Merge branch '7.8'
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_flow.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * LLVM control flow build helpers.
30 *
31 * @author Jose Fonseca <jfonseca@vmware.com>
32 */
33
34 #include "util/u_debug.h"
35 #include "util/u_memory.h"
36
37 #include "lp_bld_type.h"
38 #include "lp_bld_flow.h"
39
40
41 #define LP_BUILD_FLOW_MAX_VARIABLES 32
42 #define LP_BUILD_FLOW_MAX_DEPTH 32
43
44 /**
45 * Enumeration of all possible flow constructs.
46 */
47 enum lp_build_flow_construct_kind {
48 LP_BUILD_FLOW_SCOPE,
49 LP_BUILD_FLOW_SKIP,
50 LP_BUILD_FLOW_IF
51 };
52
53
54 /**
55 * Variable declaration scope.
56 */
57 struct lp_build_flow_scope
58 {
59 /** Number of variables declared in this scope */
60 unsigned num_variables;
61 };
62
63
64 /**
65 * Early exit. Useful to skip to the end of a function or block when
66 * the execution mask becomes zero or when there is an error condition.
67 */
68 struct lp_build_flow_skip
69 {
70 /** Block to skip to */
71 LLVMBasicBlockRef block;
72
73 /** Number of variables declared at the beginning */
74 unsigned num_variables;
75
76 LLVMValueRef *phi; /**< array [num_variables] */
77 };
78
79
80 /**
81 * if/else/endif.
82 */
83 struct lp_build_flow_if
84 {
85 unsigned num_variables;
86
87 LLVMValueRef *phi; /**< array [num_variables] */
88
89 LLVMValueRef condition;
90 LLVMBasicBlockRef entry_block, true_block, false_block, merge_block;
91 };
92
93
94 /**
95 * Union of all possible flow constructs' data
96 */
97 union lp_build_flow_construct_data
98 {
99 struct lp_build_flow_scope scope;
100 struct lp_build_flow_skip skip;
101 struct lp_build_flow_if ifthen;
102 };
103
104
105 /**
106 * Element of the flow construct stack.
107 */
108 struct lp_build_flow_construct
109 {
110 enum lp_build_flow_construct_kind kind;
111 union lp_build_flow_construct_data data;
112 };
113
114
115 /**
116 * All necessary data to generate LLVM control flow constructs.
117 *
118 * Besides keeping track of the control flow construct themselves we also
119 * need to keep track of variables in order to generate SSA Phi values.
120 */
121 struct lp_build_flow_context
122 {
123 LLVMBuilderRef builder;
124
125 /**
126 * Control flow stack.
127 */
128 struct lp_build_flow_construct constructs[LP_BUILD_FLOW_MAX_DEPTH];
129 unsigned num_constructs;
130
131 /**
132 * Variable stack
133 */
134 LLVMValueRef *variables[LP_BUILD_FLOW_MAX_VARIABLES];
135 unsigned num_variables;
136 };
137
138
139 struct lp_build_flow_context *
140 lp_build_flow_create(LLVMBuilderRef builder)
141 {
142 struct lp_build_flow_context *flow;
143
144 flow = CALLOC_STRUCT(lp_build_flow_context);
145 if(!flow)
146 return NULL;
147
148 flow->builder = builder;
149
150 return flow;
151 }
152
153
154 void
155 lp_build_flow_destroy(struct lp_build_flow_context *flow)
156 {
157 assert(flow->num_constructs == 0);
158 assert(flow->num_variables == 0);
159 FREE(flow);
160 }
161
162
163 /**
164 * Begin/push a new flow control construct, such as a loop, skip block
165 * or variable scope.
166 */
167 static union lp_build_flow_construct_data *
168 lp_build_flow_push(struct lp_build_flow_context *flow,
169 enum lp_build_flow_construct_kind kind)
170 {
171 assert(flow->num_constructs < LP_BUILD_FLOW_MAX_DEPTH);
172 if(flow->num_constructs >= LP_BUILD_FLOW_MAX_DEPTH)
173 return NULL;
174
175 flow->constructs[flow->num_constructs].kind = kind;
176 return &flow->constructs[flow->num_constructs++].data;
177 }
178
179
180 /**
181 * Return the current/top flow control construct on the stack.
