gallivm: Altivec vector add/sub intrisics
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_arit.c
1 /**************************************************************************
2 *
3 * Copyright 2009-2010 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 /**
30 * @file
31 * Helper
32 *
33 * LLVM IR doesn't support all basic arithmetic operations we care about (most
34 * notably min/max and saturated operations), and it is often necessary to
35 * resort machine-specific intrinsics directly. The functions here hide all
36 * these implementation details from the other modules.
37 *
38 * We also do simple expressions simplification here. Reasons are:
39 * - it is very easy given we have all necessary information readily available
40 * - LLVM optimization passes fail to simplify several vector expressions
41 * - We often know value constraints which the optimization passes have no way
42 * of knowing, such as when source arguments are known to be in [0, 1] range.
43 *
44 * @author Jose Fonseca <jfonseca@vmware.com>
45 */
46
47
48 #include "util/u_memory.h"
49 #include "util/u_debug.h"
50 #include "util/u_math.h"
51 #include "util/u_string.h"
52 #include "util/u_cpu_detect.h"
53
54 #include "lp_bld_type.h"
55 #include "lp_bld_const.h"
56 #include "lp_bld_init.h"
57 #include "lp_bld_intr.h"
58 #include "lp_bld_logic.h"
59 #include "lp_bld_pack.h"
60 #include "lp_bld_debug.h"
61 #include "lp_bld_arit.h"
62
63 #include "float.h"
64
65 #define EXP_POLY_DEGREE 5
66
67 #define LOG_POLY_DEGREE 4
68
69
70 /**
71 * Generate min(a, b)
72 * No checks for special case values of a or b = 1 or 0 are done.
73 */
74 static LLVMValueRef
75 lp_build_min_simple(struct lp_build_context *bld,
76 LLVMValueRef a,
77 LLVMValueRef b)
78 {
79 const struct lp_type type = bld->type;
80 const char *intrinsic = NULL;
81 unsigned intr_size = 0;
82 LLVMValueRef cond;
83
84 assert(lp_check_value(type, a));
85 assert(lp_check_value(type, b));
86
87 /* TODO: optimize the constant case */
88
89 if (type.floating && util_cpu_caps.has_sse) {
90 if (type.width == 32) {
91 if (type.length == 1) {
92 intrinsic = "llvm.x86.sse.min.ss";
93 intr_size = 128;
94 }
95 else if (type.length <= 4 || !util_cpu_caps.has_avx) {
96 intrinsic = "llvm.x86.sse.min.ps";
97 intr_size = 128;
98 }
99 else {
100 intrinsic = "llvm.x86.avx.min.ps.256";
101 intr_size = 256;
102 }
103 }
104 if (type.width == 64 && util_cpu_caps.has_sse2) {
105 if (type.length == 1) {
106 intrinsic = "llvm.x86.sse2.min.sd";
107 intr_size = 128;
108 }
109 else if (type.length == 2 || !util_cpu_caps.has_avx) {
110 intrinsic = "llvm.x86.sse2.min.pd";
111 intr_size = 128;
112 }
113 else {
114 intrinsic = "llvm.x86.avx.min.pd.256";
115 intr_size = 256;
116 }
117 }
118 }
119 else if (type.floating && util_cpu_caps.has_altivec) {
120 if (type.width == 32 && type.length == 4) {
121 intrinsic = "llvm.ppc.altivec.vminfp";
122 intr_size = 128;
123 }
124 } else if (util_cpu_caps.has_sse2 && type.length >= 2) {
125 intr_size = 128;
126 if ((type.width == 8 || type.width == 16) &&
127 (type.width * type.length <= 64) &&
128 (gallivm_debug & GALLIVM_DEBUG_PERF)) {
129 debug_printf("%s: inefficient code, bogus shuffle due to packing\n",
130 __FUNCTION__);
131 }
132 if (type.width == 8 && !type.sign) {
133 intrinsic = "llvm.x86.sse2.pminu.b";
134 }
135 else if (type.width == 16 && type.sign) {
136 intrinsic = "llvm.x86.sse2.pmins.w";
137 }
138 if (util_cpu_caps.has_sse4_1) {
139 if (type.width == 8 && type.sign) {
140 intrinsic = "llvm.x86.sse41.pminsb";
141 }
142 if (type.width == 16 && !type.sign) {
143 intrinsic = "llvm.x86.sse41.pminuw";
144 }
145 if (type.width == 32 && !type.sign) {
146 intrinsic = "llvm.x86.sse41.pminud";
147 }
148 if (type.width == 32 && type.sign) {
149 intrinsic = "llvm.x86.sse41.pminsd";
150 }
151 }
152 } else if (util_cpu_caps.has_altivec) {
153 intr_size = 128;
154 if (type.width == 8) {
155 if (!type.sign) {
156 intrinsic = "llvm.ppc.altivec.vminub";
157 } else {
158 intrinsic = "llvm.ppc.altivec.vminsb";
159 }
160 } else if (type.width == 16) {
161 if (!type.sign) {
162 intrinsic = "llvm.ppc.altivec.vminuh";
163 } else {
164 intrinsic = "llvm.ppc.altivec.vminsh";
165 }
166 } else if (type.width == 32) {
167 if (!type.sign) {
168 intrinsic = "llvm.ppc.altivec.vminuw";
169 } else {
170 intrinsic = "llvm.ppc.altivec.vminsw";
171 }
172 }
173 }
174
175 if(intrinsic) {
176 return lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
177 type,
178 intr_size, a, b);
179 }
180
181 cond = lp_build_cmp(bld, PIPE_FUNC_LESS, a, b);
182 return lp_build_select(bld, cond, a, b);
183 }
184
185
186 /**
187 * Generate max(a, b)
188 * No checks for special case values of a or b = 1 or 0 are done.
189 */
190 static LLVMValueRef
191 lp_build_max_simple(struct lp_build_context *bld,
192 LLVMValueRef a,
193 LLVMValueRef b)
194 {
195 const struct lp_type type = bld->type;
196 const char *intrinsic = NULL;
197 unsigned intr_size = 0;
198 LLVMValueRef cond;
199
200 assert(lp_check_value(type, a));
201 assert(lp_check_value(type, b));
202
203 /* TODO: optimize the constant case */
204
205 if (type.floating && util_cpu_caps.has_sse) {
206 if (type.width == 32) {
207 if (type.length == 1) {
208 intrinsic = "llvm.x86.sse.max.ss";
209 intr_size = 128;
210 }
211 else if (type.length <= 4 || !util_cpu_caps.has_avx) {
212 intrinsic = "llvm.x86.sse.max.ps";
213 intr_size = 128;
214 }
215 else {
216 intrinsic = "llvm.x86.avx.max.ps.256";
217 intr_size = 256;
218 }
219 }
220 if (type.width == 64 && util_cpu_caps.has_sse2) {
221 if (type.length == 1) {
222 intrinsic = "llvm.x86.sse2.max.sd";
223 intr_size = 128;
224 }
225 else if (type.length == 2 || !util_cpu_caps.has_avx) {
226 intrinsic = "llvm.x86.sse2.max.pd";
227 intr_size = 128;
228 }
229 else {
230 intrinsic = "llvm.x86.avx.max.pd.256";
231 intr_size = 256;
232 }
233 }
234 }
235 else if (type.floating && util_cpu_caps.has_altivec) {
236 if (type.width == 32 || type.length == 4) {
237 intrinsic = "llvm.ppc.altivec.vmaxfp";
238 intr_size = 128;
239 }
240 } else if (util_cpu_caps.has_sse2 && type.length >= 2) {
241 intr_size = 128;
242 if ((type.width == 8 || type.width == 16) &&
243 (type.width * type.length <= 64) &&
244 (gallivm_debug & GALLIVM_DEBUG_PERF)) {
245 debug_printf("%s: inefficient code, bogus shuffle due to packing\n",
246 __FUNCTION__);
247 }
248 if (type.width == 8 && !type.sign) {
249 intrinsic = "llvm.x86.sse2.pmaxu.b";
250 intr_size = 128;
251 }
252 else if (type.width == 16 && type.sign) {
253 intrinsic = "llvm.x86.sse2.pmaxs.w";
254 }
255 if (util_cpu_caps.has_sse4_1) {
256 if (type.width == 8 && type.sign) {
257 intrinsic = "llvm.x86.sse41.pmaxsb";
258 }
259 if (type.width == 16 && !type.sign) {
260 intrinsic = "llvm.x86.sse41.pmaxuw";
261 }
262 if (type.width == 32 && !type.sign) {
263 intrinsic = "llvm.x86.sse41.pmaxud";
264 }
265 if (type.width == 32 && type.sign) {
266 intrinsic = "llvm.x86.sse41.pmaxsd";
267 }
268 }
269 } else if (util_cpu_caps.has_altivec) {
270 intr_size = 128;
271 if (type.width == 8) {
272 if (!type.sign) {
273 intrinsic = "llvm.ppc.altivec.vmaxub";
274 } else {
275 intrinsic = "llvm.ppc.altivec.vmaxsb";
276 }
277 } else if (type.width == 16) {
278 if (!type.sign) {
279 intrinsic = "llvm.ppc.altivec.vmaxuh";
280 } else {
281 intrinsic = "llvm.ppc.altivec.vmaxsh";
282 }
283 } else if (type.width == 32) {
284 if (!type.sign) {
285 intrinsic = "llvm.ppc.altivec.vmaxuw";
286 } else {
287 intrinsic = "llvm.ppc.altivec.vmaxsw";
288 }
289 }
290 }
291
292 if(intrinsic) {
293 return lp_build_intrinsic_binary_anylength(bld->gallivm, intrinsic,
294 type,
295 intr_size, a, b);
296 }
297
298 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, b);
299 return lp_build_select(bld, cond, a, b);
300 }
301
302
303 /**
304 * Generate 1 - a, or ~a depending on bld->type.
305 */
306 LLVMValueRef
307 lp_build_comp(struct lp_build_context *bld,
308 LLVMValueRef a)
309 {
310 LLVMBuilderRef builder = bld->gallivm->builder;
311 const struct lp_type type = bld->type;
312
313 assert(lp_check_value(type, a));
314
315 if(a == bld->one)
316 return bld->zero;
317 if(a == bld->zero)
318 return bld->one;
319
320 if(type.norm && !type.floating && !type.fixed && !type.sign) {
321 if(LLVMIsConstant(a))
322 return LLVMConstNot(a);
323 else
324 return LLVMBuildNot(builder, a, "");
325 }
326
327 if(LLVMIsConstant(a))
328 if (type.floating)
329 return LLVMConstFSub(bld->one, a);
330 else
331 return LLVMConstSub(bld->one, a);
332 else
333 if (type.floating)
334 return LLVMBuildFSub(builder, bld->one, a, "");
335 else
336 return LLVMBuildSub(builder, bld->one, a, "");
337 }
338
339
340 /**
341 * Generate a + b
342 */
343 LLVMValueRef
344 lp_build_add(struct lp_build_context *bld,
345 LLVMValueRef a,
346 LLVMValueRef b)
347 {
348 LLVMBuilderRef builder = bld->gallivm->builder;
349 const struct lp_type type = bld->type;
350 LLVMValueRef res;
351
352 assert(lp_check_value(type, a));
353 assert(lp_check_value(type, b));
354
355 if(a == bld->zero)
356 return b;
357 if(b == bld->zero)
358 return a;
359 if(a == bld->undef || b == bld->undef)
360 return bld->undef;
361
362 if(bld->type.norm) {
363 const char *intrinsic = NULL;
364
365 if(a == bld->one || b == bld->one)
366 return bld->one;
367
368 if (type.width * type.length == 128 &&
369 !type.floating && !type.fixed) {
370 if(util_cpu_caps.has_sse2) {
371 if(type.width == 8)
372 intrinsic = type.sign ? "llvm.x86.sse2.padds.b" : "llvm.x86.sse2.paddus.b";
373 if(type.width == 16)
374 intrinsic = type.sign ? "llvm.x86.sse2.padds.w" : "llvm.x86.sse2.paddus.w";
375 } else if (util_cpu_caps.has_altivec) {
376 if(type.width == 8)
377 intrinsic = type.sign ? "llvm.ppc.altivec.vaddsbs" : "llvm.ppc.altivec.vaddubs";
378 if(type.width == 16)
379 intrinsic = type.sign ? "llvm.ppc.altivec.vaddsws" : "llvm.ppc.altivec.vadduws";
380 }
381 }
382
383 if(intrinsic)
384 return lp_build_intrinsic_binary(builder, intrinsic, lp_build_vec_type(bld->gallivm, bld->type), a, b);
385 }
386
387 if(LLVMIsConstant(a) && LLVMIsConstant(b))
388 if (type.floating)
389 res = LLVMConstFAdd(a, b);
390 else
391 res = LLVMConstAdd(a, b);
392 else
393 if (type.floating)
394 res = LLVMBuildFAdd(builder, a, b, "");
395 else
396 res = LLVMBuildAdd(builder, a, b, "");
397
398 /* clamp to ceiling of 1.0 */
399 if(bld->type.norm && (bld->type.floating || bld->type.fixed))
400 res = lp_build_min_simple(bld, res, bld->one);
401
402 /* XXX clamp to floor of -1 or 0??? */
403
404 return res;
405 }
406
407
408 /** Return the scalar sum of the elements of a.
409 * Should avoid this operation whenever possible.
410 */
411 LLVMValueRef
412 lp_build_horizontal_add(struct lp_build_context *bld,
413 LLVMValueRef a)
414 {
415 LLVMBuilderRef builder = bld->gallivm->builder;
416 const struct lp_type type = bld->type;
417 LLVMValueRef index, res;
418 unsigned i, length;
419 LLVMValueRef shuffles1[LP_MAX_VECTOR_LENGTH / 2];
420 LLVMValueRef shuffles2[LP_MAX_VECTOR_LENGTH / 2];
421 LLVMValueRef vecres, elem2;
422
423 assert(lp_check_value(type, a));
424
425 if (type.length == 1) {
426 return a;
427 }
428
429 assert(!bld->type.norm);
430
431 /*
432 * for byte vectors can do much better with psadbw.
433 * Using repeated shuffle/adds here. Note with multiple vectors
434 * this can be done more efficiently as outlined in the intel
435 * optimization manual.
436 * Note: could cause data rearrangement if used with smaller element
437 * sizes.
438 */
439
440 vecres = a;
441 length = type.length / 2;
442 while (length > 1) {
443 LLVMValueRef vec1, vec2;
444 for (i = 0; i < length; i++) {
445 shuffles1[i] = lp_build_const_int32(bld->gallivm, i);
446 shuffles2[i] = lp_build_const_int32(bld->gallivm, i + length);
447 }
448 vec1 = LLVMBuildShuffleVector(builder, vecres, vecres,
449 LLVMConstVector(shuffles1, length), "");
450 vec2 = LLVMBuildShuffleVector(builder, vecres, vecres,
451 LLVMConstVector(shuffles2, length), "");
452 if (type.floating) {
453 vecres = LLVMBuildFAdd(builder, vec1, vec2, "");
454 }
455 else {
456 vecres = LLVMBuildAdd(builder, vec1, vec2, "");
457 }
458 length = length >> 1;
459 }
460
461 /* always have vector of size 2 here */
462 assert(length == 1);
463
464 index = lp_build_const_int32(bld->gallivm, 0);
465 res = LLVMBuildExtractElement(builder, vecres, index, "");
466 index = lp_build_const_int32(bld->gallivm, 1);
467 elem2 = LLVMBuildExtractElement(builder, vecres, index, "");
468
469 if (type.floating)
470 res = LLVMBuildFAdd(builder, res, elem2, "");
471 else
472 res = LLVMBuildAdd(builder, res, elem2, "");
473
474 return res;
475 }
476
477 /**
478 * Return the horizontal sums of 4 float vectors as a float4 vector.
