turnip: move enum translation functions to a common header
[mesa.git] / src / freedreno / vulkan / tu_private.h
1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
25 * DEALINGS IN THE SOFTWARE.
26 */
27
28 #ifndef TU_PRIVATE_H
29 #define TU_PRIVATE_H
30
31 #include <assert.h>
32 #include <pthread.h>
33 #include <stdbool.h>
34 #include <stdint.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #ifdef HAVE_VALGRIND
39 #include <memcheck.h>
40 #include <valgrind.h>
41 #define VG(x) x
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "c11/threads.h"
47 #include "main/macros.h"
48 #include "util/list.h"
49 #include "util/macros.h"
50 #include "vk_alloc.h"
51 #include "vk_debug_report.h"
52 #include "wsi_common.h"
53
54 #include "drm-uapi/msm_drm.h"
55 #include "ir3/ir3_compiler.h"
56 #include "ir3/ir3_shader.h"
57
58 #include "adreno_common.xml.h"
59 #include "adreno_pm4.xml.h"
60 #include "a6xx.xml.h"
61 #include "fdl/freedreno_layout.h"
62
63 #include "tu_descriptor_set.h"
64 #include "tu_extensions.h"
65 #include "tu_util.h"
66
67 /* Pre-declarations needed for WSI entrypoints */
68 struct wl_surface;
69 struct wl_display;
70 typedef struct xcb_connection_t xcb_connection_t;
71 typedef uint32_t xcb_visualid_t;
72 typedef uint32_t xcb_window_t;
73
74 #include <vulkan/vk_android_native_buffer.h>
75 #include <vulkan/vk_icd.h>
76 #include <vulkan/vulkan.h>
77 #include <vulkan/vulkan_intel.h>
78
79 #include "tu_entrypoints.h"
80
81 #include "vk_format.h"
82
83 #define MAX_VBS 32
84 #define MAX_VERTEX_ATTRIBS 32
85 #define MAX_RTS 8
86 #define MAX_VSC_PIPES 32
87 #define MAX_VIEWPORTS 1
88 #define MAX_SCISSORS 16
89 #define MAX_DISCARD_RECTANGLES 4
90 #define MAX_PUSH_CONSTANTS_SIZE 128
91 #define MAX_PUSH_DESCRIPTORS 32
92 #define MAX_DYNAMIC_UNIFORM_BUFFERS 16
93 #define MAX_DYNAMIC_STORAGE_BUFFERS 8
94 #define MAX_DYNAMIC_BUFFERS \
95 (MAX_DYNAMIC_UNIFORM_BUFFERS + MAX_DYNAMIC_STORAGE_BUFFERS)
96 #define TU_MAX_DRM_DEVICES 8
97 #define MAX_VIEWS 8
98 #define MAX_BIND_POINTS 2 /* compute + graphics */
99 /* The Qualcomm driver exposes 0x20000058 */
100 #define MAX_STORAGE_BUFFER_RANGE 0x20000000
101 /* We use ldc for uniform buffer loads, just like the Qualcomm driver, so
102 * expose the same maximum range.
103 * TODO: The SIZE bitfield is 15 bits, and in 4-dword units, so the actual
104 * range might be higher.
105 */
106 #define MAX_UNIFORM_BUFFER_RANGE 0x10000
107
108 #define A6XX_TEX_CONST_DWORDS 16
109 #define A6XX_TEX_SAMP_DWORDS 4
110
111 #define tu_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
112
113 static inline uint32_t
114 tu_minify(uint32_t n, uint32_t levels)
115 {
116 if (unlikely(n == 0))
117 return 0;
118 else
119 return MAX2(n >> levels, 1);
120 }
121
122 #define for_each_bit(b, dword) \
123 for (uint32_t __dword = (dword); \
124 (b) = __builtin_ffs(__dword) - 1, __dword; __dword &= ~(1 << (b)))
125
126 #define typed_memcpy(dest, src, count) \
127 ({ \
128 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
129 memcpy((dest), (src), (count) * sizeof(*(src))); \
130 })
131
132 #define COND(bool, val) ((bool) ? (val) : 0)
133 #define BIT(bit) (1u << (bit))
134
135 /* Whenever we generate an error, pass it through this function. Useful for
136 * debugging, where we can break on it. Only call at error site, not when
137 * propagating errors. Might be useful to plug in a stack trace here.
138 */
139
140 struct tu_instance;
141
142 VkResult
143 __vk_errorf(struct tu_instance *instance,
144 VkResult error,
145 const char *file,
146 int line,
147 const char *format,
148 ...);
149
150 #define vk_error(instance, error) \
151 __vk_errorf(instance, error, __FILE__, __LINE__, NULL);
152 #define vk_errorf(instance, error, format, ...) \
153 __vk_errorf(instance, error, __FILE__, __LINE__, format, ##__VA_ARGS__);
154
155 void
156 __tu_finishme(const char *file, int line, const char *format, ...)
157 tu_printflike(3, 4);
158 void
159 tu_loge(const char *format, ...) tu_printflike(1, 2);
160 void
161 tu_logi(const char *format, ...) tu_printflike(1, 2);
162
163 /**
164 * Print a FINISHME message, including its source location.
165 */
166 #define tu_finishme(format, ...) \
167 do { \
168 static bool reported = false; \
169 if (!reported) { \
170 __tu_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \
171 reported = true; \
172 } \
173 } while (0)
174
175 #define tu_stub() \
176 do { \
177 tu_finishme("stub %s", __func__); \
178 } while (0)
179
180 void *
181 tu_lookup_entrypoint_unchecked(const char *name);
182 void *
183 tu_lookup_entrypoint_checked(
184 const char *name,
185 uint32_t core_version,
186 const struct tu_instance_extension_table *instance,
187 const struct tu_device_extension_table *device);
188
189 struct tu_physical_device
190 {
191 VK_LOADER_DATA _loader_data;
192
193 struct tu_instance *instance;
194
195 char path[20];
196 char name[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];
197 uint8_t driver_uuid[VK_UUID_SIZE];
198 uint8_t device_uuid[VK_UUID_SIZE];
199 uint8_t cache_uuid[VK_UUID_SIZE];
200
201 struct wsi_device wsi_device;
202
203 int local_fd;
204 int master_fd;
205
206 unsigned gpu_id;
207 uint32_t gmem_size;
208 uint64_t gmem_base;
209 uint32_t ccu_offset_gmem;
210 uint32_t ccu_offset_bypass;
211 /* alignment for size of tiles */
212 uint32_t tile_align_w;
213 #define TILE_ALIGN_H 16
214 /* gmem store/load granularity */
215 #define GMEM_ALIGN_W 16
216 #define GMEM_ALIGN_H 4
217
218 struct {
219 uint32_t PC_UNKNOWN_9805;
220 uint32_t SP_UNKNOWN_A0F8;
221 } magic;
222
223 /* This is the drivers on-disk cache used as a fallback as opposed to
224 * the pipeline cache defined by apps.