182 * \param kind the expected type of the top-most construct
183 */
184 static union lp_build_flow_construct_data *
185 lp_build_flow_peek(struct lp_build_flow_context *flow,
186 enum lp_build_flow_construct_kind kind)
187 {
188 assert(flow->num_constructs);
189 if(!flow->num_constructs)
190 return NULL;
191
192 assert(flow->constructs[flow->num_constructs - 1].kind == kind);
193 if(flow->constructs[flow->num_constructs - 1].kind != kind)
194 return NULL;
195
196 return &flow->constructs[flow->num_constructs - 1].data;
197 }
198
199
200 /**
201 * End/pop the current/top flow control construct on the stack.
202 * \param kind the expected type of the top-most construct
203 */
204 static union lp_build_flow_construct_data *
205 lp_build_flow_pop(struct lp_build_flow_context *flow,
206 enum lp_build_flow_construct_kind kind)
207 {
208 assert(flow->num_constructs);
209 if(!flow->num_constructs)
210 return NULL;
211
212 assert(flow->constructs[flow->num_constructs - 1].kind == kind);
213 if(flow->constructs[flow->num_constructs - 1].kind != kind)
214 return NULL;
215
216 return &flow->constructs[--flow->num_constructs].data;
217 }
218
219
220 /**
221 * Begin a variable scope.
222 *
223 *
224 */
225 void
226 lp_build_flow_scope_begin(struct lp_build_flow_context *flow)
227 {
228 struct lp_build_flow_scope *scope;
229
230 scope = &lp_build_flow_push(flow, LP_BUILD_FLOW_SCOPE)->scope;
231 if(!scope)
232 return;
233
234 scope->num_variables = 0;
235 }
236
237
238 /**
239 * Declare a variable.
240 *
241 * A variable is a named entity which can have different LLVMValueRef's at
242 * different points of the program. This is relevant for control flow because
243 * when there are multiple branches to a same location we need to replace
244 * the variable's value with a Phi function as explained in
245 * http://en.wikipedia.org/wiki/Static_single_assignment_form .
246 *
247 * We keep track of variables by keeping around a pointer to where they're
248 * current.
249 *
250 * There are a few cautions to observe:
251 *
252 * - Variable's value must not be NULL. If there is no initial value then
253 * LLVMGetUndef() should be used.
254 *
255 * - Variable's value must be kept up-to-date. If the variable is going to be
256 * modified by a function then a pointer should be passed so that its value
257 * is accurate. Failure to do this will cause some of the variables'
258 * transient values to be lost, leading to wrong results.
259 *
260 * - A program should be written from top to bottom, by always appending
261 * instructions to the bottom with a single LLVMBuilderRef. Inserting and/or
262 * modifying existing statements will most likely lead to wrong results.
263 *
264 */
265 void
266 lp_build_flow_scope_declare(struct lp_build_flow_context *flow,
267 LLVMValueRef *variable)
268 {
269 struct lp_build_flow_scope *scope;
270
271 scope = &lp_build_flow_peek(flow, LP_BUILD_FLOW_SCOPE)->scope;
272 if(!scope)
273 return;
274
275 assert(*variable);
276 if(!*variable)
277 return;
278
279 assert(flow->num_variables < LP_BUILD_FLOW_MAX_VARIABLES);
280 if(flow->num_variables >= LP_BUILD_FLOW_MAX_VARIABLES)
281 return;
282
283 flow->variables[flow->num_variables++] = variable;
284 ++scope->num_variables;
285 }
286
287
288 void
289 lp_build_flow_scope_end(struct lp_build_flow_context *flow)
290 {
291 struct lp_build_flow_scope *scope;
292
293 scope = &lp_build_flow_pop(flow, LP_BUILD_FLOW_SCOPE)->scope;
294 if(!scope)
295 return;
296
297 assert(flow->num_variables >= scope->num_variables);
298 if(flow->num_variables < scope->num_variables) {
299 flow->num_variables = 0;
300 return;
301 }
302
303 flow->num_variables -= scope->num_variables;
304 }
305
306
307 /**
308 * Note: this function has no dependencies on the flow code and could
309 * be used elsewhere.