479 * This uses the technique as outlined in Intel Optimization Manual.
480 */
481 static LLVMValueRef
482 lp_build_horizontal_add4x4f(struct lp_build_context *bld,
483 LLVMValueRef src[4])
484 {
485 struct gallivm_state *gallivm = bld->gallivm;
486 LLVMBuilderRef builder = gallivm->builder;
487 LLVMValueRef shuffles[4];
488 LLVMValueRef tmp[4];
489 LLVMValueRef sumtmp[2], shuftmp[2];
490
491 /* lower half of regs */
492 shuffles[0] = lp_build_const_int32(gallivm, 0);
493 shuffles[1] = lp_build_const_int32(gallivm, 1);
494 shuffles[2] = lp_build_const_int32(gallivm, 4);
495 shuffles[3] = lp_build_const_int32(gallivm, 5);
496 tmp[0] = LLVMBuildShuffleVector(builder, src[0], src[1],
497 LLVMConstVector(shuffles, 4), "");
498 tmp[2] = LLVMBuildShuffleVector(builder, src[2], src[3],
499 LLVMConstVector(shuffles, 4), "");
500
501 /* upper half of regs */
502 shuffles[0] = lp_build_const_int32(gallivm, 2);
503 shuffles[1] = lp_build_const_int32(gallivm, 3);
504 shuffles[2] = lp_build_const_int32(gallivm, 6);
505 shuffles[3] = lp_build_const_int32(gallivm, 7);
506 tmp[1] = LLVMBuildShuffleVector(builder, src[0], src[1],
507 LLVMConstVector(shuffles, 4), "");
508 tmp[3] = LLVMBuildShuffleVector(builder, src[2], src[3],
509 LLVMConstVector(shuffles, 4), "");
510
511 sumtmp[0] = LLVMBuildFAdd(builder, tmp[0], tmp[1], "");
512 sumtmp[1] = LLVMBuildFAdd(builder, tmp[2], tmp[3], "");
513
514 shuffles[0] = lp_build_const_int32(gallivm, 0);
515 shuffles[1] = lp_build_const_int32(gallivm, 2);
516 shuffles[2] = lp_build_const_int32(gallivm, 4);
517 shuffles[3] = lp_build_const_int32(gallivm, 6);
518 shuftmp[0] = LLVMBuildShuffleVector(builder, sumtmp[0], sumtmp[1],
519 LLVMConstVector(shuffles, 4), "");
520
521 shuffles[0] = lp_build_const_int32(gallivm, 1);
522 shuffles[1] = lp_build_const_int32(gallivm, 3);
523 shuffles[2] = lp_build_const_int32(gallivm, 5);
524 shuffles[3] = lp_build_const_int32(gallivm, 7);
525 shuftmp[1] = LLVMBuildShuffleVector(builder, sumtmp[0], sumtmp[1],
526 LLVMConstVector(shuffles, 4), "");
527
528 return LLVMBuildFAdd(builder, shuftmp[0], shuftmp[1], "");
529 }
530
531
532 /*
533 * partially horizontally add 2-4 float vectors with length nx4,
534 * i.e. only four adjacent values in each vector will be added,
535 * assuming values are really grouped in 4 which also determines
536 * output order.
537 *
538 * Return a vector of the same length as the initial vectors,
539 * with the excess elements (if any) being undefined.
540 * The element order is independent of number of input vectors.
541 * For 3 vectors x0x1x2x3x4x5x6x7, y0y1y2y3y4y5y6y7, z0z1z2z3z4z5z6z7
542 * the output order thus will be
543 * sumx0-x3,sumy0-y3,sumz0-z3,undef,sumx4-x7,sumy4-y7,sumz4z7,undef
544 */
545 LLVMValueRef
546 lp_build_hadd_partial4(struct lp_build_context *bld,
547 LLVMValueRef vectors[],
548 unsigned num_vecs)
549 {
550 struct gallivm_state *gallivm = bld->gallivm;
551 LLVMBuilderRef builder = gallivm->builder;
552 LLVMValueRef ret_vec;
553 LLVMValueRef tmp[4];
554 const char *intrinsic = NULL;
555
556 assert(num_vecs >= 2 && num_vecs <= 4);
557 assert(bld->type.floating);
558
559 /* only use this with at least 2 vectors, as it is sort of expensive
560 * (depending on cpu) and we always need two horizontal adds anyway,
561 * so a shuffle/add approach might be better.
562 */
563
564 tmp[0] = vectors[0];
565 tmp[1] = vectors[1];
566
567 tmp[2] = num_vecs > 2 ? vectors[2] : vectors[0];
568 tmp[3] = num_vecs > 3 ? vectors[3] : vectors[0];
569
570 if (util_cpu_caps.has_sse3 && bld->type.width == 32 &&
571 bld->type.length == 4) {
572 intrinsic = "llvm.x86.sse3.hadd.ps";
573 }
574 else if (util_cpu_caps.has_avx && bld->type.width == 32 &&
575 bld->type.length == 8) {
576 intrinsic = "llvm.x86.avx.hadd.ps.256";
577 }
578 if (intrinsic) {
579 tmp[0] = lp_build_intrinsic_binary(builder, intrinsic,
580 lp_build_vec_type(gallivm, bld->type),
581 tmp[0], tmp[1]);
582 if (num_vecs > 2) {
583 tmp[1] = lp_build_intrinsic_binary(builder, intrinsic,
584 lp_build_vec_type(gallivm, bld->type),
585 tmp[2], tmp[3]);
586 }
587 else {
588 tmp[1] = tmp[0];
589 }
590 return lp_build_intrinsic_binary(builder, intrinsic,
591 lp_build_vec_type(gallivm, bld->type),
592 tmp[0], tmp[1]);
593 }
594
595 if (bld->type.length == 4) {
596 ret_vec = lp_build_horizontal_add4x4f(bld, tmp);
597 }
598 else {
599 LLVMValueRef partres[LP_MAX_VECTOR_LENGTH/4];
600 unsigned j;
601 unsigned num_iter = bld->type.length / 4;
602 struct lp_type parttype = bld->type;
603 parttype.length = 4;
604 for (j = 0; j < num_iter; j++) {
605 LLVMValueRef partsrc[4];
606 unsigned i;
607 for (i = 0; i < 4; i++) {
608 partsrc[i] = lp_build_extract_range(gallivm, tmp[i], j*4, 4);
609 }
610 partres[j] = lp_build_horizontal_add4x4f(bld, partsrc);
611 }
612 ret_vec = lp_build_concat(gallivm, partres, parttype, num_iter);
613 }
614 return ret_vec;
615 }
616
617 /**
618 * Generate a - b
619 */
620 LLVMValueRef
621 lp_build_sub(struct lp_build_context *bld,
622 LLVMValueRef a,
623 LLVMValueRef b)
624 {
625 LLVMBuilderRef builder = bld->gallivm->builder;
626 const struct lp_type type = bld->type;
627 LLVMValueRef res;
628
629 assert(lp_check_value(type, a));
630 assert(lp_check_value(type, b));
631
632 if(b == bld->zero)
633 return a;
634 if(a == bld->undef || b == bld->undef)
635 return bld->undef;
636 if(a == b)
637 return bld->zero;
638
639 if(bld->type.norm) {
640 const char *intrinsic = NULL;
641
642 if(b == bld->one)
643 return bld->zero;
644
645 if (type.width * type.length == 128 &&
646 !type.floating && !type.fixed) {
647 if (util_cpu_caps.has_sse2) {
648 if(type.width == 8)
649 intrinsic = type.sign ? "llvm.x86.sse2.psubs.b" : "llvm.x86.sse2.psubus.b";
650 if(type.width == 16)
651 intrinsic = type.sign ? "llvm.x86.sse2.psubs.w" : "llvm.x86.sse2.psubus.w";
652 } else if (util_cpu_caps.has_altivec) {
653 if(type.width == 8)
654 intrinsic = type.sign ? "llvm.ppc.altivec.vsubsbs" : "llvm.ppc.altivec.vsububs";
655 if(type.width == 16)
656 intrinsic = type.sign ? "llvm.ppc.altivec.vsubsws" : "llvm.ppc.altivec.vsubuws";
657 }
658 }
659
660 if(intrinsic)
661 return lp_build_intrinsic_binary(builder, intrinsic, lp_build_vec_type(bld->gallivm, bld->type), a, b);
662 }
663
664 if(LLVMIsConstant(a) && LLVMIsConstant(b))
665 if (type.floating)
666 res = LLVMConstFSub(a, b);
667 else
668 res = LLVMConstSub(a, b);
669 else
670 if (type.floating)
671 res = LLVMBuildFSub(builder, a, b, "");
672 else
673 res = LLVMBuildSub(builder, a, b, "");
674
675 if(bld->type.norm && (bld->type.floating || bld->type.fixed))
676 res = lp_build_max_simple(bld, res, bld->zero);
677
678 return res;
679 }
680
681
682 /**
683 * Normalized 8bit multiplication.
684 *
685 * - alpha plus one
686 *
687 * makes the following approximation to the division (Sree)
688 *
689 * a*b/255 ~= (a*(b + 1)) >> 256
690 *
691 * which is the fastest method that satisfies the following OpenGL criteria
692 *
693 * 0*0 = 0 and 255*255 = 255
694 *
695 * - geometric series
696 *
697 * takes the geometric series approximation to the division
698 *
699 * t/255 = (t >> 8) + (t >> 16) + (t >> 24) ..
700 *
701 * in this case just the first two terms to fit in 16bit arithmetic
702 *
703 * t/255 ~= (t + (t >> 8)) >> 8
704 *
705 * note that just by itself it doesn't satisfies the OpenGL criteria, as
706 * 255*255 = 254, so the special case b = 255 must be accounted or roundoff
707 * must be used
708 *
709 * - geometric series plus rounding
710 *
711 * when using a geometric series division instead of truncating the result
712 * use roundoff in the approximation (Jim Blinn)
713 *
714 * t/255 ~= (t + (t >> 8) + 0x80) >> 8
715 *
716 * achieving the exact results
717 *
718 * @sa Alvy Ray Smith, Image Compositing Fundamentals, Tech Memo 4, Aug 15, 1995,
719 * ftp://ftp.alvyray.com/Acrobat/4_Comp.pdf
720 * @sa Michael Herf, The "double blend trick", May 2000,
721 * http://www.stereopsis.com/doubleblend.html
722 */
723 static LLVMValueRef
724 lp_build_mul_u8n(struct gallivm_state *gallivm,
725 struct lp_type i16_type,
726 LLVMValueRef a, LLVMValueRef b)
727 {
728 LLVMBuilderRef builder = gallivm->builder;
729 LLVMValueRef c8;
730 LLVMValueRef ab;
731
732 assert(!i16_type.floating);
733 assert(lp_check_value(i16_type, a));
734 assert(lp_check_value(i16_type, b));
735
736 c8 = lp_build_const_int_vec(gallivm, i16_type, 8);
737
738 #if 0
739
740 /* a*b/255 ~= (a*(b + 1)) >> 256 */
741 b = LLVMBuildAdd(builder, b, lp_build_const_int_vec(gallium, i16_type, 1), "");
742 ab = LLVMBuildMul(builder, a, b, "");
743
744 #else
745
746 /* ab/255 ~= (ab + (ab >> 8) + 0x80) >> 8 */
747 ab = LLVMBuildMul(builder, a, b, "");
748 ab = LLVMBuildAdd(builder, ab, LLVMBuildLShr(builder, ab, c8, ""), "");
749 ab = LLVMBuildAdd(builder, ab, lp_build_const_int_vec(gallivm, i16_type, 0x80), "");
750
751 #endif
752
753 ab = LLVMBuildLShr(builder, ab, c8, "");
754
755 return ab;
756 }
757
758 /**
759 * Normalized 16bit multiplication.
760 *
761 * Utilises same principle as above code.
762 */
763 static LLVMValueRef
764 lp_build_mul_u16n(struct gallivm_state *gallivm,
765 struct lp_type i32_type,
766 LLVMValueRef a, LLVMValueRef b)
767 {
768 LLVMBuilderRef builder = gallivm->builder;
769 LLVMValueRef c16;
770 LLVMValueRef ab;
771
772 assert(!i32_type.floating);
773 assert(lp_check_value(i32_type, a));
774 assert(lp_check_value(i32_type, b));
775
776 c16 = lp_build_const_int_vec(gallivm, i32_type, 16);
777
778 /* ab/65535 ~= (ab + (ab >> 16) + 0x8000) >> 16 */
779 ab = LLVMBuildMul(builder, a, b, "");
780 ab = LLVMBuildAdd(builder, ab, LLVMBuildLShr(builder, ab, c16, ""), "");
781 ab = LLVMBuildAdd(builder, ab, lp_build_const_int_vec(gallivm, i32_type, 0x8000), "");
782
783 ab = LLVMBuildLShr(builder, ab, c16, "");
784
785 return ab;
786 }
787
788 /**
789 * Generate a * b
790 */
791 LLVMValueRef
792 lp_build_mul(struct lp_build_context *bld,
793 LLVMValueRef a,
794 LLVMValueRef b)
795 {
796 LLVMBuilderRef builder = bld->gallivm->builder;
797 const struct lp_type type = bld->type;
798 LLVMValueRef shift;
799 LLVMValueRef res;
800
801 assert(lp_check_value(type, a));
802 assert(lp_check_value(type, b));
803
804 if(a == bld->zero)
805 return bld->zero;
806 if(a == bld->one)
807 return b;
808 if(b == bld->zero)
809 return bld->zero;
810 if(b == bld->one)
811 return a;
812 if(a == bld->undef || b == bld->undef)
813 return bld->undef;
814
815 if(!type.floating && !type.fixed && type.norm) {
816 if(type.width == 8) {
817 struct lp_type i16_type = lp_wider_type(type);
818 LLVMValueRef al, ah, bl, bh, abl, abh, ab;
819
820 lp_build_unpack2(bld->gallivm, type, i16_type, a, &al, &ah);
821 lp_build_unpack2(bld->gallivm, type, i16_type, b, &bl, &bh);
822
823 /* PMULLW, PSRLW, PADDW */
824 abl = lp_build_mul_u8n(bld->gallivm, i16_type, al, bl);
825 abh = lp_build_mul_u8n(bld->gallivm, i16_type, ah, bh);
826
827 ab = lp_build_pack2(bld->gallivm, i16_type, type, abl, abh);
828
829 return ab;
830 }
831
832 if(type.width == 16) {
833 struct lp_type i32_type = lp_wider_type(type);
834 LLVMValueRef al, ah, bl, bh, abl, abh, ab;
835
836 lp_build_unpack2(bld->gallivm, type, i32_type, a, &al, &ah);
837 lp_build_unpack2(bld->gallivm, type, i32_type, b, &bl, &bh);
838
839 /* PMULLW, PSRLW, PADDW */
840 abl = lp_build_mul_u16n(bld->gallivm, i32_type, al, bl);
841 abh = lp_build_mul_u16n(bld->gallivm, i32_type, ah, bh);
842
843 ab = lp_build_pack2(bld->gallivm, i32_type, type, abl, abh);
844
845 return ab;
846 }
847
848 /* FIXME */
849 assert(0);
850 }
851
852 if(type.fixed)
853 shift = lp_build_const_int_vec(bld->gallivm, type, type.width/2);
854 else
855 shift = NULL;
856
857 if(LLVMIsConstant(a) && LLVMIsConstant(b)) {
858 if (type.floating)
859 res = LLVMConstFMul(a, b);
860 else
861 res = LLVMConstMul(a, b);
862 if(shift) {
863 if(type.sign)
864 res = LLVMConstAShr(res, shift);
865 else
866 res = LLVMConstLShr(res, shift);
867 }
868 }
869 else {
870 if (type.floating)
871 res = LLVMBuildFMul(builder, a, b, "");
872 else
873 res = LLVMBuildMul(builder, a, b, "");
874 if(shift) {
875 if(type.sign)
876 res = LLVMBuildAShr(builder, res, shift, "");
877 else
878 res = LLVMBuildLShr(builder, res, shift, "");
879 }
880 }
881
882 return res;
883 }
884
885
886 /**
887 * Small vector x scale multiplication optimization.
