gallivm: use llvm.nearbyint instead of llvm.round.
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_arit.c
1 /**************************************************************************
2 *
3 * Copyright 2009-2010 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 /**
30 * @file
31 * Helper
32 *
33 * LLVM IR doesn't support all basic arithmetic operations we care about (most
34 * notably min/max and saturated operations), and it is often necessary to
35 * resort machine-specific intrinsics directly. The functions here hide all
36 * these implementation details from the other modules.
37 *
38 * We also do simple expressions simplification here. Reasons are:
39 * - it is very easy given we have all necessary information readily available
40 * - LLVM optimization passes fail to simplify several vector expressions
41 * - We often know value constraints which the optimization passes have no way
42 * of knowing, such as when source arguments are known to be in [0, 1] range.
43 *
44 * @author Jose Fonseca <jfonseca@vmware.com>
45 */
46
47
48 #include <float.h>
49
50 #include "util/u_memory.h"
51 #include "util/u_debug.h"
52 #include "util/u_math.h"
53 #include "util/u_string.h"
54 #include "util/u_cpu_detect.h"
55
56 #include "lp_bld_type.h"
57 #include "lp_bld_const.h"
58 #include "lp_bld_init.h"
59 #include "lp_bld_intr.h"
60 #include "lp_bld_logic.h"
61 #include "lp_bld_pack.h"
62 #include "lp_bld_debug.h"
63 #include "lp_bld_bitarit.h"
64 #include "lp_bld_arit.h"
65 #include "lp_bld_flow.h"
66
67 #if defined(PIPE_ARCH_SSE)
68 #include <xmmintrin.h>
69 #endif
70
71 #ifndef _MM_DENORMALS_ZERO_MASK
72 #define _MM_DENORMALS_ZERO_MASK 0x0040
73 #endif
74
75 #ifndef _MM_FLUSH_ZERO_MASK
76 #define _MM_FLUSH_ZERO_MASK 0x8000
77 #endif
78
79 #define EXP_POLY_DEGREE 5
80
81 #define LOG_POLY_DEGREE 4
82
83
84 /**
85 * Generate min(a, b)
86 * No checks for special case values of a or b = 1 or 0 are done.
87 * NaN's are handled according to the behavior specified by the
88 * nan_behavior argument.
89 */
90 static LLVMValueRef
91 lp_build_min_simple(struct lp_build_context *bld,
92 LLVMValueRef a,
93 LLVMValueRef b,
94 enum gallivm_nan_behavior nan_behavior)
95 {
96 const struct lp_type type = bld->type;
97 const char *intrinsic = NULL;
98 unsigned intr_size = 0;
99 LLVMValueRef cond;
100
101 assert(lp_check_value(type, a));
102 assert(lp_check_value(type, b));
103
104 /* TODO: optimize the constant case */
105
106 if (type.floating && util_cpu_caps.has_sse) {
107 if (type.width == 32) {
108 if (type.length == 1) {
109 intrinsic = "llvm.x86.sse.min.ss";
110 intr_size = 128;
111 }
112 else if (type.length <= 4 || !util_cpu_caps.has_avx) {
113 intrinsic = "llvm.x86.sse.min.ps";
114 intr_size = 128;
115 }
116 else {
117 intrinsic = "llvm.x86.avx.min.ps.256";
118 intr_size = 256;
119 }
120 }
121 if (type.width == 64 && util_cpu_caps.has_sse2) {
122 if (type.length == 1) {
123 intrinsic = "llvm.x86.sse2.min.sd";
124 intr_size = 128;
125 }
126 else if (type.length == 2 || !util_cpu_caps.has_avx) {
127 intrinsic = "llvm.x86.sse2.min.pd";
128 intr_size = 128;
129 }
130 else {
131 intrinsic = "llvm.x86.avx.min.pd.256";
132 intr_size = 256;
133 }
134 }
135 }
136 else if (type.floating && util_cpu_caps.has_altivec) {
137 if (nan_behavior == GALLIVM_NAN_RETURN_NAN ||
138 nan_behavior == GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN) {
139 debug_printf("%s: altivec doesn't support nan return nan behavior\n",
140 __FUNCTION__);
141 }
142 if (type.width == 32 && type.length == 4) {
143 intrinsic = "llvm.ppc.altivec.vminfp";
144 intr_size = 128;
145 }
146 } else if (util_cpu_caps.has_sse2 && type.length >= 2) {
147 intr_size = 128;
148 if ((type.width == 8 || type.width == 16) &&
149 (type.width * type.length <= 64) &&
150 (gallivm_debug & GALLIVM_DEBUG_PERF)) {
151 debug_printf("%s: inefficient code, bogus shuffle due to packing\n",
152 __FUNCTION__);
153 }
154 if (type.width == 8 && !type.sign) {
155 intrinsic = "llvm.x86.sse2.pminu.b";
156 }
157 else if (type.width == 16 && type.sign) {
158 intrinsic = "llvm.x86.sse2.pmins.w";
159 }
160 if (util_cpu_caps.has_sse4_1) {
161 if (type.width == 8 && type.sign) {
162 intrinsic = "llvm.x86.sse41.pminsb";
163 }
164 if (type.width == 16 && !type.sign) {
165 intrinsic = "llvm.x86.sse41.pminuw";
166 }
167 if (type.width == 32 && !type.sign) {
168 intrinsic = "llvm.x86.sse41.pminud";
169 }
170 if (type.width == 32 && type.sign) {
171 intrinsic = "llvm.x86.sse41.pminsd";
172 }
173 }
174 } else if (util_cpu_caps.has_altivec) {
175 intr_size = 128;
176 if (type.width == 8) {
177 if (!type.sign) {
178 intrinsic = "llvm.ppc.altivec.vminub";
179 } else {
180 intrinsic = "llvm.ppc.altivec.vminsb";
181 }
182 } else if (type.width == 16) {
183 if (!type.sign) {
184 intrinsic = "llvm.ppc.altivec.vminuh";
185 } else {
186 intrinsic = "llvm.ppc.altivec.vminsh";
187 }
188 } else if (type.width == 32) {
189 if (!type.sign) {
190 intrinsic = "llvm.ppc.altivec.vminuw";
191 } else {
192 intrinsic = "llvm.ppc.altivec.vminsw";
193 }
194 }
195 }
196
197 if (intrinsic) {
198 /* We need to handle nan's for floating point numbers. If one of the
199 * inputs is nan the other should be returned (required by both D3D10+
200 * and OpenCL).
201 * The sse intrinsics return the second operator in case of nan by
202 * default so we need to special code to handle those.
203 */
204 if (util_cpu_caps.has_sse && type.floating &&
205 nan_behavior != GALLIVM_NAN_BEHAVIOR_UNDEFINED &&
206 nan_behavior != GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN &&
207 nan_behavior != GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN) {
208 LLVMValueRef isnan, min;
209 min = lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
210 type,
211 intr_size, a, b);
212 if (nan_behavior == GALLIVM_NAN_RETURN_OTHER) {
213 isnan = lp_build_isnan(bld, b);
214 return lp_build_select(bld, isnan, a, min);
215 } else {
216 assert(nan_behavior == GALLIVM_NAN_RETURN_NAN);
217 isnan = lp_build_isnan(bld, a);
218 return lp_build_select(bld, isnan, a, min);
219 }
220 } else {
221 return lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
222 type,
223 intr_size, a, b);
224 }
225 }
226
227 if (type.floating) {
228 switch (nan_behavior) {
229 case GALLIVM_NAN_RETURN_NAN: {
230 LLVMValueRef isnan = lp_build_isnan(bld, b);
231 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
232 cond = LLVMBuildXor(bld->gallivm->builder, cond, isnan, "");
233 return lp_build_select(bld, cond, a, b);
234 }
235 break;
236 case GALLIVM_NAN_RETURN_OTHER: {
237 LLVMValueRef isnan = lp_build_isnan(bld, a);
238 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
239 cond = LLVMBuildXor(bld->gallivm->builder, cond, isnan, "");
240 return lp_build_select(bld, cond, a, b);
241 }
242 break;
243 case GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN:
244 cond = lp_build_cmp_ordered(bld, PIPE_FUNC_LESS, a, b);
245 return lp_build_select(bld, cond, a, b);
246 case GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN:
247 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, b, a);
248 return lp_build_select(bld, cond, b, a);
249 case GALLIVM_NAN_BEHAVIOR_UNDEFINED:
250 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
251 return lp_build_select(bld, cond, a, b);
252 break;
253 default:
254 assert(0);
255 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
256 return lp_build_select(bld, cond, a, b);
257 }
258 } else {
259 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
260 return lp_build_select(bld, cond, a, b);
261 }
262 }
263
264
265 /**
266 * Generate max(a, b)
267 * No checks for special case values of a or b = 1 or 0 are done.
268 * NaN's are handled according to the behavior specified by the
269 * nan_behavior argument.
270 */
271 static LLVMValueRef
272 lp_build_max_simple(struct lp_build_context *bld,
273 LLVMValueRef a,
274 LLVMValueRef b,
275 enum gallivm_nan_behavior nan_behavior)
276 {
277 const struct lp_type type = bld->type;
278 const char *intrinsic = NULL;
279 unsigned intr_size = 0;
280 LLVMValueRef cond;
281
282 assert(lp_check_value(type, a));
283 assert(lp_check_value(type, b));
284
285 /* TODO: optimize the constant case */
286
287 if (type.floating && util_cpu_caps.has_sse) {
288 if (type.width == 32) {
289 if (type.length == 1) {
290 intrinsic = "llvm.x86.sse.max.ss";
291 intr_size = 128;
292 }
293 else if (type.length <= 4 || !util_cpu_caps.has_avx) {
294 intrinsic = "llvm.x86.sse.max.ps";
295 intr_size = 128;
296 }
297 else {
298 intrinsic = "llvm.x86.avx.max.ps.256";
299 intr_size = 256;
300 }
301 }
302 if (type.width == 64 && util_cpu_caps.has_sse2) {
303 if (type.length == 1) {
304 intrinsic = "llvm.x86.sse2.max.sd";
305 intr_size = 128;
306 }
307 else if (type.length == 2 || !util_cpu_caps.has_avx) {
308 intrinsic = "llvm.x86.sse2.max.pd";
309 intr_size = 128;
310 }
311 else {
312 intrinsic = "llvm.x86.avx.max.pd.256";
313 intr_size = 256;
314 }
315 }
316 }
317 else if (type.floating && util_cpu_caps.has_altivec) {
318 if (nan_behavior == GALLIVM_NAN_RETURN_NAN ||
319 nan_behavior == GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN) {
320 debug_printf("%s: altivec doesn't support nan return nan behavior\n",
321 __FUNCTION__);
322 }
323 if (type.width == 32 || type.length == 4) {
324 intrinsic = "llvm.ppc.altivec.vmaxfp";
325 intr_size = 128;
326 }
327 } else if (util_cpu_caps.has_sse2 && type.length >= 2) {
328 intr_size = 128;
329 if ((type.width == 8 || type.width == 16) &&
330 (type.width * type.length <= 64) &&
331 (gallivm_debug & GALLIVM_DEBUG_PERF)) {
332 debug_printf("%s: inefficient code, bogus shuffle due to packing\n",
333 __FUNCTION__);
334 }
335 if (type.width == 8 && !type.sign) {
336 intrinsic = "llvm.x86.sse2.pmaxu.b";
337 intr_size = 128;
338 }
339 else if (type.width == 16 && type.sign) {
340 intrinsic = "llvm.x86.sse2.pmaxs.w";
341 }
342 if (util_cpu_caps.has_sse4_1) {
343 if (type.width == 8 && type.sign) {
344 intrinsic = "llvm.x86.sse41.pmaxsb";
345 }
346 if (type.width == 16 && !type.sign) {
347 intrinsic = "llvm.x86.sse41.pmaxuw";
348 }
349 if (type.width == 32 && !type.sign) {
350 intrinsic = "llvm.x86.sse41.pmaxud";
351 }
352 if (type.width == 32 && type.sign) {
353 intrinsic = "llvm.x86.sse41.pmaxsd";
354 }
355 }
356 } else if (util_cpu_caps.has_altivec) {
357 intr_size = 128;
358 if (type.width == 8) {
359 if (!type.sign) {
360 intrinsic = "llvm.ppc.altivec.vmaxub";
361 } else {
362 intrinsic = "llvm.ppc.altivec.vmaxsb";
363 }
364 } else if (type.width == 16) {
365 if (!type.sign) {
366 intrinsic = "llvm.ppc.altivec.vmaxuh";
367 } else {
368 intrinsic = "llvm.ppc.altivec.vmaxsh";
369 }
370 } else if (type.width == 32) {
371 if (!type.sign) {
372 intrinsic = "llvm.ppc.altivec.vmaxuw";
373 } else {
374 intrinsic = "llvm.ppc.altivec.vmaxsw";
375 }
376 }
377 }
378
379 if (intrinsic) {
380 if (util_cpu_caps.has_sse && type.floating &&
381 nan_behavior != GALLIVM_NAN_BEHAVIOR_UNDEFINED &&
382 nan_behavior != GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN &&
383 nan_behavior != GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN) {
384 LLVMValueRef isnan, max;
385 max = lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
386 type,
387 intr_size, a, b);
388 if (nan_behavior == GALLIVM_NAN_RETURN_OTHER) {
389 isnan = lp_build_isnan(bld, b);
390 return lp_build_select(bld, isnan, a, max);
391 } else {
392 assert(nan_behavior == GALLIVM_NAN_RETURN_NAN);
393 isnan = lp_build_isnan(bld, a);
394 return lp_build_select(bld, isnan, a, max);
395 }
396 } else {
397 return lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
398 type,
399 intr_size, a, b);
400 }
401 }
402
403 if (type.floating) {
404 switch (nan_behavior) {
405 case GALLIVM_NAN_RETURN_NAN: {
406 LLVMValueRef isnan = lp_build_isnan(bld, b);
407 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
408 cond = LLVMBuildXor(bld->gallivm->builder, cond, isnan, "");
409 return lp_build_select(bld, cond, a, b);
410 }
411 break;
412 case GALLIVM_NAN_RETURN_OTHER: {
413 LLVMValueRef isnan = lp_build_isnan(bld, a);
414 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
415 cond = LLVMBuildXor(bld->gallivm->builder, cond, isnan, "");
416 return lp_build_select(bld, cond, a, b);
417 }
418 break;
419 case GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN:
420 cond = lp_build_cmp_ordered(bld, PIPE_FUNC_GREATER, a, b);
421 return lp_build_select(bld, cond, a, b);
422 case GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN:
423 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, b, a);
424 return lp_build_select(bld, cond, b, a);
425 case GALLIVM_NAN_BEHAVIOR_UNDEFINED:
426 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
427 return lp_build_select(bld, cond, a, b);
428 break;
429 default:
430 assert(0);
431 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
432 return lp_build_select(bld, cond, a, b);
433 }
434 } else {
435 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
436 return lp_build_select(bld, cond, a, b);
437 }
438 }
439
440
441 /**
442 * Generate 1 - a, or ~a depending on bld->type.