310 */
311 LLVMBasicBlockRef
312 lp_build_insert_new_block(LLVMBuilderRef builder, const char *name)
313 {
314 LLVMBasicBlockRef current_block;
315 LLVMBasicBlockRef next_block;
316 LLVMBasicBlockRef new_block;
317
318 /* get current basic block */
319 current_block = LLVMGetInsertBlock(builder);
320
321 /* check if there's another block after this one */
322 next_block = LLVMGetNextBasicBlock(current_block);
323 if (next_block) {
324 /* insert the new block before the next block */
325 new_block = LLVMInsertBasicBlock(next_block, name);
326 }
327 else {
328 /* append new block after current block */
329 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
330 new_block = LLVMAppendBasicBlock(function, name);
331 }
332
333 return new_block;
334 }
335
336
337 static LLVMBasicBlockRef
338 lp_build_flow_insert_block(struct lp_build_flow_context *flow)
339 {
340 return lp_build_insert_new_block(flow->builder, "");
341 }
342
343
344 /**
345 * Begin a "skip" block. Inside this block we can test a condition and
346 * skip to the end of the block if the condition is false.
347 */
348 void
349 lp_build_flow_skip_begin(struct lp_build_flow_context *flow)
350 {
351 struct lp_build_flow_skip *skip;
352 LLVMBuilderRef builder;
353 unsigned i;
354
355 skip = &lp_build_flow_push(flow, LP_BUILD_FLOW_SKIP)->skip;
356 if(!skip)
357 return;
358
359 /* create new basic block */
360 skip->block = lp_build_flow_insert_block(flow);
361
362 skip->num_variables = flow->num_variables;
363 if(!skip->num_variables) {
364 skip->phi = NULL;
365 return;
366 }
367
368 /* Allocate a Phi node for each variable in this skip scope */
369 skip->phi = MALLOC(skip->num_variables * sizeof *skip->phi);
370 if(!skip->phi) {
371 skip->num_variables = 0;
372 return;
373 }
374
375 builder = LLVMCreateBuilder();
376 LLVMPositionBuilderAtEnd(builder, skip->block);
377
378 /* create a Phi node for each variable */
379 for(i = 0; i < skip->num_variables; ++i)
380 skip->phi[i] = LLVMBuildPhi(builder, LLVMTypeOf(*flow->variables[i]), "");
381
382 LLVMDisposeBuilder(builder);
383 }
384
385
386 /**
387 * Insert code to test a condition and branch to the end of the current
388 * skip block if the condition is true.