888 */
889 LLVMValueRef
890 lp_build_mul_imm(struct lp_build_context *bld,
891 LLVMValueRef a,
892 int b)
893 {
894 LLVMBuilderRef builder = bld->gallivm->builder;
895 LLVMValueRef factor;
896
897 assert(lp_check_value(bld->type, a));
898
899 if(b == 0)
900 return bld->zero;
901
902 if(b == 1)
903 return a;
904
905 if(b == -1)
906 return lp_build_negate(bld, a);
907
908 if(b == 2 && bld->type.floating)
909 return lp_build_add(bld, a, a);
910
911 if(util_is_power_of_two(b)) {
912 unsigned shift = ffs(b) - 1;
913
914 if(bld->type.floating) {
915 #if 0
916 /*
917 * Power of two multiplication by directly manipulating the exponent.
918 *
919 * XXX: This might not be always faster, it will introduce a small error
920 * for multiplication by zero, and it will produce wrong results
921 * for Inf and NaN.
922 */
923 unsigned mantissa = lp_mantissa(bld->type);
924 factor = lp_build_const_int_vec(bld->gallivm, bld->type, (unsigned long long)shift << mantissa);
925 a = LLVMBuildBitCast(builder, a, lp_build_int_vec_type(bld->type), "");
926 a = LLVMBuildAdd(builder, a, factor, "");
927 a = LLVMBuildBitCast(builder, a, lp_build_vec_type(bld->gallivm, bld->type), "");
928 return a;
929 #endif
930 }
931 else {
932 factor = lp_build_const_vec(bld->gallivm, bld->type, shift);
933 return LLVMBuildShl(builder, a, factor, "");
934 }
935 }
936
937 factor = lp_build_const_vec(bld->gallivm, bld->type, (double)b);
938 return lp_build_mul(bld, a, factor);
939 }
940
941
942 /**
943 * Generate a / b
944 */
945 LLVMValueRef
946 lp_build_div(struct lp_build_context *bld,
947 LLVMValueRef a,
948 LLVMValueRef b)
949 {
950 LLVMBuilderRef builder = bld->gallivm->builder;
951 const struct lp_type type = bld->type;
952
953 assert(lp_check_value(type, a));
954 assert(lp_check_value(type, b));
955
956 if(a == bld->zero)
957 return bld->zero;
958 if(a == bld->one)
959 return lp_build_rcp(bld, b);
960 if(b == bld->zero)
961 return bld->undef;
962 if(b == bld->one)
963 return a;
964 if(a == bld->undef || b == bld->undef)
965 return bld->undef;
966
967 if(LLVMIsConstant(a) && LLVMIsConstant(b)) {
968 if (type.floating)
969 return LLVMConstFDiv(a, b);
970 else if (type.sign)
971 return LLVMConstSDiv(a, b);
972 else
973 return LLVMConstUDiv(a, b);
974 }
975
976 if(((util_cpu_caps.has_sse && type.width == 32 && type.length == 4) ||
977 (util_cpu_caps.has_avx && type.width == 32 && type.length == 8)) &&
978 type.floating)
979 return lp_build_mul(bld, a, lp_build_rcp(bld, b));
980
981 if (type.floating)
982 return LLVMBuildFDiv(builder, a, b, "");
983 else if (type.sign)
984 return LLVMBuildSDiv(builder, a, b, "");
985 else
986 return LLVMBuildUDiv(builder, a, b, "");
987 }
988
989
990 /**
991 * Linear interpolation -- without any checks.
992 *
993 * @sa http://www.stereopsis.com/doubleblend.html
994 */
995 static INLINE LLVMValueRef
996 lp_build_lerp_simple(struct lp_build_context *bld,
997 LLVMValueRef x,
998 LLVMValueRef v0,
999 LLVMValueRef v1)
1000 {
1001 LLVMBuilderRef builder = bld->gallivm->builder;
1002 LLVMValueRef delta;
1003 LLVMValueRef res;
1004
1005 assert(lp_check_value(bld->type, x));
1006 assert(lp_check_value(bld->type, v0));
1007 assert(lp_check_value(bld->type, v1));
1008
1009 delta = lp_build_sub(bld, v1, v0);
1010
1011 res = lp_build_mul(bld, x, delta);
1012
1013 res = lp_build_add(bld, v0, res);
1014
1015 if (bld->type.fixed) {
1016 /* XXX: This step is necessary for lerping 8bit colors stored on 16bits,
1017 * but it will be wrong for other uses. Basically we need a more
1018 * powerful lp_type, capable of further distinguishing the values
1019 * interpretation from the value storage. */
1020 res = LLVMBuildAnd(builder, res, lp_build_const_int_vec(bld->gallivm, bld->type, (1 << bld->type.width/2) - 1), "");
1021 }
1022
1023 return res;
1024 }
1025
1026
1027 /**
1028 * Linear interpolation.
1029 */
1030 LLVMValueRef
1031 lp_build_lerp(struct lp_build_context *bld,
1032 LLVMValueRef x,
1033 LLVMValueRef v0,
1034 LLVMValueRef v1)
1035 {
1036 LLVMBuilderRef builder = bld->gallivm->builder;
1037 const struct lp_type type = bld->type;
1038 LLVMValueRef res;
1039
1040 assert(lp_check_value(type, x));
1041 assert(lp_check_value(type, v0));
1042 assert(lp_check_value(type, v1));
1043
1044 if (type.norm) {
1045 struct lp_type wide_type;
1046 struct lp_build_context wide_bld;
1047 LLVMValueRef xl, xh, v0l, v0h, v1l, v1h, resl, resh;
1048 LLVMValueRef shift;
1049
1050 assert(type.length >= 2);
1051 assert(!type.sign);
1052
1053 /*
1054 * Create a wider type, enough to hold the intermediate result of the
1055 * multiplication.
1056 */
1057 memset(&wide_type, 0, sizeof wide_type);
1058 wide_type.fixed = TRUE;
1059 wide_type.width = type.width*2;
1060 wide_type.length = type.length/2;
1061
1062 lp_build_context_init(&wide_bld, bld->gallivm, wide_type);
1063
1064 lp_build_unpack2(bld->gallivm, type, wide_type, x, &xl, &xh);
1065 lp_build_unpack2(bld->gallivm, type, wide_type, v0, &v0l, &v0h);
1066 lp_build_unpack2(bld->gallivm, type, wide_type, v1, &v1l, &v1h);
1067
1068 /*
1069 * Scale x from [0, 255] to [0, 256]
1070 */
1071
1072 shift = lp_build_const_int_vec(bld->gallivm, wide_type, type.width - 1);
1073
1074 xl = lp_build_add(&wide_bld, xl,
1075 LLVMBuildAShr(builder, xl, shift, ""));
1076 xh = lp_build_add(&wide_bld, xh,
1077 LLVMBuildAShr(builder, xh, shift, ""));
1078
1079 /*
1080 * Lerp both halves.
1081 */
1082
1083 resl = lp_build_lerp_simple(&wide_bld, xl, v0l, v1l);
1084 resh = lp_build_lerp_simple(&wide_bld, xh, v0h, v1h);
1085
1086 res = lp_build_pack2(bld->gallivm, wide_type, type, resl, resh);
1087 } else {
1088 res = lp_build_lerp_simple(bld, x, v0, v1);
1089 }
1090
1091 return res;
1092 }
1093
1094
1095 LLVMValueRef
1096 lp_build_lerp_2d(struct lp_build_context *bld,
1097 LLVMValueRef x,
1098 LLVMValueRef y,
1099 LLVMValueRef v00,
1100 LLVMValueRef v01,
1101 LLVMValueRef v10,
1102 LLVMValueRef v11)
1103 {
1104 LLVMValueRef v0 = lp_build_lerp(bld, x, v00, v01);
1105 LLVMValueRef v1 = lp_build_lerp(bld, x, v10, v11);
1106 return lp_build_lerp(bld, y, v0, v1);
1107 }
1108
1109
1110 /**
1111 * Generate min(a, b)
1112 * Do checks for special cases.
1113 */
1114 LLVMValueRef
1115 lp_build_min(struct lp_build_context *bld,
1116 LLVMValueRef a,
1117 LLVMValueRef b)
1118 {
1119 assert(lp_check_value(bld->type, a));
1120 assert(lp_check_value(bld->type, b));
1121
1122 if(a == bld->undef || b == bld->undef)
1123 return bld->undef;
1124
1125 if(a == b)
1126 return a;
1127
1128 if (bld->type.norm) {
1129 if (!bld->type.sign) {
1130 if (a == bld->zero || b == bld->zero) {
1131 return bld->zero;
1132 }
1133 }
1134 if(a == bld->one)
1135 return b;
1136 if(b == bld->one)
1137 return a;
1138 }
1139
1140 return lp_build_min_simple(bld, a, b);
1141 }
1142
1143
1144 /**
1145 * Generate max(a, b)
1146 * Do checks for special cases.
1147 */
1148 LLVMValueRef
1149 lp_build_max(struct lp_build_context *bld,
1150 LLVMValueRef a,
1151 LLVMValueRef b)
1152 {
1153 assert(lp_check_value(bld->type, a));
1154 assert(lp_check_value(bld->type, b));
1155
1156 if(a == bld->undef || b == bld->undef)
1157 return bld->undef;
1158
1159 if(a == b)
1160 return a;
1161
1162 if(bld->type.norm) {
1163 if(a == bld->one || b == bld->one)
1164 return bld->one;
1165 if (!bld->type.sign) {
1166 if (a == bld->zero) {
1167 return b;
1168 }
1169 if (b == bld->zero) {
1170 return a;
1171 }
1172 }
1173 }
1174
1175 return lp_build_max_simple(bld, a, b);
1176 }
1177
1178
1179 /**
1180 * Generate clamp(a, min, max)
1181 * Do checks for special cases.
1182 */
1183 LLVMValueRef
1184 lp_build_clamp(struct lp_build_context *bld,
1185 LLVMValueRef a,
1186 LLVMValueRef min,
1187 LLVMValueRef max)
1188 {
1189 assert(lp_check_value(bld->type, a));
1190 assert(lp_check_value(bld->type, min));
1191 assert(lp_check_value(bld->type, max));
1192
1193 a = lp_build_min(bld, a, max);
1194 a = lp_build_max(bld, a, min);
1195 return a;
1196 }
1197
1198
1199 /**
1200 * Generate abs(a)
1201 */
1202 LLVMValueRef
1203 lp_build_abs(struct lp_build_context *bld,
1204 LLVMValueRef a)
1205 {
1206 LLVMBuilderRef builder = bld->gallivm->builder;
1207 const struct lp_type type = bld->type;
1208 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
1209
1210 assert(lp_check_value(type, a));
1211
1212 if(!type.sign)
1213 return a;
1214
1215 if(type.floating) {
1216 /* Mask out the sign bit */
1217 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
1218 unsigned long long absMask = ~(1ULL << (type.width - 1));
1219 LLVMValueRef mask = lp_build_const_int_vec(bld->gallivm, type, ((unsigned long long) absMask));
1220 a = LLVMBuildBitCast(builder, a, int_vec_type, "");
1221 a = LLVMBuildAnd(builder, a, mask, "");
1222 a = LLVMBuildBitCast(builder, a, vec_type, "");
1223 return a;
1224 }
1225
1226 if(type.width*type.length == 128 && util_cpu_caps.has_ssse3) {
1227 switch(type.width) {
1228 case 8:
1229 return lp_build_intrinsic_unary(builder, "llvm.x86.ssse3.pabs.b.128", vec_type, a);
1230 case 16:
1231 return lp_build_intrinsic_unary(builder, "llvm.x86.ssse3.pabs.w.128", vec_type, a);
1232 case 32:
1233 return lp_build_intrinsic_unary(builder, "llvm.x86.ssse3.pabs.d.128", vec_type, a);
1234 }
1235 }
1236 else if (type.width*type.length == 256 && util_cpu_caps.has_ssse3 &&
1237 (gallivm_debug & GALLIVM_DEBUG_PERF) &&
1238 (type.width == 8 || type.width == 16 || type.width == 32)) {
1239 debug_printf("%s: inefficient code, should split vectors manually\n",
1240 __FUNCTION__);
1241 }
1242
1243 return lp_build_max(bld, a, LLVMBuildNeg(builder, a, ""));
1244 }
1245
1246
1247 LLVMValueRef
1248 lp_build_negate(struct lp_build_context *bld,
1249 LLVMValueRef a)
1250 {
1251 LLVMBuilderRef builder = bld->gallivm->builder;
1252
1253 assert(lp_check_value(bld->type, a));
1254
1255 #if HAVE_LLVM >= 0x0207
1256 if (bld->type.floating)
1257 a = LLVMBuildFNeg(builder, a, "");
1258 else
1259 #endif
1260 a = LLVMBuildNeg(builder, a, "");
1261
1262 return a;
1263 }
1264
1265
1266 /** Return -1, 0 or +1 depending on the sign of a */
1267 LLVMValueRef
1268 lp_build_sgn(struct lp_build_context *bld,
1269 LLVMValueRef a)
1270 {
1271 LLVMBuilderRef builder = bld->gallivm->builder;
1272 const struct lp_type type = bld->type;
1273 LLVMValueRef cond;
1274 LLVMValueRef res;
1275
1276 assert(lp_check_value(type, a));
1277
1278 /* Handle non-zero case */
1279 if(!type.sign) {
1280 /* if not zero then sign must be positive */
1281 res = bld->one;
1282 }
1283 else if(type.floating) {
1284 LLVMTypeRef vec_type;
1285 LLVMTypeRef int_type;
1286 LLVMValueRef mask;
1287 LLVMValueRef sign;
1288 LLVMValueRef one;
1289 unsigned long long maskBit = (unsigned long long)1 << (type.width - 1);
1290
1291 int_type = lp_build_int_vec_type(bld->gallivm, type);
1292 vec_type = lp_build_vec_type(bld->gallivm, type);
1293 mask = lp_build_const_int_vec(bld->gallivm, type, maskBit);
1294
1295 /* Take the sign bit and add it to 1 constant */
1296 sign = LLVMBuildBitCast(builder, a, int_type, "");
1297 sign = LLVMBuildAnd(builder, sign, mask, "");
1298 one = LLVMConstBitCast(bld->one, int_type);
1299 res = LLVMBuildOr(builder, sign, one, "");
1300 res = LLVMBuildBitCast(builder, res, vec_type, "");
1301 }
1302 else
1303 {
1304 /* signed int/norm/fixed point */
1305 /* could use psign with sse3 and appropriate vectors here */
1306 LLVMValueRef minus_one = lp_build_const_vec(bld->gallivm, type, -1.0);
1307 cond = lp_build_cmp(bld, PIPE_FUNC_GREATER, a, bld->zero);
1308 res = lp_build_select(bld, cond, bld->one, minus_one);
1309 }
1310
1311 /* Handle zero */
1312 cond = lp_build_cmp(bld, PIPE_FUNC_EQUAL, a, bld->zero);
1313 res = lp_build_select(bld, cond, bld->zero, res);
1314
1315 return res;
1316 }
1317
1318
1319 /**
1320 * Set the sign of float vector 'a' according to 'sign'.