443 */
444 LLVMValueRef
445 lp_build_comp(struct lp_build_context *bld,
446 LLVMValueRef a)
447 {
448 LLVMBuilderRef builder = bld->gallivm->builder;
449 const struct lp_type type = bld->type;
450
451 assert(lp_check_value(type, a));
452
453 if(a == bld->one)
454 return bld->zero;
455 if(a == bld->zero)
456 return bld->one;
457
458 if(type.norm && !type.floating && !type.fixed && !type.sign) {
459 if(LLVMIsConstant(a))
460 return LLVMConstNot(a);
461 else
462 return LLVMBuildNot(builder, a, "");
463 }
464
465 if(LLVMIsConstant(a))
466 if (type.floating)
467 return LLVMConstFSub(bld->one, a);
468 else
469 return LLVMConstSub(bld->one, a);
470 else
471 if (type.floating)
472 return LLVMBuildFSub(builder, bld->one, a, "");
473 else
474 return LLVMBuildSub(builder, bld->one, a, "");
475 }
476
477
478 /**
479 * Generate a + b
480 */
481 LLVMValueRef
482 lp_build_add(struct lp_build_context *bld,
483 LLVMValueRef a,
484 LLVMValueRef b)
485 {
486 LLVMBuilderRef builder = bld->gallivm->builder;
487 const struct lp_type type = bld->type;
488 LLVMValueRef res;
489
490 assert(lp_check_value(type, a));
491 assert(lp_check_value(type, b));
492
493 if(a == bld->zero)
494 return b;
495 if(b == bld->zero)
496 return a;
497 if(a == bld->undef || b == bld->undef)
498 return bld->undef;
499
500 if(bld->type.norm) {
501 const char *intrinsic = NULL;
502
503 if(a == bld->one || b == bld->one)
504 return bld->one;
505
506 if (type.width * type.length == 128 &&
507 !type.floating && !type.fixed) {
508 if(util_cpu_caps.has_sse2) {
509 if(type.width == 8)
510 intrinsic = type.sign ? "llvm.x86.sse2.padds.b" : "llvm.x86.sse2.paddus.b";
511 if(type.width == 16)
512 intrinsic = type.sign ? "llvm.x86.sse2.padds.w" : "llvm.x86.sse2.paddus.w";
513 } else if (util_cpu_caps.has_altivec) {
514 if(type.width == 8)
515 intrinsic = type.sign ? "llvm.ppc.altivec.vaddsbs" : "llvm.ppc.altivec.vaddubs";
516 if(type.width == 16)
517 intrinsic = type.sign ? "llvm.ppc.altivec.vaddshs" : "llvm.ppc.altivec.vadduhs";
518 }
519 }
520
521 if (intrinsic)
522 return lp_build_intrinsic_binary(builder, intrinsic, lp_build_vec_type(bld->gallivm, bld->type), a, b);
523 }
524
525 if(type.norm && !type.floating && !type.fixed) {
526 if (type.sign) {
527 uint64_t sign = (uint64_t)1 << (type.width - 1);
528 LLVMValueRef max_val = lp_build_const_int_vec(bld->gallivm, type, sign - 1);
529 LLVMValueRef min_val = lp_build_const_int_vec(bld->gallivm, type, sign);
530 /* a_clamp_max is the maximum a for positive b,
531 a_clamp_min is the minimum a for negative b. */
532 LLVMValueRef a_clamp_max = lp_build_min_simple(bld, a, LLVMBuildSub(builder, max_val, b, ""), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
533 LLVMValueRef a_clamp_min = lp_build_max_simple(bld, a, LLVMBuildSub(builder, min_val, b, ""), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
534 a = lp_build_select(bld, lp_build_cmp(bld, PIPE_FUNC_GREATER, b, bld->zero), a_clamp_max, a_clamp_min);
535 } else {
536 a = lp_build_min_simple(bld, a, lp_build_comp(bld, b), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
537 }
538 }
539
540 if(LLVMIsConstant(a) && LLVMIsConstant(b))
541 if (type.floating)
542 res = LLVMConstFAdd(a, b);
543 else
544 res = LLVMConstAdd(a, b);
545 else
546 if (type.floating)
547 res = LLVMBuildFAdd(builder, a, b, "");
548 else
549 res = LLVMBuildAdd(builder, a, b, "");
550
551 /* clamp to ceiling of 1.0 */
552 if(bld->type.norm && (bld->type.floating || bld->type.fixed))
553 res = lp_build_min_simple(bld, res, bld->one, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
554
555 /* XXX clamp to floor of -1 or 0??? */
556
557 return res;
558 }
559
560
561 /** Return the scalar sum of the elements of a.
562 * Should avoid this operation whenever possible.
563 */
564 LLVMValueRef
565 lp_build_horizontal_add(struct lp_build_context *bld,
566 LLVMValueRef a)
567 {
568 LLVMBuilderRef builder = bld->gallivm->builder;
569 const struct lp_type type = bld->type;
570 LLVMValueRef index, res;
571 unsigned i, length;
572 LLVMValueRef shuffles1[LP_MAX_VECTOR_LENGTH / 2];
573 LLVMValueRef shuffles2[LP_MAX_VECTOR_LENGTH / 2];
574 LLVMValueRef vecres, elem2;
575
576 assert(lp_check_value(type, a));
577
578 if (type.length == 1) {
579 return a;
580 }
581
582 assert(!bld->type.norm);
583
584 /*
585 * for byte vectors can do much better with psadbw.
586 * Using repeated shuffle/adds here. Note with multiple vectors
587 * this can be done more efficiently as outlined in the intel
588 * optimization manual.
589 * Note: could cause data rearrangement if used with smaller element
590 * sizes.
591 */
592
593 vecres = a;
594 length = type.length / 2;
595 while (length > 1) {
596 LLVMValueRef vec1, vec2;
597 for (i = 0; i < length; i++) {
598 shuffles1[i] = lp_build_const_int32(bld->gallivm, i);
599 shuffles2[i] = lp_build_const_int32(bld->gallivm, i + length);
600 }
601 vec1 = LLVMBuildShuffleVector(builder, vecres, vecres,
602 LLVMConstVector(shuffles1, length), "");
603 vec2 = LLVMBuildShuffleVector(builder, vecres, vecres,
604 LLVMConstVector(shuffles2, length), "");
605 if (type.floating) {
606 vecres = LLVMBuildFAdd(builder, vec1, vec2, "");
607 }
608 else {
609 vecres = LLVMBuildAdd(builder, vec1, vec2, "");
610 }
611 length = length >> 1;
612 }
613
614 /* always have vector of size 2 here */
615 assert(length == 1);
616
617 index = lp_build_const_int32(bld->gallivm, 0);
618 res = LLVMBuildExtractElement(builder, vecres, index, "");
619 index = lp_build_const_int32(bld->gallivm, 1);
620 elem2 = LLVMBuildExtractElement(builder, vecres, index, "");
621
622 if (type.floating)
623 res = LLVMBuildFAdd(builder, res, elem2, "");
624 else
625 res = LLVMBuildAdd(builder, res, elem2, "");
626
627 return res;
628 }
629
630 /**
631 * Return the horizontal sums of 4 float vectors as a float4 vector.
632 * This uses the technique as outlined in Intel Optimization Manual.
633 */
634 static LLVMValueRef
635 lp_build_horizontal_add4x4f(struct lp_build_context *bld,
636 LLVMValueRef src[4])
637 {
638 struct gallivm_state *gallivm = bld->gallivm;
639 LLVMBuilderRef builder = gallivm->builder;
640 LLVMValueRef shuffles[4];
641 LLVMValueRef tmp[4];
642 LLVMValueRef sumtmp[2], shuftmp[2];
643
644 /* lower half of regs */
645 shuffles[0] = lp_build_const_int32(gallivm, 0);
646 shuffles[1] = lp_build_const_int32(gallivm, 1);
647 shuffles[2] = lp_build_const_int32(gallivm, 4);
648 shuffles[3] = lp_build_const_int32(gallivm, 5);
649 tmp[0] = LLVMBuildShuffleVector(builder, src[0], src[1],
650 LLVMConstVector(shuffles, 4), "");
651 tmp[2] = LLVMBuildShuffleVector(builder, src[2], src[3],
652 LLVMConstVector(shuffles, 4), "");
653
654 /* upper half of regs */
655 shuffles[0] = lp_build_const_int32(gallivm, 2);
656 shuffles[1] = lp_build_const_int32(gallivm, 3);
657 shuffles[2] = lp_build_const_int32(gallivm, 6);
658 shuffles[3] = lp_build_const_int32(gallivm, 7);
659 tmp[1] = LLVMBuildShuffleVector(builder, src[0], src[1],
660 LLVMConstVector(shuffles, 4), "");
661 tmp[3] = LLVMBuildShuffleVector(builder, src[2], src[3],
662 LLVMConstVector(shuffles, 4), "");
663
664 sumtmp[0] = LLVMBuildFAdd(builder, tmp[0], tmp[1], "");
665 sumtmp[1] = LLVMBuildFAdd(builder, tmp[2], tmp[3], "");
666
667 shuffles[0] = lp_build_const_int32(gallivm, 0);
668 shuffles[1] = lp_build_const_int32(gallivm, 2);
669 shuffles[2] = lp_build_const_int32(gallivm, 4);
670 shuffles[3] = lp_build_const_int32(gallivm, 6);
671 shuftmp[0] = LLVMBuildShuffleVector(builder, sumtmp[0], sumtmp[1],
672 LLVMConstVector(shuffles, 4), "");
673
674 shuffles[0] = lp_build_const_int32(gallivm, 1);
675 shuffles[1] = lp_build_const_int32(gallivm, 3);
676 shuffles[2] = lp_build_const_int32(gallivm, 5);
677 shuffles[3] = lp_build_const_int32(gallivm, 7);
678 shuftmp[1] = LLVMBuildShuffleVector(builder, sumtmp[0], sumtmp[1],
679 LLVMConstVector(shuffles, 4), "");
680
681 return LLVMBuildFAdd(builder, shuftmp[0], shuftmp[1], "");
682 }
683
684
685 /*
686 * partially horizontally add 2-4 float vectors with length nx4,
687 * i.e. only four adjacent values in each vector will be added,
688 * assuming values are really grouped in 4 which also determines
689 * output order.
690 *
691 * Return a vector of the same length as the initial vectors,
692 * with the excess elements (if any) being undefined.
693 * The element order is independent of number of input vectors.
694 * For 3 vectors x0x1x2x3x4x5x6x7, y0y1y2y3y4y5y6y7, z0z1z2z3z4z5z6z7
695 * the output order thus will be
696 * sumx0-x3,sumy0-y3,sumz0-z3,undef,sumx4-x7,sumy4-y7,sumz4z7,undef
697 */
698 LLVMValueRef
699 lp_build_hadd_partial4(struct lp_build_context *bld,
700 LLVMValueRef vectors[],
701 unsigned num_vecs)
702 {
703 struct gallivm_state *gallivm = bld->gallivm;
704 LLVMBuilderRef builder = gallivm->builder;
705 LLVMValueRef ret_vec;
706 LLVMValueRef tmp[4];
707 const char *intrinsic = NULL;
708
709 assert(num_vecs >= 2 && num_vecs <= 4);
710 assert(bld->type.floating);
711
712 /* only use this with at least 2 vectors, as it is sort of expensive
713 * (depending on cpu) and we always need two horizontal adds anyway,
714 * so a shuffle/add approach might be better.
715 */
716
717 tmp[0] = vectors[0];
718 tmp[1] = vectors[1];
719
720 tmp[2] = num_vecs > 2 ? vectors[2] : vectors[0];
721 tmp[3] = num_vecs > 3 ? vectors[3] : vectors[0];
722
723 if (util_cpu_caps.has_sse3 && bld->type.width == 32 &&
724 bld->type.length == 4) {
725 intrinsic = "llvm.x86.sse3.hadd.ps";
726 }
727 else if (util_cpu_caps.has_avx && bld->type.width == 32 &&
728 bld->type.length == 8) {
729 intrinsic = "llvm.x86.avx.hadd.ps.256";
730 }
731 if (intrinsic) {
732 tmp[0] = lp_build_intrinsic_binary(builder, intrinsic,
733 lp_build_vec_type(gallivm, bld->type),
734 tmp[0], tmp[1]);
735 if (num_vecs > 2) {
736 tmp[1] = lp_build_intrinsic_binary(builder, intrinsic,
737 lp_build_vec_type(gallivm, bld->type),
738 tmp[2], tmp[3]);
739 }
740 else {
741 tmp[1] = tmp[0];
742 }
743 return lp_build_intrinsic_binary(builder, intrinsic,
744 lp_build_vec_type(gallivm, bld->type),
745 tmp[0], tmp[1]);
746 }
747
748 if (bld->type.length == 4) {
749 ret_vec = lp_build_horizontal_add4x4f(bld, tmp);
750 }
751 else {
752 LLVMValueRef partres[LP_MAX_VECTOR_LENGTH/4];
753 unsigned j;
754 unsigned num_iter = bld->type.length / 4;
755 struct lp_type parttype = bld->type;
756 parttype.length = 4;
757 for (j = 0; j < num_iter; j++) {
758 LLVMValueRef partsrc[4];
759 unsigned i;
760 for (i = 0; i < 4; i++) {
761 partsrc[i] = lp_build_extract_range(gallivm, tmp[i], j*4, 4);
762 }
763 partres[j] = lp_build_horizontal_add4x4f(bld, partsrc);
764 }
765 ret_vec = lp_build_concat(gallivm, partres, parttype, num_iter);
766 }
767 return ret_vec;
768 }
769
770 /**
771 * Generate a - b
772 */
773 LLVMValueRef
774 lp_build_sub(struct lp_build_context *bld,
775 LLVMValueRef a,
776 LLVMValueRef b)
777 {
778 LLVMBuilderRef builder = bld->gallivm->builder;
779 const struct lp_type type = bld->type;
780 LLVMValueRef res;
781
782 assert(lp_check_value(type, a));
783 assert(lp_check_value(type, b));
784
785 if(b == bld->zero)
786 return a;
787 if(a == bld->undef || b == bld->undef)
788 return bld->undef;
789 if(a == b)
790 return bld->zero;
791
792 if(bld->type.norm) {
793 const char *intrinsic = NULL;
794
795 if(b == bld->one)
796 return bld->zero;
797
798 if (type.width * type.length == 128 &&
799 !type.floating && !type.fixed) {
800 if (util_cpu_caps.has_sse2) {
801 if(type.width == 8)
802 intrinsic = type.sign ? "llvm.x86.sse2.psubs.b" : "llvm.x86.sse2.psubus.b";
803 if(type.width == 16)
804 intrinsic = type.sign ? "llvm.x86.sse2.psubs.w" : "llvm.x86.sse2.psubus.w";
805 } else if (util_cpu_caps.has_altivec) {
806 if(type.width == 8)
807 intrinsic = type.sign ? "llvm.ppc.altivec.vsubsbs" : "llvm.ppc.altivec.vsububs";
808 if(type.width == 16)
809 intrinsic = type.sign ? "llvm.ppc.altivec.vsubshs" : "llvm.ppc.altivec.vsubuhs";
810 }
811 }
812
813 if (intrinsic)
814 return lp_build_intrinsic_binary(builder, intrinsic, lp_build_vec_type(bld->gallivm, bld->type), a, b);
815 }
816
817 if(type.norm && !type.floating && !type.fixed) {
818 if (type.sign) {
819 uint64_t sign = (uint64_t)1 << (type.width - 1);
820 LLVMValueRef max_val = lp_build_const_int_vec(bld->gallivm, type, sign - 1);
821 LLVMValueRef min_val = lp_build_const_int_vec(bld->gallivm, type, sign);
822 /* a_clamp_max is the maximum a for negative b,
823 a_clamp_min is the minimum a for positive b. */
824 LLVMValueRef a_clamp_max = lp_build_min_simple(bld, a, LLVMBuildAdd(builder, max_val, b, ""), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
825 LLVMValueRef a_clamp_min = lp_build_max_simple(bld, a, LLVMBuildAdd(builder, min_val, b, ""), GALLIVM_NAN_BEHAVIOR_UNDEFINED);
826 a = lp_build_select(bld, lp_build_cmp(bld, PIPE_FUNC_GREATER, b, bld->zero), a_clamp_min, a_clamp_max);
827 } else {
828 a = lp_build_max_simple(bld, a, b, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
829 }
830 }
831
832 if(LLVMIsConstant(a) && LLVMIsConstant(b))
833 if (type.floating)
834 res = LLVMConstFSub(a, b);
835 else
836 res = LLVMConstSub(a, b);
837 else
838 if (type.floating)
839 res = LLVMBuildFSub(builder, a, b, "");
840 else
841 res = LLVMBuildSub(builder, a, b, "");
842
843 if(bld->type.norm && (bld->type.floating || bld->type.fixed))
844 res = lp_build_max_simple(bld, res, bld->zero, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
845
846 return res;
847 }
848
849
850
851 /**
852 * Normalized multiplication.
853 *
854 * There are several approaches for (using 8-bit normalized multiplication as
855 * an example):
856 *
857 * - alpha plus one
858 *
859 * makes the following approximation to the division (Sree)
860 *
861 * a*b/255 ~= (a*(b + 1)) >> 256
862 *
863 * which is the fastest method that satisfies the following OpenGL criteria of
864 *
865 * 0*0 = 0 and 255*255 = 255
866 *
867 * - geometric series
868 *
869 * takes the geometric series approximation to the division
870 *
871 * t/255 = (t >> 8) + (t >> 16) + (t >> 24) ..
872 *
873 * in this case just the first two terms to fit in 16bit arithmetic
874 *
875 * t/255 ~= (t + (t >> 8)) >> 8
876 *
877 * note that just by itself it doesn't satisfies the OpenGL criteria, as
878 * 255*255 = 254, so the special case b = 255 must be accounted or roundoff
879 * must be used.
880 *
881 * - geometric series plus rounding
882 *
883 * when using a geometric series division instead of truncating the result
884 * use roundoff in the approximation (Jim Blinn)
885 *
886 * t/255 ~= (t + (t >> 8) + 0x80) >> 8
887 *
888 * achieving the exact results.