389 */
390 void
391 lp_build_flow_skip_cond_break(struct lp_build_flow_context *flow,
392 LLVMValueRef cond)
393 {
394 struct lp_build_flow_skip *skip;
395 LLVMBasicBlockRef current_block;
396 LLVMBasicBlockRef new_block;
397 unsigned i;
398
399 skip = &lp_build_flow_peek(flow, LP_BUILD_FLOW_SKIP)->skip;
400 if(!skip)
401 return;
402
403 current_block = LLVMGetInsertBlock(flow->builder);
404
405 new_block = lp_build_flow_insert_block(flow);
406
407 /* for each variable, update the Phi node with a (variable, block) pair */
408 for(i = 0; i < skip->num_variables; ++i) {
409 assert(*flow->variables[i]);
410 LLVMAddIncoming(skip->phi[i], flow->variables[i], &current_block, 1);
411 }
412
413 /* if cond is true, goto skip->block, else goto new_block */
414 LLVMBuildCondBr(flow->builder, cond, skip->block, new_block);
415
416 LLVMPositionBuilderAtEnd(flow->builder, new_block);
417 }
418
419
420 void
421 lp_build_flow_skip_end(struct lp_build_flow_context *flow)
422 {
423 struct lp_build_flow_skip *skip;
424 LLVMBasicBlockRef current_block;
425 unsigned i;
426
427 skip = &lp_build_flow_pop(flow, LP_BUILD_FLOW_SKIP)->skip;
428 if(!skip)
429 return;
430
431 current_block = LLVMGetInsertBlock(flow->builder);
432
433 /* add (variable, block) tuples to the phi nodes */
434 for(i = 0; i < skip->num_variables; ++i) {
435 assert(*flow->variables[i]);
436 LLVMAddIncoming(skip->phi[i], flow->variables[i], &current_block, 1);
437 *flow->variables[i] = skip->phi[i];
438 }
439
440 /* goto block */
441 LLVMBuildBr(flow->builder, skip->block);
442 LLVMPositionBuilderAtEnd(flow->builder, skip->block);
443
444 FREE(skip->phi);
445 }
446
447
448 /**
449 * Check if the mask predicate is zero. If so, jump to the end of the block.
450 */
451 static void
452 lp_build_mask_check(struct lp_build_mask_context *mask)
453 {
454 LLVMBuilderRef builder = mask->flow->builder;
455 LLVMValueRef cond;
456
457 /* cond = (mask == 0) */
458 cond = LLVMBuildICmp(builder,
459 LLVMIntEQ,
460 LLVMBuildBitCast(builder, mask->value, mask->reg_type, ""),
461 LLVMConstNull(mask->reg_type),
462 "");
463
464 /* if cond, goto end of block */
465 lp_build_flow_skip_cond_break(mask->flow, cond);
466 }
467
468
469 /**
470 * Begin a section of code which is predicated on a mask.
471 * \param mask the mask context, initialized here
472 * \param flow the flow context
473 * \param type the type of the mask
474 * \param value storage for the mask
475 */
476 void
477 lp_build_mask_begin(struct lp_build_mask_context *mask,
478 struct lp_build_flow_context *flow,
479 struct lp_type type,
480 LLVMValueRef value)
481 {
482 memset(mask, 0, sizeof *mask);
483
484 mask->flow = flow;
485 mask->reg_type = LLVMIntType(type.width * type.length);
486 mask->value = value;
487
488 lp_build_flow_scope_begin(flow);
489 lp_build_flow_scope_declare(flow, &mask->value);
490 lp_build_flow_skip_begin(flow);
491
492 lp_build_mask_check(mask);
493 }
494
495
496 /**
497 * Update boolean mask with given value (bitwise AND).
498 * Typically used to update the quad's pixel alive/killed mask
499 * after depth testing, alpha testing, TGSI_OPCODE_KIL, etc.
500 */
501 void
502 lp_build_mask_update(struct lp_build_mask_context *mask,
503 LLVMValueRef value)
504 {
505 mask->value = LLVMBuildAnd( mask->flow->builder, mask->value, value, "");
506
507 lp_build_mask_check(mask);
508 }
509
510
511 /**
512 * End section of code which is predicated on a mask.