1321 * If sign==0, return abs(a).
1322 * If sign==1, return -abs(a);
1323 * Other values for sign produce undefined results.
1324 */
1325 LLVMValueRef
1326 lp_build_set_sign(struct lp_build_context *bld,
1327 LLVMValueRef a, LLVMValueRef sign)
1328 {
1329 LLVMBuilderRef builder = bld->gallivm->builder;
1330 const struct lp_type type = bld->type;
1331 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
1332 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
1333 LLVMValueRef shift = lp_build_const_int_vec(bld->gallivm, type, type.width - 1);
1334 LLVMValueRef mask = lp_build_const_int_vec(bld->gallivm, type,
1335 ~((unsigned long long) 1 << (type.width - 1)));
1336 LLVMValueRef val, res;
1337
1338 assert(type.floating);
1339 assert(lp_check_value(type, a));
1340
1341 /* val = reinterpret_cast<int>(a) */
1342 val = LLVMBuildBitCast(builder, a, int_vec_type, "");
1343 /* val = val & mask */
1344 val = LLVMBuildAnd(builder, val, mask, "");
1345 /* sign = sign << shift */
1346 sign = LLVMBuildShl(builder, sign, shift, "");
1347 /* res = val | sign */
1348 res = LLVMBuildOr(builder, val, sign, "");
1349 /* res = reinterpret_cast<float>(res) */
1350 res = LLVMBuildBitCast(builder, res, vec_type, "");
1351
1352 return res;
1353 }
1354
1355
1356 /**
1357 * Convert vector of (or scalar) int to vector of (or scalar) float.
1358 */
1359 LLVMValueRef
1360 lp_build_int_to_float(struct lp_build_context *bld,
1361 LLVMValueRef a)
1362 {
1363 LLVMBuilderRef builder = bld->gallivm->builder;
1364 const struct lp_type type = bld->type;
1365 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
1366
1367 assert(type.floating);
1368
1369 return LLVMBuildSIToFP(builder, a, vec_type, "");
1370 }
1371
1372 static boolean
1373 sse41_rounding_available(const struct lp_type type)
1374 {
1375 if ((util_cpu_caps.has_sse4_1 &&
1376 (type.length == 1 || type.width*type.length == 128)) ||
1377 (util_cpu_caps.has_avx && type.width*type.length == 256))
1378 return TRUE;
1379
1380 return FALSE;
1381 }
1382
1383 enum lp_build_round_sse41_mode
1384 {
1385 LP_BUILD_ROUND_SSE41_NEAREST = 0,
1386 LP_BUILD_ROUND_SSE41_FLOOR = 1,
1387 LP_BUILD_ROUND_SSE41_CEIL = 2,
1388 LP_BUILD_ROUND_SSE41_TRUNCATE = 3
1389 };
1390
1391
1392 /**
1393 * Helper for SSE4.1's ROUNDxx instructions.
1394 *
1395 * NOTE: In the SSE4.1's nearest mode, if two values are equally close, the
1396 * result is the even value. That is, rounding 2.5 will be 2.0, and not 3.0.
1397 */
1398 static INLINE LLVMValueRef
1399 lp_build_round_sse41(struct lp_build_context *bld,
1400 LLVMValueRef a,
1401 enum lp_build_round_sse41_mode mode)
1402 {
1403 LLVMBuilderRef builder = bld->gallivm->builder;
1404 const struct lp_type type = bld->type;
1405 LLVMTypeRef i32t = LLVMInt32TypeInContext(bld->gallivm->context);
1406 const char *intrinsic;
1407 LLVMValueRef res;
1408
1409 assert(type.floating);
1410
1411 assert(lp_check_value(type, a));
1412 assert(util_cpu_caps.has_sse4_1);
1413
1414 if (type.length == 1) {
1415 LLVMTypeRef vec_type;
1416 LLVMValueRef undef;
1417 LLVMValueRef args[3];
1418 LLVMValueRef index0 = LLVMConstInt(i32t, 0, 0);
1419
1420 switch(type.width) {
1421 case 32:
1422 intrinsic = "llvm.x86.sse41.round.ss";
1423 break;
1424 case 64:
1425 intrinsic = "llvm.x86.sse41.round.sd";
1426 break;
1427 default:
1428 assert(0);
1429 return bld->undef;
1430 }
1431
1432 vec_type = LLVMVectorType(bld->elem_type, 4);
1433
1434 undef = LLVMGetUndef(vec_type);
1435
1436 args[0] = undef;
1437 args[1] = LLVMBuildInsertElement(builder, undef, a, index0, "");
1438 args[2] = LLVMConstInt(i32t, mode, 0);
1439
1440 res = lp_build_intrinsic(builder, intrinsic,
1441 vec_type, args, Elements(args));
1442
1443 res = LLVMBuildExtractElement(builder, res, index0, "");
1444 }
1445 else {
1446 if (type.width * type.length == 128) {
1447 switch(type.width) {
1448 case 32:
1449 intrinsic = "llvm.x86.sse41.round.ps";
1450 break;
1451 case 64:
1452 intrinsic = "llvm.x86.sse41.round.pd";
1453 break;
1454 default:
1455 assert(0);
1456 return bld->undef;
1457 }
1458 }
1459 else {
1460 assert(type.width * type.length == 256);
1461 assert(util_cpu_caps.has_avx);
1462
1463 switch(type.width) {
1464 case 32:
1465 intrinsic = "llvm.x86.avx.round.ps.256";
1466 break;
1467 case 64:
1468 intrinsic = "llvm.x86.avx.round.pd.256";
1469 break;
1470 default:
1471 assert(0);
1472 return bld->undef;
1473 }
1474 }
1475
1476 res = lp_build_intrinsic_binary(builder, intrinsic,
1477 bld->vec_type, a,
1478 LLVMConstInt(i32t, mode, 0));
1479 }
1480
1481 return res;
1482 }
1483
1484
1485 static INLINE LLVMValueRef
1486 lp_build_iround_nearest_sse2(struct lp_build_context *bld,
1487 LLVMValueRef a)
1488 {
1489 LLVMBuilderRef builder = bld->gallivm->builder;
1490 const struct lp_type type = bld->type;
1491 LLVMTypeRef i32t = LLVMInt32TypeInContext(bld->gallivm->context);
1492 LLVMTypeRef ret_type = lp_build_int_vec_type(bld->gallivm, type);
1493 const char *intrinsic;
1494 LLVMValueRef res;
1495
1496 assert(type.floating);
1497 /* using the double precision conversions is a bit more complicated */
1498 assert(type.width == 32);
1499
1500 assert(lp_check_value(type, a));
1501 assert(util_cpu_caps.has_sse2);
1502
1503 /* This is relying on MXCSR rounding mode, which should always be nearest. */
1504 if (type.length == 1) {
1505 LLVMTypeRef vec_type;
1506 LLVMValueRef undef;
1507 LLVMValueRef arg;
1508 LLVMValueRef index0 = LLVMConstInt(i32t, 0, 0);
1509
1510 vec_type = LLVMVectorType(bld->elem_type, 4);
1511
1512 intrinsic = "llvm.x86.sse.cvtss2si";
1513
1514 undef = LLVMGetUndef(vec_type);
1515
1516 arg = LLVMBuildInsertElement(builder, undef, a, index0, "");
1517
1518 res = lp_build_intrinsic_unary(builder, intrinsic,
1519 ret_type, arg);
1520 }
1521 else {
1522 if (type.width* type.length == 128) {
1523 intrinsic = "llvm.x86.sse2.cvtps2dq";
1524 }
1525 else {
1526 assert(type.width*type.length == 256);
1527 assert(util_cpu_caps.has_avx);
1528
1529 intrinsic = "llvm.x86.avx.cvt.ps2dq.256";
1530 }
1531 res = lp_build_intrinsic_unary(builder, intrinsic,
1532 ret_type, a);
1533 }
1534
1535 return res;
1536 }
1537
1538
1539 /**
1540 * Return the integer part of a float (vector) value (== round toward zero).
1541 * The returned value is a float (vector).
1542 * Ex: trunc(-1.5) = -1.0
1543 */
1544 LLVMValueRef
1545 lp_build_trunc(struct lp_build_context *bld,
1546 LLVMValueRef a)
1547 {
1548 LLVMBuilderRef builder = bld->gallivm->builder;
1549 const struct lp_type type = bld->type;
1550
1551 assert(type.floating);
1552 assert(lp_check_value(type, a));
1553
1554 if (sse41_rounding_available(type)) {
1555 return lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_TRUNCATE);
1556 }
1557 else {
1558 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
1559 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
1560 LLVMValueRef res;
1561 res = LLVMBuildFPToSI(builder, a, int_vec_type, "");
1562 res = LLVMBuildSIToFP(builder, res, vec_type, "");
1563 return res;
1564 }
1565 }
1566
1567
1568 /**
1569 * Return float (vector) rounded to nearest integer (vector). The returned
1570 * value is a float (vector).
1571 * Ex: round(0.9) = 1.0
1572 * Ex: round(-1.5) = -2.0
1573 */
1574 LLVMValueRef
1575 lp_build_round(struct lp_build_context *bld,
1576 LLVMValueRef a)
1577 {
1578 LLVMBuilderRef builder = bld->gallivm->builder;
1579 const struct lp_type type = bld->type;
1580
1581 assert(type.floating);
1582 assert(lp_check_value(type, a));
1583
1584 if (sse41_rounding_available(type)) {
1585 return lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_NEAREST);
1586 }
1587 else {
1588 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
1589 LLVMValueRef res;
1590 res = lp_build_iround(bld, a);
1591 res = LLVMBuildSIToFP(builder, res, vec_type, "");
1592 return res;
1593 }
1594 }
1595
1596
1597 /**
1598 * Return floor of float (vector), result is a float (vector)
1599 * Ex: floor(1.1) = 1.0
1600 * Ex: floor(-1.1) = -2.0
1601 */
1602 LLVMValueRef
1603 lp_build_floor(struct lp_build_context *bld,
1604 LLVMValueRef a)
1605 {
1606 LLVMBuilderRef builder = bld->gallivm->builder;
1607 const struct lp_type type = bld->type;
1608
1609 assert(type.floating);
1610 assert(lp_check_value(type, a));
1611
1612 if (sse41_rounding_available(type)) {
1613 return lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_FLOOR);
1614 }
1615 else {
1616 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
1617 LLVMValueRef res;
1618 res = lp_build_ifloor(bld, a);
1619 res = LLVMBuildSIToFP(builder, res, vec_type, "");
1620 return res;
1621 }
1622 }
1623
1624
1625 /**
1626 * Return ceiling of float (vector), returning float (vector).
1627 * Ex: ceil( 1.1) = 2.0
1628 * Ex: ceil(-1.1) = -1.0
1629 */
1630 LLVMValueRef
1631 lp_build_ceil(struct lp_build_context *bld,
1632 LLVMValueRef a)
1633 {
1634 LLVMBuilderRef builder = bld->gallivm->builder;
1635 const struct lp_type type = bld->type;
1636
1637 assert(type.floating);
1638 assert(lp_check_value(type, a));
1639
1640 if (sse41_rounding_available(type)) {
1641 return lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_CEIL);
1642 }
1643 else {
1644 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
1645 LLVMValueRef res;
1646 res = lp_build_iceil(bld, a);
1647 res = LLVMBuildSIToFP(builder, res, vec_type, "");
1648 return res;
1649 }
1650 }
1651
1652
1653 /**
1654 * Return fractional part of 'a' computed as a - floor(a)
1655 * Typically used in texture coord arithmetic.
1656 */
1657 LLVMValueRef
1658 lp_build_fract(struct lp_build_context *bld,
1659 LLVMValueRef a)
1660 {
1661 assert(bld->type.floating);
1662 return lp_build_sub(bld, a, lp_build_floor(bld, a));
1663 }
1664
1665
1666 /**
1667 * Prevent returning a fractional part of 1.0 for very small negative values of
1668 * 'a' by clamping against 0.99999(9).
1669 */
1670 static inline LLVMValueRef
1671 clamp_fract(struct lp_build_context *bld, LLVMValueRef fract)
1672 {
1673 LLVMValueRef max;
1674
1675 /* this is the largest number smaller than 1.0 representable as float */
1676 max = lp_build_const_vec(bld->gallivm, bld->type,
1677 1.0 - 1.0/(1LL << (lp_mantissa(bld->type) + 1)));
1678 return lp_build_min(bld, fract, max);
1679 }
1680
1681
1682 /**
1683 * Same as lp_build_fract, but guarantees that the result is always smaller
1684 * than one.
1685 */
1686 LLVMValueRef
1687 lp_build_fract_safe(struct lp_build_context *bld,
1688 LLVMValueRef a)
1689 {
1690 return clamp_fract(bld, lp_build_fract(bld, a));
1691 }
1692
1693
1694 /**
1695 * Return the integer part of a float (vector) value (== round toward zero).
1696 * The returned value is an integer (vector).
1697 * Ex: itrunc(-1.5) = -1
1698 */
1699 LLVMValueRef
1700 lp_build_itrunc(struct lp_build_context *bld,
1701 LLVMValueRef a)
1702 {
1703 LLVMBuilderRef builder = bld->gallivm->builder;
1704 const struct lp_type type = bld->type;
1705 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
1706
1707 assert(type.floating);
1708 assert(lp_check_value(type, a));
1709
1710 return LLVMBuildFPToSI(builder, a, int_vec_type, "");
1711 }
1712
1713
1714 /**
1715 * Return float (vector) rounded to nearest integer (vector). The returned
1716 * value is an integer (vector).
