1562 TU_DEFINE_HANDLE_CASTS(tu_queue, VkQueue)
1563
1564 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_cmd_pool, VkCommandPool)
1565 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_buffer, VkBuffer)
1566 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_buffer_view, VkBufferView)
1567 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_pool, VkDescriptorPool)
1568 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_set, VkDescriptorSet)
1569 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_set_layout,
1570 VkDescriptorSetLayout)
1571 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_update_template,
1572 VkDescriptorUpdateTemplate)
1573 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_device_memory, VkDeviceMemory)
1574 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_fence, VkFence)
1575 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_event, VkEvent)
1576 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_framebuffer, VkFramebuffer)
1577 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_image, VkImage)
1578 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_image_view, VkImageView);
1579 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_pipeline_cache, VkPipelineCache)
1580 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_pipeline, VkPipeline)
1581 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_pipeline_layout, VkPipelineLayout)
1582 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_query_pool, VkQueryPool)
1583 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_render_pass, VkRenderPass)
1584 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_sampler, VkSampler)
1585 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_sampler_ycbcr_conversion, VkSamplerYcbcrConversion)
1586 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_shader_module, VkShaderModule)
1587 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_semaphore, VkSemaphore)
1588
1589 #endif /* TU_PRIVATE_H */