225 */
226 struct disk_cache *disk_cache;
227
228 struct tu_device_extension_table supported_extensions;
229 };
230
231 enum tu_debug_flags
232 {
233 TU_DEBUG_STARTUP = 1 << 0,
234 TU_DEBUG_NIR = 1 << 1,
235 TU_DEBUG_IR3 = 1 << 2,
236 TU_DEBUG_NOBIN = 1 << 3,
237 TU_DEBUG_SYSMEM = 1 << 4,
238 TU_DEBUG_FORCEBIN = 1 << 5,
239 TU_DEBUG_NOUBWC = 1 << 6,
240 };
241
242 struct tu_instance
243 {
244 VK_LOADER_DATA _loader_data;
245
246 VkAllocationCallbacks alloc;
247
248 uint32_t api_version;
249 int physical_device_count;
250 struct tu_physical_device physical_devices[TU_MAX_DRM_DEVICES];
251
252 enum tu_debug_flags debug_flags;
253
254 struct vk_debug_report_instance debug_report_callbacks;
255
256 struct tu_instance_extension_table enabled_extensions;
257 };
258
259 VkResult
260 tu_wsi_init(struct tu_physical_device *physical_device);
261 void
262 tu_wsi_finish(struct tu_physical_device *physical_device);
263
264 bool
265 tu_instance_extension_supported(const char *name);
266 uint32_t
267 tu_physical_device_api_version(struct tu_physical_device *dev);
268 bool
269 tu_physical_device_extension_supported(struct tu_physical_device *dev,
270 const char *name);
271
272 struct cache_entry;
273
274 struct tu_pipeline_cache
275 {
276 struct tu_device *device;
277 pthread_mutex_t mutex;
278
279 uint32_t total_size;
280 uint32_t table_size;
281 uint32_t kernel_count;
282 struct cache_entry **hash_table;
283 bool modified;
284
285 VkAllocationCallbacks alloc;
286 };
287
288 struct tu_pipeline_key
289 {
290 };
291
292
293 /* queue types */
294 #define TU_QUEUE_GENERAL 0
295
296 #define TU_MAX_QUEUE_FAMILIES 1
297
298 struct tu_fence
299 {
300 struct wsi_fence *fence_wsi;
301 bool signaled;
302 int fd;
303 };
304
305 void
306 tu_fence_init(struct tu_fence *fence, bool signaled);
307 void
308 tu_fence_finish(struct tu_fence *fence);
309 void
310 tu_fence_update_fd(struct tu_fence *fence, int fd);
311 void
312 tu_fence_copy(struct tu_fence *fence, const struct tu_fence *src);
313 void
314 tu_fence_signal(struct tu_fence *fence);
315 void
316 tu_fence_wait_idle(struct tu_fence *fence);
317
318 struct tu_queue
319 {
320 VK_LOADER_DATA _loader_data;
321 struct tu_device *device;
322 uint32_t queue_family_index;
323 int queue_idx;
324 VkDeviceQueueCreateFlags flags;
325
326 uint32_t msm_queue_id;
327 struct tu_fence submit_fence;
328 };
329
330 struct tu_bo
331 {
332 uint32_t gem_handle;
333 uint64_t size;
334 uint64_t iova;
335 void *map;
336 };
337
338 struct tu_device
339 {
340 VK_LOADER_DATA _loader_data;
341
342 VkAllocationCallbacks alloc;
343
344 struct tu_instance *instance;
345
346 struct tu_queue *queues[TU_MAX_QUEUE_FAMILIES];
347 int queue_count[TU_MAX_QUEUE_FAMILIES];
348
349 struct tu_physical_device *physical_device;
350
351 struct ir3_compiler *compiler;
352
353 /* Backup in-memory cache to be used if the app doesn't provide one */
354 struct tu_pipeline_cache *mem_cache;
355
356 struct tu_bo vsc_draw_strm;
357 struct tu_bo vsc_prim_strm;
358 uint32_t vsc_draw_strm_pitch;
359 uint32_t vsc_prim_strm_pitch;
360
361 #define MIN_SCRATCH_BO_SIZE_LOG2 12 /* A page */
362
363 /* Currently the kernel driver uses a 32-bit GPU address space, but it
364 * should be impossible to go beyond 48 bits.
365 */
366 struct {
367 struct tu_bo bo;
368 mtx_t construct_mtx;
369 bool initialized;
370 } scratch_bos[48 - MIN_SCRATCH_BO_SIZE_LOG2];
371
372 struct tu_bo border_color;
373
374 struct tu_device_extension_table enabled_extensions;
375 };
376
377 VkResult
378 tu_bo_init_new(struct tu_device *dev, struct tu_bo *bo, uint64_t size);
379 VkResult
380 tu_bo_init_dmabuf(struct tu_device *dev,
381 struct tu_bo *bo,
382 uint64_t size,
383 int fd);
384 int
385 tu_bo_export_dmabuf(struct tu_device *dev, struct tu_bo *bo);
386 void
387 tu_bo_finish(struct tu_device *dev, struct tu_bo *bo);
388 VkResult
389 tu_bo_map(struct tu_device *dev, struct tu_bo *bo);
390
391 /* Get a scratch bo for use inside a command buffer. This will always return
392 * the same bo given the same size or similar sizes, so only one scratch bo
393 * can be used at the same time. It's meant for short-lived things where we
394 * need to write to some piece of memory, read from it, and then immediately
395 * discard it.