889 *
890 *
891 *
892 * @sa Alvy Ray Smith, Image Compositing Fundamentals, Tech Memo 4, Aug 15, 1995,
893 * ftp://ftp.alvyray.com/Acrobat/4_Comp.pdf
894 * @sa Michael Herf, The "double blend trick", May 2000,
895 * http://www.stereopsis.com/doubleblend.html
896 */
897 static LLVMValueRef
898 lp_build_mul_norm(struct gallivm_state *gallivm,
899 struct lp_type wide_type,
900 LLVMValueRef a, LLVMValueRef b)
901 {
902 LLVMBuilderRef builder = gallivm->builder;
903 struct lp_build_context bld;
904 unsigned n;
905 LLVMValueRef half;
906 LLVMValueRef ab;
907
908 assert(!wide_type.floating);
909 assert(lp_check_value(wide_type, a));
910 assert(lp_check_value(wide_type, b));
911
912 lp_build_context_init(&bld, gallivm, wide_type);
913
914 n = wide_type.width / 2;
915 if (wide_type.sign) {
916 --n;
917 }
918
919 /*
920 * TODO: for 16bits normalized SSE2 vectors we could consider using PMULHUW
921 * http://ssp.impulsetrain.com/2011/07/03/multiplying-normalized-16-bit-numbers-with-sse2/
922 */
923
924 /*
925 * a*b / (2**n - 1) ~= (a*b + (a*b >> n) + half) >> n
926 */
927
928 ab = LLVMBuildMul(builder, a, b, "");
929 ab = LLVMBuildAdd(builder, ab, lp_build_shr_imm(&bld, ab, n), "");
930
931 /*
932 * half = sgn(ab) * 0.5 * (2 ** n) = sgn(ab) * (1 << (n - 1))
933 */
934
935 half = lp_build_const_int_vec(gallivm, wide_type, 1LL << (n - 1));
936 if (wide_type.sign) {
937 LLVMValueRef minus_half = LLVMBuildNeg(builder, half, "");
938 LLVMValueRef sign = lp_build_shr_imm(&bld, ab, wide_type.width - 1);
939 half = lp_build_select(&bld, sign, minus_half, half);
940 }
941 ab = LLVMBuildAdd(builder, ab, half, "");
942
943 /* Final division */
944 ab = lp_build_shr_imm(&bld, ab, n);
945
946 return ab;
947 }
948
949 /**
950 * Generate a * b
951 */
952 LLVMValueRef
953 lp_build_mul(struct lp_build_context *bld,
954 LLVMValueRef a,
955 LLVMValueRef b)
956 {
957 LLVMBuilderRef builder = bld->gallivm->builder;
958 const struct lp_type type = bld->type;
959 LLVMValueRef shift;
960 LLVMValueRef res;
961
962 assert(lp_check_value(type, a));
963 assert(lp_check_value(type, b));
964
965 if(a == bld->zero)
966 return bld->zero;
967 if(a == bld->one)
968 return b;
969 if(b == bld->zero)
970 return bld->zero;
971 if(b == bld->one)
972 return a;
973 if(a == bld->undef || b == bld->undef)
974 return bld->undef;
975
976 if (!type.floating && !type.fixed && type.norm) {
977 struct lp_type wide_type = lp_wider_type(type);
978 LLVMValueRef al, ah, bl, bh, abl, abh, ab;
979
980 lp_build_unpack2(bld->gallivm, type, wide_type, a, &al, &ah);
981 lp_build_unpack2(bld->gallivm, type, wide_type, b, &bl, &bh);
982
983 /* PMULLW, PSRLW, PADDW */
984 abl = lp_build_mul_norm(bld->gallivm, wide_type, al, bl);
985 abh = lp_build_mul_norm(bld->gallivm, wide_type, ah, bh);
986
987 ab = lp_build_pack2(bld->gallivm, wide_type, type, abl, abh);
988
989 return ab;
990 }
991
992 if(type.fixed)
993 shift = lp_build_const_int_vec(bld->gallivm, type, type.width/2);
994 else
995 shift = NULL;
996
997 if(LLVMIsConstant(a) && LLVMIsConstant(b)) {
998 if (type.floating)
999 res = LLVMConstFMul(a, b);
1000 else
1001 res = LLVMConstMul(a, b);
1002 if(shift) {
1003 if(type.sign)
1004 res = LLVMConstAShr(res, shift);
1005 else
1006 res = LLVMConstLShr(res, shift);
1007 }
1008 }
1009 else {
1010 if (type.floating)
1011 res = LLVMBuildFMul(builder, a, b, "");
1012 else
1013 res = LLVMBuildMul(builder, a, b, "");
1014 if(shift) {
1015 if(type.sign)
1016 res = LLVMBuildAShr(builder, res, shift, "");
1017 else
1018 res = LLVMBuildLShr(builder, res, shift, "");
1019 }
1020 }
1021
1022 return res;
1023 }
1024
1025
1026 /**
1027 * Small vector x scale multiplication optimization.
1028 */
1029 LLVMValueRef
1030 lp_build_mul_imm(struct lp_build_context *bld,
1031 LLVMValueRef a,
1032 int b)
1033 {
1034 LLVMBuilderRef builder = bld->gallivm->builder;
1035 LLVMValueRef factor;
1036
1037 assert(lp_check_value(bld->type, a));
1038
1039 if(b == 0)
1040 return bld->zero;
1041
1042 if(b == 1)
1043 return a;
1044
1045 if(b == -1)
1046 return lp_build_negate(bld, a);
1047
1048 if(b == 2 && bld->type.floating)
1049 return lp_build_add(bld, a, a);
1050
1051 if(util_is_power_of_two(b)) {
1052 unsigned shift = ffs(b) - 1;
1053
1054 if(bld->type.floating) {
1055 #if 0
1056 /*
1057 * Power of two multiplication by directly manipulating the exponent.
1058 *
1059 * XXX: This might not be always faster, it will introduce a small error
1060 * for multiplication by zero, and it will produce wrong results
1061 * for Inf and NaN.
1062 */
1063 unsigned mantissa = lp_mantissa(bld->type);
1064 factor = lp_build_const_int_vec(bld->gallivm, bld->type, (unsigned long long)shift << mantissa);
1065 a = LLVMBuildBitCast(builder, a, lp_build_int_vec_type(bld->type), "");
1066 a = LLVMBuildAdd(builder, a, factor, "");
1067 a = LLVMBuildBitCast(builder, a, lp_build_vec_type(bld->gallivm, bld->type), "");
1068 return a;
1069 #endif
1070 }
1071 else {
1072 factor = lp_build_const_vec(bld->gallivm, bld->type, shift);
1073 return LLVMBuildShl(builder, a, factor, "");
1074 }
1075 }
1076
1077 factor = lp_build_const_vec(bld->gallivm, bld->type, (double)b);
1078 return lp_build_mul(bld, a, factor);
1079 }
1080
1081
1082 /**
1083 * Generate a / b
1084 */
1085 LLVMValueRef
1086 lp_build_div(struct lp_build_context *bld,
1087 LLVMValueRef a,
1088 LLVMValueRef b)
1089 {
1090 LLVMBuilderRef builder = bld->gallivm->builder;
1091 const struct lp_type type = bld->type;
1092
1093 assert(lp_check_value(type, a));
1094 assert(lp_check_value(type, b));
1095
1096 if(a == bld->zero)
1097 return bld->zero;
1098 if(a == bld->one && type.floating)
1099 return lp_build_rcp(bld, b);
1100 if(b == bld->zero)
1101 return bld->undef;
1102 if(b == bld->one)
1103 return a;
1104 if(a == bld->undef || b == bld->undef)
1105 return bld->undef;
1106
1107 if(LLVMIsConstant(a) && LLVMIsConstant(b)) {
1108 if (type.floating)
1109 return LLVMConstFDiv(a, b);
1110 else if (type.sign)
1111 return LLVMConstSDiv(a, b);
1112 else
1113 return LLVMConstUDiv(a, b);
1114 }
1115
1116 if(((util_cpu_caps.has_sse && type.width == 32 && type.length == 4) ||
1117 (util_cpu_caps.has_avx && type.width == 32 && type.length == 8)) &&
1118 type.floating)
1119 return lp_build_mul(bld, a, lp_build_rcp(bld, b));
1120
1121 if (type.floating)
1122 return LLVMBuildFDiv(builder, a, b, "");
1123 else if (type.sign)
1124 return LLVMBuildSDiv(builder, a, b, "");
1125 else
1126 return LLVMBuildUDiv(builder, a, b, "");
1127 }
1128
1129
1130 /**
1131 * Linear interpolation helper.
1132 *
1133 * @param normalized whether we are interpolating normalized values,
1134 * encoded in normalized integers, twice as wide.
1135 *
1136 * @sa http://www.stereopsis.com/doubleblend.html
1137 */
1138 static inline LLVMValueRef
1139 lp_build_lerp_simple(struct lp_build_context *bld,
1140 LLVMValueRef x,
1141 LLVMValueRef v0,
1142 LLVMValueRef v1,
1143 unsigned flags)
1144 {
1145 unsigned half_width = bld->type.width/2;
1146 LLVMBuilderRef builder = bld->gallivm->builder;
1147 LLVMValueRef delta;
1148 LLVMValueRef res;
1149
1150 assert(lp_check_value(bld->type, x));
1151 assert(lp_check_value(bld->type, v0));
1152 assert(lp_check_value(bld->type, v1));
1153
1154 delta = lp_build_sub(bld, v1, v0);
1155
1156 if (flags & LP_BLD_LERP_WIDE_NORMALIZED) {
1157 if (!bld->type.sign) {
1158 if (!(flags & LP_BLD_LERP_PRESCALED_WEIGHTS)) {
1159 /*
1160 * Scale x from [0, 2**n - 1] to [0, 2**n] by adding the
1161 * most-significant-bit to the lowest-significant-bit, so that
1162 * later we can just divide by 2**n instead of 2**n - 1.
1163 */
1164
1165 x = lp_build_add(bld, x, lp_build_shr_imm(bld, x, half_width - 1));
1166 }
1167
1168 /* (x * delta) >> n */
1169 res = lp_build_mul(bld, x, delta);
1170 res = lp_build_shr_imm(bld, res, half_width);
1171 } else {
1172 /*
1173 * The rescaling trick above doesn't work for signed numbers, so
1174 * use the 2**n - 1 divison approximation in lp_build_mul_norm
1175 * instead.
1176 */
1177 assert(!(flags & LP_BLD_LERP_PRESCALED_WEIGHTS));
1178 res = lp_build_mul_norm(bld->gallivm, bld->type, x, delta);
1179 }
1180 } else {
1181 assert(!(flags & LP_BLD_LERP_PRESCALED_WEIGHTS));
1182 res = lp_build_mul(bld, x, delta);
1183 }
1184
1185 res = lp_build_add(bld, v0, res);
1186
1187 if (((flags & LP_BLD_LERP_WIDE_NORMALIZED) && !bld->type.sign) ||
1188 bld->type.fixed) {
1189 /* We need to mask out the high order bits when lerping 8bit normalized colors stored on 16bits */
1190 /* XXX: This step is necessary for lerping 8bit colors stored on 16bits,
1191 * but it will be wrong for true fixed point use cases. Basically we need
1192 * a more powerful lp_type, capable of further distinguishing the values
1193 * interpretation from the value storage. */
1194 res = LLVMBuildAnd(builder, res, lp_build_const_int_vec(bld->gallivm, bld->type, (1 << half_width) - 1), "");
1195 }
1196
1197 return res;
1198 }
1199
1200
1201 /**
1202 * Linear interpolation.
1203 */
1204 LLVMValueRef
1205 lp_build_lerp(struct lp_build_context *bld,
1206 LLVMValueRef x,
1207 LLVMValueRef v0,
1208 LLVMValueRef v1,
1209 unsigned flags)
1210 {
1211 const struct lp_type type = bld->type;
1212 LLVMValueRef res;
1213
1214 assert(lp_check_value(type, x));
1215 assert(lp_check_value(type, v0));
1216 assert(lp_check_value(type, v1));
1217
1218 assert(!(flags & LP_BLD_LERP_WIDE_NORMALIZED));
1219
1220 if (type.norm) {
1221 struct lp_type wide_type;
1222 struct lp_build_context wide_bld;
1223 LLVMValueRef xl, xh, v0l, v0h, v1l, v1h, resl, resh;
1224
1225 assert(type.length >= 2);
1226
1227 /*
1228 * Create a wider integer type, enough to hold the
1229 * intermediate result of the multiplication.
1230 */
1231 memset(&wide_type, 0, sizeof wide_type);
1232 wide_type.sign = type.sign;
1233 wide_type.width = type.width*2;
1234 wide_type.length = type.length/2;
1235
1236 lp_build_context_init(&wide_bld, bld->gallivm, wide_type);
1237
1238 lp_build_unpack2(bld->gallivm, type, wide_type, x, &xl, &xh);
1239 lp_build_unpack2(bld->gallivm, type, wide_type, v0, &v0l, &v0h);
1240 lp_build_unpack2(bld->gallivm, type, wide_type, v1, &v1l, &v1h);
1241
1242 /*
1243 * Lerp both halves.
1244 */
1245
1246 flags |= LP_BLD_LERP_WIDE_NORMALIZED;
1247
1248 resl = lp_build_lerp_simple(&wide_bld, xl, v0l, v1l, flags);
1249 resh = lp_build_lerp_simple(&wide_bld, xh, v0h, v1h, flags);
1250
1251 res = lp_build_pack2(bld->gallivm, wide_type, type, resl, resh);
1252 } else {
1253 res = lp_build_lerp_simple(bld, x, v0, v1, flags);
1254 }
1255
1256 return res;
1257 }
1258
1259
1260 /**
1261 * Bilinear interpolation.
1262 *
1263 * Values indices are in v_{yx}.
1264 */
1265 LLVMValueRef
1266 lp_build_lerp_2d(struct lp_build_context *bld,
1267 LLVMValueRef x,
1268 LLVMValueRef y,
1269 LLVMValueRef v00,
1270 LLVMValueRef v01,
1271 LLVMValueRef v10,
1272 LLVMValueRef v11,
1273 unsigned flags)
1274 {
1275 LLVMValueRef v0 = lp_build_lerp(bld, x, v00, v01, flags);
1276 LLVMValueRef v1 = lp_build_lerp(bld, x, v10, v11, flags);
1277 return lp_build_lerp(bld, y, v0, v1, flags);
1278 }
1279
1280
1281 LLVMValueRef
1282 lp_build_lerp_3d(struct lp_build_context *bld,
1283 LLVMValueRef x,
1284 LLVMValueRef y,
1285 LLVMValueRef z,
1286 LLVMValueRef v000,
1287 LLVMValueRef v001,
1288 LLVMValueRef v010,
1289 LLVMValueRef v011,
1290 LLVMValueRef v100,
1291 LLVMValueRef v101,
1292 LLVMValueRef v110,
1293 LLVMValueRef v111,
1294 unsigned flags)
1295 {
1296 LLVMValueRef v0 = lp_build_lerp_2d(bld, x, y, v000, v001, v010, v011, flags);
1297 LLVMValueRef v1 = lp_build_lerp_2d(bld, x, y, v100, v101, v110, v111, flags);
1298 return lp_build_lerp(bld, z, v0, v1, flags);
1299 }
1300
1301
1302 /**
1303 * Generate min(a, b)
1304 * Do checks for special cases but not for nans.
1305 */
1306 LLVMValueRef
1307 lp_build_min(struct lp_build_context *bld,
1308 LLVMValueRef a,
1309 LLVMValueRef b)
1310 {
1311 assert(lp_check_value(bld->type, a));
1312 assert(lp_check_value(bld->type, b));
1313
1314 if(a == bld->undef || b == bld->undef)
1315 return bld->undef;
1316
1317 if(a == b)
1318 return a;
1319
1320 if (bld->type.norm) {
1321 if (!bld->type.sign) {
1322 if (a == bld->zero || b == bld->zero) {
1323 return bld->zero;
1324 }
1325 }
1326 if(a == bld->one)
1327 return b;
1328 if(b == bld->one)
1329 return a;
1330 }
1331
1332 return lp_build_min_simple(bld, a, b, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
1333 }
1334
1335
1336 /**
1337 * Generate min(a, b)
1338 * NaN's are handled according to the behavior specified by the
1339 * nan_behavior argument.
1340 */
1341 LLVMValueRef
1342 lp_build_min_ext(struct lp_build_context *bld,
1343 LLVMValueRef a,
1344 LLVMValueRef b,
1345 enum gallivm_nan_behavior nan_behavior)
1346 {
1347 assert(lp_check_value(bld->type, a));
1348 assert(lp_check_value(bld->type, b));
1349
1350 if(a == bld->undef || b == bld->undef)
1351 return bld->undef;
1352
1353 if(a == b)
1354 return a;
1355
1356 if (bld->type.norm) {
1357 if (!bld->type.sign) {
1358 if (a == bld->zero || b == bld->zero) {
1359 return bld->zero;
1360 }
1361 }
1362 if(a == bld->one)
1363 return b;
1364 if(b == bld->one)
1365 return a;
1366 }
1367
1368 return lp_build_min_simple(bld, a, b, nan_behavior);
1369 }
1370
1371 /**
1372 * Generate max(a, b)
1373 * Do checks for special cases, but NaN behavior is undefined.
1374 */
1375 LLVMValueRef
1376 lp_build_max(struct lp_build_context *bld,
1377 LLVMValueRef a,
1378 LLVMValueRef b)
1379 {
1380 assert(lp_check_value(bld->type, a));
1381 assert(lp_check_value(bld->type, b));
1382
1383 if(a == bld->undef || b == bld->undef)
1384 return bld->undef;
1385
1386 if(a == b)
1387 return a;
1388
1389 if(bld->type.norm) {
1390 if(a == bld->one || b == bld->one)
1391 return bld->one;
1392 if (!bld->type.sign) {
1393 if (a == bld->zero) {
1394 return b;
1395 }
1396 if (b == bld->zero) {
1397 return a;
1398 }
1399 }
1400 }
1401
1402 return lp_build_max_simple(bld, a, b, GALLIVM_NAN_BEHAVIOR_UNDEFINED);
1403 }
1404
1405
1406 /**
1407 * Generate max(a, b)
1408 * Checks for special cases.