1717 * Ex: iround(0.9) = 1
1718 * Ex: iround(-1.5) = -2
1719 */
1720 LLVMValueRef
1721 lp_build_iround(struct lp_build_context *bld,
1722 LLVMValueRef a)
1723 {
1724 LLVMBuilderRef builder = bld->gallivm->builder;
1725 const struct lp_type type = bld->type;
1726 LLVMTypeRef int_vec_type = bld->int_vec_type;
1727 LLVMValueRef res;
1728
1729 assert(type.floating);
1730
1731 assert(lp_check_value(type, a));
1732
1733 if ((util_cpu_caps.has_sse2 &&
1734 ((type.width == 32) && (type.length == 1 || type.length == 4))) ||
1735 (util_cpu_caps.has_avx && type.width == 32 && type.length == 8)) {
1736 return lp_build_iround_nearest_sse2(bld, a);
1737 }
1738 if (sse41_rounding_available(type)) {
1739 res = lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_NEAREST);
1740 }
1741 else {
1742 LLVMValueRef half;
1743
1744 half = lp_build_const_vec(bld->gallivm, type, 0.5);
1745
1746 if (type.sign) {
1747 LLVMTypeRef vec_type = bld->vec_type;
1748 LLVMValueRef mask = lp_build_const_int_vec(bld->gallivm, type,
1749 (unsigned long long)1 << (type.width - 1));
1750 LLVMValueRef sign;
1751
1752 /* get sign bit */
1753 sign = LLVMBuildBitCast(builder, a, int_vec_type, "");
1754 sign = LLVMBuildAnd(builder, sign, mask, "");
1755
1756 /* sign * 0.5 */
1757 half = LLVMBuildBitCast(builder, half, int_vec_type, "");
1758 half = LLVMBuildOr(builder, sign, half, "");
1759 half = LLVMBuildBitCast(builder, half, vec_type, "");
1760 }
1761
1762 res = LLVMBuildFAdd(builder, a, half, "");
1763 }
1764
1765 res = LLVMBuildFPToSI(builder, res, int_vec_type, "");
1766
1767 return res;
1768 }
1769
1770
1771 /**
1772 * Return floor of float (vector), result is an int (vector)
1773 * Ex: ifloor(1.1) = 1.0
1774 * Ex: ifloor(-1.1) = -2.0
1775 */
1776 LLVMValueRef
1777 lp_build_ifloor(struct lp_build_context *bld,
1778 LLVMValueRef a)
1779 {
1780 LLVMBuilderRef builder = bld->gallivm->builder;
1781 const struct lp_type type = bld->type;
1782 LLVMTypeRef int_vec_type = bld->int_vec_type;
1783 LLVMValueRef res;
1784
1785 assert(type.floating);
1786 assert(lp_check_value(type, a));
1787
1788 res = a;
1789 if (type.sign) {
1790 if (sse41_rounding_available(type)) {
1791 res = lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_FLOOR);
1792 }
1793 else {
1794 /* Take the sign bit and add it to 1 constant */
1795 LLVMTypeRef vec_type = bld->vec_type;
1796 unsigned mantissa = lp_mantissa(type);
1797 LLVMValueRef mask = lp_build_const_int_vec(bld->gallivm, type,
1798 (unsigned long long)1 << (type.width - 1));
1799 LLVMValueRef sign;
1800 LLVMValueRef offset;
1801
1802 /* sign = a < 0 ? ~0 : 0 */
1803 sign = LLVMBuildBitCast(builder, a, int_vec_type, "");
1804 sign = LLVMBuildAnd(builder, sign, mask, "");
1805 sign = LLVMBuildAShr(builder, sign,
1806 lp_build_const_int_vec(bld->gallivm, type,
1807 type.width - 1),
1808 "ifloor.sign");
1809
1810 /* offset = -0.99999(9)f */
1811 offset = lp_build_const_vec(bld->gallivm, type,
1812 -(double)(((unsigned long long)1 << mantissa) - 10)/((unsigned long long)1 << mantissa));
1813 offset = LLVMConstBitCast(offset, int_vec_type);
1814
1815 /* offset = a < 0 ? offset : 0.0f */
1816 offset = LLVMBuildAnd(builder, offset, sign, "");
1817 offset = LLVMBuildBitCast(builder, offset, vec_type, "ifloor.offset");
1818
1819 res = LLVMBuildFAdd(builder, res, offset, "ifloor.res");
1820 }
1821 }
1822
1823 /* round to nearest (toward zero) */
1824 res = LLVMBuildFPToSI(builder, res, int_vec_type, "ifloor.res");
1825
1826 return res;
1827 }
1828
1829
1830 /**
1831 * Return ceiling of float (vector), returning int (vector).
1832 * Ex: iceil( 1.1) = 2
1833 * Ex: iceil(-1.1) = -1
1834 */
1835 LLVMValueRef
1836 lp_build_iceil(struct lp_build_context *bld,
1837 LLVMValueRef a)
1838 {
1839 LLVMBuilderRef builder = bld->gallivm->builder;
1840 const struct lp_type type = bld->type;
1841 LLVMTypeRef int_vec_type = bld->int_vec_type;
1842 LLVMValueRef res;
1843
1844 assert(type.floating);
1845 assert(lp_check_value(type, a));
1846
1847 if (sse41_rounding_available(type)) {
1848 res = lp_build_round_sse41(bld, a, LP_BUILD_ROUND_SSE41_CEIL);
1849 }
1850 else {
1851 LLVMTypeRef vec_type = bld->vec_type;
1852 unsigned mantissa = lp_mantissa(type);
1853 LLVMValueRef offset;
1854
1855 /* offset = 0.99999(9)f */
1856 offset = lp_build_const_vec(bld->gallivm, type,
1857 (double)(((unsigned long long)1 << mantissa) - 10)/((unsigned long long)1 << mantissa));
1858
1859 if (type.sign) {
1860 LLVMValueRef mask = lp_build_const_int_vec(bld->gallivm, type,
1861 (unsigned long long)1 << (type.width - 1));
1862 LLVMValueRef sign;
1863
1864 /* sign = a < 0 ? 0 : ~0 */
1865 sign = LLVMBuildBitCast(builder, a, int_vec_type, "");
1866 sign = LLVMBuildAnd(builder, sign, mask, "");
1867 sign = LLVMBuildAShr(builder, sign,
1868 lp_build_const_int_vec(bld->gallivm, type,
1869 type.width - 1),
1870 "iceil.sign");
1871 sign = LLVMBuildNot(builder, sign, "iceil.not");
1872
1873 /* offset = a < 0 ? 0.0 : offset */
1874 offset = LLVMConstBitCast(offset, int_vec_type);
1875 offset = LLVMBuildAnd(builder, offset, sign, "");
1876 offset = LLVMBuildBitCast(builder, offset, vec_type, "iceil.offset");
1877 }
1878
1879 res = LLVMBuildFAdd(builder, a, offset, "iceil.res");
1880 }
1881
1882 /* round to nearest (toward zero) */
1883 res = LLVMBuildFPToSI(builder, res, int_vec_type, "iceil.res");
1884
1885 return res;
1886 }
1887
1888
1889 /**
1890 * Combined ifloor() & fract().
1891 *
1892 * Preferred to calling the functions separately, as it will ensure that the
1893 * strategy (floor() vs ifloor()) that results in less redundant work is used.
1894 */
1895 void
1896 lp_build_ifloor_fract(struct lp_build_context *bld,
1897 LLVMValueRef a,
1898 LLVMValueRef *out_ipart,
1899 LLVMValueRef *out_fpart)
1900 {
1901 LLVMBuilderRef builder = bld->gallivm->builder;
1902 const struct lp_type type = bld->type;
1903 LLVMValueRef ipart;
1904
1905 assert(type.floating);
1906 assert(lp_check_value(type, a));
1907
1908 if (sse41_rounding_available(type)) {
1909 /*
1910 * floor() is easier.
1911 */
1912
1913 ipart = lp_build_floor(bld, a);
1914 *out_fpart = LLVMBuildFSub(builder, a, ipart, "fpart");
1915 *out_ipart = LLVMBuildFPToSI(builder, ipart, bld->int_vec_type, "ipart");
1916 }
1917 else {
1918 /*
1919 * ifloor() is easier.
1920 */
1921
1922 *out_ipart = lp_build_ifloor(bld, a);
1923 ipart = LLVMBuildSIToFP(builder, *out_ipart, bld->vec_type, "ipart");
1924 *out_fpart = LLVMBuildFSub(builder, a, ipart, "fpart");
1925 }
1926 }
1927
1928
1929 /**
1930 * Same as lp_build_ifloor_fract, but guarantees that the fractional part is
1931 * always smaller than one.
1932 */
1933 void
1934 lp_build_ifloor_fract_safe(struct lp_build_context *bld,
1935 LLVMValueRef a,
1936 LLVMValueRef *out_ipart,
1937 LLVMValueRef *out_fpart)
1938 {
1939 lp_build_ifloor_fract(bld, a, out_ipart, out_fpart);
1940 *out_fpart = clamp_fract(bld, *out_fpart);
1941 }
1942
1943
1944 LLVMValueRef
1945 lp_build_sqrt(struct lp_build_context *bld,
1946 LLVMValueRef a)
1947 {
1948 LLVMBuilderRef builder = bld->gallivm->builder;
1949 const struct lp_type type = bld->type;
1950 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
1951 char intrinsic[32];
1952
1953 assert(lp_check_value(type, a));
1954
1955 /* TODO: optimize the constant case */
1956
1957 assert(type.floating);
1958 if (type.length == 1) {
1959 util_snprintf(intrinsic, sizeof intrinsic, "llvm.sqrt.f%u", type.width);
1960 }
1961 else {
1962 util_snprintf(intrinsic, sizeof intrinsic, "llvm.sqrt.v%uf%u", type.length, type.width);
1963 }
1964
1965 return lp_build_intrinsic_unary(builder, intrinsic, vec_type, a);
1966 }
1967
1968
1969 /**
1970 * Do one Newton-Raphson step to improve reciprocate precision:
1971 *
1972 * x_{i+1} = x_i * (2 - a * x_i)
1973 *
1974 * XXX: Unfortunately this won't give IEEE-754 conformant results for 0 or
1975 * +/-Inf, giving NaN instead. Certain applications rely on this behavior,
1976 * such as Google Earth, which does RCP(RSQRT(0.0) when drawing the Earth's
1977 * halo. It would be necessary to clamp the argument to prevent this.
1978 *
1979 * See also:
1980 * - http://en.wikipedia.org/wiki/Division_(digital)#Newton.E2.80.93Raphson_division
1981 * - http://softwarecommunity.intel.com/articles/eng/1818.htm
1982 */
1983 static INLINE LLVMValueRef
1984 lp_build_rcp_refine(struct lp_build_context *bld,
1985 LLVMValueRef a,
1986 LLVMValueRef rcp_a)
1987 {
1988 LLVMBuilderRef builder = bld->gallivm->builder;
1989 LLVMValueRef two = lp_build_const_vec(bld->gallivm, bld->type, 2.0);
1990 LLVMValueRef res;
1991
1992 res = LLVMBuildFMul(builder, a, rcp_a, "");
1993 res = LLVMBuildFSub(builder, two, res, "");
1994 res = LLVMBuildFMul(builder, rcp_a, res, "");
1995
1996 return res;
1997 }
1998
1999
2000 LLVMValueRef
2001 lp_build_rcp(struct lp_build_context *bld,
2002 LLVMValueRef a)
2003 {
2004 LLVMBuilderRef builder = bld->gallivm->builder;
2005 const struct lp_type type = bld->type;
2006
2007 assert(lp_check_value(type, a));
2008
2009 if(a == bld->zero)
2010 return bld->undef;
2011 if(a == bld->one)
2012 return bld->one;
2013 if(a == bld->undef)
2014 return bld->undef;
2015
2016 assert(type.floating);
2017
2018 if(LLVMIsConstant(a))
2019 return LLVMConstFDiv(bld->one, a);
2020
2021 /*
2022 * We don't use RCPPS because:
2023 * - it only has 10bits of precision
2024 * - it doesn't even get the reciprocate of 1.0 exactly
2025 * - doing Newton-Rapshon steps yields wrong (NaN) values for 0.0 or Inf
2026 * - for recent processors the benefit over DIVPS is marginal, a case
2027 * dependent
2028 *
2029 * We could still use it on certain processors if benchmarks show that the
2030 * RCPPS plus necessary workarounds are still preferrable to DIVPS; or for
2031 * particular uses that require less workarounds.
2032 */
2033
2034 if (FALSE && ((util_cpu_caps.has_sse && type.width == 32 && type.length == 4) ||
2035 (util_cpu_caps.has_avx && type.width == 32 && type.length == 8))){
2036 const unsigned num_iterations = 0;
2037 LLVMValueRef res;
2038 unsigned i;
2039 const char *intrinsic = NULL;
2040
2041 if (type.length == 4) {
2042 intrinsic = "llvm.x86.sse.rcp.ps";
2043 }
2044 else {
2045 intrinsic = "llvm.x86.avx.rcp.ps.256";
2046 }
2047
2048 res = lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
2049
2050 for (i = 0; i < num_iterations; ++i) {
2051 res = lp_build_rcp_refine(bld, a, res);
2052 }
2053
2054 return res;
2055 }
2056
2057 return LLVMBuildFDiv(builder, bld->one, a, "");
2058 }
2059
2060
2061 /**
2062 * Do one Newton-Raphson step to improve rsqrt precision:
2063 *
2064 * x_{i+1} = 0.5 * x_i * (3.0 - a * x_i * x_i)
2065 *
2066 * See also Intel 64 and IA-32 Architectures Optimization Manual.
2067 */
2068 static INLINE LLVMValueRef
2069 lp_build_rsqrt_refine(struct lp_build_context *bld,
2070 LLVMValueRef a,
2071 LLVMValueRef rsqrt_a)
2072 {
2073 LLVMBuilderRef builder = bld->gallivm->builder;
2074 LLVMValueRef half = lp_build_const_vec(bld->gallivm, bld->type, 0.5);
2075 LLVMValueRef three = lp_build_const_vec(bld->gallivm, bld->type, 3.0);
2076 LLVMValueRef res;
2077
2078 res = LLVMBuildFMul(builder, rsqrt_a, rsqrt_a, "");
2079 res = LLVMBuildFMul(builder, a, res, "");
2080 res = LLVMBuildFSub(builder, three, res, "");
2081 res = LLVMBuildFMul(builder, rsqrt_a, res, "");
2082 res = LLVMBuildFMul(builder, half, res, "");
2083
2084 return res;
2085 }
2086
2087
2088 /**
2089 * Generate 1/sqrt(a).
2090 * Result is undefined for values < 0, infinity for +0.
2091 */
2092 LLVMValueRef
2093 lp_build_rsqrt(struct lp_build_context *bld,
2094 LLVMValueRef a)
2095 {
2096 LLVMBuilderRef builder = bld->gallivm->builder;
2097 const struct lp_type type = bld->type;
2098
2099 assert(lp_check_value(type, a));
2100
2101 assert(type.floating);
2102
2103 /*
2104 * This should be faster but all denormals will end up as infinity.