396 */
397 VkResult
398 tu_get_scratch_bo(struct tu_device *dev, uint64_t size, struct tu_bo **bo);
399
400 struct tu_cs_entry
401 {
402 /* No ownership */
403 const struct tu_bo *bo;
404
405 uint32_t size;
406 uint32_t offset;
407 };
408
409 struct ts_cs_memory {
410 uint32_t *map;
411 uint64_t iova;
412 };
413
414 struct tu_draw_state {
415 uint64_t iova : 48;
416 uint32_t size : 16;
417 };
418
419 enum tu_dynamic_state
420 {
421 /* re-use VK_DYNAMIC_STATE_ enums for non-extended dynamic states */
422 TU_DYNAMIC_STATE_SAMPLE_LOCATIONS = VK_DYNAMIC_STATE_STENCIL_REFERENCE + 1,
423 TU_DYNAMIC_STATE_COUNT,
424 };
425
426 enum tu_draw_state_group_id
427 {
428 TU_DRAW_STATE_PROGRAM,
429 TU_DRAW_STATE_PROGRAM_BINNING,
430 TU_DRAW_STATE_VB,
431 TU_DRAW_STATE_VI,
432 TU_DRAW_STATE_VI_BINNING,
433 TU_DRAW_STATE_RAST,
434 TU_DRAW_STATE_DS,
435 TU_DRAW_STATE_BLEND,
436 TU_DRAW_STATE_VS_CONST,
437 TU_DRAW_STATE_GS_CONST,
438 TU_DRAW_STATE_FS_CONST,
439 TU_DRAW_STATE_DESC_SETS,
440 TU_DRAW_STATE_DESC_SETS_LOAD,
441 TU_DRAW_STATE_VS_PARAMS,
442 TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
443 TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
444
445 /* dynamic state related draw states */
446 TU_DRAW_STATE_DYNAMIC,
447 TU_DRAW_STATE_COUNT = TU_DRAW_STATE_DYNAMIC + TU_DYNAMIC_STATE_COUNT,
448 };
449
450 enum tu_cs_mode
451 {
452
453 /*
454 * A command stream in TU_CS_MODE_GROW mode grows automatically whenever it
455 * is full. tu_cs_begin must be called before command packet emission and
456 * tu_cs_end must be called after.
457 *
458 * This mode may create multiple entries internally. The entries must be
459 * submitted together.
460 */
461 TU_CS_MODE_GROW,
462
463 /*
464 * A command stream in TU_CS_MODE_EXTERNAL mode wraps an external,
465 * fixed-size buffer. tu_cs_begin and tu_cs_end are optional and have no
466 * effect on it.
467 *
468 * This mode does not create any entry or any BO.
469 */
470 TU_CS_MODE_EXTERNAL,
471
472 /*
473 * A command stream in TU_CS_MODE_SUB_STREAM mode does not support direct
474 * command packet emission. tu_cs_begin_sub_stream must be called to get a
475 * sub-stream to emit comamnd packets to. When done with the sub-stream,
476 * tu_cs_end_sub_stream must be called.
477 *
478 * This mode does not create any entry internally.
479 */
480 TU_CS_MODE_SUB_STREAM,
481 };
482
483 struct tu_cs
484 {
485 uint32_t *start;
486 uint32_t *cur;
487 uint32_t *reserved_end;
488 uint32_t *end;
489
490 struct tu_device *device;
491 enum tu_cs_mode mode;
492 uint32_t next_bo_size;
493
494 struct tu_cs_entry *entries;
495 uint32_t entry_count;
496 uint32_t entry_capacity;
497
498 struct tu_bo **bos;
499 uint32_t bo_count;
500 uint32_t bo_capacity;
501
502 /* state for cond_exec_start/cond_exec_end */
503 uint32_t cond_flags;
504 uint32_t *cond_dwords;
505 };
506
507 struct tu_device_memory
508 {
509 struct tu_bo bo;
510 VkDeviceSize size;
511
512 /* for dedicated allocations */
513 struct tu_image *image;
514 struct tu_buffer *buffer;
515
516 uint32_t type_index;
517 void *map;
518 void *user_ptr;
519 };
520
521 struct tu_descriptor_range
522 {
523 uint64_t va;
524 uint32_t size;
525 };
526
527 struct tu_descriptor_set
528 {
529 const struct tu_descriptor_set_layout *layout;
530 struct tu_descriptor_pool *pool;
531 uint32_t size;
532
533 uint64_t va;
534 uint32_t *mapped_ptr;
535
536 uint32_t *dynamic_descriptors;
537
538 struct tu_bo *buffers[0];
539 };
540
541 struct tu_push_descriptor_set
542 {
543 struct tu_descriptor_set set;
544 uint32_t capacity;
545 };
546
547 struct tu_descriptor_pool_entry
548 {
549 uint32_t offset;
550 uint32_t size;
551 struct tu_descriptor_set *set;
552 };
553
554 struct tu_descriptor_pool
555 {
556 struct tu_bo bo;
557 uint64_t current_offset;
558 uint64_t size;
559
560 uint8_t *host_memory_base;
561 uint8_t *host_memory_ptr;
562 uint8_t *host_memory_end;
563
564 uint32_t entry_count;
565 uint32_t max_entry_count;
566 struct tu_descriptor_pool_entry entries[0];
567 };
568
569 struct tu_descriptor_update_template_entry
570 {
571 VkDescriptorType descriptor_type;
572
573 /* The number of descriptors to update */
574 uint32_t descriptor_count;
575
576 /* Into mapped_ptr or dynamic_descriptors, in units of the respective array
577 */
578 uint32_t dst_offset;
579
580 /* In dwords. Not valid/used for dynamic descriptors */
581 uint32_t dst_stride;
582
583 uint32_t buffer_offset;
584
585 /* Only valid for combined image samplers and samplers */
586 uint16_t has_sampler;
587
588 /* In bytes */
589 size_t src_offset;
590 size_t src_stride;
591
592 /* For push descriptors */
593 const uint32_t *immutable_samplers;
594 };
595
596 struct tu_descriptor_update_template
597 {
598 uint32_t entry_count;
599 struct tu_descriptor_update_template_entry entry[0];
600 };
601
602 struct tu_buffer
603 {
604 VkDeviceSize size;
605
606 VkBufferUsageFlags usage;
607 VkBufferCreateFlags flags;
608
609 struct tu_bo *bo;
610 VkDeviceSize bo_offset;
611 };
612
613 static inline uint64_t
614 tu_buffer_iova(struct tu_buffer *buffer)
615 {
616 return buffer->bo->iova + buffer->bo_offset;
617 }
618
619 struct tu_vertex_binding
620 {
621 struct tu_buffer *buffer;
622 VkDeviceSize offset;
623 };
624
625 const char *
626 tu_get_debug_option_name(int id);
627
628 const char *
629 tu_get_perftest_option_name(int id);
630
631 struct tu_descriptor_state
632 {
633 struct tu_descriptor_set *sets[MAX_SETS];
634 uint32_t dynamic_descriptors[MAX_DYNAMIC_BUFFERS * A6XX_TEX_CONST_DWORDS];
635 };
636
637 struct tu_tile
638 {
639 uint8_t pipe;
640 uint8_t slot;
641 VkOffset2D begin;
642 VkOffset2D end;
643 };
644
645 struct tu_tiling_config
646 {
647 VkRect2D render_area;
648
649 /* position and size of the first tile */
650 VkRect2D tile0;
651 /* number of tiles */
652 VkExtent2D tile_count;
653
654 /* size of the first VSC pipe */
655 VkExtent2D pipe0;
656 /* number of VSC pipes */
657 VkExtent2D pipe_count;
658
659 /* pipe register values */
660 uint32_t pipe_config[MAX_VSC_PIPES];
661 uint32_t pipe_sizes[MAX_VSC_PIPES];
662
663 /* Whether sysmem rendering must be used */
664 bool force_sysmem;
665 };
666
667 enum tu_cmd_dirty_bits
668 {
669 TU_CMD_DIRTY_COMPUTE_PIPELINE = 1 << 1,
670 TU_CMD_DIRTY_VERTEX_BUFFERS = 1 << 2,
671 TU_CMD_DIRTY_DESCRIPTOR_SETS = 1 << 3,
672 TU_CMD_DIRTY_COMPUTE_DESCRIPTOR_SETS = 1 << 4,
673 TU_CMD_DIRTY_SHADER_CONSTS = 1 << 5,
674 TU_CMD_DIRTY_STREAMOUT_BUFFERS = 1 << 6,
675 /* all draw states were disabled and need to be re-enabled: */
676 TU_CMD_DIRTY_DRAW_STATE = 1 << 7,
677 };
678
679 struct tu_streamout_state {
680 uint16_t stride[IR3_MAX_SO_BUFFERS];
681 uint32_t ncomp[IR3_MAX_SO_BUFFERS];
682 uint32_t prog[IR3_MAX_SO_OUTPUTS * 2];
683 uint32_t prog_count;
684 uint32_t vpc_so_buf_cntl;
685 };
686
687 /* There are only three cache domains we have to care about: the CCU, or
688 * color cache unit, which is used for color and depth/stencil attachments
689 * and copy/blit destinations, and is split conceptually into color and depth,
690 * and the universal cache or UCHE which is used for pretty much everything
691 * else, except for the CP (uncached) and host. We need to flush whenever data
692 * crosses these boundaries.