1409 * NaN's are handled according to the behavior specified by the
1410 * nan_behavior argument.
1411 */
1412 LLVMValueRef
1413 lp_build_max_ext(struct lp_build_context *bld,
1414 LLVMValueRef a,
1415 LLVMValueRef b,
1416 enum gallivm_nan_behavior nan_behavior)
1417 {
1418 assert(lp_check_value(bld->type, a));
1419 assert(lp_check_value(bld->type, b));
1420
1421 if(a == bld->undef || b == bld->undef)
1422 return bld->undef;
1423
1424 if(a == b)
1425 return a;
1426
1427 if(bld->type.norm) {
1428 if(a == bld->one || b == bld->one)
1429 return bld->one;
1430 if (!bld->type.sign) {
1431 if (a == bld->zero) {
1432 return b;
1433 }
1434 if (b == bld->zero) {
1435 return a;
1436 }
1437 }
1438 }
1439
1440 return lp_build_max_simple(bld, a, b, nan_behavior);
1441 }
1442
1443 /**
1444 * Generate clamp(a, min, max)
1445 * NaN behavior (for any of a, min, max) is undefined.
1446 * Do checks for special cases.
1447 */
1448 LLVMValueRef
1449 lp_build_clamp(struct lp_build_context *bld,
1450 LLVMValueRef a,
1451 LLVMValueRef min,
1452 LLVMValueRef max)
1453 {
1454 assert(lp_check_value(bld->type, a));
1455 assert(lp_check_value(bld->type, min));
1456 assert(lp_check_value(bld->type, max));
1457
1458 a = lp_build_min(bld, a, max);
1459 a = lp_build_max(bld, a, min);
1460 return a;
1461 }
1462
1463
1464 /**
1465 * Generate clamp(a, 0, 1)
1466 * A NaN will get converted to zero.
1467 */
1468 LLVMValueRef
1469 lp_build_clamp_zero_one_nanzero(struct lp_build_context *bld,
1470 LLVMValueRef a)
1471 {
1472 a = lp_build_max_ext(bld, a, bld->zero, GALLIVM_NAN_RETURN_OTHER_SECOND_NONNAN);
1473 a = lp_build_min(bld, a, bld->one);
1474 return a;
1475 }
1476
1477
1478 /**
1479 * Generate abs(a)
1480 */
1481 LLVMValueRef
1482 lp_build_abs(struct lp_build_context *bld,
1483 LLVMValueRef a)
1484 {
1485 LLVMBuilderRef builder = bld->gallivm->builder;
1486 const struct lp_type type = bld->type;
1487 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
1488
1489 assert(lp_check_value(type, a));
1490
1491 if(!type.sign)
1492 return a;
1493
1494 if(type.floating) {
1495 char intrinsic[32];
1496 lp_format_intrinsic(intrinsic, sizeof intrinsic, "llvm.fabs", vec_type);
1497 return lp_build_intrinsic_unary(builder, intrinsic, vec_type, a);
1498 }
1499
1500 if(type.width*type.length == 128 && util_cpu_caps.has_ssse3) {
1501 switch(type.width) {
1502 case 8:
1503 return lp_build_intrinsic_unary(builder, "llvm.x86.ssse3.pabs.b.128", vec_type, a);
1504 case 16:
1505 return lp_build_intrinsic_unary(builder, "llvm.x86.ssse3.pabs.w.128", vec_type, a);
1506 case 32:
1507 return lp_build_intrinsic_unary(builder, "llvm.x86.ssse3.pabs.d.128", vec_type, a);
1508 }
1509 }
1510 else if (type.width*type.length == 256 && util_cpu_caps.has_ssse3 &&
1511 (gallivm_debug & GALLIVM_DEBUG_PERF) &&
1512 (type.width == 8 || type.width == 16 || type.width == 32)) {
1513 debug_printf("%s: inefficient code, should split vectors manually\n",
1514 __FUNCTION__);
1515 }
1516
1517 return lp_build_max(bld, a, LLVMBuildNeg(builder, a, ""));
1518 }
1519
1520
1521 LLVMValueRef
1522 lp_build_negate(struct lp_build_context *bld,
1523 LLVMValueRef a)
1524 {
1525 LLVMBuilderRef builder = bld->gallivm->builder;
1526
1527 assert(lp_check_value(bld->type, a));
1528
1529 if (bld->type.floating)
1530 a = LLVMBuildFNeg(builder, a, "");
1531 else
1532 a = LLVMBuildNeg(builder, a, "");
1533
1534 return a;
1535 }
1536
1537
1538 /** Return -1, 0 or +1 depending on the sign of a */
1539 LLVMValueRef
1540 lp_build_sgn(struct lp_build_context *bld,
1541 LLVMValueRef a)
1542 {
1543 LLVMBuilderRef builder = bld->gallivm->builder;
1544 const struct lp_type type = bld->type;
1545 LLVMValueRef cond;
1546 LLVMValueRef res;
1547
1548 assert(lp_check_value(type, a));
1549
1550 /* Handle non-zero case */
1551 if(!type.sign) {
1552 /* if not zero then sign must be positive */
1553 res = bld->one;
1554 }
1555 else if(type.floating) {
1556 LLVMTypeRef vec_type;
1557 LLVMTypeRef int_type;
1558 LLVMValueRef mask;
1559 LLVMValueRef sign;
1560 LLVMValueRef one;
1561 unsigned long long maskBit = (unsigned long long)1 << (type.width - 1);
1562
1563 int_type = lp_build_int_vec_type(bld->gallivm, type);
1564 vec_type = lp_build_vec_type(bld->gallivm, type);
1565 mask = lp_build_const_int_vec(bld->gallivm, type, maskBit);
1566
1567 /* Take the sign bit and add it to 1 constant */
1568 sign = LLVMBuildBitCast(builder, a, int_type, "");
1569 sign = LLVMBuildAnd(builder, sign, mask, "");
1570 one = LLVMConstBitCast(bld->one, int_type);
1571 res = LLVMBuildOr(builder, sign, one, "");
1572 res = LLVMBuildBitCast(builder, res, vec_type, "");
1573 }
1574 else
1575 {
1576 /* signed int/norm/fixed point */
1577 /* could use psign with sse3 and appropriate vectors here */
1578 LLVMValueRef minus_one = lp_build_const_vec(bld->gallivm, type, -1.0);
1579 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, bld->zero);
1580 res = lp_build_select(bld, cond, bld->one, minus_one);
1581 }
1582
1583 /* Handle zero */
1584 cond = lp_build_cmp(bld, PIPE_FUNC_EQUAL, a, bld->zero);
1585 res = lp_build_select(bld, cond, bld->zero, res);
1586
1587 return res;
1588 }
1589
1590
1591 /**
1592 * Set the sign of float vector 'a' according to 'sign'.
1593 * If sign==0, return abs(a).
1594 * If sign==1, return -abs(a);
1595 * Other values for sign produce undefined results.
1596 */
1597 LLVMValueRef
1598 lp_build_set_sign(struct lp_build_context *bld,
1599 LLVMValueRef a, LLVMValueRef sign)
1600 {
1601 LLVMBuilderRef builder = bld->gallivm->builder;
1602 const struct lp_type type = bld->type;
1603 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
1604 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
1605 LLVMValueRef shift = lp_build_const_int_vec(bld->gallivm, type, type.width - 1);
1606 LLVMValueRef mask = lp_build_const_int_vec(bld->gallivm, type,
1607 ~((unsigned long long) 1 << (type.width - 1)));
1608 LLVMValueRef val, res;
1609
1610 assert(type.floating);
1611 assert(lp_check_value(type, a));
1612
1613 /* val = reinterpret_cast<int>(a) */
1614 val = LLVMBuildBitCast(builder, a, int_vec_type, "");
1615 /* val = val & mask */
1616 val = LLVMBuildAnd(builder, val, mask, "");
1617 /* sign = sign << shift */
1618 sign = LLVMBuildShl(builder, sign, shift, "");
1619 /* res = val | sign */
1620 res = LLVMBuildOr(builder, val, sign, "");
1621 /* res = reinterpret_cast<float>(res) */
1622 res = LLVMBuildBitCast(builder, res, vec_type, "");
1623
1624 return res;
1625 }
1626
1627
1628 /**
1629 * Convert vector of (or scalar) int to vector of (or scalar) float.
1630 */
1631 LLVMValueRef
1632 lp_build_int_to_float(struct lp_build_context *bld,
1633 LLVMValueRef a)
1634 {
1635 LLVMBuilderRef builder = bld->gallivm->builder;
1636 const struct lp_type type = bld->type;
1637 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
1638
1639 assert(type.floating);
1640
1641 return LLVMBuildSIToFP(builder, a, vec_type, "");
1642 }
1643
1644 static boolean
1645 arch_rounding_available(const struct lp_type type)
1646 {
1647 if ((util_cpu_caps.has_sse4_1 &&
1648 (type.length == 1 || type.width*type.length == 128)) ||
1649 (util_cpu_caps.has_avx && type.width*type.length == 256))
1650 return TRUE;
1651 else if ((util_cpu_caps.has_altivec &&
1652 (type.width == 32 && type.length == 4)))
1653 return TRUE;
1654
1655 return FALSE;
1656 }
1657
1658 enum lp_build_round_mode
1659 {
1660 LP_BUILD_ROUND_NEAREST = 0,
1661 LP_BUILD_ROUND_FLOOR = 1,
1662 LP_BUILD_ROUND_CEIL = 2,
1663 LP_BUILD_ROUND_TRUNCATE = 3
1664 };
1665
1666 static inline LLVMValueRef
1667 lp_build_iround_nearest_sse2(struct lp_build_context *bld,
1668 LLVMValueRef a)
1669 {
1670 LLVMBuilderRef builder = bld->gallivm->builder;
1671 const struct lp_type type = bld->type;
1672 LLVMTypeRef i32t = LLVMInt32TypeInContext(bld->gallivm->context);
1673 LLVMTypeRef ret_type = lp_build_int_vec_type(bld->gallivm, type);
1674 const char *intrinsic;
1675 LLVMValueRef res;
1676
1677 assert(type.floating);
1678 /* using the double precision conversions is a bit more complicated */
1679 assert(type.width == 32);
1680
1681 assert(lp_check_value(type, a));
1682 assert(util_cpu_caps.has_sse2);
1683
1684 /* This is relying on MXCSR rounding mode, which should always be nearest. */
1685 if (type.length == 1) {
1686 LLVMTypeRef vec_type;
1687 LLVMValueRef undef;
1688 LLVMValueRef arg;
1689 LLVMValueRef index0 = LLVMConstInt(i32t, 0, 0);
1690
1691 vec_type = LLVMVectorType(bld->elem_type, 4);
1692
1693 intrinsic = "llvm.x86.sse.cvtss2si";
1694
1695 undef = LLVMGetUndef(vec_type);
1696
1697 arg = LLVMBuildInsertElement(builder, undef, a, index0, "");
1698
1699 res = lp_build_intrinsic_unary(builder, intrinsic,
1700 ret_type, arg);
1701 }
1702 else {
1703 if (type.width* type.length == 128) {
1704 intrinsic = "llvm.x86.sse2.cvtps2dq";
1705 }
1706 else {
1707 assert(type.width*type.length == 256);
1708 assert(util_cpu_caps.has_avx);
1709
1710 intrinsic = "llvm.x86.avx.cvt.ps2dq.256";
1711 }
1712 res = lp_build_intrinsic_unary(builder, intrinsic,
1713 ret_type, a);
1714 }
1715
1716 return res;
1717 }
1718
1719
1720 /*
1721 */
1722 static inline LLVMValueRef
1723 lp_build_round_altivec(struct lp_build_context *bld,
1724 LLVMValueRef a,
1725 enum lp_build_round_mode mode)
1726 {
1727 LLVMBuilderRef builder = bld->gallivm->builder;
1728 const struct lp_type type = bld->type;
1729 const char *intrinsic = NULL;
1730
1731 assert(type.floating);
1732
1733 assert(lp_check_value(type, a));
1734 assert(util_cpu_caps.has_altivec);
1735
1736 (void)type;
1737
1738 switch (mode) {
1739 case LP_BUILD_ROUND_NEAREST:
1740 intrinsic = "llvm.ppc.altivec.vrfin";
1741 break;
1742 case LP_BUILD_ROUND_FLOOR:
1743 intrinsic = "llvm.ppc.altivec.vrfim";
1744 break;
1745 case LP_BUILD_ROUND_CEIL:
1746 intrinsic = "llvm.ppc.altivec.vrfip";
1747 break;
1748 case LP_BUILD_ROUND_TRUNCATE:
1749 intrinsic = "llvm.ppc.altivec.vrfiz";
1750 break;
1751 }
1752
1753 return lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
1754 }
1755
1756 static inline LLVMValueRef
1757 lp_build_round_arch(struct lp_build_context *bld,
1758 LLVMValueRef a,
1759 enum lp_build_round_mode mode)
1760 {
1761 if (util_cpu_caps.has_sse4_1) {
1762 LLVMBuilderRef builder = bld->gallivm->builder;
1763 const struct lp_type type = bld->type;
1764 const char *intrinsic_root;
1765 char intrinsic[32];
1766
1767 assert(type.floating);
1768 assert(lp_check_value(type, a));
1769 (void)type;
1770
1771 switch (mode) {
1772 case LP_BUILD_ROUND_NEAREST:
1773 intrinsic_root = "llvm.nearbyint";
1774 break;
1775 case LP_BUILD_ROUND_FLOOR:
1776 intrinsic_root = "llvm.floor";
1777 break;
1778 case LP_BUILD_ROUND_CEIL:
1779 intrinsic_root = "llvm.ceil";
1780 break;
1781 case LP_BUILD_ROUND_TRUNCATE:
1782 intrinsic_root = "llvm.trunc";
1783 break;
1784 }
1785
1786 lp_format_intrinsic(intrinsic, sizeof intrinsic, intrinsic_root, bld->vec_type);
1787 return lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
1788 }
1789 else /* (util_cpu_caps.has_altivec) */
1790 return lp_build_round_altivec(bld, a, mode);
1791 }
1792
1793 /**
1794 * Return the integer part of a float (vector) value (== round toward zero).
1795 * The returned value is a float (vector).
1796 * Ex: trunc(-1.5) = -1.0
1797 */
1798 LLVMValueRef
1799 lp_build_trunc(struct lp_build_context *bld,
1800 LLVMValueRef a)
1801 {
1802 LLVMBuilderRef builder = bld->gallivm->builder;
1803 const struct lp_type type = bld->type;
1804
1805 assert(type.floating);
1806 assert(lp_check_value(type, a));
1807
1808 if (arch_rounding_available(type)) {
1809 return lp_build_round_arch(bld, a, LP_BUILD_ROUND_TRUNCATE);
1810 }
1811 else {
1812 const struct lp_type type = bld->type;
1813 struct lp_type inttype;
1814 struct lp_build_context intbld;
1815 LLVMValueRef cmpval = lp_build_const_vec(bld->gallivm, type, 1<<24);
1816 LLVMValueRef trunc, res, anosign, mask;
1817 LLVMTypeRef int_vec_type = bld->int_vec_type;
1818 LLVMTypeRef vec_type = bld->vec_type;
1819
1820 assert(type.width == 32); /* might want to handle doubles at some point */
1821
1822 inttype = type;
1823 inttype.floating = 0;
1824 lp_build_context_init(&intbld, bld->gallivm, inttype);
1825
1826 /* round by truncation */
1827 trunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
1828 res = LLVMBuildSIToFP(builder, trunc, vec_type, "floor.trunc");
1829
1830 /* mask out sign bit */
1831 anosign = lp_build_abs(bld, a);
1832 /*
1833 * mask out all values if anosign > 2^24
1834 * This should work both for large ints (all rounding is no-op for them
1835 * because such floats are always exact) as well as special cases like
1836 * NaNs, Infs (taking advantage of the fact they use max exponent).
1837 * (2^24 is arbitrary anything between 2^24 and 2^31 should work.)
1838 */
1839 anosign = LLVMBuildBitCast(builder, anosign, int_vec_type, "");
1840 cmpval = LLVMBuildBitCast(builder, cmpval, int_vec_type, "");
1841 mask = lp_build_cmp(&intbld, PIPE_FUNC_GREATER, anosign, cmpval);
1842 return lp_build_select(bld, mask, a, res);
1843 }
1844 }
1845
1846
1847 /**
1848 * Return float (vector) rounded to nearest integer (vector). The returned
1849 * value is a float (vector).