2105 */
2106 if (0 && ((util_cpu_caps.has_sse && type.width == 32 && type.length == 4) ||
2107 (util_cpu_caps.has_avx && type.width == 32 && type.length == 8))) {
2108 const unsigned num_iterations = 1;
2109 LLVMValueRef res;
2110 unsigned i;
2111 const char *intrinsic = NULL;
2112
2113 if (type.length == 4) {
2114 intrinsic = "llvm.x86.sse.rsqrt.ps";
2115 }
2116 else {
2117 intrinsic = "llvm.x86.avx.rsqrt.ps.256";
2118 }
2119 if (num_iterations) {
2120 /*
2121 * Newton-Raphson will result in NaN instead of infinity for zero,
2122 * and NaN instead of zero for infinity.
2123 * Also, need to ensure rsqrt(1.0) == 1.0.
2124 * All numbers smaller than FLT_MIN will result in +infinity
2125 * (rsqrtps treats all denormals as zero).
2126 */
2127 /*
2128 * Certain non-c99 compilers don't know INFINITY and might not support
2129 * hacks to evaluate it at compile time neither.
2130 */
2131 const unsigned posinf_int = 0x7F800000;
2132 LLVMValueRef cmp;
2133 LLVMValueRef flt_min = lp_build_const_vec(bld->gallivm, type, FLT_MIN);
2134 LLVMValueRef inf = lp_build_const_int_vec(bld->gallivm, type, posinf_int);
2135
2136 inf = LLVMBuildBitCast(builder, inf, lp_build_vec_type(bld->gallivm, type), "");
2137
2138 res = lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
2139
2140 for (i = 0; i < num_iterations; ++i) {
2141 res = lp_build_rsqrt_refine(bld, a, res);
2142 }
2143 cmp = lp_build_compare(bld->gallivm, type, PIPE_FUNC_LESS, a, flt_min);
2144 res = lp_build_select(bld, cmp, inf, res);
2145 cmp = lp_build_compare(bld->gallivm, type, PIPE_FUNC_EQUAL, a, inf);
2146 res = lp_build_select(bld, cmp, bld->zero, res);
2147 cmp = lp_build_compare(bld->gallivm, type, PIPE_FUNC_EQUAL, a, bld->one);
2148 res = lp_build_select(bld, cmp, bld->one, res);
2149 }
2150 else {
2151 /* rsqrt(1.0) != 1.0 here */
2152 res = lp_build_intrinsic_unary(builder, intrinsic, bld->vec_type, a);
2153
2154 }
2155
2156 return res;
2157 }
2158
2159 return lp_build_rcp(bld, lp_build_sqrt(bld, a));
2160 }
2161
2162
2163 /**
2164 * Generate sin(a) using SSE2
2165 */
2166 LLVMValueRef
2167 lp_build_sin(struct lp_build_context *bld,
2168 LLVMValueRef a)
2169 {
2170 struct gallivm_state *gallivm = bld->gallivm;
2171 LLVMBuilderRef builder = gallivm->builder;
2172 struct lp_type int_type = lp_int_type(bld->type);
2173 LLVMBuilderRef b = builder;
2174
2175 /*
2176 * take the absolute value,
2177 * x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
2178 */
2179
2180 LLVMValueRef inv_sig_mask = lp_build_const_int_vec(gallivm, bld->type, ~0x80000000);
2181 LLVMValueRef a_v4si = LLVMBuildBitCast(b, a, bld->int_vec_type, "a_v4si");
2182
2183 LLVMValueRef absi = LLVMBuildAnd(b, a_v4si, inv_sig_mask, "absi");
2184 LLVMValueRef x_abs = LLVMBuildBitCast(b, absi, bld->vec_type, "x_abs");
2185
2186 /*
2187 * extract the sign bit (upper one)
2188 * sign_bit = _mm_and_ps(sign_bit, *(v4sf*)_ps_sign_mask);
2189 */
2190 LLVMValueRef sig_mask = lp_build_const_int_vec(gallivm, bld->type, 0x80000000);
2191 LLVMValueRef sign_bit_i = LLVMBuildAnd(b, a_v4si, sig_mask, "sign_bit_i");
2192
2193 /*
2194 * scale by 4/Pi
2195 * y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
2196 */
2197
2198 LLVMValueRef FOPi = lp_build_const_vec(gallivm, bld->type, 1.27323954473516);
2199 LLVMValueRef scale_y = LLVMBuildFMul(b, x_abs, FOPi, "scale_y");
2200
2201 /*
2202 * store the integer part of y in mm0
2203 * emm2 = _mm_cvttps_epi32(y);
2204 */
2205
2206 LLVMValueRef emm2_i = LLVMBuildFPToSI(b, scale_y, bld->int_vec_type, "emm2_i");
2207
2208 /*
2209 * j=(j+1) & (~1) (see the cephes sources)
2210 * emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
2211 */
2212
2213 LLVMValueRef all_one = lp_build_const_int_vec(gallivm, bld->type, 1);
2214 LLVMValueRef emm2_add = LLVMBuildAdd(b, emm2_i, all_one, "emm2_add");
2215 /*
2216 * emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
2217 */
2218 LLVMValueRef inv_one = lp_build_const_int_vec(gallivm, bld->type, ~1);
2219 LLVMValueRef emm2_and = LLVMBuildAnd(b, emm2_add, inv_one, "emm2_and");
2220
2221 /*
2222 * y = _mm_cvtepi32_ps(emm2);
2223 */
2224 LLVMValueRef y_2 = LLVMBuildSIToFP(b, emm2_and, bld->vec_type, "y_2");
2225
2226 /* get the swap sign flag
2227 * emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
2228 */
2229 LLVMValueRef pi32_4 = lp_build_const_int_vec(gallivm, bld->type, 4);
2230 LLVMValueRef emm0_and = LLVMBuildAnd(b, emm2_add, pi32_4, "emm0_and");
2231
2232 /*
2233 * emm2 = _mm_slli_epi32(emm0, 29);
2234 */
2235 LLVMValueRef const_29 = lp_build_const_int_vec(gallivm, bld->type, 29);
2236 LLVMValueRef swap_sign_bit = LLVMBuildShl(b, emm0_and, const_29, "swap_sign_bit");
2237
2238 /*
2239 * get the polynom selection mask
2240 * there is one polynom for 0 <= x <= Pi/4
2241 * and another one for Pi/4<x<=Pi/2
2242 * Both branches will be computed.
2243 *
2244 * emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
2245 * emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
2246 */
2247
2248 LLVMValueRef pi32_2 = lp_build_const_int_vec(gallivm, bld->type, 2);
2249 LLVMValueRef emm2_3 = LLVMBuildAnd(b, emm2_and, pi32_2, "emm2_3");
2250 LLVMValueRef poly_mask = lp_build_compare(gallivm,
2251 int_type, PIPE_FUNC_EQUAL,
2252 emm2_3, lp_build_const_int_vec(gallivm, bld->type, 0));
2253 /*
2254 * sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
2255 */
2256 LLVMValueRef sign_bit_1 = LLVMBuildXor(b, sign_bit_i, swap_sign_bit, "sign_bit");
2257
2258 /*
2259 * _PS_CONST(minus_cephes_DP1, -0.78515625);
2260 * _PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
2261 * _PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
2262 */
2263 LLVMValueRef DP1 = lp_build_const_vec(gallivm, bld->type, -0.78515625);
2264 LLVMValueRef DP2 = lp_build_const_vec(gallivm, bld->type, -2.4187564849853515625e-4);
2265 LLVMValueRef DP3 = lp_build_const_vec(gallivm, bld->type, -3.77489497744594108e-8);
2266
2267 /*
2268 * The magic pass: "Extended precision modular arithmetic"
2269 * x = ((x - y * DP1) - y * DP2) - y * DP3;
2270 * xmm1 = _mm_mul_ps(y, xmm1);
2271 * xmm2 = _mm_mul_ps(y, xmm2);
2272 * xmm3 = _mm_mul_ps(y, xmm3);
2273 */
2274 LLVMValueRef xmm1 = LLVMBuildFMul(b, y_2, DP1, "xmm1");
2275 LLVMValueRef xmm2 = LLVMBuildFMul(b, y_2, DP2, "xmm2");
2276 LLVMValueRef xmm3 = LLVMBuildFMul(b, y_2, DP3, "xmm3");
2277
2278 /*
2279 * x = _mm_add_ps(x, xmm1);
2280 * x = _mm_add_ps(x, xmm2);
2281 * x = _mm_add_ps(x, xmm3);
2282 */
2283
2284 LLVMValueRef x_1 = LLVMBuildFAdd(b, x_abs, xmm1, "x_1");
2285 LLVMValueRef x_2 = LLVMBuildFAdd(b, x_1, xmm2, "x_2");
2286 LLVMValueRef x_3 = LLVMBuildFAdd(b, x_2, xmm3, "x_3");
2287
2288 /*
2289 * Evaluate the first polynom (0 <= x <= Pi/4)
2290 *
2291 * z = _mm_mul_ps(x,x);
2292 */
2293 LLVMValueRef z = LLVMBuildFMul(b, x_3, x_3, "z");
2294
2295 /*
2296 * _PS_CONST(coscof_p0, 2.443315711809948E-005);
2297 * _PS_CONST(coscof_p1, -1.388731625493765E-003);
2298 * _PS_CONST(coscof_p2, 4.166664568298827E-002);
2299 */
2300 LLVMValueRef coscof_p0 = lp_build_const_vec(gallivm, bld->type, 2.443315711809948E-005);
2301 LLVMValueRef coscof_p1 = lp_build_const_vec(gallivm, bld->type, -1.388731625493765E-003);
2302 LLVMValueRef coscof_p2 = lp_build_const_vec(gallivm, bld->type, 4.166664568298827E-002);
2303
2304 /*
2305 * y = *(v4sf*)_ps_coscof_p0;
2306 * y = _mm_mul_ps(y, z);
2307 */
2308 LLVMValueRef y_3 = LLVMBuildFMul(b, z, coscof_p0, "y_3");
2309 LLVMValueRef y_4 = LLVMBuildFAdd(b, y_3, coscof_p1, "y_4");
2310 LLVMValueRef y_5 = LLVMBuildFMul(b, y_4, z, "y_5");
2311 LLVMValueRef y_6 = LLVMBuildFAdd(b, y_5, coscof_p2, "y_6");
2312 LLVMValueRef y_7 = LLVMBuildFMul(b, y_6, z, "y_7");
2313 LLVMValueRef y_8 = LLVMBuildFMul(b, y_7, z, "y_8");
2314
2315
2316 /*
2317 * tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
2318 * y = _mm_sub_ps(y, tmp);
2319 * y = _mm_add_ps(y, *(v4sf*)_ps_1);
2320 */
2321 LLVMValueRef half = lp_build_const_vec(gallivm, bld->type, 0.5);
2322 LLVMValueRef tmp = LLVMBuildFMul(b, z, half, "tmp");
2323 LLVMValueRef y_9 = LLVMBuildFSub(b, y_8, tmp, "y_8");
2324 LLVMValueRef one = lp_build_const_vec(gallivm, bld->type, 1.0);
2325 LLVMValueRef y_10 = LLVMBuildFAdd(b, y_9, one, "y_9");
2326
2327 /*
2328 * _PS_CONST(sincof_p0, -1.9515295891E-4);
2329 * _PS_CONST(sincof_p1, 8.3321608736E-3);
2330 * _PS_CONST(sincof_p2, -1.6666654611E-1);
2331 */
2332 LLVMValueRef sincof_p0 = lp_build_const_vec(gallivm, bld->type, -1.9515295891E-4);
2333 LLVMValueRef sincof_p1 = lp_build_const_vec(gallivm, bld->type, 8.3321608736E-3);
2334 LLVMValueRef sincof_p2 = lp_build_const_vec(gallivm, bld->type, -1.6666654611E-1);
2335
2336 /*
2337 * Evaluate the second polynom (Pi/4 <= x <= 0)
2338 *
2339 * y2 = *(v4sf*)_ps_sincof_p0;
2340 * y2 = _mm_mul_ps(y2, z);
2341 * y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
2342 * y2 = _mm_mul_ps(y2, z);
2343 * y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
2344 * y2 = _mm_mul_ps(y2, z);
2345 * y2 = _mm_mul_ps(y2, x);
2346 * y2 = _mm_add_ps(y2, x);
2347 */
2348
2349 LLVMValueRef y2_3 = LLVMBuildFMul(b, z, sincof_p0, "y2_3");
2350 LLVMValueRef y2_4 = LLVMBuildFAdd(b, y2_3, sincof_p1, "y2_4");
2351 LLVMValueRef y2_5 = LLVMBuildFMul(b, y2_4, z, "y2_5");
2352 LLVMValueRef y2_6 = LLVMBuildFAdd(b, y2_5, sincof_p2, "y2_6");
2353 LLVMValueRef y2_7 = LLVMBuildFMul(b, y2_6, z, "y2_7");
2354 LLVMValueRef y2_8 = LLVMBuildFMul(b, y2_7, x_3, "y2_8");
2355 LLVMValueRef y2_9 = LLVMBuildFAdd(b, y2_8, x_3, "y2_9");
2356
2357 /*
2358 * select the correct result from the two polynoms
2359 * xmm3 = poly_mask;
2360 * y2 = _mm_and_ps(xmm3, y2); //, xmm3);
2361 * y = _mm_andnot_ps(xmm3, y);
2362 * y = _mm_add_ps(y,y2);
2363 */
2364 LLVMValueRef y2_i = LLVMBuildBitCast(b, y2_9, bld->int_vec_type, "y2_i");
2365 LLVMValueRef y_i = LLVMBuildBitCast(b, y_10, bld->int_vec_type, "y_i");
2366 LLVMValueRef y2_and = LLVMBuildAnd(b, y2_i, poly_mask, "y2_and");
2367 LLVMValueRef inv = lp_build_const_int_vec(gallivm, bld->type, ~0);
2368 LLVMValueRef poly_mask_inv = LLVMBuildXor(b, poly_mask, inv, "poly_mask_inv");
2369 LLVMValueRef y_and = LLVMBuildAnd(b, y_i, poly_mask_inv, "y_and");
2370 LLVMValueRef y_combine = LLVMBuildAdd(b, y_and, y2_and, "y_combine");
2371
2372 /*
2373 * update the sign
2374 * y = _mm_xor_ps(y, sign_bit);
2375 */
2376 LLVMValueRef y_sign = LLVMBuildXor(b, y_combine, sign_bit_1, "y_sin");
2377 LLVMValueRef y_result = LLVMBuildBitCast(b, y_sign, bld->vec_type, "y_result");
2378 return y_result;
2379 }
2380
2381
2382 /**
2383 * Generate cos(a) using SSE2
2384 */
2385 LLVMValueRef
2386 lp_build_cos(struct lp_build_context *bld,
2387 LLVMValueRef a)
2388 {
2389 struct gallivm_state *gallivm = bld->gallivm;
2390 LLVMBuilderRef builder = gallivm->builder;
2391 struct lp_type int_type = lp_int_type(bld->type);
2392 LLVMBuilderRef b = builder;
2393
2394 /*
2395 * take the absolute value,
2396 * x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
2397 */
2398
2399 LLVMValueRef inv_sig_mask = lp_build_const_int_vec(gallivm, bld->type, ~0x80000000);
2400 LLVMValueRef a_v4si = LLVMBuildBitCast(b, a, bld->int_vec_type, "a_v4si");
2401
2402 LLVMValueRef absi = LLVMBuildAnd(b, a_v4si, inv_sig_mask, "absi");
2403 LLVMValueRef x_abs = LLVMBuildBitCast(b, absi, bld->vec_type, "x_abs");
2404
2405 /*
2406 * scale by 4/Pi
2407 * y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
2408 */
2409
2410 LLVMValueRef FOPi = lp_build_const_vec(gallivm, bld->type, 1.27323954473516);
2411 LLVMValueRef scale_y = LLVMBuildFMul(b, x_abs, FOPi, "scale_y");
2412
2413 /*
2414 * store the integer part of y in mm0
2415 * emm2 = _mm_cvttps_epi32(y);
2416 */
2417
2418 LLVMValueRef emm2_i = LLVMBuildFPToSI(b, scale_y, bld->int_vec_type, "emm2_i");
2419
2420 /*
2421 * j=(j+1) & (~1) (see the cephes sources)
2422 * emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
2423 */
2424
2425 LLVMValueRef all_one = lp_build_const_int_vec(gallivm, bld->type, 1);
2426 LLVMValueRef emm2_add = LLVMBuildAdd(b, emm2_i, all_one, "emm2_add");
2427 /*
2428 * emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
2429 */
2430 LLVMValueRef inv_one = lp_build_const_int_vec(gallivm, bld->type, ~1);
2431 LLVMValueRef emm2_and = LLVMBuildAnd(b, emm2_add, inv_one, "emm2_and");
2432
2433 /*
2434 * y = _mm_cvtepi32_ps(emm2);
2435 */
2436 LLVMValueRef y_2 = LLVMBuildSIToFP(b, emm2_and, bld->vec_type, "y_2");
2437
2438
2439 /*
2440 * emm2 = _mm_sub_epi32(emm2, *(v4si*)_pi32_2);
2441 */
2442 LLVMValueRef const_2 = lp_build_const_int_vec(gallivm, bld->type, 2);
2443 LLVMValueRef emm2_2 = LLVMBuildSub(b, emm2_and, const_2, "emm2_2");
2444
2445
2446 /* get the swap sign flag
2447 * emm0 = _mm_andnot_si128(emm2, *(v4si*)_pi32_4);
2448 */
2449 LLVMValueRef inv = lp_build_const_int_vec(gallivm, bld->type, ~0);
2450 LLVMValueRef emm0_not = LLVMBuildXor(b, emm2_2, inv, "emm0_not");
2451 LLVMValueRef pi32_4 = lp_build_const_int_vec(gallivm, bld->type, 4);
2452 LLVMValueRef emm0_and = LLVMBuildAnd(b, emm0_not, pi32_4, "emm0_and");
2453
2454 /*
2455 * emm2 = _mm_slli_epi32(emm0, 29);
2456 */
2457 LLVMValueRef const_29 = lp_build_const_int_vec(gallivm, bld->type, 29);
2458 LLVMValueRef sign_bit = LLVMBuildShl(b, emm0_and, const_29, "sign_bit");
2459
2460 /*
2461 * get the polynom selection mask
2462 * there is one polynom for 0 <= x <= Pi/4
2463 * and another one for Pi/4<x<=Pi/2
2464 * Both branches will be computed.