513 */
514 LLVMValueRef
515 lp_build_mask_end(struct lp_build_mask_context *mask)
516 {
517 lp_build_flow_skip_end(mask->flow);
518 lp_build_flow_scope_end(mask->flow);
519 return mask->value;
520 }
521
522
523
524 void
525 lp_build_loop_begin(LLVMBuilderRef builder,
526 LLVMValueRef start,
527 struct lp_build_loop_state *state)
528 {
529 LLVMBasicBlockRef block = LLVMGetInsertBlock(builder);
530 LLVMValueRef function = LLVMGetBasicBlockParent(block);
531
532 state->block = LLVMAppendBasicBlock(function, "loop");
533
534 LLVMBuildBr(builder, state->block);
535
536 LLVMPositionBuilderAtEnd(builder, state->block);
537
538 state->counter = LLVMBuildPhi(builder, LLVMTypeOf(start), "");
539
540 LLVMAddIncoming(state->counter, &start, &block, 1);
541
542 }
543
544
545 void
546 lp_build_loop_end(LLVMBuilderRef builder,
547 LLVMValueRef end,
548 LLVMValueRef step,
549 struct lp_build_loop_state *state)
550 {
551 LLVMBasicBlockRef block = LLVMGetInsertBlock(builder);
552 LLVMValueRef function = LLVMGetBasicBlockParent(block);
553 LLVMValueRef next;
554 LLVMValueRef cond;
555 LLVMBasicBlockRef after_block;
556
557 if (!step)
558 step = LLVMConstInt(LLVMTypeOf(end), 1, 0);
559
560 next = LLVMBuildAdd(builder, state->counter, step, "");
561
562 cond = LLVMBuildICmp(builder, LLVMIntNE, next, end, "");
563
564 after_block = LLVMAppendBasicBlock(function, "");
565
566 LLVMBuildCondBr(builder, cond, after_block, state->block);
567
568 LLVMAddIncoming(state->counter, &next, &block, 1);
569
570 LLVMPositionBuilderAtEnd(builder, after_block);
571 }
572
573 void
574 lp_build_loop_end_cond(LLVMBuilderRef builder,
575 LLVMValueRef end,
576 LLVMValueRef step,
577 int llvm_cond,
578 struct lp_build_loop_state *state)
579 {
580 LLVMBasicBlockRef block = LLVMGetInsertBlock(builder);
581 LLVMValueRef function = LLVMGetBasicBlockParent(block);
582 LLVMValueRef next;
583 LLVMValueRef cond;
584 LLVMBasicBlockRef after_block;
585
586 if (!step)
587 step = LLVMConstInt(LLVMTypeOf(end), 1, 0);
588
589 next = LLVMBuildAdd(builder, state->counter, step, "");
590
591 cond = LLVMBuildICmp(builder, llvm_cond, next, end, "");
592
593 after_block = LLVMAppendBasicBlock(function, "");
594
595 LLVMBuildCondBr(builder, cond, after_block, state->block);
596
597 LLVMAddIncoming(state->counter, &next, &block, 1);
598
599 LLVMPositionBuilderAtEnd(builder, after_block);
600 }
601
602
603
604 /*
605 Example of if/then/else building:
606
607 int x;
608 if (cond) {
609 x = 1 + 2;
610 }
611 else {
612 x = 2 + 3;
613 }
614
615 Is built with:
616
617 LLVMValueRef x = LLVMGetUndef(); // or something else
618
619 flow = lp_build_flow_create(builder);
620
621 lp_build_flow_scope_begin(flow);
622
623 // x needs a phi node
624 lp_build_flow_scope_declare(flow, &x);
625
626 lp_build_if(ctx, flow, builder, cond);
627 x = LLVMAdd(1, 2);
628 lp_build_else(ctx);
629 x = LLVMAdd(2, 3);
630 lp_build_endif(ctx);
631
632 lp_build_flow_scope_end(flow);
633
634 lp_build_flow_destroy(flow);
635 */
636
637
638
639 /**
640 * Begin an if/else/endif construct.