1850 * Ex: round(0.9) = 1.0
1851 * Ex: round(-1.5) = -2.0
1852 */
1853 LLVMValueRef
1854 lp_build_round(struct lp_build_context *bld,
1855 LLVMValueRef a)
1856 {
1857 LLVMBuilderRef builder = bld->gallivm->builder;
1858 const struct lp_type type = bld->type;
1859
1860 assert(type.floating);
1861 assert(lp_check_value(type, a));
1862
1863 if (arch_rounding_available(type)) {
1864 return lp_build_round_arch(bld, a, LP_BUILD_ROUND_NEAREST);
1865 }
1866 else {
1867 const struct lp_type type = bld->type;
1868 struct lp_type inttype;
1869 struct lp_build_context intbld;
1870 LLVMValueRef cmpval = lp_build_const_vec(bld->gallivm, type, 1<<24);
1871 LLVMValueRef res, anosign, mask;
1872 LLVMTypeRef int_vec_type = bld->int_vec_type;
1873 LLVMTypeRef vec_type = bld->vec_type;
1874
1875 assert(type.width == 32); /* might want to handle doubles at some point */
1876
1877 inttype = type;
1878 inttype.floating = 0;
1879 lp_build_context_init(&intbld, bld->gallivm, inttype);
1880
1881 res = lp_build_iround(bld, a);
1882 res = LLVMBuildSIToFP(builder, res, vec_type, "");
1883
1884 /* mask out sign bit */
1885 anosign = lp_build_abs(bld, a);
1886 /*
1887 * mask out all values if anosign > 2^24
1888 * This should work both for large ints (all rounding is no-op for them
1889 * because such floats are always exact) as well as special cases like
1890 * NaNs, Infs (taking advantage of the fact they use max exponent).
1891 * (2^24 is arbitrary anything between 2^24 and 2^31 should work.)
1892 */
1893 anosign = LLVMBuildBitCast(builder, anosign, int_vec_type, "");
1894 cmpval = LLVMBuildBitCast(builder, cmpval, int_vec_type, "");
1895 mask = lp_build_cmp(&intbld, PIPE_FUNC_GREATER, anosign, cmpval);
1896 return lp_build_select(bld, mask, a, res);
1897 }
1898 }
1899
1900
1901 /**
1902 * Return floor of float (vector), result is a float (vector)
1903 * Ex: floor(1.1) = 1.0
1904 * Ex: floor(-1.1) = -2.0
1905 */
1906 LLVMValueRef
1907 lp_build_floor(struct lp_build_context *bld,
1908 LLVMValueRef a)
1909 {
1910 LLVMBuilderRef builder = bld->gallivm->builder;
1911 const struct lp_type type = bld->type;
1912
1913 assert(type.floating);
1914 assert(lp_check_value(type, a));
1915
1916 if (arch_rounding_available(type)) {
1917 return lp_build_round_arch(bld, a, LP_BUILD_ROUND_FLOOR);
1918 }
1919 else {
1920 const struct lp_type type = bld->type;
1921 struct lp_type inttype;
1922 struct lp_build_context intbld;
1923 LLVMValueRef cmpval = lp_build_const_vec(bld->gallivm, type, 1<<24);
1924 LLVMValueRef trunc, res, anosign, mask;
1925 LLVMTypeRef int_vec_type = bld->int_vec_type;
1926 LLVMTypeRef vec_type = bld->vec_type;
1927
1928 if (type.width != 32) {
1929 char intrinsic[32];
1930 lp_format_intrinsic(intrinsic, sizeof intrinsic, "llvm.floor", vec_type);
1931 return lp_build_intrinsic_unary(builder, intrinsic, vec_type, a);
1932 }
1933
1934 assert(type.width == 32); /* might want to handle doubles at some point */
1935
1936 inttype = type;
1937 inttype.floating = 0;
1938 lp_build_context_init(&intbld, bld->gallivm, inttype);
1939
1940 /* round by truncation */
1941 trunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
1942 res = LLVMBuildSIToFP(builder, trunc, vec_type, "floor.trunc");
1943
1944 if (type.sign) {
1945 LLVMValueRef tmp;
1946
1947 /*
1948 * fix values if rounding is wrong (for non-special cases)
1949 * - this is the case if trunc > a
1950 */
1951 mask = lp_build_cmp(bld, PIPE_FUNC_GREATER, res, a);
1952 /* tmp = trunc > a ? 1.0 : 0.0 */
1953 tmp = LLVMBuildBitCast(builder, bld->one, int_vec_type, "");
1954 tmp = lp_build_and(&intbld, mask, tmp);
1955 tmp = LLVMBuildBitCast(builder, tmp, vec_type, "");
1956 res = lp_build_sub(bld, res, tmp);
1957 }
1958
1959 /* mask out sign bit */
1960 anosign = lp_build_abs(bld, a);
1961 /*
1962 * mask out all values if anosign > 2^24
1963 * This should work both for large ints (all rounding is no-op for them
1964 * because such floats are always exact) as well as special cases like
1965 * NaNs, Infs (taking advantage of the fact they use max exponent).
1966 * (2^24 is arbitrary anything between 2^24 and 2^31 should work.)
1967 */
1968 anosign = LLVMBuildBitCast(builder, anosign, int_vec_type, "");
1969 cmpval = LLVMBuildBitCast(builder, cmpval, int_vec_type, "");
1970 mask = lp_build_cmp(&intbld, PIPE_FUNC_GREATER, anosign, cmpval);
1971 return lp_build_select(bld, mask, a, res);
1972 }
1973 }
1974
1975
1976 /**
1977 * Return ceiling of float (vector), returning float (vector).
1978 * Ex: ceil( 1.1) = 2.0
1979 * Ex: ceil(-1.1) = -1.0
1980 */
1981 LLVMValueRef
1982 lp_build_ceil(struct lp_build_context *bld,
1983 LLVMValueRef a)
1984 {
1985 LLVMBuilderRef builder = bld->gallivm->builder;
1986 const struct lp_type type = bld->type;
1987
1988 assert(type.floating);
1989 assert(lp_check_value(type, a));
1990
1991 if (arch_rounding_available(type)) {
1992 return lp_build_round_arch(bld, a, LP_BUILD_ROUND_CEIL);
1993 }
1994 else {
1995 const struct lp_type type = bld->type;
1996 struct lp_type inttype;
1997 struct lp_build_context intbld;
1998 LLVMValueRef cmpval = lp_build_const_vec(bld->gallivm, type, 1<<24);
1999 LLVMValueRef trunc, res, anosign, mask, tmp;
2000 LLVMTypeRef int_vec_type = bld->int_vec_type;
2001 LLVMTypeRef vec_type = bld->vec_type;
2002
2003 if (type.width != 32) {
2004 char intrinsic[32];
2005 lp_format_intrinsic(intrinsic, sizeof intrinsic, "llvm.ceil", vec_type);
2006 return lp_build_intrinsic_unary(builder, intrinsic, vec_type, a);
2007 }
2008
2009 assert(type.width == 32); /* might want to handle doubles at some point */
2010
2011 inttype = type;
2012 inttype.floating = 0;
2013 lp_build_context_init(&intbld, bld->gallivm, inttype);
2014
2015 /* round by truncation */
2016 trunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
2017 trunc = LLVMBuildSIToFP(builder, trunc, vec_type, "ceil.trunc");
2018
2019 /*
2020 * fix values if rounding is wrong (for non-special cases)
2021 * - this is the case if trunc < a
2022 */
2023 mask = lp_build_cmp(bld, PIPE_FUNC_LESS, trunc, a);
2024 /* tmp = trunc < a ? 1.0 : 0.0 */
2025 tmp = LLVMBuildBitCast(builder, bld->one, int_vec_type, "");
2026 tmp = lp_build_and(&intbld, mask, tmp);
2027 tmp = LLVMBuildBitCast(builder, tmp, vec_type, "");
2028 res = lp_build_add(bld, trunc, tmp);
2029
2030 /* mask out sign bit */
2031 anosign = lp_build_abs(bld, a);
2032 /*
2033 * mask out all values if anosign > 2^24
2034 * This should work both for large ints (all rounding is no-op for them
2035 * because such floats are always exact) as well as special cases like
2036 * NaNs, Infs (taking advantage of the fact they use max exponent).
2037 * (2^24 is arbitrary anything between 2^24 and 2^31 should work.)
2038 */
2039 anosign = LLVMBuildBitCast(builder, anosign, int_vec_type, "");
2040 cmpval = LLVMBuildBitCast(builder, cmpval, int_vec_type, "");
2041 mask = lp_build_cmp(&intbld, PIPE_FUNC_GREATER, anosign, cmpval);
2042 return lp_build_select(bld, mask, a, res);
2043 }
2044 }
2045
2046
2047 /**
2048 * Return fractional part of 'a' computed as a - floor(a)
2049 * Typically used in texture coord arithmetic.
2050 */
2051 LLVMValueRef
2052 lp_build_fract(struct lp_build_context *bld,
2053 LLVMValueRef a)
2054 {
2055 assert(bld->type.floating);
2056 return lp_build_sub(bld, a, lp_build_floor(bld, a));
2057 }
2058
2059
2060 /**
2061 * Prevent returning a fractional part of 1.0 for very small negative values of
2062 * 'a' by clamping against 0.99999(9).
2063 */
2064 static inline LLVMValueRef
2065 clamp_fract(struct lp_build_context *bld, LLVMValueRef fract)
2066 {
2067 LLVMValueRef max;
2068
2069 /* this is the largest number smaller than 1.0 representable as float */
2070 max = lp_build_const_vec(bld->gallivm, bld->type,
2071 1.0 - 1.0/(1LL << (lp_mantissa(bld->type) + 1)));
2072 return lp_build_min(bld, fract, max);
2073 }
2074
2075
2076 /**
2077 * Same as lp_build_fract, but guarantees that the result is always smaller
2078 * than one.
2079 */
2080 LLVMValueRef
2081 lp_build_fract_safe(struct lp_build_context *bld,
2082 LLVMValueRef a)
2083 {
2084 return clamp_fract(bld, lp_build_fract(bld, a));
2085 }
2086
2087
2088 /**
2089 * Return the integer part of a float (vector) value (== round toward zero).
2090 * The returned value is an integer (vector).
2091 * Ex: itrunc(-1.5) = -1
2092 */
2093 LLVMValueRef
2094 lp_build_itrunc(struct lp_build_context *bld,
2095 LLVMValueRef a)
2096 {
2097 LLVMBuilderRef builder = bld->gallivm->builder;
2098 const struct lp_type type = bld->type;
2099 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
2100
2101 assert(type.floating);
2102 assert(lp_check_value(type, a));
2103
2104 return LLVMBuildFPToSI(builder, a, int_vec_type, "");
2105 }
2106
2107
2108 /**
2109 * Return float (vector) rounded to nearest integer (vector). The returned
2110 * value is an integer (vector).
2111 * Ex: iround(0.9) = 1
2112 * Ex: iround(-1.5) = -2
2113 */
2114 LLVMValueRef
2115 lp_build_iround(struct lp_build_context *bld,
2116 LLVMValueRef a)
2117 {
2118 LLVMBuilderRef builder = bld->gallivm->builder;
2119 const struct lp_type type = bld->type;
2120 LLVMTypeRef int_vec_type = bld->int_vec_type;
2121 LLVMValueRef res;
2122
2123 assert(type.floating);
2124
2125 assert(lp_check_value(type, a));
2126
2127 if ((util_cpu_caps.has_sse2 &&
2128 ((type.width == 32) && (type.length == 1 || type.length == 4))) ||
2129 (util_cpu_caps.has_avx && type.width == 32 && type.length == 8)) {
2130 return lp_build_iround_nearest_sse2(bld, a);
2131 }
2132 if (arch_rounding_available(type)) {
2133 res = lp_build_round_arch(bld, a, LP_BUILD_ROUND_NEAREST);
2134 }
2135 else {
2136 LLVMValueRef half;
2137
2138 half = lp_build_const_vec(bld->gallivm, type, 0.5);
2139
2140 if (type.sign) {
2141 LLVMTypeRef vec_type = bld->vec_type;
2142 LLVMValueRef mask = lp_build_const_int_vec(bld->gallivm, type,
2143 (unsigned long long)1 << (type.width - 1));
2144 LLVMValueRef sign;
2145
2146 /* get sign bit */
2147 sign = LLVMBuildBitCast(builder, a, int_vec_type, "");
2148 sign = LLVMBuildAnd(builder, sign, mask, "");
2149
2150 /* sign * 0.5 */
2151 half = LLVMBuildBitCast(builder, half, int_vec_type, "");
2152 half = LLVMBuildOr(builder, sign, half, "");
2153 half = LLVMBuildBitCast(builder, half, vec_type, "");
2154 }
2155
2156 res = LLVMBuildFAdd(builder, a, half, "");
2157 }
2158
2159 res = LLVMBuildFPToSI(builder, res, int_vec_type, "");
2160
2161 return res;
2162 }
2163
2164
2165 /**
2166 * Return floor of float (vector), result is an int (vector)
2167 * Ex: ifloor(1.1) = 1.0
2168 * Ex: ifloor(-1.1) = -2.0
2169 */
2170 LLVMValueRef
2171 lp_build_ifloor(struct lp_build_context *bld,
2172 LLVMValueRef a)
2173 {
2174 LLVMBuilderRef builder = bld->gallivm->builder;
2175 const struct lp_type type = bld->type;
2176 LLVMTypeRef int_vec_type = bld->int_vec_type;
2177 LLVMValueRef res;
2178
2179 assert(type.floating);
2180 assert(lp_check_value(type, a));
2181
2182 res = a;
2183 if (type.sign) {
2184 if (arch_rounding_available(type)) {
2185 res = lp_build_round_arch(bld, a, LP_BUILD_ROUND_FLOOR);
2186 }
2187 else {
2188 struct lp_type inttype;
2189 struct lp_build_context intbld;
2190 LLVMValueRef trunc, itrunc, mask;
2191
2192 assert(type.floating);
2193 assert(lp_check_value(type, a));
2194
2195 inttype = type;
2196 inttype.floating = 0;
2197 lp_build_context_init(&intbld, bld->gallivm, inttype);
2198
2199 /* round by truncation */
2200 itrunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
2201 trunc = LLVMBuildSIToFP(builder, itrunc, bld->vec_type, "ifloor.trunc");
2202
2203 /*
2204 * fix values if rounding is wrong (for non-special cases)
2205 * - this is the case if trunc > a
2206 * The results of doing this with NaNs, very large values etc.
2207 * are undefined but this seems to be the case anyway.
2208 */
2209 mask = lp_build_cmp(bld, PIPE_FUNC_GREATER, trunc, a);
2210 /* cheapie minus one with mask since the mask is minus one / zero */
2211 return lp_build_add(&intbld, itrunc, mask);
2212 }
2213 }
2214
2215 /* round to nearest (toward zero) */
2216 res = LLVMBuildFPToSI(builder, res, int_vec_type, "ifloor.res");
2217
2218 return res;
2219 }
2220
2221
2222 /**
2223 * Return ceiling of float (vector), returning int (vector).
2224 * Ex: iceil( 1.1) = 2
2225 * Ex: iceil(-1.1) = -1
2226 */
2227 LLVMValueRef
2228 lp_build_iceil(struct lp_build_context *bld,
2229 LLVMValueRef a)
2230 {
2231 LLVMBuilderRef builder = bld->gallivm->builder;
2232 const struct lp_type type = bld->type;
2233 LLVMTypeRef int_vec_type = bld->int_vec_type;
2234 LLVMValueRef res;
2235
2236 assert(type.floating);
2237 assert(lp_check_value(type, a));
2238
2239 if (arch_rounding_available(type)) {
2240 res = lp_build_round_arch(bld, a, LP_BUILD_ROUND_CEIL);
2241 }
2242 else {
2243 struct lp_type inttype;
2244 struct lp_build_context intbld;
2245 LLVMValueRef trunc, itrunc, mask;
2246
2247 assert(type.floating);
2248 assert(lp_check_value(type, a));
2249
2250 inttype = type;
2251 inttype.floating = 0;
2252 lp_build_context_init(&intbld, bld->gallivm, inttype);
2253
2254 /* round by truncation */
2255 itrunc = LLVMBuildFPToSI(builder, a, int_vec_type, "");
2256 trunc = LLVMBuildSIToFP(builder, itrunc, bld->vec_type, "iceil.trunc");
2257
2258 /*
2259 * fix values if rounding is wrong (for non-special cases)
2260 * - this is the case if trunc < a
2261 * The results of doing this with NaNs, very large values etc.
2262 * are undefined but this seems to be the case anyway.
2263 */
2264 mask = lp_build_cmp(bld, PIPE_FUNC_LESS, trunc, a);
2265 /* cheapie plus one with mask since the mask is minus one / zero */
2266 return lp_build_sub(&intbld, itrunc, mask);
2267 }
2268
2269 /* round to nearest (toward zero) */
2270 res = LLVMBuildFPToSI(builder, res, int_vec_type, "iceil.res");
2271
2272 return res;
2273 }
2274
2275
2276 /**
2277 * Combined ifloor() & fract().
2278 *
2279 * Preferred to calling the functions separately, as it will ensure that the
2280 * strategy (floor() vs ifloor()) that results in less redundant work is used.