693 */
694
695 enum tu_cmd_access_mask {
696 TU_ACCESS_UCHE_READ = 1 << 0,
697 TU_ACCESS_UCHE_WRITE = 1 << 1,
698 TU_ACCESS_CCU_COLOR_READ = 1 << 2,
699 TU_ACCESS_CCU_COLOR_WRITE = 1 << 3,
700 TU_ACCESS_CCU_DEPTH_READ = 1 << 4,
701 TU_ACCESS_CCU_DEPTH_WRITE = 1 << 5,
702
703 /* Experiments have shown that while it's safe to avoid flushing the CCU
704 * after each blit/renderpass, it's not safe to assume that subsequent
705 * lookups with a different attachment state will hit unflushed cache
706 * entries. That is, the CCU needs to be flushed and possibly invalidated
707 * when accessing memory with a different attachment state. Writing to an
708 * attachment under the following conditions after clearing using the
709 * normal 2d engine path is known to have issues:
710 *
711 * - It isn't the 0'th layer.
712 * - There are more than one attachment, and this isn't the 0'th attachment
713 * (this seems to also depend on the cpp of the attachments).
714 *
715 * Our best guess is that the layer/MRT state is used when computing
716 * the location of a cache entry in CCU, to avoid conflicts. We assume that
717 * any access in a renderpass after or before an access by a transfer needs
718 * a flush/invalidate, and use the _INCOHERENT variants to represent access
719 * by a transfer.
720 */
721 TU_ACCESS_CCU_COLOR_INCOHERENT_READ = 1 << 6,
722 TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE = 1 << 7,
723 TU_ACCESS_CCU_DEPTH_INCOHERENT_READ = 1 << 8,
724 TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE = 1 << 9,
725
726 TU_ACCESS_SYSMEM_READ = 1 << 10,
727 TU_ACCESS_SYSMEM_WRITE = 1 << 11,
728
729 /* Set if a WFI is required due to data being read by the CP or the 2D
730 * engine.
731 */
732 TU_ACCESS_WFI_READ = 1 << 12,
733
734 TU_ACCESS_READ =
735 TU_ACCESS_UCHE_READ |
736 TU_ACCESS_CCU_COLOR_READ |
737 TU_ACCESS_CCU_DEPTH_READ |
738 TU_ACCESS_CCU_COLOR_INCOHERENT_READ |
739 TU_ACCESS_CCU_DEPTH_INCOHERENT_READ |
740 TU_ACCESS_SYSMEM_READ,
741
742 TU_ACCESS_WRITE =
743 TU_ACCESS_UCHE_WRITE |
744 TU_ACCESS_CCU_COLOR_WRITE |
745 TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE |
746 TU_ACCESS_CCU_DEPTH_WRITE |
747 TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE |
748 TU_ACCESS_SYSMEM_WRITE,
749
750 TU_ACCESS_ALL =
751 TU_ACCESS_READ |
752 TU_ACCESS_WRITE,
753 };
754
755 enum tu_cmd_flush_bits {
756 TU_CMD_FLAG_CCU_FLUSH_DEPTH = 1 << 0,
757 TU_CMD_FLAG_CCU_FLUSH_COLOR = 1 << 1,
758 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH = 1 << 2,
759 TU_CMD_FLAG_CCU_INVALIDATE_COLOR = 1 << 3,
760 TU_CMD_FLAG_CACHE_FLUSH = 1 << 4,
761 TU_CMD_FLAG_CACHE_INVALIDATE = 1 << 5,
762
763 TU_CMD_FLAG_ALL_FLUSH =
764 TU_CMD_FLAG_CCU_FLUSH_DEPTH |
765 TU_CMD_FLAG_CCU_FLUSH_COLOR |
766 TU_CMD_FLAG_CACHE_FLUSH,
767
768 TU_CMD_FLAG_ALL_INVALIDATE =
769 TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
770 TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
771 TU_CMD_FLAG_CACHE_INVALIDATE,
772
773 TU_CMD_FLAG_WFI = 1 << 6,
774 };
775
776 /* Changing the CCU from sysmem mode to gmem mode or vice-versa is pretty
777 * heavy, involving a CCU cache flush/invalidate and a WFI in order to change
778 * which part of the gmem is used by the CCU. Here we keep track of what the
779 * state of the CCU.
780 */
781 enum tu_cmd_ccu_state {
782 TU_CMD_CCU_SYSMEM,
783 TU_CMD_CCU_GMEM,
784 TU_CMD_CCU_UNKNOWN,
785 };
786
787 struct tu_cache_state {
788 /* Caches which must be made available (flushed) eventually if there are
789 * any users outside that cache domain, and caches which must be
790 * invalidated eventually if there are any reads.