2465 *
2466 * emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
2467 * emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
2468 */
2469
2470 LLVMValueRef pi32_2 = lp_build_const_int_vec(gallivm, bld->type, 2);
2471 LLVMValueRef emm2_3 = LLVMBuildAnd(b, emm2_2, pi32_2, "emm2_3");
2472 LLVMValueRef poly_mask = lp_build_compare(gallivm,
2473 int_type, PIPE_FUNC_EQUAL,
2474 emm2_3, lp_build_const_int_vec(gallivm, bld->type, 0));
2475
2476 /*
2477 * _PS_CONST(minus_cephes_DP1, -0.78515625);
2478 * _PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
2479 * _PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
2480 */
2481 LLVMValueRef DP1 = lp_build_const_vec(gallivm, bld->type, -0.78515625);
2482 LLVMValueRef DP2 = lp_build_const_vec(gallivm, bld->type, -2.4187564849853515625e-4);
2483 LLVMValueRef DP3 = lp_build_const_vec(gallivm, bld->type, -3.77489497744594108e-8);
2484
2485 /*
2486 * The magic pass: "Extended precision modular arithmetic"
2487 * x = ((x - y * DP1) - y * DP2) - y * DP3;
2488 * xmm1 = _mm_mul_ps(y, xmm1);
2489 * xmm2 = _mm_mul_ps(y, xmm2);
2490 * xmm3 = _mm_mul_ps(y, xmm3);
2491 */
2492 LLVMValueRef xmm1 = LLVMBuildFMul(b, y_2, DP1, "xmm1");
2493 LLVMValueRef xmm2 = LLVMBuildFMul(b, y_2, DP2, "xmm2");
2494 LLVMValueRef xmm3 = LLVMBuildFMul(b, y_2, DP3, "xmm3");
2495
2496 /*
2497 * x = _mm_add_ps(x, xmm1);
2498 * x = _mm_add_ps(x, xmm2);
2499 * x = _mm_add_ps(x, xmm3);
2500 */
2501
2502 LLVMValueRef x_1 = LLVMBuildFAdd(b, x_abs, xmm1, "x_1");
2503 LLVMValueRef x_2 = LLVMBuildFAdd(b, x_1, xmm2, "x_2");
2504 LLVMValueRef x_3 = LLVMBuildFAdd(b, x_2, xmm3, "x_3");
2505
2506 /*
2507 * Evaluate the first polynom (0 <= x <= Pi/4)
2508 *
2509 * z = _mm_mul_ps(x,x);
2510 */
2511 LLVMValueRef z = LLVMBuildFMul(b, x_3, x_3, "z");
2512
2513 /*
2514 * _PS_CONST(coscof_p0, 2.443315711809948E-005);
2515 * _PS_CONST(coscof_p1, -1.388731625493765E-003);
2516 * _PS_CONST(coscof_p2, 4.166664568298827E-002);
2517 */
2518 LLVMValueRef coscof_p0 = lp_build_const_vec(gallivm, bld->type, 2.443315711809948E-005);
2519 LLVMValueRef coscof_p1 = lp_build_const_vec(gallivm, bld->type, -1.388731625493765E-003);
2520 LLVMValueRef coscof_p2 = lp_build_const_vec(gallivm, bld->type, 4.166664568298827E-002);
2521
2522 /*
2523 * y = *(v4sf*)_ps_coscof_p0;
2524 * y = _mm_mul_ps(y, z);
2525 */
2526 LLVMValueRef y_3 = LLVMBuildFMul(b, z, coscof_p0, "y_3");
2527 LLVMValueRef y_4 = LLVMBuildFAdd(b, y_3, coscof_p1, "y_4");
2528 LLVMValueRef y_5 = LLVMBuildFMul(b, y_4, z, "y_5");
2529 LLVMValueRef y_6 = LLVMBuildFAdd(b, y_5, coscof_p2, "y_6");
2530 LLVMValueRef y_7 = LLVMBuildFMul(b, y_6, z, "y_7");
2531 LLVMValueRef y_8 = LLVMBuildFMul(b, y_7, z, "y_8");
2532
2533
2534 /*
2535 * tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
2536 * y = _mm_sub_ps(y, tmp);
2537 * y = _mm_add_ps(y, *(v4sf*)_ps_1);
2538 */
2539 LLVMValueRef half = lp_build_const_vec(gallivm, bld->type, 0.5);
2540 LLVMValueRef tmp = LLVMBuildFMul(b, z, half, "tmp");
2541 LLVMValueRef y_9 = LLVMBuildFSub(b, y_8, tmp, "y_8");
2542 LLVMValueRef one = lp_build_const_vec(gallivm, bld->type, 1.0);
2543 LLVMValueRef y_10 = LLVMBuildFAdd(b, y_9, one, "y_9");
2544
2545 /*
2546 * _PS_CONST(sincof_p0, -1.9515295891E-4);
2547 * _PS_CONST(sincof_p1, 8.3321608736E-3);
2548 * _PS_CONST(sincof_p2, -1.6666654611E-1);
2549 */
2550 LLVMValueRef sincof_p0 = lp_build_const_vec(gallivm, bld->type, -1.9515295891E-4);
2551 LLVMValueRef sincof_p1 = lp_build_const_vec(gallivm, bld->type, 8.3321608736E-3);
2552 LLVMValueRef sincof_p2 = lp_build_const_vec(gallivm, bld->type, -1.6666654611E-1);
2553
2554 /*
2555 * Evaluate the second polynom (Pi/4 <= x <= 0)
2556 *
2557 * y2 = *(v4sf*)_ps_sincof_p0;
2558 * y2 = _mm_mul_ps(y2, z);
2559 * y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
2560 * y2 = _mm_mul_ps(y2, z);
2561 * y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
2562 * y2 = _mm_mul_ps(y2, z);
2563 * y2 = _mm_mul_ps(y2, x);
2564 * y2 = _mm_add_ps(y2, x);
2565 */
2566
2567 LLVMValueRef y2_3 = LLVMBuildFMul(b, z, sincof_p0, "y2_3");
2568 LLVMValueRef y2_4 = LLVMBuildFAdd(b, y2_3, sincof_p1, "y2_4");
2569 LLVMValueRef y2_5 = LLVMBuildFMul(b, y2_4, z, "y2_5");
2570 LLVMValueRef y2_6 = LLVMBuildFAdd(b, y2_5, sincof_p2, "y2_6");
2571 LLVMValueRef y2_7 = LLVMBuildFMul(b, y2_6, z, "y2_7");
2572 LLVMValueRef y2_8 = LLVMBuildFMul(b, y2_7, x_3, "y2_8");
2573 LLVMValueRef y2_9 = LLVMBuildFAdd(b, y2_8, x_3, "y2_9");
2574
2575 /*
2576 * select the correct result from the two polynoms
2577 * xmm3 = poly_mask;
2578 * y2 = _mm_and_ps(xmm3, y2); //, xmm3);
2579 * y = _mm_andnot_ps(xmm3, y);
2580 * y = _mm_add_ps(y,y2);
2581 */
2582 LLVMValueRef y2_i = LLVMBuildBitCast(b, y2_9, bld->int_vec_type, "y2_i");
2583 LLVMValueRef y_i = LLVMBuildBitCast(b, y_10, bld->int_vec_type, "y_i");
2584 LLVMValueRef y2_and = LLVMBuildAnd(b, y2_i, poly_mask, "y2_and");
2585 LLVMValueRef poly_mask_inv = LLVMBuildXor(b, poly_mask, inv, "poly_mask_inv");
2586 LLVMValueRef y_and = LLVMBuildAnd(b, y_i, poly_mask_inv, "y_and");
2587 LLVMValueRef y_combine = LLVMBuildAdd(b, y_and, y2_and, "y_combine");
2588
2589 /*
2590 * update the sign
2591 * y = _mm_xor_ps(y, sign_bit);
2592 */
2593 LLVMValueRef y_sign = LLVMBuildXor(b, y_combine, sign_bit, "y_sin");
2594 LLVMValueRef y_result = LLVMBuildBitCast(b, y_sign, bld->vec_type, "y_result");
2595 return y_result;
2596 }
2597
2598
2599 /**
2600 * Generate pow(x, y)
2601 */
2602 LLVMValueRef
2603 lp_build_pow(struct lp_build_context *bld,
2604 LLVMValueRef x,
2605 LLVMValueRef y)
2606 {
2607 /* TODO: optimize the constant case */
2608 if (gallivm_debug & GALLIVM_DEBUG_PERF &&
2609 LLVMIsConstant(x) && LLVMIsConstant(y)) {
2610 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
2611 __FUNCTION__);
2612 }
2613
2614 return lp_build_exp2(bld, lp_build_mul(bld, lp_build_log2(bld, x), y));
2615 }
2616
2617
2618 /**
2619 * Generate exp(x)
2620 */
2621 LLVMValueRef
2622 lp_build_exp(struct lp_build_context *bld,
2623 LLVMValueRef x)
2624 {
2625 /* log2(e) = 1/log(2) */
2626 LLVMValueRef log2e = lp_build_const_vec(bld->gallivm, bld->type,
2627 1.4426950408889634);
2628
2629 assert(lp_check_value(bld->type, x));
2630
2631 return lp_build_exp2(bld, lp_build_mul(bld, log2e, x));
2632 }
2633
2634
2635 /**
2636 * Generate log(x)
2637 */
2638 LLVMValueRef
2639 lp_build_log(struct lp_build_context *bld,
2640 LLVMValueRef x)
2641 {
2642 /* log(2) */
2643 LLVMValueRef log2 = lp_build_const_vec(bld->gallivm, bld->type,
2644 0.69314718055994529);
2645
2646 assert(lp_check_value(bld->type, x));
2647
2648 return lp_build_mul(bld, log2, lp_build_log2(bld, x));
2649 }
2650
2651
2652 /**
2653 * Generate polynomial.
2654 * Ex: coeffs[0] + x * coeffs[1] + x^2 * coeffs[2].
2655 */
2656 static LLVMValueRef
2657 lp_build_polynomial(struct lp_build_context *bld,
2658 LLVMValueRef x,
2659 const double *coeffs,
2660 unsigned num_coeffs)
2661 {
2662 const struct lp_type type = bld->type;
2663 LLVMValueRef even = NULL, odd = NULL;
2664 LLVMValueRef x2;
2665 unsigned i;
2666
2667 assert(lp_check_value(bld->type, x));
2668
2669 /* TODO: optimize the constant case */
2670 if (gallivm_debug & GALLIVM_DEBUG_PERF &&
2671 LLVMIsConstant(x)) {
2672 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
2673 __FUNCTION__);
2674 }
2675
2676 /*
2677 * Calculate odd and even terms seperately to decrease data dependency
2678 * Ex:
2679 * c[0] + x^2 * c[2] + x^4 * c[4] ...
2680 * + x * (c[1] + x^2 * c[3] + x^4 * c[5]) ...