2281 */
2282 void
2283 lp_build_ifloor_fract(struct lp_build_context *bld,
2284 LLVMValueRef a,
2285 LLVMValueRef *out_ipart,
2286 LLVMValueRef *out_fpart)
2287 {
2288 LLVMBuilderRef builder = bld->gallivm->builder;
2289 const struct lp_type type = bld->type;
2290 LLVMValueRef ipart;
2291
2292 assert(type.floating);
2293 assert(lp_check_value(type, a));
2294
2295 if (arch_rounding_available(type)) {
2296 /*
2297 * floor() is easier.
2298 */
2299
2300 ipart = lp_build_floor(bld, a);
2301 *out_fpart = LLVMBuildFSub(builder, a, ipart, "fpart");
2302 *out_ipart = LLVMBuildFPToSI(builder, ipart, bld->int_vec_type, "ipart");
2303 }
2304 else {
2305 /*
2306 * ifloor() is easier.
2307 */
2308
2309 *out_ipart = lp_build_ifloor(bld, a);
2310 ipart = LLVMBuildSIToFP(builder, *out_ipart, bld->vec_type, "ipart");
2311 *out_fpart = LLVMBuildFSub(builder, a, ipart, "fpart");
2312 }
2313 }
2314
2315
2316 /**
2317 * Same as lp_build_ifloor_fract, but guarantees that the fractional part is
2318 * always smaller than one.
2319 */
2320 void
2321 lp_build_ifloor_fract_safe(struct lp_build_context *bld,
2322 LLVMValueRef a,
2323 LLVMValueRef *out_ipart,
2324 LLVMValueRef *out_fpart)
2325 {
2326 lp_build_ifloor_fract(bld, a, out_ipart, out_fpart);
2327 *out_fpart = clamp_fract(bld, *out_fpart);
2328 }
2329
2330
2331 LLVMValueRef
2332 lp_build_sqrt(struct lp_build_context *bld,
2333 LLVMValueRef a)
2334 {
2335 LLVMBuilderRef builder = bld->gallivm->builder;
2336 const struct lp_type type = bld->type;
2337 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
2338 char intrinsic[32];
2339
2340 assert(lp_check_value(type, a));
2341
2342 assert(type.floating);
2343 lp_format_intrinsic(intrinsic, sizeof intrinsic, "llvm.sqrt", vec_type);
2344
2345 return lp_build_intrinsic_unary(builder, intrinsic, vec_type, a);
2346 }
2347
2348
2349 /**
2350 * Do one Newton-Raphson step to improve reciprocate precision:
2351 *
2352 * x_{i+1} = x_i * (2 - a * x_i)
2353 *
2354 * XXX: Unfortunately this won't give IEEE-754 conformant results for 0 or
2355 * +/-Inf, giving NaN instead. Certain applications rely on this behavior,
2356 * such as Google Earth, which does RCP(RSQRT(0.0) when drawing the Earth's
2357 * halo. It would be necessary to clamp the argument to prevent this.
2358 *
2359 * See also:
2360 * - http://en.wikipedia.org/wiki/Division_(digital)#Newton.E2.80.93Raphson_division
2361 * - http://softwarecommunity.intel.com/articles/eng/1818.htm
2362 */
2363 static inline LLVMValueRef
2364 lp_build_rcp_refine(struct lp_build_context *bld,
2365 LLVMValueRef a,
2366 LLVMValueRef rcp_a)
2367 {
2368 LLVMBuilderRef builder = bld->gallivm->builder;
2369 LLVMValueRef two = lp_build_const_vec(bld->gallivm, bld->type, 2.0);
2370 LLVMValueRef res;
2371
2372 res = LLVMBuildFMul(builder, a, rcp_a, "");
2373 res = LLVMBuildFSub(builder, two, res, "");
2374 res = LLVMBuildFMul(builder, rcp_a, res, "");
2375
2376 return res;
2377 }
2378
2379
2380 LLVMValueRef
2381 lp_build_rcp(struct lp_build_context *bld,
2382 LLVMValueRef a)
2383 {
2384 LLVMBuilderRef builder = bld->gallivm->builder;
2385 const struct lp_type type = bld->type;
2386
2387 assert(lp_check_value(type, a));
2388
2389 if(a == bld->zero)
2390 return bld->undef;
2391 if(a == bld->one)
2392 return bld->one;
2393 if(a == bld->undef)
2394 return bld->undef;
2395
2396 assert(type.floating);
2397
2398 if(LLVMIsConstant(a))
2399 return LLVMConstFDiv(bld->one, a);
2400
2401 /*
2402 * We don't use RCPPS because:
2403 * - it only has 10bits of precision
2404 * - it doesn't even get the reciprocate of 1.0 exactly
2405 * - doing Newton-Rapshon steps yields wrong (NaN) values for 0.0 or Inf
2406 * - for recent processors the benefit over DIVPS is marginal, a case
2407 * dependent
2408 *
2409 * We could still use it on certain processors if benchmarks show that the
2410 * RCPPS plus necessary workarounds are still preferrable to DIVPS; or for
2411 * particular uses that require less workarounds.
2412 */
2413
2414 if (FALSE && ((util_cpu_caps.has_sse && type.width == 32 && type.length == 4) ||
2415 (util_cpu_caps.has_avx && type.width == 32 && type.length == 8))){
2416 const unsigned num_iterations = 0;
2417 LLVMValueRef res;
2418 unsigned i;
2419 const char *intrinsic = NULL;
2420
2421 if (type.length == 4) {
2422 intrinsic = "llvm.x86.sse.rcp.ps";
2423 }
2424 else {
2425 intrinsic = "llvm.x86.avx.rcp.ps.256";
2426 }
2427
2428 res = lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
2429
2430 for (i = 0; i < num_iterations; ++i) {
2431 res = lp_build_rcp_refine(bld, a, res);
2432 }
2433
2434 return res;
2435 }
2436
2437 return LLVMBuildFDiv(builder, bld->one, a, "");
2438 }
2439
2440
2441 /**
2442 * Do one Newton-Raphson step to improve rsqrt precision:
2443 *
2444 * x_{i+1} = 0.5 * x_i * (3.0 - a * x_i * x_i)
2445 *
2446 * See also Intel 64 and IA-32 Architectures Optimization Manual.
2447 */
2448 static inline LLVMValueRef
2449 lp_build_rsqrt_refine(struct lp_build_context *bld,
2450 LLVMValueRef a,
2451 LLVMValueRef rsqrt_a)
2452 {
2453 LLVMBuilderRef builder = bld->gallivm->builder;
2454 LLVMValueRef half = lp_build_const_vec(bld->gallivm, bld->type, 0.5);
2455 LLVMValueRef three = lp_build_const_vec(bld->gallivm, bld->type, 3.0);
2456 LLVMValueRef res;
2457
2458 res = LLVMBuildFMul(builder, rsqrt_a, rsqrt_a, "");
2459 res = LLVMBuildFMul(builder, a, res, "");
2460 res = LLVMBuildFSub(builder, three, res, "");
2461 res = LLVMBuildFMul(builder, rsqrt_a, res, "");
2462 res = LLVMBuildFMul(builder, half, res, "");
2463
2464 return res;
2465 }
2466
2467
2468 /**
2469 * Generate 1/sqrt(a).
2470 * Result is undefined for values < 0, infinity for +0.
2471 */
2472 LLVMValueRef
2473 lp_build_rsqrt(struct lp_build_context *bld,
2474 LLVMValueRef a)
2475 {
2476 const struct lp_type type = bld->type;
2477
2478 assert(lp_check_value(type, a));
2479
2480 assert(type.floating);
2481
2482 /*
2483 * This should be faster but all denormals will end up as infinity.
2484 */
2485 if (0 && lp_build_fast_rsqrt_available(type)) {
2486 const unsigned num_iterations = 1;
2487 LLVMValueRef res;
2488 unsigned i;
2489
2490 /* rsqrt(1.0) != 1.0 here */
2491 res = lp_build_fast_rsqrt(bld, a);
2492
2493 if (num_iterations) {
2494 /*
2495 * Newton-Raphson will result in NaN instead of infinity for zero,
2496 * and NaN instead of zero for infinity.
2497 * Also, need to ensure rsqrt(1.0) == 1.0.
2498 * All numbers smaller than FLT_MIN will result in +infinity
2499 * (rsqrtps treats all denormals as zero).
2500 */
2501 LLVMValueRef cmp;
2502 LLVMValueRef flt_min = lp_build_const_vec(bld->gallivm, type, FLT_MIN);
2503 LLVMValueRef inf = lp_build_const_vec(bld->gallivm, type, INFINITY);
2504
2505 for (i = 0; i < num_iterations; ++i) {
2506 res = lp_build_rsqrt_refine(bld, a, res);
2507 }
2508 cmp = lp_build_compare(bld->gallivm, type, PIPE_FUNC_LESS, a, flt_min);
2509 res = lp_build_select(bld, cmp, inf, res);
2510 cmp = lp_build_compare(bld->gallivm, type, PIPE_FUNC_EQUAL, a, inf);
2511 res = lp_build_select(bld, cmp, bld->zero, res);
2512 cmp = lp_build_compare(bld->gallivm, type, PIPE_FUNC_EQUAL, a, bld->one);
2513 res = lp_build_select(bld, cmp, bld->one, res);
2514 }
2515
2516 return res;
2517 }
2518
2519 return lp_build_rcp(bld, lp_build_sqrt(bld, a));
2520 }
2521
2522 /**
2523 * If there's a fast (inaccurate) rsqrt instruction available
2524 * (caller may want to avoid to call rsqrt_fast if it's not available,
2525 * i.e. for calculating x^0.5 it may do rsqrt_fast(x) * x but if
2526 * unavailable it would result in sqrt/div/mul so obviously
2527 * much better to just call sqrt, skipping both div and mul).
2528 */
2529 boolean
2530 lp_build_fast_rsqrt_available(struct lp_type type)
2531 {
2532 assert(type.floating);
2533
2534 if ((util_cpu_caps.has_sse && type.width == 32 && type.length == 4) ||
2535 (util_cpu_caps.has_avx && type.width == 32 && type.length == 8)) {
2536 return true;
2537 }
2538 return false;
2539 }
2540
2541
2542 /**
2543 * Generate 1/sqrt(a).
2544 * Result is undefined for values < 0, infinity for +0.
2545 * Precision is limited, only ~10 bits guaranteed
2546 * (rsqrt 1.0 may not be 1.0, denorms may be flushed to 0).
2547 */
2548 LLVMValueRef
2549 lp_build_fast_rsqrt(struct lp_build_context *bld,
2550 LLVMValueRef a)
2551 {
2552 LLVMBuilderRef builder = bld->gallivm->builder;
2553 const struct lp_type type = bld->type;
2554
2555 assert(lp_check_value(type, a));
2556
2557 if (lp_build_fast_rsqrt_available(type)) {
2558 const char *intrinsic = NULL;
2559
2560 if (type.length == 4) {
2561 intrinsic = "llvm.x86.sse.rsqrt.ps";
2562 }
2563 else {
2564 intrinsic = "llvm.x86.avx.rsqrt.ps.256";
2565 }
2566 return lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
2567 }
2568 else {
2569 debug_printf("%s: emulating fast rsqrt with rcp/sqrt\n", __FUNCTION__);
2570 }
2571 return lp_build_rcp(bld, lp_build_sqrt(bld, a));
2572 }
2573
2574
2575 /**
2576 * Generate sin(a) or cos(a) using polynomial approximation.
2577 * TODO: it might be worth recognizing sin and cos using same source
2578 * (i.e. d3d10 sincos opcode). Obviously doing both at the same time
2579 * would be way cheaper than calculating (nearly) everything twice...
2580 * Not sure it's common enough to be worth bothering however, scs
2581 * opcode could also benefit from calculating both though.
2582 */
2583 static LLVMValueRef
2584 lp_build_sin_or_cos(struct lp_build_context *bld,
2585 LLVMValueRef a,
2586 boolean cos)
2587 {
2588 struct gallivm_state *gallivm = bld->gallivm;
2589 LLVMBuilderRef b = gallivm->builder;
2590 struct lp_type int_type = lp_int_type(bld->type);
2591
2592 /*
2593 * take the absolute value,
2594 * x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
2595 */
2596
2597 LLVMValueRef inv_sig_mask = lp_build_const_int_vec(gallivm, bld->type, ~0x80000000);
2598 LLVMValueRef a_v4si = LLVMBuildBitCast(b, a, bld->int_vec_type, "a_v4si");
2599
2600 LLVMValueRef absi = LLVMBuildAnd(b, a_v4si, inv_sig_mask, "absi");
2601 LLVMValueRef x_abs = LLVMBuildBitCast(b, absi, bld->vec_type, "x_abs");
2602
2603 /*
2604 * scale by 4/Pi
2605 * y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
2606 */
2607
2608 LLVMValueRef FOPi = lp_build_const_vec(gallivm, bld->type, 1.27323954473516);
2609 LLVMValueRef scale_y = LLVMBuildFMul(b, x_abs, FOPi, "scale_y");
2610
2611 /*
2612 * store the integer part of y in mm0
2613 * emm2 = _mm_cvttps_epi32(y);
2614 */
2615
2616 LLVMValueRef emm2_i = LLVMBuildFPToSI(b, scale_y, bld->int_vec_type, "emm2_i");
2617
2618 /*
2619 * j=(j+1) & (~1) (see the cephes sources)
2620 * emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
2621 */
2622
2623 LLVMValueRef all_one = lp_build_const_int_vec(gallivm, bld->type, 1);
2624 LLVMValueRef emm2_add = LLVMBuildAdd(b, emm2_i, all_one, "emm2_add");
2625 /*
2626 * emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
2627 */
2628 LLVMValueRef inv_one = lp_build_const_int_vec(gallivm, bld->type, ~1);
2629 LLVMValueRef emm2_and = LLVMBuildAnd(b, emm2_add, inv_one, "emm2_and");
2630
2631 /*
2632 * y = _mm_cvtepi32_ps(emm2);
2633 */
2634 LLVMValueRef y_2 = LLVMBuildSIToFP(b, emm2_and, bld->vec_type, "y_2");
2635
2636 LLVMValueRef const_2 = lp_build_const_int_vec(gallivm, bld->type, 2);
2637 LLVMValueRef const_4 = lp_build_const_int_vec(gallivm, bld->type, 4);
2638 LLVMValueRef const_29 = lp_build_const_int_vec(gallivm, bld->type, 29);
2639 LLVMValueRef sign_mask = lp_build_const_int_vec(gallivm, bld->type, 0x80000000);
2640
2641 /*
2642 * Argument used for poly selection and sign bit determination
2643 * is different for sin vs. cos.
2644 */
2645 LLVMValueRef emm2_2 = cos ? LLVMBuildSub(b, emm2_and, const_2, "emm2_2") :
2646 emm2_and;
2647
2648 LLVMValueRef sign_bit = cos ? LLVMBuildShl(b, LLVMBuildAnd(b, const_4,
2649 LLVMBuildNot(b, emm2_2, ""), ""),
2650 const_29, "sign_bit") :
2651 LLVMBuildAnd(b, LLVMBuildXor(b, a_v4si,
2652 LLVMBuildShl(b, emm2_add,
2653 const_29, ""), ""),
2654 sign_mask, "sign_bit");
2655
2656 /*
2657 * get the polynom selection mask
2658 * there is one polynom for 0 <= x <= Pi/4
2659 * and another one for Pi/4<x<=Pi/2
2660 * Both branches will be computed.