791 */
792 enum tu_cmd_flush_bits pending_flush_bits;
793 /* Pending flushes */
794 enum tu_cmd_flush_bits flush_bits;
795 };
796
797 struct tu_cmd_state
798 {
799 uint32_t dirty;
800
801 struct tu_pipeline *pipeline;
802 struct tu_pipeline *compute_pipeline;
803
804 /* Vertex buffers */
805 struct
806 {
807 struct tu_buffer *buffers[MAX_VBS];
808 VkDeviceSize offsets[MAX_VBS];
809 } vb;
810
811 /* for dynamic states that can't be emitted directly */
812 uint32_t dynamic_stencil_mask;
813 uint32_t dynamic_stencil_wrmask;
814 uint32_t dynamic_stencil_ref;
815 uint32_t dynamic_gras_su_cntl;
816
817 /* saved states to re-emit in TU_CMD_DIRTY_DRAW_STATE case */
818 struct tu_draw_state dynamic_state[TU_DYNAMIC_STATE_COUNT];
819 struct tu_cs_entry vertex_buffers_ib;
820 struct tu_cs_entry shader_const_ib[MESA_SHADER_STAGES];
821 struct tu_cs_entry desc_sets_ib, desc_sets_load_ib;
822 struct tu_cs_entry ia_gmem_ib, ia_sysmem_ib;
823
824 /* Stream output buffers */
825 struct
826 {
827 struct tu_buffer *buffers[IR3_MAX_SO_BUFFERS];
828 VkDeviceSize offsets[IR3_MAX_SO_BUFFERS];
829 VkDeviceSize sizes[IR3_MAX_SO_BUFFERS];
830 } streamout_buf;
831
832 uint8_t streamout_reset;
833 uint8_t streamout_enabled;
834
835 /* Index buffer */
836 struct tu_buffer *index_buffer;
837 uint64_t index_offset;
838 uint32_t index_type;
839 uint32_t max_index_count;
840 uint64_t index_va;
841
842 /* Renderpasses are tricky, because we may need to flush differently if
843 * using sysmem vs. gmem and therefore we have to delay any flushing that
844 * happens before a renderpass. So we have to have two copies of the flush
845 * state, one for intra-renderpass flushes (i.e. renderpass dependencies)
846 * and one for outside a renderpass.
847 */
848 struct tu_cache_state cache;
849 struct tu_cache_state renderpass_cache;
850
851 enum tu_cmd_ccu_state ccu_state;
852
853 const struct tu_render_pass *pass;
854 const struct tu_subpass *subpass;
855 const struct tu_framebuffer *framebuffer;
856
857 struct tu_tiling_config tiling_config;
858
859 struct tu_cs_entry tile_store_ib;
860 };
861
862 struct tu_cmd_pool
863 {
864 VkAllocationCallbacks alloc;
865 struct list_head cmd_buffers;
866 struct list_head free_cmd_buffers;
867 uint32_t queue_family_index;
868 };
869
870 struct tu_cmd_buffer_upload
871 {
872 uint8_t *map;
873 unsigned offset;
874 uint64_t size;
875 struct list_head list;
876 };
877
878 enum tu_cmd_buffer_status
879 {
880 TU_CMD_BUFFER_STATUS_INVALID,
881 TU_CMD_BUFFER_STATUS_INITIAL,
882 TU_CMD_BUFFER_STATUS_RECORDING,
883 TU_CMD_BUFFER_STATUS_EXECUTABLE,
884 TU_CMD_BUFFER_STATUS_PENDING,
885 };
886
887 struct tu_bo_list
888 {
889 uint32_t count;
890 uint32_t capacity;
891 struct drm_msm_gem_submit_bo *bo_infos;
892 };
893
894 #define TU_BO_LIST_FAILED (~0)
895
896 void
897 tu_bo_list_init(struct tu_bo_list *list);
898 void
899 tu_bo_list_destroy(struct tu_bo_list *list);
900 void
901 tu_bo_list_reset(struct tu_bo_list *list);
902 uint32_t
903 tu_bo_list_add(struct tu_bo_list *list,
904 const struct tu_bo *bo,
905 uint32_t flags);
906 VkResult
907 tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other);
908
909 /* This struct defines the layout of the scratch_bo */
910 struct tu6_control
911 {
912 uint32_t seqno_dummy; /* dummy seqno for CP_EVENT_WRITE */
913 uint32_t _pad0;
914 volatile uint32_t vsc_overflow;
915 uint32_t _pad1;
916 /* flag set from cmdstream when VSC overflow detected: */
917 uint32_t vsc_scratch;
918 uint32_t _pad2;
919 uint32_t _pad3;
920 uint32_t _pad4;
921
922 /* scratch space for VPC_SO[i].FLUSH_BASE_LO/HI, start on 32 byte boundary. */
923 struct {
924 uint32_t offset;
925 uint32_t pad[7];
926 } flush_base[4];
927 };
928
929 #define ctrl_offset(member) offsetof(struct tu6_control, member)
930
931 struct tu_cmd_buffer
932 {
933 VK_LOADER_DATA _loader_data;
934
935 struct tu_device *device;
936
937 struct tu_cmd_pool *pool;
938 struct list_head pool_link;
939
940 VkCommandBufferUsageFlags usage_flags;
941 VkCommandBufferLevel level;
942 enum tu_cmd_buffer_status status;
943
944 struct tu_cmd_state state;
945 struct tu_vertex_binding vertex_bindings[MAX_VBS];
946 uint32_t vertex_bindings_set;
947 uint32_t queue_family_index;
948
949 uint32_t push_constants[MAX_PUSH_CONSTANTS_SIZE / 4];
950 VkShaderStageFlags push_constant_stages;
951 struct tu_descriptor_set meta_push_descriptors;
952
953 struct tu_descriptor_state descriptors[MAX_BIND_POINTS];
954
955 struct tu_cmd_buffer_upload upload;
956
957 VkResult record_result;
958
959 struct tu_bo_list bo_list;
960 struct tu_cs cs;
961 struct tu_cs draw_cs;
962 struct tu_cs draw_epilogue_cs;
963 struct tu_cs sub_cs;
964
965 struct tu_bo scratch_bo;
966
967 struct tu_bo vsc_draw_strm;
968 struct tu_bo vsc_prim_strm;
969 uint32_t vsc_draw_strm_pitch;
970 uint32_t vsc_prim_strm_pitch;
971 bool use_vsc_data;
972 };
973
974 /* Temporary struct for tracking a register state to be written, used by
975 * a6xx-pack.h and tu_cs_emit_regs()
976 */
977 struct tu_reg_value {
978 uint32_t reg;
979 uint64_t value;
980 bool is_address;
981 struct tu_bo *bo;
982 bool bo_write;
983 uint32_t bo_offset;
984 uint32_t bo_shift;
985 };
986
987
988 void tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer,
989 struct tu_cs *cs);
990
991 void tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
992 struct tu_cs *cs,
993 enum tu_cmd_ccu_state ccu_state);
994
995 void
996 tu6_emit_event_write(struct tu_cmd_buffer *cmd,
997 struct tu_cs *cs,
998 enum vgt_event_type event);
999
1000 static inline struct tu_descriptor_state *
1001 tu_get_descriptors_state(struct tu_cmd_buffer *cmd_buffer,
1002 VkPipelineBindPoint bind_point)
1003 {