2681 */
2682 x2 = lp_build_mul(bld, x, x);
2683
2684 for (i = num_coeffs; i--; ) {
2685 LLVMValueRef coeff;
2686
2687 coeff = lp_build_const_vec(bld->gallivm, type, coeffs[i]);
2688
2689 if (i % 2 == 0) {
2690 if (even)
2691 even = lp_build_add(bld, coeff, lp_build_mul(bld, x2, even));
2692 else
2693 even = coeff;
2694 } else {
2695 if (odd)
2696 odd = lp_build_add(bld, coeff, lp_build_mul(bld, x2, odd));
2697 else
2698 odd = coeff;
2699 }
2700 }
2701
2702 if (odd)
2703 return lp_build_add(bld, lp_build_mul(bld, odd, x), even);
2704 else if (even)
2705 return even;
2706 else
2707 return bld->undef;
2708 }
2709
2710
2711 /**
2712 * Minimax polynomial fit of 2**x, in range [0, 1[
2713 */
2714 const double lp_build_exp2_polynomial[] = {
2715 #if EXP_POLY_DEGREE == 5
2716 0.999999925063526176901,
2717 0.693153073200168932794,
2718 0.240153617044375388211,
2719 0.0558263180532956664775,
2720 0.00898934009049466391101,
2721 0.00187757667519147912699
2722 #elif EXP_POLY_DEGREE == 4
2723 1.00000259337069434683,
2724 0.693003834469974940458,
2725 0.24144275689150793076,
2726 0.0520114606103070150235,
2727 0.0135341679161270268764
2728 #elif EXP_POLY_DEGREE == 3
2729 0.999925218562710312959,
2730 0.695833540494823811697,
2731 0.226067155427249155588,
2732 0.0780245226406372992967
2733 #elif EXP_POLY_DEGREE == 2
2734 1.00172476321474503578,
2735 0.657636275736077639316,
2736 0.33718943461968720704
2737 #else
2738 #error
2739 #endif
2740 };
2741
2742
2743 void
2744 lp_build_exp2_approx(struct lp_build_context *bld,
2745 LLVMValueRef x,
2746 LLVMValueRef *p_exp2_int_part,
2747 LLVMValueRef *p_frac_part,
2748 LLVMValueRef *p_exp2)
2749 {
2750 LLVMBuilderRef builder = bld->gallivm->builder;
2751 const struct lp_type type = bld->type;
2752 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
2753 LLVMValueRef ipart = NULL;
2754 LLVMValueRef fpart = NULL;
2755 LLVMValueRef expipart = NULL;
2756 LLVMValueRef expfpart = NULL;
2757 LLVMValueRef res = NULL;
2758
2759 assert(lp_check_value(bld->type, x));
2760
2761 if(p_exp2_int_part || p_frac_part || p_exp2) {
2762 /* TODO: optimize the constant case */
2763 if (gallivm_debug & GALLIVM_DEBUG_PERF &&
2764 LLVMIsConstant(x)) {
2765 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
2766 __FUNCTION__);
2767 }
2768
2769 assert(type.floating && type.width == 32);
2770
2771 x = lp_build_min(bld, x, lp_build_const_vec(bld->gallivm, type, 129.0));
2772 x = lp_build_max(bld, x, lp_build_const_vec(bld->gallivm, type, -126.99999));
2773
2774 /* ipart = floor(x) */
2775 /* fpart = x - ipart */
2776 lp_build_ifloor_fract(bld, x, &ipart, &fpart);
2777 }
2778
2779 if(p_exp2_int_part || p_exp2) {
2780 /* expipart = (float) (1 << ipart) */
2781 expipart = LLVMBuildAdd(builder, ipart,
2782 lp_build_const_int_vec(bld->gallivm, type, 127), "");
2783 expipart = LLVMBuildShl(builder, expipart,
2784 lp_build_const_int_vec(bld->gallivm, type, 23), "");
2785 expipart = LLVMBuildBitCast(builder, expipart, vec_type, "");
2786 }
2787
2788 if(p_exp2) {
2789 expfpart = lp_build_polynomial(bld, fpart, lp_build_exp2_polynomial,
2790 Elements(lp_build_exp2_polynomial));
2791
2792 res = LLVMBuildFMul(builder, expipart, expfpart, "");
2793 }
2794
2795 if(p_exp2_int_part)
2796 *p_exp2_int_part = expipart;
2797
2798 if(p_frac_part)
2799 *p_frac_part = fpart;
2800
2801 if(p_exp2)
2802 *p_exp2 = res;
2803 }
2804
2805
2806 LLVMValueRef
2807 lp_build_exp2(struct lp_build_context *bld,
2808 LLVMValueRef x)
2809 {
2810 LLVMValueRef res;
2811 lp_build_exp2_approx(bld, x, NULL, NULL, &res);
2812 return res;
2813 }
2814
2815
2816 /**
2817 * Extract the exponent of a IEEE-754 floating point value.
2818 *
2819 * Optionally apply an integer bias.
2820 *
2821 * Result is an integer value with
2822 *
2823 * ifloor(log2(x)) + bias
2824 */
2825 LLVMValueRef
2826 lp_build_extract_exponent(struct lp_build_context *bld,
2827 LLVMValueRef x,
2828 int bias)
2829 {
2830 LLVMBuilderRef builder = bld->gallivm->builder;
2831 const struct lp_type type = bld->type;
2832 unsigned mantissa = lp_mantissa(type);
2833 LLVMValueRef res;
2834
2835 assert(type.floating);
2836
2837 assert(lp_check_value(bld->type, x));
2838
2839 x = LLVMBuildBitCast(builder, x, bld->int_vec_type, "");
2840
2841 res = LLVMBuildLShr(builder, x,
2842 lp_build_const_int_vec(bld->gallivm, type, mantissa), "");
2843 res = LLVMBuildAnd(builder, res,
2844 lp_build_const_int_vec(bld->gallivm, type, 255), "");
2845 res = LLVMBuildSub(builder, res,
2846 lp_build_const_int_vec(bld->gallivm, type, 127 - bias), "");
2847
2848 return res;
2849 }
2850
2851
2852 /**
2853 * Extract the mantissa of the a floating.
2854 *
2855 * Result is a floating point value with
2856 *
2857 * x / floor(log2(x))
2858 */
2859 LLVMValueRef
2860 lp_build_extract_mantissa(struct lp_build_context *bld,
2861 LLVMValueRef x)
2862 {
2863 LLVMBuilderRef builder = bld->gallivm->builder;
2864 const struct lp_type type = bld->type;
2865 unsigned mantissa = lp_mantissa(type);
2866 LLVMValueRef mantmask = lp_build_const_int_vec(bld->gallivm, type,
2867 (1ULL << mantissa) - 1);
2868 LLVMValueRef one = LLVMConstBitCast(bld->one, bld->int_vec_type);
2869 LLVMValueRef res;
2870
2871 assert(lp_check_value(bld->type, x));
2872
2873 assert(type.floating);
2874
2875 x = LLVMBuildBitCast(builder, x, bld->int_vec_type, "");
2876
2877 /* res = x / 2**ipart */
2878 res = LLVMBuildAnd(builder, x, mantmask, "");
2879 res = LLVMBuildOr(builder, res, one, "");
2880 res = LLVMBuildBitCast(builder, res, bld->vec_type, "");
2881
2882 return res;
2883 }
2884
2885
2886
2887 /**
2888 * Minimax polynomial fit of log2((1.0 + sqrt(x))/(1.0 - sqrt(x)))/sqrt(x) ,for x in range of [0, 1/9[
2889 * These coefficients can be generate with
2890 * http://www.boost.org/doc/libs/1_36_0/libs/math/doc/sf_and_dist/html/math_toolkit/toolkit/internals2/minimax.html
2891 */
2892 const double lp_build_log2_polynomial[] = {
2893 #if LOG_POLY_DEGREE == 5
2894 2.88539008148777786488L,
2895 0.961796878841293367824L,
2896 0.577058946784739859012L,
2897 0.412914355135828735411L,
2898 0.308591899232910175289L,
2899 0.352376952300281371868L,
2900 #elif LOG_POLY_DEGREE == 4
2901 2.88539009343309178325L,
2902 0.961791550404184197881L,
2903 0.577440339438736392009L,
2904 0.403343858251329912514L,
2905 0.406718052498846252698L,
2906 #elif LOG_POLY_DEGREE == 3
2907 2.88538959748872753838L,
2908 0.961932915889597772928L,
2909 0.571118517972136195241L,
2910 0.493997535084709500285L,
2911 #else
2912 #error
2913 #endif
2914 };
2915
2916 /**
2917 * See http://www.devmaster.net/forums/showthread.php?p=43580
2918 * http://en.wikipedia.org/wiki/Logarithm#Calculation
2919 * http://www.nezumi.demon.co.uk/consult/logx.htm
2920 */
2921 void
2922 lp_build_log2_approx(struct lp_build_context *bld,
2923 LLVMValueRef x,
2924 LLVMValueRef *p_exp,
2925 LLVMValueRef *p_floor_log2,
2926 LLVMValueRef *p_log2)
2927 {
2928 LLVMBuilderRef builder = bld->gallivm->builder;
2929 const struct lp_type type = bld->type;
2930 LLVMTypeRef vec_type = lp_build_vec_type(bld->gallivm, type);
2931 LLVMTypeRef int_vec_type = lp_build_int_vec_type(bld->gallivm, type);
2932
2933 LLVMValueRef expmask = lp_build_const_int_vec(bld->gallivm, type, 0x7f800000);
2934 LLVMValueRef mantmask = lp_build_const_int_vec(bld->gallivm, type, 0x007fffff);
2935 LLVMValueRef one = LLVMConstBitCast(bld->one, int_vec_type);
2936
2937 LLVMValueRef i = NULL;
2938 LLVMValueRef y = NULL;
2939 LLVMValueRef z = NULL;
2940 LLVMValueRef exp = NULL;
2941 LLVMValueRef mant = NULL;
2942 LLVMValueRef logexp = NULL;
2943 LLVMValueRef logmant = NULL;
2944 LLVMValueRef res = NULL;
2945
2946 assert(lp_check_value(bld->type, x));
2947
2948 if(p_exp || p_floor_log2 || p_log2) {
2949 /* TODO: optimize the constant case */
2950 if (gallivm_debug & GALLIVM_DEBUG_PERF &&
2951 LLVMIsConstant(x)) {
2952 debug_printf("%s: inefficient/imprecise constant arithmetic\n",
2953 __FUNCTION__);
2954 }
2955
2956 assert(type.floating && type.width == 32);
2957
2958 /*
2959 * We don't explicitly handle denormalized numbers. They will yield a
2960 * result in the neighbourhood of -127, which appears to be adequate
2961 * enough.
2962 */
2963
2964 i = LLVMBuildBitCast(builder, x, int_vec_type, "");
2965
2966 /* exp = (float) exponent(x) */
2967 exp = LLVMBuildAnd(builder, i, expmask, "");
2968 }
2969
2970 if(p_floor_log2 || p_log2) {
2971 logexp = LLVMBuildLShr(builder, exp, lp_build_const_int_vec(bld->gallivm, type, 23), "");
2972 logexp = LLVMBuildSub(builder, logexp, lp_build_const_int_vec(bld->gallivm, type, 127), "");
2973 logexp = LLVMBuildSIToFP(builder, logexp, vec_type, "");
2974 }
2975
2976 if(p_log2) {
2977 /* mant = 1 + (float) mantissa(x) */
2978 mant = LLVMBuildAnd(builder, i, mantmask, "");
2979 mant = LLVMBuildOr(builder, mant, one, "");
2980 mant = LLVMBuildBitCast(builder, mant, vec_type, "");
2981
2982 /* y = (mant - 1) / (mant + 1) */
2983 y = lp_build_div(bld,
2984 lp_build_sub(bld, mant, bld->one),
2985 lp_build_add(bld, mant, bld->one)
2986 );
2987
2988 /* z = y^2 */
2989 z = lp_build_mul(bld, y, y);
2990
2991 /* compute P(z) */
2992 logmant = lp_build_polynomial(bld, z, lp_build_log2_polynomial,
2993 Elements(lp_build_log2_polynomial));
2994
2995 /* logmant = y * P(z) */
2996 logmant = lp_build_mul(bld, y, logmant);
2997
2998 res = lp_build_add(bld, logmant, logexp);
2999 }
3000
3001 if(p_exp) {
3002 exp = LLVMBuildBitCast(builder, exp, vec_type, "");
3003 *p_exp = exp;
3004 }
3005
3006 if(p_floor_log2)
3007 *p_floor_log2 = logexp;
3008
3009 if(p_log2)
3010 *p_log2 = res;
3011 }
3012
3013
3014 LLVMValueRef
3015 lp_build_log2(struct lp_build_context *bld,
3016 LLVMValueRef x)
3017 {
3018 LLVMValueRef res;
3019 lp_build_log2_approx(bld, x, NULL, NULL, &res);
3020 return res;
3021 }
3022
3023
3024 /**
3025 * Faster (and less accurate) log2.
3026 *
3027 * log2(x) = floor(log2(x)) - 1 + x / 2**floor(log2(x))
3028 *
3029 * Piece-wise linear approximation, with exact results when x is a
3030 * power of two.
3031 *
3032 * See http://www.flipcode.com/archives/Fast_log_Function.shtml
3033 */
3034 LLVMValueRef
3035 lp_build_fast_log2(struct lp_build_context *bld,
3036 LLVMValueRef x)
3037 {
3038 LLVMBuilderRef builder = bld->gallivm->builder;
3039 LLVMValueRef ipart;
3040 LLVMValueRef fpart;
3041
3042 assert(lp_check_value(bld->type, x));
3043
3044 assert(bld->type.floating);
3045
3046 /* ipart = floor(log2(x)) - 1 */
3047 ipart = lp_build_extract_exponent(bld, x, -1);
3048 ipart = LLVMBuildSIToFP(builder, ipart, bld->vec_type, "");
3049
3050 /* fpart = x / 2**ipart */
3051 fpart = lp_build_extract_mantissa(bld, x);
3052
3053 /* ipart + fpart */
3054 return LLVMBuildFAdd(builder, ipart, fpart, "");
3055 }
3056
3057
3058 /**
3059 * Fast implementation of iround(log2(x)).
3060 *
3061 * Not an approximation -- it should give accurate results all the time.
3062 */
3063 LLVMValueRef
3064 lp_build_ilog2(struct lp_build_context *bld,
3065 LLVMValueRef x)
3066 {
3067 LLVMBuilderRef builder = bld->gallivm->builder;
3068 LLVMValueRef sqrt2 = lp_build_const_vec(bld->gallivm, bld->type, M_SQRT2);
3069 LLVMValueRef ipart;
3070
3071 assert(bld->type.floating);
3072
3073 assert(lp_check_value(bld->type, x));
3074
3075 /* x * 2^(0.5) i.e., add 0.5 to the log2(x) */
3076 x = LLVMBuildFMul(builder, x, sqrt2, "");
3077
3078 /* ipart = floor(log2(x) + 0.5) */
3079 ipart = lp_build_extract_exponent(bld, x, 0);
3080
3081 return ipart;
3082 }
3083
3084 LLVMValueRef
3085 lp_build_mod(struct lp_build_context *bld,
3086 LLVMValueRef x,
3087 LLVMValueRef y)
3088 {
3089 LLVMBuilderRef builder = bld->gallivm->builder;
3090 LLVMValueRef res;
3091 const struct lp_type type = bld->type;
3092
3093 assert(lp_check_value(type, x));
3094 assert(lp_check_value(type, y));
3095
3096 if (type.floating)
3097 res = LLVMBuildFRem(builder, x, y, "");
3098 else if (type.sign)
3099 res = LLVMBuildSRem(builder, x, y, "");
3100 else
3101 res = LLVMBuildURem(builder, x, y, "");
3102 return res;
3103 }