641 */
642 void
643 lp_build_if(struct lp_build_if_state *ctx,
644 struct lp_build_flow_context *flow,
645 LLVMBuilderRef builder,
646 LLVMValueRef condition)
647 {
648 LLVMBasicBlockRef block = LLVMGetInsertBlock(builder);
649 struct lp_build_flow_if *ifthen;
650 unsigned i;
651
652 memset(ctx, 0, sizeof(*ctx));
653 ctx->builder = builder;
654 ctx->flow = flow;
655
656 /* push/create new scope */
657 ifthen = &lp_build_flow_push(flow, LP_BUILD_FLOW_IF)->ifthen;
658 assert(ifthen);
659
660 ifthen->num_variables = flow->num_variables;
661 ifthen->condition = condition;
662 ifthen->entry_block = block;
663
664 /* create a Phi node for each variable in this flow scope */
665 ifthen->phi = MALLOC(ifthen->num_variables * sizeof(*ifthen->phi));
666 if (!ifthen->phi) {
667 ifthen->num_variables = 0;
668 return;
669 }
670
671 /* create endif/merge basic block for the phi functions */
672 ifthen->merge_block = lp_build_insert_new_block(builder, "endif-block");
673 LLVMPositionBuilderAtEnd(builder, ifthen->merge_block);
674
675 /* create a phi node for each variable */
676 for (i = 0; i < flow->num_variables; i++) {
677 ifthen->phi[i] = LLVMBuildPhi(builder, LLVMTypeOf(*flow->variables[i]), "");
678
679 /* add add the initial value of the var from the entry block */
680 if (!LLVMIsUndef(*flow->variables[i]))
681 LLVMAddIncoming(ifthen->phi[i], flow->variables[i],
682 &ifthen->entry_block, 1);
683 }
684
685 /* create/insert true_block before merge_block */
686 ifthen->true_block = LLVMInsertBasicBlock(ifthen->merge_block, "if-true-block");
687
688 /* successive code goes into the true block */
689 LLVMPositionBuilderAtEnd(builder, ifthen->true_block);
690 }
691
692
693 /**
694 * Begin else-part of a conditional
695 */
696 void
697 lp_build_else(struct lp_build_if_state *ctx)
698 {
699 struct lp_build_flow_context *flow = ctx->flow;
700 struct lp_build_flow_if *ifthen;
701 unsigned i;
702
703 ifthen = &lp_build_flow_peek(flow, LP_BUILD_FLOW_IF)->ifthen;
704 assert(ifthen);
705
706 /* for each variable, update the Phi node with a (variable, block) pair */
707 LLVMPositionBuilderAtEnd(ctx->builder, ifthen->merge_block);
708 for (i = 0; i < flow->num_variables; i++) {
709 assert(*flow->variables[i]);
710 LLVMAddIncoming(ifthen->phi[i], flow->variables[i], &ifthen->true_block, 1);
711 }
712
713 /* create/insert false_block before the merge block */
714 ifthen->false_block = LLVMInsertBasicBlock(ifthen->merge_block, "if-false-block");
715
716 /* successive code goes into the else block */
717 LLVMPositionBuilderAtEnd(ctx->builder, ifthen->false_block);
718 }
719
720
721 /**
722 * End a conditional.
723 */
724 void
725 lp_build_endif(struct lp_build_if_state *ctx)
726 {
727 struct lp_build_flow_context *flow = ctx->flow;
728 struct lp_build_flow_if *ifthen;
729 LLVMBasicBlockRef curBlock = LLVMGetInsertBlock(ctx->builder);
730 unsigned i;
731
732 ifthen = &lp_build_flow_pop(flow, LP_BUILD_FLOW_IF)->ifthen;
733 assert(ifthen);
734
735 /* Insert branch to the merge block from current block */
736 LLVMBuildBr(ctx->builder, ifthen->merge_block);
737
738 if (ifthen->false_block) {
739 LLVMPositionBuilderAtEnd(ctx->builder, ifthen->merge_block);
740 /* for each variable, update the Phi node with a (variable, block) pair */
741 for (i = 0; i < flow->num_variables; i++) {
742 assert(*flow->variables[i]);
743 LLVMAddIncoming(ifthen->phi[i], flow->variables[i], &curBlock, 1);
744 /* replace the variable ref with the phi function */
745 *flow->variables[i] = ifthen->phi[i];
746 }
747 }
748 else {
749 /* no else clause */
750 LLVMPositionBuilderAtEnd(ctx->builder, ifthen->merge_block);
751 for (i = 0; i < flow->num_variables; i++) {
752 assert(*flow->variables[i]);
753 LLVMAddIncoming(ifthen->phi[i], flow->variables[i], &ifthen->true_block, 1);
754
755 /* replace the variable ref with the phi function */
756 *flow->variables[i] = ifthen->phi[i];
757 }
758 }
759
760 FREE(ifthen->phi);
761
762 /***
763 *** Now patch in the various branch instructions.