1004 return &cmd_buffer->descriptors[bind_point];
1005 }
1006
1007 struct tu_event
1008 {
1009 struct tu_bo bo;
1010 };
1011
1012 struct tu_shader_module
1013 {
1014 unsigned char sha1[20];
1015
1016 uint32_t code_size;
1017 const uint32_t *code[0];
1018 };
1019
1020 struct tu_push_constant_range
1021 {
1022 uint32_t lo;
1023 uint32_t count;
1024 };
1025
1026 struct tu_shader
1027 {
1028 struct ir3_shader *ir3_shader;
1029
1030 struct tu_push_constant_range push_consts;
1031 uint8_t active_desc_sets;
1032 };
1033
1034 struct tu_shader *
1035 tu_shader_create(struct tu_device *dev,
1036 gl_shader_stage stage,
1037 const VkPipelineShaderStageCreateInfo *stage_info,
1038 struct tu_pipeline_layout *layout,
1039 const VkAllocationCallbacks *alloc);
1040
1041 void
1042 tu_shader_destroy(struct tu_device *dev,
1043 struct tu_shader *shader,
1044 const VkAllocationCallbacks *alloc);
1045
1046 struct tu_program_descriptor_linkage
1047 {
1048 struct ir3_ubo_analysis_state ubo_state;
1049 struct ir3_const_state const_state;
1050
1051 uint32_t constlen;
1052
1053 struct tu_push_constant_range push_consts;
1054 };
1055
1056 struct tu_pipeline
1057 {
1058 struct tu_cs cs;
1059
1060 struct tu_pipeline_layout *layout;
1061
1062 bool need_indirect_descriptor_sets;
1063 VkShaderStageFlags active_stages;
1064 uint32_t active_desc_sets;
1065
1066 struct tu_streamout_state streamout;
1067
1068 /* mask of enabled dynamic states
1069 * if BIT(i) is set, pipeline->dynamic_state[i] is *NOT* used
1070 */
1071 uint32_t dynamic_state_mask;
1072 struct tu_draw_state dynamic_state[TU_DYNAMIC_STATE_COUNT];
1073
1074 /* gras_su_cntl without line width, used for dynamic line width state */
1075 uint32_t gras_su_cntl;
1076
1077 struct
1078 {
1079 struct tu_bo binary_bo;
1080 struct tu_cs_entry state_ib;
1081 struct tu_cs_entry binning_state_ib;
1082
1083 struct tu_program_descriptor_linkage link[MESA_SHADER_STAGES];
1084 } program;
1085
1086 struct
1087 {
1088 struct tu_cs_entry state_ib;
1089 } load_state;
1090
1091 struct
1092 {
1093 struct tu_cs_entry state_ib;
1094 struct tu_cs_entry binning_state_ib;
1095 uint32_t bindings_used;
1096 } vi;
1097
1098 struct
1099 {
1100 enum pc_di_primtype primtype;
1101 bool primitive_restart;
1102 } ia;
1103
1104 struct
1105 {
1106 struct tu_cs_entry state_ib;
1107 } rast;
1108
1109 struct
1110 {
1111 struct tu_cs_entry state_ib;
1112 } ds;
1113
1114 struct
1115 {
1116 struct tu_cs_entry state_ib;
1117 } blend;
1118
1119 struct
1120 {
1121 uint32_t local_size[3];
1122 } compute;
1123 };
1124
1125 void
1126 tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport);
1127
1128 void
1129 tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor);
1130
1131 void
1132 tu6_emit_sample_locations(struct tu_cs *cs, const VkSampleLocationsInfoEXT *samp_loc);
1133
1134 void
1135 tu6_emit_depth_bias(struct tu_cs *cs,
1136 float constant_factor,
1137 float clamp,
1138 float slope_factor);
1139
1140 void tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits samples);
1141
1142 void tu6_emit_window_scissor(struct tu_cs *cs, uint32_t x1, uint32_t y1, uint32_t x2, uint32_t y2);
1143
1144 void tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1);
1145
1146 void
1147 tu6_emit_xs_config(struct tu_cs *cs,
1148 gl_shader_stage stage,
1149 const struct ir3_shader_variant *xs,
1150 uint64_t binary_iova);
1151
1152 void
1153 tu6_emit_vpc(struct tu_cs *cs,
1154 const struct ir3_shader_variant *vs,
1155 const struct ir3_shader_variant *gs,
1156 const struct ir3_shader_variant *fs,
1157 struct tu_streamout_state *tf);
1158
1159 void
1160 tu6_emit_fs_inputs(struct tu_cs *cs, const struct ir3_shader_variant *fs);
1161
1162 struct tu_image_view;
1163
1164 void
1165 tu_resolve_sysmem(struct tu_cmd_buffer *cmd,
1166 struct tu_cs *cs,
1167 struct tu_image_view *src,
1168 struct tu_image_view *dst,
1169 uint32_t layers,
1170 const VkRect2D *rect);
1171
1172 void
1173 tu_clear_sysmem_attachment(struct tu_cmd_buffer *cmd,
1174 struct tu_cs *cs,
1175 uint32_t a,
1176 const VkRenderPassBeginInfo *info);
1177
1178 void
1179 tu_clear_gmem_attachment(struct tu_cmd_buffer *cmd,
1180 struct tu_cs *cs,
1181 uint32_t a,
1182 const VkRenderPassBeginInfo *info);
1183
1184 void
1185 tu_load_gmem_attachment(struct tu_cmd_buffer *cmd,
1186 struct tu_cs *cs,
1187 uint32_t a,
1188 bool force_load);
1189
1190 /* expose this function to be able to emit load without checking LOAD_OP */
1191 void
1192 tu_emit_load_gmem_attachment(struct tu_cmd_buffer *cmd, struct tu_cs *cs, uint32_t a);
1193
1194 /* note: gmem store can also resolve */
1195 void
1196 tu_store_gmem_attachment(struct tu_cmd_buffer *cmd,
1197 struct tu_cs *cs,
1198 uint32_t a,
1199 uint32_t gmem_a);
1200
1201 enum tu_supported_formats {
1202 FMT_VERTEX = 1,
1203 FMT_TEXTURE = 2,
1204 FMT_COLOR = 4,
1205 };
1206
1207 struct tu_native_format
1208 {
1209 enum a6xx_format fmt : 8;
1210 enum a3xx_color_swap swap : 8;
1211 enum a6xx_tile_mode tile_mode : 8;
1212 enum tu_supported_formats supported : 8;
1213 };
1214
1215 struct tu_native_format tu6_format_vtx(VkFormat format);
1216 struct tu_native_format tu6_format_color(VkFormat format, enum a6xx_tile_mode tile_mode);
1217 struct tu_native_format tu6_format_texture(VkFormat format, enum a6xx_tile_mode tile_mode);
1218
1219 static inline enum a6xx_format
1220 tu6_base_format(VkFormat format)
1221 {
1222 /* note: tu6_format_color doesn't care about tiling for .fmt field */
1223 return tu6_format_color(format, TILE6_LINEAR).fmt;
1224 }
1225
1226 struct tu_image
1227 {
1228 VkImageType type;
1229 /* The original VkFormat provided by the client. This may not match any
1230 * of the actual surface formats.