2661 *
2662 * emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
2663 * emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
2664 */
2665
2666 LLVMValueRef emm2_3 = LLVMBuildAnd(b, emm2_2, const_2, "emm2_3");
2667 LLVMValueRef poly_mask = lp_build_compare(gallivm,
2668 int_type, PIPE_FUNC_EQUAL,
2669 emm2_3, lp_build_const_int_vec(gallivm, bld->type, 0));
2670
2671 /*
2672 * _PS_CONST(minus_cephes_DP1, -0.78515625);
2673 * _PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
2674 * _PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
2675 */
2676 LLVMValueRef DP1 = lp_build_const_vec(gallivm, bld->type, -0.78515625);
2677 LLVMValueRef DP2 = lp_build_const_vec(gallivm, bld->type, -2.4187564849853515625e-4);
2678 LLVMValueRef DP3 = lp_build_const_vec(gallivm, bld->type, -3.77489497744594108e-8);
2679
2680 /*
2681 * The magic pass: "Extended precision modular arithmetic"
2682 * x = ((x - y * DP1) - y * DP2) - y * DP3;
2683 * xmm1 = _mm_mul_ps(y, xmm1);
2684 * xmm2 = _mm_mul_ps(y, xmm2);
2685 * xmm3 = _mm_mul_ps(y, xmm3);
2686 */
2687 LLVMValueRef xmm1 = LLVMBuildFMul(b, y_2, DP1, "xmm1");
2688 LLVMValueRef xmm2 = LLVMBuildFMul(b, y_2, DP2, "xmm2");
2689 LLVMValueRef xmm3 = LLVMBuildFMul(b, y_2, DP3, "xmm3");
2690
2691 /*
2692 * x = _mm_add_ps(x, xmm1);
2693 * x = _mm_add_ps(x, xmm2);
2694 * x = _mm_add_ps(x, xmm3);
2695 */
2696
2697 LLVMValueRef x_1 = LLVMBuildFAdd(b, x_abs, xmm1, "x_1");
2698 LLVMValueRef x_2 = LLVMBuildFAdd(b, x_1, xmm2, "x_2");
2699 LLVMValueRef x_3 = LLVMBuildFAdd(b, x_2, xmm3, "x_3");
2700
2701 /*
2702 * Evaluate the first polynom (0 <= x <= Pi/4)
2703 *
2704 * z = _mm_mul_ps(x,x);
2705 */
2706 LLVMValueRef z = LLVMBuildFMul(b, x_3, x_3, "z");
2707
2708 /*
2709 * _PS_CONST(coscof_p0, 2.443315711809948E-005);
2710 * _PS_CONST(coscof_p1, -1.388731625493765E-003);
2711 * _PS_CONST(coscof_p2, 4.166664568298827E-002);
2712 */
2713 LLVMValueRef coscof_p0 = lp_build_const_vec(gallivm, bld->type, 2.443315711809948E-005);
2714 LLVMValueRef coscof_p1 = lp_build_const_vec(gallivm, bld->type, -1.388731625493765E-003);
2715 LLVMValueRef coscof_p2 = lp_build_const_vec(gallivm, bld->type, 4.166664568298827E-002);
2716
2717 /*
2718 * y = *(v4sf*)_ps_coscof_p0;
2719 * y = _mm_mul_ps(y, z);
2720 */
2721 LLVMValueRef y_3 = LLVMBuildFMul(b, z, coscof_p0, "y_3");
2722 LLVMValueRef y_4 = LLVMBuildFAdd(b, y_3, coscof_p1, "y_4");
2723 LLVMValueRef y_5 = LLVMBuildFMul(b, y_4, z, "y_5");
2724 LLVMValueRef y_6 = LLVMBuildFAdd(b, y_5, coscof_p2, "y_6");
2725 LLVMValueRef y_7 = LLVMBuildFMul(b, y_6, z, "y_7");
2726 LLVMValueRef y_8 = LLVMBuildFMul(b, y_7, z, "y_8");
2727
2728
2729 /*
2730 * tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
2731 * y = _mm_sub_ps(y, tmp);
2732 * y = _mm_add_ps(y, *(v4sf*)_ps_1);
2733 */
2734 LLVMValueRef half = lp_build_const_vec(gallivm, bld->type, 0.5);
2735 LLVMValueRef tmp = LLVMBuildFMul(b, z, half, "tmp");
2736 LLVMValueRef y_9 = LLVMBuildFSub(b, y_8, tmp, "y_8");
2737 LLVMValueRef one = lp_build_const_vec(gallivm, bld->type, 1.0);
2738 LLVMValueRef y_10 = LLVMBuildFAdd(b, y_9, one, "y_9");
2739
2740 /*
2741 * _PS_CONST(sincof_p0, -1.9515295891E-4);
2742 * _PS_CONST(sincof_p1, 8.3321608736E-3);
2743 * _PS_CONST(sincof_p2, -1.6666654611E-1);
2744 */
2745 LLVMValueRef sincof_p0 = lp_build_const_vec(gallivm, bld->type, -1.9515295891E-4);
2746 LLVMValueRef sincof_p1 = lp_build_const_vec(gallivm, bld->type, 8.3321608736E-3);
2747 LLVMValueRef sincof_p2 = lp_build_const_vec(gallivm, bld->type, -1.6666654611E-1);
2748
2749 /*
2750 * Evaluate the second polynom (Pi/4 <= x <= 0)
2751 *
2752 * y2 = *(v4sf*)_ps_sincof_p0;
2753 * y2 = _mm_mul_ps(y2, z);
2754 * y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
2755 * y2 = _mm_mul_ps(y2, z);
2756 * y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
2757 * y2 = _mm_mul_ps(y2, z);
2758 * y2 = _mm_mul_ps(y2, x);
2759 * y2 = _mm_add_ps(y2, x);
2760 */
2761
2762 LLVMValueRef y2_3 = LLVMBuildFMul(b, z, sincof_p0, "y2_3");
2763 LLVMValueRef y2_4 = LLVMBuildFAdd(b, y2_3, sincof_p1, "y2_4");
2764 LLVMValueRef y2_5 = LLVMBuildFMul(b, y2_4, z, "y2_5");
2765 LLVMValueRef y2_6 = LLVMBuildFAdd(b, y2_5, sincof_p2, "y2_6");
2766 LLVMValueRef y2_7 = LLVMBuildFMul(b, y2_6, z, "y2_7");
2767 LLVMValueRef y2_8 = LLVMBuildFMul(b, y2_7, x_3, "y2_8");
2768 LLVMValueRef y2_9 = LLVMBuildFAdd(b, y2_8, x_3, "y2_9");
2769
2770 /*
2771 * select the correct result from the two polynoms
2772 * xmm3 = poly_mask;
2773 * y2 = _mm_and_ps(xmm3, y2); //, xmm3);
2774 * y = _mm_andnot_ps(xmm3, y);
2775 * y = _mm_or_ps(y,y2);
2776 */
2777 LLVMValueRef y2_i = LLVMBuildBitCast(b, y2_9, bld->int_vec_type, "y2_i");
2778 LLVMValueRef y_i = LLVMBuildBitCast(b, y_10, bld->int_vec_type, "y_i");
2779 LLVMValueRef y2_and = LLVMBuildAnd(b, y2_i, poly_mask, "y2_and");
2780 LLVMValueRef poly_mask_inv = LLVMBuildNot(b, poly_mask, "poly_mask_inv");
2781 LLVMValueRef y_and = LLVMBuildAnd(b, y_i, poly_mask_inv, "y_and");
2782 LLVMValueRef y_combine = LLVMBuildOr(b, y_and, y2_and, "y_combine");
2783
2784 /*
2785 * update the sign
2786 * y = _mm_xor_ps(y, sign_bit);
2787 */
2788 LLVMValueRef y_sign = LLVMBuildXor(b, y_combine, sign_bit, "y_sign");
2789 LLVMValueRef y_result = LLVMBuildBitCast(b, y_sign, bld->vec_type, "y_result");
2790
2791 LLVMValueRef isfinite = lp_build_isfinite(bld, a);
2792
2793 /* clamp output to be within [-1, 1] */
2794 y_result = lp_build_clamp(bld, y_result,
2795 lp_build_const_vec(bld->gallivm, bld->type, -1.f),
2796 lp_build_const_vec(bld->gallivm, bld->type, 1.f));
2797 /* If a is -inf, inf or NaN then return NaN */
2798 y_result = lp_build_select(bld, isfinite, y_result,
2799 lp_build_const_vec(bld->gallivm, bld->type, NAN));
2800 return y_result;
2801 }
2802
2803
2804 /**
2805 * Generate sin(a)
2806 */
2807 LLVMValueRef
2808 lp_build_sin(struct lp_build_context *bld,
2809 LLVMValueRef a)
2810 {
2811 return lp_build_sin_or_cos(bld, a, FALSE);
2812 }
2813
2814
2815 /**
2816 * Generate cos(a)
2817 */
2818 LLVMValueRef
2819 lp_build_cos(struct lp_build_context *bld,
2820 LLVMValueRef a)
2821 {
2822 return lp_build_sin_or_cos(bld, a, TRUE);
2823 }
2824
2825
2826 /**
2827 * Generate pow(x, y)
2828 */
2829 LLVMValueRef
2830 lp_build_pow(struct lp_build_context *bld,
2831 LLVMValueRef x,
2832 LLVMValueRef y)
2833 {
2834 /* TODO: optimize the constant case */
2835 if (gallivm_debug & GALLIVM_DEBUG_PERF &&
2836 LLVMIsConstant(x) && LLVMIsConstant(y)) {
2837 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
2838 __FUNCTION__);
2839 }
2840
2841 return lp_build_exp2(bld, lp_build_mul(bld, lp_build_log2(bld, x), y));
2842 }
2843
2844
2845 /**
2846 * Generate exp(x)
2847 */
2848 LLVMValueRef
2849 lp_build_exp(struct lp_build_context *bld,
2850 LLVMValueRef x)
2851 {
2852 /* log2(e) = 1/log(2) */
2853 LLVMValueRef log2e = lp_build_const_vec(bld->gallivm, bld->type,
2854 1.4426950408889634);
2855
2856 assert(lp_check_value(bld->type, x));
2857
2858 return lp_build_exp2(bld, lp_build_mul(bld, log2e, x));
2859 }
2860
2861
2862 /**
2863 * Generate log(x)
2864 * Behavior is undefined with infs, 0s and nans
2865 */
2866 LLVMValueRef
2867 lp_build_log(struct lp_build_context *bld,
2868 LLVMValueRef x)
2869 {
2870 /* log(2) */
2871 LLVMValueRef log2 = lp_build_const_vec(bld->gallivm, bld->type,
2872 0.69314718055994529);
2873
2874 assert(lp_check_value(bld->type, x));
2875
2876 return lp_build_mul(bld, log2, lp_build_log2(bld, x));
2877 }
2878
2879 /**
2880 * Generate log(x) that handles edge cases (infs, 0s and nans)
2881 */
2882 LLVMValueRef
2883 lp_build_log_safe(struct lp_build_context *bld,
2884 LLVMValueRef x)
2885 {
2886 /* log(2) */
2887 LLVMValueRef log2 = lp_build_const_vec(bld->gallivm, bld->type,
2888 0.69314718055994529);
2889
2890 assert(lp_check_value(bld->type, x));
2891
2892 return lp_build_mul(bld, log2, lp_build_log2_safe(bld, x));
2893 }
2894
2895
2896 /**
2897 * Generate polynomial.
2898 * Ex: coeffs[0] + x * coeffs[1] + x^2 * coeffs[2].
2899 */
2900 LLVMValueRef
2901 lp_build_polynomial(struct lp_build_context *bld,
2902 LLVMValueRef x,
2903 const double *coeffs,
2904 unsigned num_coeffs)
2905 {
2906 const struct lp_type type = bld->type;
2907 LLVMValueRef even = NULL, odd = NULL;
2908 LLVMValueRef x2;
2909 unsigned i;
2910
2911 assert(lp_check_value(bld->type, x));
2912
2913 /* TODO: optimize the constant case */
2914 if (gallivm_debug & GALLIVM_DEBUG_PERF &&
2915 LLVMIsConstant(x)) {
2916 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
2917 __FUNCTION__);
2918 }
2919
2920 /*
2921 * Calculate odd and even terms seperately to decrease data dependency
2922 * Ex:
2923 * c[0] + x^2 * c[2] + x^4 * c[4] ...
2924 * + x * (c[1] + x^2 * c[3] + x^4 * c[5]) ...
2925 */
2926 x2 = lp_build_mul(bld, x, x);
2927
2928 for (i = num_coeffs; i--; ) {
2929 LLVMValueRef coeff;
2930
2931 coeff = lp_build_const_vec(bld->gallivm, type, coeffs[i]);
2932
2933 if (i % 2 == 0) {
2934 if (even)
2935 even = lp_build_add(bld, coeff, lp_build_mul(bld, x2, even));
2936 else
2937 even = coeff;
2938 } else {
2939 if (odd)
2940 odd = lp_build_add(bld, coeff, lp_build_mul(bld, x2, odd));
2941 else
2942 odd = coeff;
2943 }
2944 }
2945
2946 if (odd)
2947 return lp_build_add(bld, lp_build_mul(bld, odd, x), even);
2948 else if (even)
2949 return even;
2950 else
2951 return bld->undef;
2952 }
2953
2954
2955 /**
2956 * Minimax polynomial fit of 2**x, in range [0, 1[
2957 */
2958 const double lp_build_exp2_polynomial[] = {
2959 #if EXP_POLY_DEGREE == 5
2960 1.000000000000000000000, /*XXX: was 0.999999925063526176901, recompute others */
2961 0.693153073200168932794,
2962 0.240153617044375388211,
2963 0.0558263180532956664775,
2964 0.00898934009049466391101,
2965 0.00187757667519147912699
2966 #elif EXP_POLY_DEGREE == 4
2967 1.00000259337069434683,
2968 0.693003834469974940458,
2969 0.24144275689150793076,
2970 0.0520114606103070150235,
2971 0.0135341679161270268764
2972 #elif EXP_POLY_DEGREE == 3
2973 0.999925218562710312959,
2974 0.695833540494823811697,
2975 0.226067155427249155588,
2976 0.0780245226406372992967
2977 #elif EXP_POLY_DEGREE == 2
2978 1.00172476321474503578,
2979 0.657636275736077639316,
2980 0.33718943461968720704
2981 #else
2982 #error
2983 #endif
2984 };
2985
2986
2987 LLVMValueRef
2988 lp_build_exp2(struct lp_build_context *bld,
2989 LLVMValueRef x)
2990 {
2991 LLVMBuilderRef builder = bld->gallivm->builder;
2992 const struct lp_type type = bld->type;
2993 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
2994 LLVMValueRef ipart = NULL;
2995 LLVMValueRef fpart = NULL;
2996 LLVMValueRef expipart = NULL;
2997 LLVMValueRef expfpart = NULL;
2998 LLVMValueRef res = NULL;
2999
3000 assert(lp_check_value(bld->type, x));
3001
3002 /* TODO: optimize the constant case */
3003 if (gallivm_debug & GALLIVM_DEBUG_PERF &&
3004 LLVMIsConstant(x)) {
3005 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
3006 __FUNCTION__);
3007 }
3008
3009 assert(type.floating && type.width == 32);
3010
3011 /* We want to preserve NaN and make sure than for exp2 if x > 128,
3012 * the result is INF and if it's smaller than -126.9 the result is 0 */
3013 x = lp_build_min_ext(bld, lp_build_const_vec(bld->gallivm, type, 128.0), x,
3014 GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN);
3015 x = lp_build_max_ext(bld, lp_build_const_vec(bld->gallivm, type, -126.99999),
3016 x, GALLIVM_NAN_RETURN_NAN_FIRST_NONNAN);
3017
3018 /* ipart = floor(x) */
3019 /* fpart = x - ipart */
3020 lp_build_ifloor_fract(bld, x, &ipart, &fpart);
3021
3022 /* expipart = (float) (1 << ipart) */
3023 expipart = LLVMBuildAdd(builder, ipart,
3024 lp_build_const_int_vec(bld->gallivm, type, 127), "");
3025 expipart = LLVMBuildShl(builder, expipart,
3026 lp_build_const_int_vec(bld->gallivm, type, 23), "");
3027 expipart = LLVMBuildBitCast(builder, expipart, vec_type, "");
3028
3029 expfpart = lp_build_polynomial(bld, fpart, lp_build_exp2_polynomial,
3030 Elements(lp_build_exp2_polynomial));
3031
3032 res = LLVMBuildFMul(builder, expipart, expfpart, "");
3033
3034 return res;
3035 }
3036
3037
3038
3039 /**
3040 * Extract the exponent of a IEEE-754 floating point value.
3041 *
3042 * Optionally apply an integer bias.
3043 *
3044 * Result is an integer value with
3045 *
3046 * ifloor(log2(x)) + bias
3047 */
3048 LLVMValueRef
3049 lp_build_extract_exponent(struct lp_build_context *bld,
3050 LLVMValueRef x,
3051 int bias)
3052 {
3053 LLVMBuilderRef builder = bld->gallivm->builder;
3054 const struct lp_type type = bld->type;
3055 unsigned mantissa = lp_mantissa(type);
3056 LLVMValueRef res;
3057
3058 assert(type.floating);
3059
3060 assert(lp_check_value(bld->type, x));
3061
3062 x = LLVMBuildBitCast(builder, x, bld->int_vec_type, "");
3063
3064 res = LLVMBuildLShr(builder, x,
3065 lp_build_const_int_vec(bld->gallivm, type, mantissa), "");
3066 res = LLVMBuildAnd(builder, res,
3067 lp_build_const_int_vec(bld->gallivm, type, 255), "");
3068 res = LLVMBuildSub(builder, res,
3069 lp_build_const_int_vec(bld->gallivm, type, 127 - bias), "");
3070
3071 return res;
3072 }
3073
3074
3075 /**
3076 * Extract the mantissa of the a floating.