764 ***/
765
766 /* Insert the conditional branch instruction at the end of entry_block */
767 LLVMPositionBuilderAtEnd(ctx->builder, ifthen->entry_block);
768 if (ifthen->false_block) {
769 /* we have an else clause */
770 LLVMBuildCondBr(ctx->builder, ifthen->condition,
771 ifthen->true_block, ifthen->false_block);
772 }
773 else {
774 /* no else clause */
775 LLVMBuildCondBr(ctx->builder, ifthen->condition,
776 ifthen->true_block, ifthen->merge_block);
777 }
778
779 /* Insert branch from end of true_block to merge_block */
780 if (ifthen->false_block) {
781 /* Append an unconditional Br(anch) instruction on the true_block */
782 LLVMPositionBuilderAtEnd(ctx->builder, ifthen->true_block);
783 LLVMBuildBr(ctx->builder, ifthen->merge_block);
784 }
785 else {
786 /* No else clause.
787 * Note that we've already inserted the branch at the end of
788 * true_block. See the very first LLVMBuildBr() call in this function.
789 */
790 }
791
792 /* Resume building code at end of the ifthen->merge_block */
793 LLVMPositionBuilderAtEnd(ctx->builder, ifthen->merge_block);
794 }
795
796
797 /**
798 * Allocate a scalar (or vector) variable.
799 *
800 * Although not strictly part of control flow, control flow has deep impact in
801 * how variables should be allocated.
802 *
803 * The mem2reg optimization pass is the recommended way to dealing with mutable
804 * variables, and SSA. It looks for allocas and if it can handle them, it
805 * promotes them, but only looks for alloca instructions in the entry block of
806 * the function. Being in the entry block guarantees that the alloca is only
807 * executed once, which makes analysis simpler.
808 *
809 * See also:
810 * - http://www.llvm.org/docs/tutorial/OCamlLangImpl7.html#memory
811 */
812 LLVMValueRef
813 lp_build_alloca(LLVMBuilderRef builder,
814 LLVMTypeRef type,
815 const char *name)
816 {
817 LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
818 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
819 LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
820 LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
821 LLVMBuilderRef first_builder = LLVMCreateBuilder();
822 LLVMValueRef res;
823
824 LLVMPositionBuilderAtEnd(first_builder, first_block);
825 LLVMPositionBuilderBefore(first_builder, first_instr);
826
827 res = LLVMBuildAlloca(first_builder, type, name);
828
829 LLVMDisposeBuilder(first_builder);
830
831 return res;
832 }
833
834
835 /**
836 * Allocate an array of scalars/vectors.
837 *
838 * mem2reg pass is not capable of promoting structs or arrays to registers, but
839 * we still put it in the first block anyway as failure to put allocas in the
840 * first block may prevent the X86 backend from successfully align the stack as
841 * required.
842 *
843 * Also the scalarrepl pass is supossedly more powerful and can promote
844 * arrays in many cases.
845 *
846 * See also:
847 * - http://www.llvm.org/docs/tutorial/OCamlLangImpl7.html#memory
848 */
849 LLVMValueRef
850 lp_build_array_alloca(LLVMBuilderRef builder,
851 LLVMTypeRef type,
852 LLVMValueRef count,
853 const char *name)
854 {
855 LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
856 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
857 LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
858 LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
859 LLVMBuilderRef first_builder = LLVMCreateBuilder();
860 LLVMValueRef res;
861
862 LLVMPositionBuilderBefore(first_builder, first_instr);
863
864 res = LLVMBuildArrayAlloca(first_builder, type, count, name);
865
866 LLVMDisposeBuilder(first_builder);
867
868 return res;
869 }