1231 */
1232 VkFormat vk_format;
1233 VkImageAspectFlags aspects;
1234 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1235 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
1236 VkImageCreateFlags flags; /** VkImageCreateInfo::flags */
1237 VkExtent3D extent;
1238 uint32_t level_count;
1239 uint32_t layer_count;
1240 VkSampleCountFlagBits samples;
1241
1242 struct fdl_layout layout;
1243
1244 unsigned queue_family_mask;
1245 bool exclusive;
1246 bool shareable;
1247
1248 /* For VK_ANDROID_native_buffer, the WSI image owns the memory, */
1249 VkDeviceMemory owned_memory;
1250
1251 /* Set when bound */
1252 struct tu_bo *bo;
1253 VkDeviceSize bo_offset;
1254 };
1255
1256 static inline uint32_t
1257 tu_get_layerCount(const struct tu_image *image,
1258 const VkImageSubresourceRange *range)
1259 {
1260 return range->layerCount == VK_REMAINING_ARRAY_LAYERS
1261 ? image->layer_count - range->baseArrayLayer
1262 : range->layerCount;
1263 }
1264
1265 static inline uint32_t
1266 tu_get_levelCount(const struct tu_image *image,
1267 const VkImageSubresourceRange *range)
1268 {
1269 return range->levelCount == VK_REMAINING_MIP_LEVELS
1270 ? image->level_count - range->baseMipLevel
1271 : range->levelCount;
1272 }
1273
1274 struct tu_image_view
1275 {
1276 struct tu_image *image; /**< VkImageViewCreateInfo::image */
1277
1278 uint64_t base_addr;
1279 uint64_t ubwc_addr;
1280 uint32_t layer_size;
1281 uint32_t ubwc_layer_size;
1282
1283 /* used to determine if fast gmem store path can be used */
1284 VkExtent2D extent;
1285 bool need_y2_align;
1286
1287 bool ubwc_enabled;
1288
1289 uint32_t descriptor[A6XX_TEX_CONST_DWORDS];
1290
1291 /* Descriptor for use as a storage image as opposed to a sampled image.
1292 * This has a few differences for cube maps (e.g. type).
1293 */
1294 uint32_t storage_descriptor[A6XX_TEX_CONST_DWORDS];
1295
1296 /* pre-filled register values */
1297 uint32_t PITCH;
1298 uint32_t FLAG_BUFFER_PITCH;
1299
1300 uint32_t RB_MRT_BUF_INFO;
1301 uint32_t SP_FS_MRT_REG;
1302
1303 uint32_t SP_PS_2D_SRC_INFO;
1304 uint32_t SP_PS_2D_SRC_SIZE;
1305
1306 uint32_t RB_2D_DST_INFO;
1307
1308 uint32_t RB_BLIT_DST_INFO;
1309 };
1310
1311 struct tu_sampler_ycbcr_conversion {
1312 VkFormat format;
1313 VkSamplerYcbcrModelConversion ycbcr_model;
1314 VkSamplerYcbcrRange ycbcr_range;
1315 VkComponentMapping components;
1316 VkChromaLocation chroma_offsets[2];
1317 VkFilter chroma_filter;
1318 };
1319
1320 struct tu_sampler {
1321 uint32_t descriptor[A6XX_TEX_SAMP_DWORDS];
1322 struct tu_sampler_ycbcr_conversion *ycbcr_sampler;
1323 };
1324
1325 void
1326 tu_cs_image_ref(struct tu_cs *cs, const struct tu_image_view *iview, uint32_t layer);
1327
1328 void
1329 tu_cs_image_ref_2d(struct tu_cs *cs, const struct tu_image_view *iview, uint32_t layer, bool src);
1330
1331 void
1332 tu_cs_image_flag_ref(struct tu_cs *cs, const struct tu_image_view *iview, uint32_t layer);
1333
1334 VkResult
1335 tu_image_create(VkDevice _device,
1336 const VkImageCreateInfo *pCreateInfo,
1337 const VkAllocationCallbacks *alloc,
1338 VkImage *pImage,
1339 uint64_t modifier,
1340 const VkSubresourceLayout *plane_layouts);
1341
1342 VkResult
1343 tu_image_from_gralloc(VkDevice device_h,
1344 const VkImageCreateInfo *base_info,
1345 const VkNativeBufferANDROID *gralloc_info,
1346 const VkAllocationCallbacks *alloc,
1347 VkImage *out_image_h);
1348
1349 void
1350 tu_image_view_init(struct tu_image_view *view,
1351 const VkImageViewCreateInfo *pCreateInfo);
1352
1353 struct tu_buffer_view
1354 {
1355 uint32_t descriptor[A6XX_TEX_CONST_DWORDS];
1356
1357 struct tu_buffer *buffer;
1358 };
1359 void
1360 tu_buffer_view_init(struct tu_buffer_view *view,
1361 struct tu_device *device,
1362 const VkBufferViewCreateInfo *pCreateInfo);
1363
1364 struct tu_attachment_info
1365 {
1366 struct tu_image_view *attachment;
1367 };
1368
1369 struct tu_framebuffer
1370 {
1371 uint32_t width;
1372 uint32_t height;
1373 uint32_t layers;
1374
1375 uint32_t attachment_count;
1376 struct tu_attachment_info attachments[0];
1377 };
1378
1379 struct tu_subpass_barrier {
1380 VkPipelineStageFlags src_stage_mask;
1381 VkAccessFlags src_access_mask;
1382 VkAccessFlags dst_access_mask;
1383 bool incoherent_ccu_color, incoherent_ccu_depth;
1384 };
1385
1386 struct tu_subpass_attachment
1387 {
1388 uint32_t attachment;
1389 VkImageLayout layout;
1390 };
1391
1392 struct tu_subpass
1393 {
1394 uint32_t input_count;
1395 uint32_t color_count;
1396 struct tu_subpass_attachment *input_attachments;
1397 struct tu_subpass_attachment *color_attachments;
1398 struct tu_subpass_attachment *resolve_attachments;
1399 struct tu_subpass_attachment depth_stencil_attachment;
1400
1401 VkSampleCountFlagBits samples;
1402 bool has_external_src, has_external_dst;
1403
1404 uint32_t srgb_cntl;
1405
1406 struct tu_subpass_barrier start_barrier;
1407 };
1408
1409 struct tu_render_pass_attachment
1410 {
1411 VkFormat format;
1412 uint32_t samples;
1413 uint32_t cpp;
1414 VkImageAspectFlags clear_mask;
1415 bool load;
1416 bool store;
1417 VkImageLayout initial_layout, final_layout;
1418 int32_t gmem_offset;
1419 };
1420
1421 struct tu_render_pass
1422 {
1423 uint32_t attachment_count;
1424 uint32_t subpass_count;
1425 uint32_t gmem_pixels;
1426 uint32_t tile_align_w;