3077 *
3078 * Result is a floating point value with
3079 *
3080 * x / floor(log2(x))
3081 */
3082 LLVMValueRef
3083 lp_build_extract_mantissa(struct lp_build_context *bld,
3084 LLVMValueRef x)
3085 {
3086 LLVMBuilderRef builder = bld->gallivm->builder;
3087 const struct lp_type type = bld->type;
3088 unsigned mantissa = lp_mantissa(type);
3089 LLVMValueRef mantmask = lp_build_const_int_vec(bld->gallivm, type,
3090 (1ULL << mantissa) - 1);
3091 LLVMValueRef one = LLVMConstBitCast(bld->one, bld->int_vec_type);
3092 LLVMValueRef res;
3093
3094 assert(lp_check_value(bld->type, x));
3095
3096 assert(type.floating);
3097
3098 x = LLVMBuildBitCast(builder, x, bld->int_vec_type, "");
3099
3100 /* res = x / 2**ipart */
3101 res = LLVMBuildAnd(builder, x, mantmask, "");
3102 res = LLVMBuildOr(builder, res, one, "");
3103 res = LLVMBuildBitCast(builder, res, bld->vec_type, "");
3104
3105 return res;
3106 }
3107
3108
3109
3110 /**
3111 * Minimax polynomial fit of log2((1.0 + sqrt(x))/(1.0 - sqrt(x)))/sqrt(x) ,for x in range of [0, 1/9[
3112 * These coefficients can be generate with
3113 * http://www.boost.org/doc/libs/1_36_0/libs/math/doc/sf_and_dist/html/math_toolkit/toolkit/internals2/minimax.html
3114 */
3115 const double lp_build_log2_polynomial[] = {
3116 #if LOG_POLY_DEGREE == 5
3117 2.88539008148777786488L,
3118 0.961796878841293367824L,
3119 0.577058946784739859012L,
3120 0.412914355135828735411L,
3121 0.308591899232910175289L,
3122 0.352376952300281371868L,
3123 #elif LOG_POLY_DEGREE == 4
3124 2.88539009343309178325L,
3125 0.961791550404184197881L,
3126 0.577440339438736392009L,
3127 0.403343858251329912514L,
3128 0.406718052498846252698L,
3129 #elif LOG_POLY_DEGREE == 3
3130 2.88538959748872753838L,
3131 0.961932915889597772928L,
3132 0.571118517972136195241L,
3133 0.493997535084709500285L,
3134 #else
3135 #error
3136 #endif
3137 };
3138
3139 /**
3140 * See http://www.devmaster.net/forums/showthread.php?p=43580
3141 * http://en.wikipedia.org/wiki/Logarithm#Calculation
3142 * http://www.nezumi.demon.co.uk/consult/logx.htm
3143 *
3144 * If handle_edge_cases is true the function will perform computations
3145 * to match the required D3D10+ behavior for each of the edge cases.
3146 * That means that if input is:
3147 * - less than zero (to and including -inf) then NaN will be returned
3148 * - equal to zero (-denorm, -0, +0 or +denorm), then -inf will be returned
3149 * - +infinity, then +infinity will be returned
3150 * - NaN, then NaN will be returned
3151 *
3152 * Those checks are fairly expensive so if you don't need them make sure
3153 * handle_edge_cases is false.
3154 */
3155 void
3156 lp_build_log2_approx(struct lp_build_context *bld,
3157 LLVMValueRef x,
3158 LLVMValueRef *p_exp,
3159 LLVMValueRef *p_floor_log2,
3160 LLVMValueRef *p_log2,
3161 boolean handle_edge_cases)
3162 {
3163 LLVMBuilderRef builder = bld->gallivm->builder;
3164 const struct lp_type type = bld->type;
3165 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
3166 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
3167
3168 LLVMValueRef expmask = lp_build_const_int_vec(bld->gallivm, type, 0x7f800000);
3169 LLVMValueRef mantmask = lp_build_const_int_vec(bld->gallivm, type, 0x007fffff);
3170 LLVMValueRef one = LLVMConstBitCast(bld->one, int_vec_type);
3171
3172 LLVMValueRef i = NULL;
3173 LLVMValueRef y = NULL;
3174 LLVMValueRef z = NULL;
3175 LLVMValueRef exp = NULL;
3176 LLVMValueRef mant = NULL;
3177 LLVMValueRef logexp = NULL;
3178 LLVMValueRef logmant = NULL;
3179 LLVMValueRef res = NULL;
3180
3181 assert(lp_check_value(bld->type, x));
3182
3183 if(p_exp || p_floor_log2 || p_log2) {
3184 /* TODO: optimize the constant case */
3185 if (gallivm_debug & GALLIVM_DEBUG_PERF &&
3186 LLVMIsConstant(x)) {
3187 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
3188 __FUNCTION__);
3189 }
3190
3191 assert(type.floating && type.width == 32);
3192
3193 /*
3194 * We don't explicitly handle denormalized numbers. They will yield a
3195 * result in the neighbourhood of -127, which appears to be adequate
3196 * enough.
3197 */
3198
3199 i = LLVMBuildBitCast(builder, x, int_vec_type, "");
3200
3201 /* exp = (float) exponent(x) */
3202 exp = LLVMBuildAnd(builder, i, expmask, "");
3203 }
3204
3205 if(p_floor_log2 || p_log2) {
3206 logexp = LLVMBuildLShr(builder, exp, lp_build_const_int_vec(bld->gallivm, type, 23), "");
3207 logexp = LLVMBuildSub(builder, logexp, lp_build_const_int_vec(bld->gallivm, type, 127), "");
3208 logexp = LLVMBuildSIToFP(builder, logexp, vec_type, "");
3209 }
3210
3211 if (p_log2) {
3212 /* mant = 1 + (float) mantissa(x) */
3213 mant = LLVMBuildAnd(builder, i, mantmask, "");
3214 mant = LLVMBuildOr(builder, mant, one, "");
3215 mant = LLVMBuildBitCast(builder, mant, vec_type, "");
3216
3217 /* y = (mant - 1) / (mant + 1) */
3218 y = lp_build_div(bld,
3219 lp_build_sub(bld, mant, bld->one),
3220 lp_build_add(bld, mant, bld->one)
3221 );
3222
3223 /* z = y^2 */
3224 z = lp_build_mul(bld, y, y);
3225
3226 /* compute P(z) */
3227 logmant = lp_build_polynomial(bld, z, lp_build_log2_polynomial,
3228 Elements(lp_build_log2_polynomial));
3229
3230 /* logmant = y * P(z) */
3231 logmant = lp_build_mul(bld, y, logmant);
3232
3233 res = lp_build_add(bld, logmant, logexp);
3234
3235 if (type.floating && handle_edge_cases) {
3236 LLVMValueRef negmask, infmask, zmask;
3237 negmask = lp_build_cmp(bld, PIPE_FUNC_LESS, x,
3238 lp_build_const_vec(bld->gallivm, type, 0.0f));
3239 zmask = lp_build_cmp(bld, PIPE_FUNC_EQUAL, x,
3240 lp_build_const_vec(bld->gallivm, type, 0.0f));
3241 infmask = lp_build_cmp(bld, PIPE_FUNC_GEQUAL, x,
3242 lp_build_const_vec(bld->gallivm, type, INFINITY));
3243
3244 /* If x is qual to inf make sure we return inf */
3245 res = lp_build_select(bld, infmask,
3246 lp_build_const_vec(bld->gallivm, type, INFINITY),
3247 res);
3248 /* If x is qual to 0, return -inf */
3249 res = lp_build_select(bld, zmask,
3250 lp_build_const_vec(bld->gallivm, type, -INFINITY),
3251 res);
3252 /* If x is nan or less than 0, return nan */
3253 res = lp_build_select(bld, negmask,
3254 lp_build_const_vec(bld->gallivm, type, NAN),
3255 res);
3256 }
3257 }
3258
3259 if (p_exp) {
3260 exp = LLVMBuildBitCast(builder, exp, vec_type, "");
3261 *p_exp = exp;
3262 }
3263
3264 if (p_floor_log2)
3265 *p_floor_log2 = logexp;
3266
3267 if (p_log2)
3268 *p_log2 = res;
3269 }
3270
3271
3272 /*
3273 * log2 implementation which doesn't have special code to
3274 * handle edge cases (-inf, 0, inf, NaN). It's faster but
3275 * the results for those cases are undefined.
3276 */
3277 LLVMValueRef
3278 lp_build_log2(struct lp_build_context *bld,
3279 LLVMValueRef x)
3280 {
3281 LLVMValueRef res;
3282 lp_build_log2_approx(bld, x, NULL, NULL, &res, FALSE);
3283 return res;
3284 }
3285
3286 /*
3287 * Version of log2 which handles all edge cases.
3288 * Look at documentation of lp_build_log2_approx for
3289 * description of the behavior for each of the edge cases.
3290 */
3291 LLVMValueRef
3292 lp_build_log2_safe(struct lp_build_context *bld,
3293 LLVMValueRef x)
3294 {
3295 LLVMValueRef res;
3296 lp_build_log2_approx(bld, x, NULL, NULL, &res, TRUE);
3297 return res;
3298 }
3299
3300
3301 /**
3302 * Faster (and less accurate) log2.
3303 *
3304 * log2(x) = floor(log2(x)) - 1 + x / 2**floor(log2(x))
3305 *
3306 * Piece-wise linear approximation, with exact results when x is a
3307 * power of two.
3308 *
3309 * See http://www.flipcode.com/archives/Fast_log_Function.shtml
3310 */
3311 LLVMValueRef
3312 lp_build_fast_log2(struct lp_build_context *bld,
3313 LLVMValueRef x)
3314 {
3315 LLVMBuilderRef builder = bld->gallivm->builder;
3316 LLVMValueRef ipart;
3317 LLVMValueRef fpart;
3318
3319 assert(lp_check_value(bld->type, x));
3320
3321 assert(bld->type.floating);
3322
3323 /* ipart = floor(log2(x)) - 1 */
3324 ipart = lp_build_extract_exponent(bld, x, -1);
3325 ipart = LLVMBuildSIToFP(builder, ipart, bld->vec_type, "");
3326
3327 /* fpart = x / 2**ipart */
3328 fpart = lp_build_extract_mantissa(bld, x);
3329
3330 /* ipart + fpart */
3331 return LLVMBuildFAdd(builder, ipart, fpart, "");
3332 }
3333
3334
3335 /**
3336 * Fast implementation of iround(log2(x)).
3337 *
3338 * Not an approximation -- it should give accurate results all the time.
3339 */
3340 LLVMValueRef
3341 lp_build_ilog2(struct lp_build_context *bld,
3342 LLVMValueRef x)
3343 {
3344 LLVMBuilderRef builder = bld->gallivm->builder;
3345 LLVMValueRef sqrt2 = lp_build_const_vec(bld->gallivm, bld->type, M_SQRT2);
3346 LLVMValueRef ipart;
3347
3348 assert(bld->type.floating);
3349
3350 assert(lp_check_value(bld->type, x));
3351
3352 /* x * 2^(0.5) i.e., add 0.5 to the log2(x) */
3353 x = LLVMBuildFMul(builder, x, sqrt2, "");
3354
3355 /* ipart = floor(log2(x) + 0.5) */
3356 ipart = lp_build_extract_exponent(bld, x, 0);
3357
3358 return ipart;
3359 }
3360
3361 LLVMValueRef
3362 lp_build_mod(struct lp_build_context *bld,
3363 LLVMValueRef x,
3364 LLVMValueRef y)
3365 {
3366 LLVMBuilderRef builder = bld->gallivm->builder;
3367 LLVMValueRef res;
3368 const struct lp_type type = bld->type;
3369
3370 assert(lp_check_value(type, x));
3371 assert(lp_check_value(type, y));
3372
3373 if (type.floating)
3374 res = LLVMBuildFRem(builder, x, y, "");
3375 else if (type.sign)
3376 res = LLVMBuildSRem(builder, x, y, "");
3377 else
3378 res = LLVMBuildURem(builder, x, y, "");
3379 return res;
3380 }
3381
3382
3383 /*
3384 * For floating inputs it creates and returns a mask
3385 * which is all 1's for channels which are NaN.
3386 * Channels inside x which are not NaN will be 0.
3387 */
3388 LLVMValueRef
3389 lp_build_isnan(struct lp_build_context *bld,
3390 LLVMValueRef x)
3391 {
3392 LLVMValueRef mask;
3393 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, bld->type);
3394
3395 assert(bld->type.floating);
3396 assert(lp_check_value(bld->type, x));
3397
3398 mask = LLVMBuildFCmp(bld->gallivm->builder, LLVMRealOEQ, x, x,
3399 "isnotnan");
3400 mask = LLVMBuildNot(bld->gallivm->builder, mask, "");
3401 mask = LLVMBuildSExt(bld->gallivm->builder, mask, int_vec_type, "isnan");
3402 return mask;
3403 }
3404
3405 /* Returns all 1's for floating point numbers that are
3406 * finite numbers and returns all zeros for -inf,
3407 * inf and nan's */
3408 LLVMValueRef
3409 lp_build_isfinite(struct lp_build_context *bld,
3410 LLVMValueRef x)
3411 {
3412 LLVMBuilderRef builder = bld->gallivm->builder;
3413 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, bld->type);
3414 struct lp_type int_type = lp_int_type(bld->type);
3415 LLVMValueRef intx = LLVMBuildBitCast(builder, x, int_vec_type, "");
3416 LLVMValueRef infornan32 = lp_build_const_int_vec(bld->gallivm, bld->type,
3417 0x7f800000);
3418
3419 if (!bld->type.floating) {
3420 return lp_build_const_int_vec(bld->gallivm, bld->type, 0);
3421 }
3422 assert(bld->type.floating);
3423 assert(lp_check_value(bld->type, x));
3424 assert(bld->type.width == 32);
3425
3426 intx = LLVMBuildAnd(builder, intx, infornan32, "");
3427 return lp_build_compare(bld->gallivm, int_type, PIPE_FUNC_NOTEQUAL,
3428 intx, infornan32);
3429 }
3430
3431 /*
3432 * Returns true if the number is nan or inf and false otherwise.
3433 * The input has to be a floating point vector.
3434 */
3435 LLVMValueRef
3436 lp_build_is_inf_or_nan(struct gallivm_state *gallivm,
3437 const struct lp_type type,
3438 LLVMValueRef x)
3439 {
3440 LLVMBuilderRef builder = gallivm->builder;
3441 struct lp_type int_type = lp_int_type(type);
3442 LLVMValueRef const0 = lp_build_const_int_vec(gallivm, int_type,
3443 0x7f800000);
3444 LLVMValueRef ret;
3445
3446 assert(type.floating);
3447
3448 ret = LLVMBuildBitCast(builder, x, lp_build_vec_type(gallivm, int_type), "");
3449 ret = LLVMBuildAnd(builder, ret, const0, "");
3450 ret = lp_build_compare(gallivm, int_type, PIPE_FUNC_EQUAL,
3451 ret, const0);
3452
3453 return ret;
3454 }
3455
3456
3457 LLVMValueRef
3458 lp_build_fpstate_get(struct gallivm_state *gallivm)
3459 {
3460 if (util_cpu_caps.has_sse) {
3461 LLVMBuilderRef builder = gallivm->builder;
3462 LLVMValueRef mxcsr_ptr = lp_build_alloca(
3463 gallivm,
3464 LLVMInt32TypeInContext(gallivm->context),
3465 "mxcsr_ptr");
3466 LLVMValueRef mxcsr_ptr8 = LLVMBuildPointerCast(builder, mxcsr_ptr,
3467 LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0), "");
3468 lp_build_intrinsic(builder,
3469 "llvm.x86.sse.stmxcsr",
3470 LLVMVoidTypeInContext(gallivm->context),
3471 &mxcsr_ptr8, 1, 0);
3472 return mxcsr_ptr;
3473 }
3474 return 0;
3475 }
3476
3477 void
3478 lp_build_fpstate_set_denorms_zero(struct gallivm_state *gallivm,
3479 boolean zero)
3480 {
3481 if (util_cpu_caps.has_sse) {
3482 /* turn on DAZ (64) | FTZ (32768) = 32832 if available */
3483 int daz_ftz = _MM_FLUSH_ZERO_MASK;
3484
3485 LLVMBuilderRef builder = gallivm->builder;
3486 LLVMValueRef mxcsr_ptr = lp_build_fpstate_get(gallivm);
3487 LLVMValueRef mxcsr =
3488 LLVMBuildLoad(builder, mxcsr_ptr, "mxcsr");
3489
3490 if (util_cpu_caps.has_daz) {
3491 /* Enable denormals are zero mode */
3492 daz_ftz |= _MM_DENORMALS_ZERO_MASK;
3493 }
3494 if (zero) {
3495 mxcsr = LLVMBuildOr(builder, mxcsr,
3496 LLVMConstInt(LLVMTypeOf(mxcsr), daz_ftz, 0), "");
3497 } else {
3498 mxcsr = LLVMBuildAnd(builder, mxcsr,
3499 LLVMConstInt(LLVMTypeOf(mxcsr), ~daz_ftz, 0), "");
3500 }
3501
3502 LLVMBuildStore(builder, mxcsr, mxcsr_ptr);
3503 lp_build_fpstate_set(gallivm, mxcsr_ptr);
3504 }
3505 }
3506
3507 void
3508 lp_build_fpstate_set(struct gallivm_state *gallivm,
3509 LLVMValueRef mxcsr_ptr)
3510 {
3511 if (util_cpu_caps.has_sse) {
3512 LLVMBuilderRef builder = gallivm->builder;
3513 mxcsr_ptr = LLVMBuildPointerCast(builder, mxcsr_ptr,
3514 LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0), "");
3515 lp_build_intrinsic(builder,
3516 "llvm.x86.sse.ldmxcsr",
3517 LLVMVoidTypeInContext(gallivm->context),
3518 &mxcsr_ptr, 1, 0);
3519 }
3520 }