1427 struct tu_subpass_attachment *subpass_attachments;
1428 struct tu_render_pass_attachment *attachments;
1429 struct tu_subpass_barrier end_barrier;
1430 struct tu_subpass subpasses[0];
1431 };
1432
1433 struct tu_query_pool
1434 {
1435 VkQueryType type;
1436 uint32_t stride;
1437 uint64_t size;
1438 uint32_t pipeline_statistics;
1439 struct tu_bo bo;
1440 };
1441
1442 struct tu_semaphore
1443 {
1444 uint32_t syncobj;
1445 uint32_t temp_syncobj;
1446 };
1447
1448 void
1449 tu_set_descriptor_set(struct tu_cmd_buffer *cmd_buffer,
1450 VkPipelineBindPoint bind_point,
1451 struct tu_descriptor_set *set,
1452 unsigned idx);
1453
1454 void
1455 tu_update_descriptor_sets(struct tu_device *device,
1456 struct tu_cmd_buffer *cmd_buffer,
1457 VkDescriptorSet overrideSet,
1458 uint32_t descriptorWriteCount,
1459 const VkWriteDescriptorSet *pDescriptorWrites,
1460 uint32_t descriptorCopyCount,
1461 const VkCopyDescriptorSet *pDescriptorCopies);
1462
1463 void
1464 tu_update_descriptor_set_with_template(
1465 struct tu_device *device,
1466 struct tu_cmd_buffer *cmd_buffer,
1467 struct tu_descriptor_set *set,
1468 VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1469 const void *pData);
1470
1471 int
1472 tu_drm_get_gpu_id(const struct tu_physical_device *dev, uint32_t *id);
1473
1474 int
1475 tu_drm_get_gmem_size(const struct tu_physical_device *dev, uint32_t *size);
1476
1477 int
1478 tu_drm_get_gmem_base(const struct tu_physical_device *dev, uint64_t *base);
1479
1480 int
1481 tu_drm_submitqueue_new(const struct tu_device *dev,
1482 int priority,
1483 uint32_t *queue_id);
1484
1485 void
1486 tu_drm_submitqueue_close(const struct tu_device *dev, uint32_t queue_id);
1487
1488 uint32_t
1489 tu_gem_new(const struct tu_device *dev, uint64_t size, uint32_t flags);
1490 uint32_t
1491 tu_gem_import_dmabuf(const struct tu_device *dev,
1492 int prime_fd,
1493 uint64_t size);
1494 int
1495 tu_gem_export_dmabuf(const struct tu_device *dev, uint32_t gem_handle);
1496 void
1497 tu_gem_close(const struct tu_device *dev, uint32_t gem_handle);
1498 uint64_t
1499 tu_gem_info_offset(const struct tu_device *dev, uint32_t gem_handle);
1500 uint64_t
1501 tu_gem_info_iova(const struct tu_device *dev, uint32_t gem_handle);
1502
1503 #define TU_DEFINE_HANDLE_CASTS(__tu_type, __VkType) \
1504 \
1505 static inline struct __tu_type *__tu_type##_from_handle(__VkType _handle) \
1506 { \
1507 return (struct __tu_type *) _handle; \
1508 } \
1509 \
1510 static inline __VkType __tu_type##_to_handle(struct __tu_type *_obj) \
1511 { \
1512 return (__VkType) _obj; \
1513 }
1514
1515 #define TU_DEFINE_NONDISP_HANDLE_CASTS(__tu_type, __VkType) \
1516 \
1517 static inline struct __tu_type *__tu_type##_from_handle(__VkType _handle) \
1518 { \
1519 return (struct __tu_type *) (uintptr_t) _handle; \
1520 } \
1521 \
1522 static inline __VkType __tu_type##_to_handle(struct __tu_type *_obj) \
1523 { \
1524 return (__VkType)(uintptr_t) _obj; \
1525 }
1526
1527 #define TU_FROM_HANDLE(__tu_type, __name, __handle) \
1528 struct __tu_type *__name = __tu_type##_from_handle(__handle)
1529
1530 TU_DEFINE_HANDLE_CASTS(tu_cmd_buffer, VkCommandBuffer)
1531 TU_DEFINE_HANDLE_CASTS(tu_device, VkDevice)
1532 TU_DEFINE_HANDLE_CASTS(tu_instance, VkInstance)
1533 TU_DEFINE_HANDLE_CASTS(tu_physical_device, VkPhysicalDevice)
1534 TU_DEFINE_HANDLE_CASTS(tu_queue, VkQueue)
1535
1536 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_cmd_pool, VkCommandPool)
1537 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_buffer, VkBuffer)
1538 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_buffer_view, VkBufferView)
1539 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_pool, VkDescriptorPool)
1540 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_set, VkDescriptorSet)
1541 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_set_layout,
1542 VkDescriptorSetLayout)
1543 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_update_template,
1544 VkDescriptorUpdateTemplate)
1545 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_device_memory, VkDeviceMemory)
1546 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_fence, VkFence)
1547 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_event, VkEvent)
1548 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_framebuffer, VkFramebuffer)
1549 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_image, VkImage)
1550 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_image_view, VkImageView);
1551 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_pipeline_cache, VkPipelineCache)
1552 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_pipeline, VkPipeline)
1553 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_pipeline_layout, VkPipelineLayout)
1554 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_query_pool, VkQueryPool)
1555 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_render_pass, VkRenderPass)
1556 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_sampler, VkSampler)
1557 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_sampler_ycbcr_conversion, VkSamplerYcbcrConversion)
1558 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_shader_module, VkShaderModule)
1559 TU_DEFINE_NONDISP_HANDLE_CASTS(tu_semaphore, VkSemaphore)
1560
1561 #endif /* TU_PRIVATE_H */